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Quantum metrology is recognized for its capability to offer high-precision estimation by utilizing quantum
resources, such as quantum entanglement. Here, we propose a generalized Tavis-Cummings model by introduc-
ing the XY spin interaction to explore the impact of the many-body effect on estimation precision, quantified
by the quantum Fisher information (QFI). By deriving the effective description of our model, we establish a
closed relationship between the QFI and the spin fluctuation induced by the XY spin interaction. Based on
this exact relation, we emphasize the indispensable role of the spin anisotropy in achieving Heisenberg-scaling
precision for estimating a weak magnetic field. Furthermore, we observe that the estimation precision can be
enhanced by increasing the strength of the spin anisotropy. We also reveal a clear scaling transition of the QFI
in the Tavis-Cummings model with a reduced Ising interaction. Our results contribute to the enrichment of
metrology theory by considering many-body effects, and they also present an alternative approach to improving
the estimation precision by harnessing the power provided by many-body quantum phases.
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I. INTRODUCTION

Quantum metrology [1–7] aims to achieve enhanced sen-
sitivity in estimating an unknown parameter ξ compared
to classical metrology by exploiting diverse quantum re-
sources, such as quantum entanglement [8–12] and quantum
squeezing [13–18]. Widespread applications of quantum
metrology have emerged in numerous experimental do-
mains, including Ramsey spectroscopy [19,20], atomic clocks
[21–23], gravitational-wave detectors [24–26], magnetometry
[27–30], and biophysical measurements [31–33]. The quan-
tum Cramér-Rao bound (QCRB) [34] δξ � 1/

√
Fξ provides

a theoretical approach to assess the suitability of a quan-
tum state for a high-precision quantum estimation. In other
words, a quantum state with larger quantum Fisher informa-
tion (QFI), Fξ , can yield a higher precision. For example, in
the quantum phase estimation, when utilizing nonentangled
N-particle states, the precision is bounded by the standard
quantum limit (SQL), namely, Fξ ∝ N . However, when the
Greenberger-Horne-Zeilinger (GHZ) entangled state is em-
ployed, it becomes feasible to approach the Heisenberg limit
(HL), meaning that Fξ ∝ N2. Preparing a specified GHZ state
is, however, a challenging endeavor from an experimental
perspective. It is also unclear whether it has the capability to
sense a nonglobal parameter, such as the strength of a mag-
netic field, with high precision. Through the adiabatic state
preparation technique, it becomes possible to prepare more
many-body ground states beyond the GHZ state [35–40].
Therefore, our aim is to explore whether certain many-body
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ground states, such as the ground state of the XY spin chain,
are sufficient to achieve HL-precision metrology.

Cavity quantum electrodynamics (cavity-QED) contributes
significantly to our foundational understanding of the inter-
action between atoms and the electromagnetic field within
a cavity [41–44]. Its remarkable capability to manipulate
atoms using the electromagnetic field has proven to be
highly valuable across a wide spectrum of domains, spanning
from quantum simulation [45,46], quantum key distribu-
tion [47,48], generation of nonclassical correlations [49–51],
quantum batteries [52–56], to quantum metrology [2,57–68].
The Tavis-Cummings (TC) model [69,70] is the simplest one
for describing a multiatom cavity quantum electrodynamics
system. To enhance the many-body effects within the TC
model, we extend our consideration to a generalized TC
model in which the atoms are organized into a spin chain with
the XY interaction. Our primary focus will be on investigating
variations in metrological precision when the initial state of
the atoms is prepared under different quantum phases of the
XY spin chain.

