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Hardware requirements for realizing a quantum advantage with deterministic single-photon sources
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Boson sampling is a specialized algorithm native to the quantum photonic platform developed for near-term
demonstrations of quantum advantage over classical computers. While clear useful applications for such near-
term pre-fault-tolerance devices are not currently known, reaching a quantum advantage regime serves as a useful
benchmark for the hardware. Here, we analyze and detail hardware requirements needed to reach quantum
advantage with deterministic quantum emitters, a promising platform for photonic quantum computing. We
elucidate key steps that can be taken in experiments to overcome practical constraints and establish quantitative
hardware-level requirements. We find that quantum advantage is within reach using quantum emitters with
an efficiency of 60%–70% and interferometers constructed according to a hybrid-mode-encoding architecture,
constituted of Mach-Zehnder interferometers with an insertion loss of 0.0035 dB (a transmittance of 99.92%)
per component.
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I. INTRODUCTION

Devices based on quantum systems can potentially outper-
form the capabilities of classical computers [1,2]. Quantum
technologies are rapidly progressing towards this goal and
new computational regimes are being explored [3–5]. While
fault tolerance is generally thought to be necessary to reach
most practical applications, reaching this regime necessitates
hardware requirements that are far from current capabili-
ties, limiting demonstrations to small-scale experiments [6,7].
Quantum advantage (QA), where specialized algorithms can
demonstrate speedups over classical computers, has been
identified as an intermediate milestone computational regime
amenable for near-term hardware using readily available
quantum hardware components [3,8,9]. While it is currently
not known if any practical applications are possible in this
regime, it serves as an entry point to beyond-classical capa-
bilities and an important benchmark for developing scalable
platforms that can evolve towards fault tolerance. In this
context, we analyze the hardware requirements for achieving
QA using photonic quantum hardware, where fusion-based
approaches for fault-tolerant quantum computing have been
proposed [10,11].

Aaronson and Arkhipov proposed boson sampling of pho-
tonic quantum states [8] as a route for demonstrating QA
with near-term quantum hardware. The key insight is the
connection between the correlations induced by linear in-
terference operations on N indistinguishable photons in an
M-mode linear optical interferometer and the matrix perma-
nent, a quantity that is #P-hard to compute on a classical
machine [12,13]. However, imperfections in photon sources
and losses in optical interferometer networks and detectors
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rapidly diminish the degree of quantum correlations and over-
throw the quantum advantage. The diminishing effect of
imperfections on QA is quantified in models of “noisy” boson
samplers for which efficient classical computation algorithms
have been proposed, thereby imposing strict bounds on the
indistinguishability of photons and the overall optical loss
[14–16]. As quantum photonic hardware continues to rapidly
advance [17–20], the formulation of quantitative benchmarks
for realizing QA is a critical need as they provide milestones
for guiding the hardware development.

In this paper, we present a comprehensive analysis quan-
tifying the performance metrics of the constituent building
blocks essential for surpassing efficient classical algorithms
with boson sampling. By benchmarking our framework
against state-of-the-art single-photon sources and photonic in-
tegrated circuits, we identify a realistic regime for conducting
QA experiments. Our analysis focuses on the case of boson
samplers based on single-photon sources (discrete variable
photonic qubits), where several proof-of-concept experiments
have been carried out to date [21–25].

Recent advances in deterministic photon sources em-
ploying semiconductor quantum dots have demonstrated the
generation of long strings of nearly identical photons [26,27],
setting the stage for scaling up from proof-of-concept experi-
ments. A remaining challenge is to realize a photonic platform
with sufficiently low loss, requiring efficient collection from
the source, as well as large-scale and low-loss photonic cir-
cuits such that the large photonic resource can be processed
and measured to demonstrate QA [14,19]. As the optical loss
in an interferometer circuit is highly dependent on its design,
i.e., the spatial arrangement of Mach-Zehnder interferometers
(MZI), we analyze the requirements of the individual MZIs
and their integration into an optimal architecture. Combining
the analysis of the source imperfections and optical circuit
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loss, we identify two key optimizations, a rectangular circuit
architecture and the encoding of modes in multiple degrees of
freedom, that could enable an unequivocal demonstration of
QA. We determine that an insertion loss of 3.5 mdB per MZI
interferometer, i.e., a transmittance of 99.92 % is sufficient for
the optimal architecture using state-of-the-art photon sources
and detectors. This sets a clear target metric for ongoing
advances in photonic integrated circuits [28,29], and is already
within reach for the specialized, fixed circuits employed in
Refs. [25,30].