In this paper, a promising quantum-enhanced protocol is
proposed for sensing a weak magnetic field in a cavity-QED
system by introducing the many-body spin effect. We estab-
lish a direct relationship between the estimation precision
and the spin fluctuations induced by the XY spin interac-
tion. Moreover, based on this exact relation, we illustrate that
the spin anisotropy is pivotal in achieving HL precision for
estimating a weak magnetic field, and elucidate that the esti-
mation precision can be enhanced by increasing the strength
of the spin anisotropy. Additionally, we utilize the estimation
precision to identify quantum phase transitions in the TC
model with a reduced Ising interaction. Our work provides

2469-9926/2024/109(4)/042614(8) 042614-1 ©2024 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.109.042614&domain=pdf&date_stamp=2024-04-08
https://doi.org/10.1103/PhysRevA.109.042614


YUGUO SU, WANGJUN LU, AND HAI-LONG SHI PHYSICAL REVIEW A 109, 042614 (2024)

Spins

h|α

g

N

FIG. 1. Schematic illustration of the generalized TC model: A
coherent light |α〉 is injected into the cavity and coupled to N trapped
spins (depicted in green) with a coupling strength g. These N spins
collectively form the XY spin chain and are employed for sensing a
magnetic field h.

an effective attempt at designing high-precision quantum es-
timation strategies by incorporating the quantum many-body
effect.

This paper is organized as follows. In Sec. II, we introduce
a generalized TC model featuring the XY spin interaction.
The effective description of our model is obtained by using
the time-averaged method and validated through numerical
calculations. In Sec. III, based on the effective Hamiltonian,
we analytically derive the QFI and demonstrate the indispens-
ability of the spin fluctuation for achieving HL precision. By
utilizing the correlation function of the XY model, we analyze
the scaling of the QFI within different quantum phases. We
show that the TC model, devoid of any spin interactions,
achieves only SQL precision. Conversely, when incorporating
the XY spin interaction and the spin anisotropy into the TC
model, HL precision becomes attainable for estimating a weak
magnetic field. We elucidate a distinct scaling transition of the
QFI in the TC model with the Ising interaction. Furthermore,
we elaborate on the effect of the general XY spin interaction
and illustrate that the QFI increases with a rise in the spin
anisotropy. Finally, a conclusion is made in Sec. IV.

II. SYSTEM AND EFFECTIVE HAMILTONIAN

We consider a generalized TC model, where a collection
of N two-level atoms (or spin- 1

2 spins) constitutes an XY spin
chain and collectively interacts with a single bosonic cavity
mode, as illustrated in Fig. 1. The system is described by the
following Hamiltonian,

H = ω0Jz + ωaa†a + H0(h) + HI,

H0(h)=−λ

2

N∑
i=1

[
1 + γ

2
σ x

i σ x
i+1 + 1 − γ

2
σ

y
i σ

y
i+1

]
− h

2

N∑
i=1

σ z
i ,

HI = g(a†J− + aJ+), (1)

where HI represents the interaction Hamiltonian govern-
ing the atom-light coupling and the XY Hamiltonian H0(h)
characterizes interactions between nearest-neighbor spins.

Here, Jx,y,z = ∑N
j=1 σ

x,y,z
j /2 and J± = Jx ± iJy are the col-

lective spin operators. The operators a† and a correspond to
the creation and annihilation of cavity mode photons. The
parameters ω0, ωa, and 2g denote the spin transition fre-
quency, cavity frequency, and single-photon Rabi frequency,
respectively. λ describes the strength of the nearest-neighbor
interaction. γ quantifies the degree of anisotropy. h repre-
sents the magnetic field to be estimated. The experimental
implementation of this generalized TC model is feasible in
a superconducting quantum processor [71,72].

However, it is important to note that the Hamiltonian (1)
cannot be solved exactly. To overcome this challenge, we
introduce the time-averaged method to derive an effective
description of the original system. Moreover, this approach
will provide valuable insights into the relationship between
metrological scaling and quantum phases. Employing the
unitary transformation U = exp{−i[ω0Jz + ωaa†a + H0(h)]t}
and the large detuning condition (|ω0 − h − ωa| � λ), the
total Hamiltonian (1) in the interaction picture could be read
as Hint−pic = g[J−a†e−i(	+δ)t + H.c.] with a large detuning
	 ≡ ω0 − h − ωa and a small residue δ. Utilizing the time-
averaged method given in Ref. [73], the total Hamiltonian can
be approximated as (see more details in the Appendix),

H (s)
eff � H0(h − ω0) + 2g2

	
Jza

†a + g2

	
J+J−, (2)

which is written in the Schrödinger picture. The essence of the
time-averaged method is to eliminate the high-frequency con-
tribution and thus it can be viewed as a natural generalization
of the rotating-wave approximation [74]. This approximation
holds under the conditions of 	2 � g2N , 	2 � g2N2/n̄, and
|	| � λ. Here, n̄ ≡ 〈a†a〉 is the average photon number and
the atom-light coupling g is weak.

Generally, the average photon number is much larger than
the number of spins, i.e., n̄ � 〈Jz〉 ≈ N , then we can further
reduce the Hamiltonian (2) to obtain the following effective
Hamiltonian,

Heff = H0(h − ω0) + 2g2

	
Jza

†a, (3)

which is similar to the Hepp-Coleman model [75]. Note
that the estimated parameter h not only exists in the term
H0(h − ω0) but also appears in the detuning parameter 	 =
ω0 − h − ωa. In summary, the conditions ensuring the validity
of this effective Hamiltonian (3) are 	2 � g2N , |	| � λ, and
n̄ � N .

To demonstrate the validity of our effective Hamiltonian
approximation, we perform calculations for the dynamics of
the expectation value 〈M(t )〉, where the observable M is cho-
sen as Jϕ = Jx cos ϕ + Jy sin ϕ. The initial state is considered
as a product state, with the cavity initialized in a coher-
ent state |α〉 and the spins in a spin-coherent state |θ, φ〉 =
⊗N

i=1(cos θ
2 | ↑〉i + eiφ sin θ

2 | ↓〉i ), where | ↑〉i and | ↓〉i are the
eigenstates of σ z

i with the eigenvalues 1 or −1, respectively.
The consistency of the numerical expectations of the original
and effective Hamiltonians (blue circles and red dashed line),
as shown in Fig. 2, demonstrates that the effective Hamilto-
nian can faithfully describe the original system.
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FIG. 2. Comparison of expectation values derived from the orig-
inal Hamiltonian (1), indicated by the blue circles, and those
obtained from the effective Hamiltonian (3), represented by the red
dashed line. We have employed the experimental parameters [76]:
ω0/(2π ) = 6.9 GHz, ωa/(2π ) = 6.89 GHz, g/(2π ) = 1.05 MHz.
Other parameters are N = 4, n̄ = 40, λ = γ = 1, h = 10−5 Hz, θ =
π/2, φ = 0, and ϕ = π/3. The numerical computations have been
conducted using the QUTIP software package [77].

III. QUANTUM FISHER INFORMATION
OF THE GENERALIZED TC MODEL

The metrological scheme constitutes the initial preparation
of the spins in the ground state |φg〉 of the XY Hamiltonian
H0(h), followed by the injection of a coherent light |α〉. As
a consequence, the initial state takes the form of a product
state, denoted as |ψ (0)〉 = |φg〉|α〉. Following quantum dy-
namics, the information about the magnetic field h becomes
encoded in the evolved state |ψ (t )〉 = exp(−iHt )|ψ (0)〉. The
maximum precision for estimating the parameter h that can be
provided by |ψ (t )〉 is determined by the QCRB, δh � 1/

√
Fh,

where Fh is the QFI [34,78–80]:

Fh = 4[〈ψ (0)|H2|ψ (0)〉 − 〈ψ (0)|H|ψ (0)〉2]. (4)

Here, the metrological generator is given by H = i(∂hU †)U
with U = exp(−iHt ). Having verified the validity of the ef-
fective Hamiltonian, we can replace H with Heff (3) to derive
the generator as follows:

H =
(

1 − 2g2

	2
a†a

)
Jzt . (5)

Substituting the generator (5) into Eq. (4) we obtain

Fh = 4t2

[(
1 − 2g2

	2
n̄

)2

Var(Jz ) + 4g4

	4
n̄
〈
J2

z

〉]
, (6)

where n̄ ≡ |α|2 is the average photon number of the coherent
light |α〉, 〈·〉 denotes the expectation value over the ground
state |φg〉 of the XY model, and Var(Jz ) = 〈J2

z 〉 − 〈Jz〉2 is the
variance.