II. BOSON SAMPLING ALGORITHM
AND ITS VALIDATION

Boson sampling is the task of sampling from the output
photon distribution after multiple independent photons have
interfered in a multimode linear optical interferometer. The
setup for implementing boson sampling is schematically illus-
trated in Fig. 1(a) highlighting the key components: an input
consisting of multiple indistinguishable photons, a large mul-
timode interferometer module, and single-photon detectors.

The computational complexity of simulating boson sam-
pling arises from the connection between multiphoton cor-
relations and the calculation of matrix permanents. Analyses
of the computational complexity of boson sampling typically
assume that both input states and output states are collision
free [8,15], meaning that each mode contains at most one
photon. To preserve the computational complexity, it is crucial
to ensure collision-free states at both the inputs and outputs
[8], meaning that each mode contains at most one photon.
Collision-free input states can be guaranteed by choosing
the initial condition, where no more than one photon is in-
jected into each input mode. Ensuring collision-free outputs
demands the interferometer to possess a large number of
modes per photon. Specifically, the number of modes m must
scale at least quadratically with the number of photons p, i.e.,
m ∝ p2, a requirement arising from a phenomenon called the
bosonic birthday paradox [8,31]. In experiments, collision-
free outputs can be ensured through postselection of events
where photons are detected in the same number of output
modes as input modes while discarding all other events. This
postselection strategy remains applicable even when the de-
tectors lack number-resolving capabilities, thereby enabling
near-term implementations of QA with efficient single-photon
detectors [25,30,32].

To demonstrate QA, it is essential that the output samples
can be validated as being computationally hard to produce
by classical means [14]. Due to the computational hardness,
direct validation of the samples by comparison with exact
distributions is infeasible. Within these constraints, the valida-
tion of QA through boson sampling requires two steps. First,
we must require that deviations in the experimental setup are
small enough that approximate classical algorithms cannot
simulate the output distribution efficiently. Second, instead
of validating that the samples are produced from the exact
distribution, one verifies that the outputs are not reproduced by
a computationally efficient distribution [14,25]. Specifically,
statistical tests performed on the output samples obtained in
a boson sampling experiment verify that the experimentally
observed distribution differs significantly from a set of

FIG. 1. (a) A general boson sampling setup, consisting of a
source of multiphoton input states, a multiport interferometer, and
detectors. The associated system losses ρ are indicated for each
subcomponent. (b) A boson sampling setup based on a determinis-
tic single-photon source (SPS) and a spatially encoded multimode
interferometer. The single-photon source emits a string of single
photons in predetermined time bins, illustrated as filled red circles.
A demultiplexer converts the photon stream into a p-photon source
by deterministically switching each photon into a separate mode.
The spatially encoded input state is sent into an interferometer
constructed from a network of MZIs. Each MZI is illustrated as a
cross, where each cross consists of two phase shifters (PSs) and
two beam splitters (BSs) arranged according to the illustration at
the bottom. (c) A boson sampling setup based on a deterministic
single-photon source (SPS) and a time-bin interferometer. The SPS
is identical to the case in (b) where τ denotes the time separation
between subsequent photons. The interferometer consists of recon-
figurable time-dependent MZIs, where time-dependent phase shifters
are implemented using electro-optic modulators (EOMs), which are
connected by delay lines illustrated as black lines, where one loop
corresponds to a single time bin τ of delay. For both (b) and (c),
it is assumed that up to l photons may be lost throughout the setup,
illustrated as a red circle with a dashed outline, due to residual optical
loss associated with each component.

efficiently computable distributions. These statistical tests
provide a termination condition for the experiment, whereby
the boson sampler is run until a sufficient number of out-
put samples are generated to establish the statistical tests’
convergence unequivocally. Thus, a QA demonstration will
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be feasible if a sufficient number of samples can be produced
over an experimentally viable integration time, proportional to
the sample acquisition rate rsample. The sample acquisition rate
in an experiment is equal to the product of the generation rate
of the multiple-photon input state rinput and the probability of
the state reaching the detectors Psample:

rsample = Psamplerinput. (1)

The probability of sampling a p-photon coincidence at the out-
put is related to the total per-photon efficiency of the system
Psys as

Psample = Pp
sys. (2)

For convenience, we express these probabilities in decibels,
i.e., ρi = −10 log10(Pi ). For brevity, we refer to the decibel
probability ρi as loss, while Pi is referred to as efficiency.

III. EXPERIMENTAL SETUP AND IMPERFECTIONS

As illustrated in Fig. 1(a), the loss in the boson sampling
architecture can be broken down into component-level losses
as

ρsys = ρsrc + ρint + ρdet, (3)

where ρsrc is the source loss, ρint is the interferometer loss,
and ρdet is the detector loss. In this section, we detail the
implementation and requirements on the components and
discuss strategies to tackle experimental limitations in each
component.

A. Input-state preparation

The input state in the boson sampling algorithm consists of
multiple indistinguishable single photons, each generated and
encoded separately. Below, we discuss these two steps and any
imperfections introduced in real experiments.

An important figure of merit for the photons employed in a
boson sampling experiment is the pairwise indistinguishabil-
ity x2, defined as the overlap integral of photons with wave
functions ψ and ψ ′, x2 = | 〈ψ ′|ψ〉 | = | ∫ ψ ′∗(t )ψ (t )dt |. In
experiments, the indistinguishability is quantified through
the Hong-Ou-Mandel visibility in an interference experiment
[33]. To ensure computational hardness, photon indistin-
guishability approaching near-unity visibility is necessary.

Highly indistinguishable photons have been generated
employing two approaches: (1) nonlinear optics and (2) sin-
gle quantum emitters. The former exploits the energy-time
correlations in optical processes in nonlinear media like
spontaneous parametric down-conversion and spontaneous
four-wave mixing to generate correlated photon pairs. The
resulting squeezed state can be used directly for Gaussian
boson sampling [4,9,30] or, alternatively, the detection of
one photon in the pair can be used to herald the presence
of the other. Despite being probabilistic, the heralded nature
can be exploited through active feedforward and multiplex-
ing to realize a near-deterministic photon source [34]. As
the sources suffer from an intrinsic tradeoff between the
photon-number purity (the probability of having one and only
one photon pair per pulse) and the photon-pair generation
rate, this requires massive multiplexing of many probabilistic

sources to reach near-deterministic operation with high num-
ber purity, which is an active area of research [35]. These
challenges and tradeoffs could be overcome by leveraging the
deterministic light-matter interactions enabled by coupling a
highly efficient single-photon emitter (e.g., a semiconductor
quantum dot) to a nanophotonic structure [36]. Single-photon
sources based on such deterministic light-matter interfaces
produce near-identical photons and are operational at a rate
of up to a GHz, as defined by the lifetime of the emitter, thus
highlighting an avenue for realizing boson sampling in the QA
regime [26].

Photons generated using such deterministic light-matter
interfaces are naturally encoded in different time bins as de-
termined by the excitation process of the quantum emitter.
While these time-bin encoded photonic states can be read-
ily employed for boson sampling [37,38], compatibility with
photonic integrated circuits requires converting the time-bin
encoded photons to spatial encoding using a demultiplexer
[25,39]. The demultiplexer takes an incoming stream of p
single photons separated in time and converts it to p simul-
taneous photons in separate spatial modes. In both time-bin
[see Fig. 1(c)] as well as demultiplexed spatial-bin encoding
[Fig. 1(b)], in the demultiplexed spatial-bin-encoded case, a
single-photon source emitting at a rate of rsingle-photon is con-
verted to a source of p single photons emitted at a rate of
rsingle-photon/p. With a time-bin encoding, the rate will depend
on the time-bin interferometer architecture employed, but for
the case we will analyze, the input-state generation rate will
be 2rsingle-photon/m, where m is the number of modes, such that
m/2 is the number of time bins, as will be explained in more
detail later.

A variety of quantum emitters are being explored as can-
didates for on-demand single-photon sources [40–42], with
semiconductor quantum dots leading the field. As quantum
dot sources have proven capable of producing long strings of
highly indistinguishable photons [26], the scalability of this
approach is mainly determined by the overall efficiency of
generating single photons and delivering them to the demul-
tiplexer, as well as the actual efficiency of the demultiplexer
setup. We specifically consider and benchmark the case of a
single deterministic source but note that access to multiple
deterministic quantum dot sources would allow for spatially
encoded experiments with higher input-state generation rates
and lower demultiplexer losses. The simultaneous use of
multiple sources relies on the development of local tuning
methods for overcoming intrinsic inhomogeneities of quan-
tum dot sources, and important progress has recently been
reported both for quantum dots in bulk samples [43] and in
nanophotonic waveguides [44].