Recall that we are exclusively considering the scenario
where the average photon number n̄ significantly exceeds
the number of spins N . As a result, in this context, the HL
precision refers to Fh ∝ n̄2. Equation (6) makes it evident

that the presence of nonvanishing spin fluctuations Var(Jz )
is both necessary and sufficient to achieve the HL precision
in our metrological scheme. Next, we will calculate the spin
correlation functions, specifically Var(Jz ) and 〈J2

z 〉, for the
subsequent discussion.

A. Correlation functions in the XY model

To calculate the correlation functions, we can express the
XY model as a free-fermion model by using the standard
Jordan-Wigner transformation, Fourier transformation, and
Bogoliubov transformation [81]. Finally, the Hamiltonian of
the spin part can be rewritten as

H0(h) =
∑

k

�kb†
kbk + const, (7)

where the momentum is denoted as k = 2πm/N with m =
−N/2 + 1, . . . , N/2 and bk represents the fermion operator.
The excitation energy is given by

�k =
√

(h − λ cos k)2 + λ2γ 2 sin2 k, (8)

where the Bogoliubov angles are determined by

sin νk = λγ sin k

�k
, cos νk = λ cos k − h

�k
. (9)

In terms of the bk operator, the total spin operator can be
expressed as

Jz = − N

2
+ 1

2

∑
k

[(1 + cos νk )b†
kbk

+ (1 − cos νk )b−kb†
−k + i sin νk (b†

kb†
−k − b−kbk )]. (10)

Based on Eq. (10) and the relation bk|φg〉 = 0, we have

〈J2
z 〉 = 1

2

∑
k

sin2 νk + 1

4

(∑
k

cos νk

)2

, (11)

Var(Jz ) = 1

2

∑
k

sin2 νk . (12)

The phase diagram of the XY model is given in Fig. 3,
where the paramagnetic and the ferromagnetic phases are
separated by the critical magnetic field hc = λ = 1 [82]. Our
objective is to elucidate the impact of the XY interaction on
the scaling behavior of the QFI based on Eqs. (6), (9), (11),
and (12).

B. Quantum Fisher information for the TC model

We first consider the case of λ = 0. In this case, the Hamil-
tonian (1) reduces to the TC model where the spins do not
have direct interactions. Substituting the condition λ = 0 into
Eqs. (9), (11), and (12), we obtain 〈J2

z 〉 = N2/4 and Var(Jz ) =
0. This is because the spin ground state is now fully polarized,
|φg〉 = | ↑,↑, . . . ,↑〉. Consequently, from Eq. (6), we find
that the QFI for the TC model is given by

Fh(λ = 0) ≈ 4g4

	4
t2N2n̄, (13)

which indicates that only SQL precision, i.e., Fh ∝ n̄, can be
achieved. Hence, our attention will shift to the impact of the
spin interaction.
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FIG. 3. Phase diagram of the XY model for γ � 0 and h � 0
under the normalization condition λ = 1. The model exhibits criti-
cal behavior along the red line. The critical magnetic field hc = 1
separates the paramagnetic and the ferromagnetic phases. The blue
dashed line corresponds to the Ising model. On the black dots
γ 2 + h2 = 1, the ground state can be factorized as a product state.

C. Quantum Fisher information for the TC model
with the Ising interaction

In this section, we focus on the TC model with the Ising
interaction, i.e., γ = 1. For convenience, we set λ = 1 in
what follows. We know that the Ising model will undergo
a quantum phase transition from the ferromagnetic phase to
the paramagnetic phase phase. The corresponding quantum
critical point is located at hc = 1. Our primary concern is how
the QFI behaves in different quantum phases.

In the case of h  hc, we can approximate the Bogoliubov
angles (9) as sin νk ≈ sin k and cos νk ≈ cos k. Substituting
this approximation into Eqs. (11) and (12), we obtain

〈
J2

z

〉 ≈ N

4π

∫ π

−π

dk sin2 k + 1

4

(
N

2π

∫ π

−π

dk cos k

)2

= N

4
,

(14)

Var(Jz ) = 1

2

(
N

2π

∫ π

−π

dk sin2 k

)
= N

4
, (15)

where the thermodynamic limit has been considered. Com-
pared to the scenario without spin interactions (λ = 0), the
Ising interaction induces a nonzero spin fluctuation, Var(Jz ) =
N/4, for the weak magnetic field case. As a result, the QFI is
given by

Fh(γ = 1, h  hc) ≈ 4t2

[(
1 − 2g2

	2
n̄

)2
N

4
+ 4g4

	4
n̄

(
N

4

)]

≈ 4g4

	4
t2Nn̄2 + O(n̄), (16)

(a)

(b)

FIG. 4. Comparison of numerical and analytic results of sen-
sitivity 1/

√
Fh (in units of 1/t) for the TC model with the Ising

interaction: (a) the weak-field case h = 10−5 Hz and (b) the strong-
field case h = 105 Hz. The blue circles represent the numerical result
obtained from Eq. (6), while the red dashed line denotes the analytic
sensitivity given by Eqs. (16) and (17). The gray dotted-dashed line
indicates SQL precision (∝n̄) while the black line represents HL
precision (∝n̄2). In both cases, N = 8 and the other parameters are
the same as those in Fig. 2.

which implies that HL precision for the photon number n̄ can
be achieved.

However, in the case of h � hc, the approximation from
Eq. (9) sin νk ≈ 0 and cos νk ≈ −1 results in 〈J2

z 〉 ≈ N2/4
and Var(Jz ) ≈ 0 which is consistent with the λ = 0 case (see
Sec. III B). It should be emphasized that this approximation
only requires h � hc and also holds for the case when γ �= 1.
Therefore, we can deduce from Eq. (6) that for the h � hc

case, the QFI is the same as the one obtained from the TC
model without any interaction, i.e.,

Fh(h � hc) ≈ 4g4

	4
t2N2n̄. (17)

The analytical scalings of the QFIs (16) and (17) are nu-
merically verified in Fig. 4, suggesting that by introducing
spin interactions, our scheme can provide HL precision for
estimating a weak magnetic field. For the case of a strong
magnetic field, the vanishing spin fluctuation Var(Jz ) results in
only achieving SQL precision. Furthermore, Fig. 5 illustrates
a clear transition in the scaling of the QFI as we gradually
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FIG. 5. QFI (in units of t2) vs the magnetic field h in the TC
model with the Ising interaction. The blue circles are the numerical
value of QFI obtained from Eq. (6). Here, the number of spins is N =
40 and the average photon number is n̄ = 1000. The other parameters
are the same as those in Fig. 2.

increase the strength of the magnetic field h, ultimately cross-
ing the quantum critical point hc = 1.

D. Quantum Fisher information for the TC model
with the XY interaction

As discussed in Sec. III C, we cannot surpass SQL preci-
sion for estimating a strong magnetic field in our metrological
scheme. However, it is attainable for the weak-field case by
introducing the Ising interaction among the spins. Therefore,
in this section, we will mainly focus on the weak-field case
and illustrate the role of the spin anisotropy γ within the XY
interaction played in the estimation precision.

For the isotropic XX model (γ = 0), the Bogoliubov an-
gles (9) are given by sin νk = 0 and cos νk = sgn(cos k − h),
where we also assume λ = 1 for convenience. By Eqs. (6),
(11), and (12), we know the spin fluctuation vanishes
Var(Jz ) = 0 and can conclude that HL precision cannot be
achieved in this case. Explicitly, if h > hc = 1, then we have
cos νk = −1, and as a result, 〈J2

z 〉 = N2/4. Thus, the QFI (6)
is given by

Fh(γ = 0, h > hc) = 4g4

	4
t2N2n̄. (18)

If h < hc, then by substituting sin νk = 0 and cos νk =
sgn(cos k − h) into Eqs. (11) and (12) we obtain

〈
J2

z

〉 = 1

2

∑
k

sin2 νk + 1

4

(∑
k

cos νk

)2
N→∞= N2

16π2

(
−

∫ − arccos(h)

−π

dk +
∫ arccos(h)

− arccos(h)
dk −

∫ π

arccos(h)
dk

)2

= N2

4π2
[2 arccos(h) − π ]2. (19)

Finally, from Eq. (6), the QFI is given by

Fh(γ = 0, h < hc) = [2 arccos(h) − π ]2

π2

4g4

	4
t2N2n̄, (20)

which is verified in Fig. 6(a). Both of these two quantum
phases only support SQL precision when γ = 0. This QFI
scaling is the same as the one obtained in the TC model
without spin interactions (λ = 0).

In the region 0 < γ < 1, no evident approximation is
feasible, prompting us to resort to numerical calculations.
As depicted in Fig. 6(a), the emergence of HL precision is
apparent even with a small anisotropy, i.e., γ = 0.01. This
phenomenon can be understood from Fig. 6 and Eq. (6) that
the presence of nonvanishing spin fluctuation, i.e., Var(Jz ) �=0
for γ �= 0, ensures the manifestation of such HL precision.

For the γ = 1 case (the Ising model), we have discussed
in Sec. III C and HL precision can be achieved in the weak-
field case. If we increase the anisotropy to infinity γ � 1
then Eq. (9) can be approximated as sin νk ≈ sgn(sin k) and
cos νk ≈ 0. Then, by Eqs. (11) and (12), we have 〈J2

z 〉 ≈ N/2
and Var(Jz ) ≈ N/2. Thus, the QFI is given by

Fh(γ � 1) ≈ 4t2

[(
1 − 2g2

	2
n̄

)2
N

2
+ 4g4

	4
n̄

N

2

]

≈ 8g4

	4
t2Nn̄2 + O(n̄), (21)

which has been verified in Fig. 6(a). Figure 6(b) demonstrates
that the spin fluctuation Var(Jz ) increases with the rise in
the anisotropy γ and ultimately converges to the limiting
value N/2. Consequently, the QFI exhibits a behavior akin to
Var(Jz ) due to Eq. (6) and attains its maximum at sufficiently
large values of γ .

IV. CONCLUSION

In conclusion, our study systematically delves into the
pivotal role played by the XY spin interaction in magnetic
field sensing, employing a generalized TC model as the basis.
The estimated precision is quantified by the QFI. The effective
description of the model is derived using the time-averaged
method and rigorously validated through numerical calcu-
lations. Based on the effective Hamiltonian, we establish a
closed relationship between the QFI and the spin fluctuation,
highlighting the indispensable nature of the spin fluctuation
for achieving HL precision in estimation. Notably, in com-
parison to the TC model without any spin interactions, the
introduction of the anisotropic XY spin interaction beats the
SQL and attains HL precision in estimating a weak mag-
netic field. Furthermore, our investigation reveals a direct
correlation between the QFI and the spin anisotropy, under-
lining the significant role of the spin anisotropy in realizing
high-precision quantum metrology. Additionally, we observe
a scaling transition of the QFI in the TC model with the
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(a)

(b)

FIG. 6. (a) Comparison of numerical and analytic results of sen-
sitivity 1/

√
Fh (in units of 1/t) for the TC model with the XY

interaction. The circles, upper triangles, lower triangles, and squares
indicate the numerical results for γ = 0, γ = 0.01, γ = 1, and γ =
100, respectively. The black dashed line, black solid line, and gray
solid line denote the analytical results, Eqs. (20), (16), and (21),
for γ = 0, γ = 1, and γ � 1. (b) Numerical result of the rescaled
variance Var(Jz )/N vs the anisotropy parameter γ . The number of
spins is taken as N = 40. The magnetic field is chosen as h = 0.1
and other parameters are the same as those in Fig. 2.

Ising interaction. These findings not only contribute to quan-
tum metrology within cavity-QED systems but also provide
valuable insights for exploring many-body effect enhanced
quantum metrology.

The time-averaged method we employed only reveals the
mysteries of our generalized TC model within the large detun-
ing region. Distinct features in small detuning or other regions
remain to be investigated. We emphasize the possibility of em-
ploying another approach [83,84] in the future by identifying
the atoms as impurities to address such regions.
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APPENDIX: EFFECTIVE HAMILTONIAN
OF THE CAVITY-QED SYSTEM

Here, we employ the time-averaged method [74] to de-
rive an effective description for the original system (1).
This method can be regarded as a generalized rotating-wave
approximation, which eliminates various high-frequency con-
tributions. It states that if we can express our Hamiltonian in
the following form,

Hint−pic =
∑

i

fi exp(−i�it ) + H.c., (A1)

then we can approximate it as

Hint−pic ≈
∑
i, j

1

�̄i j
[ f †

i , f j]e
i(�i−� j )t . (A2)

Here, �̄i j is the harmonic average of frequencies �i and � j ,
i.e., 1/�̄i j = (1/�i + 1/� j )/2.

In our case, the total Hamiltonian (1) in the interaction
picture is given by

Hint−pic = i
dU †

1

dt
U1 + U †

1 HU1

= g[eiωat a†eiH0(h−ω0 )t J−e−iH0(h−ω0 )t + H.c.]

= g[J−a†e−i(	+δ)t + H.c.], (A3)

where U1 = exp{−i[ω0Jz + ωaa†a + H0(h)]t} is the unitary
transformation operator, 	 = ω0 − h − ωa is a large effective
detuning, and a small residue δ comes from the commutators
[H0(0), J−] and [H0(0), Jz]. Under the large detuning con-
dition (|	| � λ), the Hamiltonian (A3) takes the form of
the Hamiltonian (A1) with fi = gσ−

i a†/2 and �i = � j � 	.
Then, using Eq. (A2), we derive the effective Hamiltonian in
the interaction picture:

Hint−pic ≈
N∑

i, j=1

g2

4	
[σ+

i a, σ−
j a†] = g2

	
(J+J− + 2Jza

†a).

(A4)

Rewriting Eq. (A4) into the Schrödinger picture, we obtain the
effective Hamiltonian,

H (s)
eff ≈ ω0Jz + ωaa†a + H0(h) + 2g2

	
Jza

†a + g2

	
J+J−

≈ H0(h − ω0) + 2g2

	
Jza

†a + g2

	
J+J−, (A5)

where the term a†a has been omitted since the photon number
remains conserved.

To ensure the validity of this approximation, in addi-
tion to the condition |	| � λ, we also require that the
timescale of the first term in Heff be greater than the timescale
introduced by the corrections (the second and the third
terms) [85]. To compare the magnitude of these terms, it
is convenient to express the effective Hamiltonian in the
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rotating frame by employing the unitary transformation U2 =
exp[−iω0(Jz + a†a)t], resulting in

H (r)
eff = i

dU †
2

dt
U2 + U †

2 H (s)
eff U2

≈ −	a†a + 2g2

	
Jza

†a + g2

	
J+J−, (A6)

which suggests that the first term scales as |	|n̄, the second
term scales as g2Nn̄/|	|, and the third term scales at most
g2N2/|	|. Thus, the conditions ensuring the validity of the
approximation are |	|n̄ � g2Nn̄/|	|, |	|n̄ � g2N2/|	|, i.e.,
	2 � g2N , 	2 � g2N2/n̄, and the large detuning condition
(|	| � λ). Here, n̄ = 〈a†a〉 is the average photon number.
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