A time-to-spatial-mode demultiplexer can be realized by
sending the emitted photon stream through a binary tree of
switches. Each step in the tree doubles the number of spatial
modes, as illustrated in Fig. 1(b), such that the full demul-
tiplexer requires a depth of �log2(p)�. Each output mode
from the demultiplexer requires a specific optical delay to
synchronize all photons. We associate a loss of ρswitch with
each switching operation, such that the overall loss of the
demultiplexer is

ρdmx = �log2(p)�ρswitch.

042613-3



SUND, UPPU, PAESANI, AND LODAHL PHYSICAL REVIEW A 109, 042613 (2024)

Finally, there will be a coupling loss ρcoupling associated
with connecting the source to the input of the demultiplexer,
and the output of the demultiplexer to the input of the interfer-
ometer. Thus, the overall source loss is

ρsrc = ρsps + ρdmx + ρcoupling,

where ρsps is the loss associated with the single-photon source
itself, accommodating for inefficiencies associated with the
generation of single photons and subsequent coupling from
the cavity or waveguide applied [36].

We note that the number of photons generated should
ideally be kept as low as possible (for the targeted compu-
tational complexity) while maintaining intractability, as the
sample acquisition rate will decrease exponentially with sys-
tem efficiency for an increasing number of input photons
in accordance with Eq. (2). In order to increase acquisition
rates, experimental efforts typically employ a related algo-
rithm called Aaronson-Brod boson sampling [45], where an
additional l photons are added to the p input photons, while
the outputs are postselected to contain the same number of
photons as before. The probability of detecting the correct
number of photons, i.e., the probability of generating a sample
Psample(p, l ) can then be expressed as

Psample(p, l ) = Pp−l
sys (1 − Psys)l

(
p

l

)
, (4)

where the factor
(p

l

)
is the number of combinations in which

one can lose l photons from p input photons. This leads to a
speedup in the sample acquisition rate, which increases com-
binatorially with the number of lost photons l . The downside
is that postselection increases the deviation from the ideal
case and lowers the computational complexity. In practice, the
algorithm in Ref. [15] can produce samples from an approx-
imate distribution where the error of the approximation E is
bounded by

x2(k+1)
( p−l

p

)k+1

1 − (
x2 p−l

p

) � E2, (5)

where x2 is the indistinguishability of the photons. Thus,
the number of lost photons allowed depends on the indistin-
guishability of the photons in the input state.

B. Interferometer design and operation

Multimode interferometers are typically constructed us-
ing cascaded arrays of Mach-Zehnder interferometers (MZIs)
and implement an m-dimensional unitary matrix operation,
with the circuit accommodating m input modes and m out-
put modes. To validate boson sampling through statistical
sampling of random unitary circuits [8], experiments require
either several static circuits or a programmable circuit of
MZIs with adjustable beam splitters and phase shifters. The
latter approach is favored, as it offers access to a substantial
number of random unitary operations [46]. Universal interfer-
ometer architectures enable the implementation of all unitary
transformations on m modes, effectively generating any m ×
m unitary matrix [47,48].

The per-photon loss for an interferometer architecture de-
pends on the number of optical components, i.e., MZIs, a

photon passes through from the input to the output. We will
refer to this number of MZIs as the optical depth D(m), such
that the interferometer loss can be written as

ρint = D(m)ρMZI.

The depth will increase for a higher number of modes where
the exact dependence is given by the specific architecture
employed. As such, there are two main strategies that are
employed to reduce loss: 1. reducing the number of modes,
and 2. employing interferometer architectures with a lower
optical depth for a given number of modes.

C. Reducing the number of modes

Due to the challenges in scaling up low-loss interferome-
ters, experiments involving a large number of photons (p >

10) have employed interferometers with the number of modes
m smaller than p2. Consequently, this choice yields a propor-
tionally reduced depth D(m). Although this reduction in the
number of modes mitigates optical loss within the interfer-
ometer, the bosonic birthday paradox no longer holds, i.e.,
the outputs cannot be assumed to be collision free. In this
scenario, the output event where multiple photons occupy the
same mode will be indistinguishable from photon loss unless
detectors with number-resolving capabilities are utilized. As
for the computational complexity, Ref. [49] established that
the computational complexity of simulating of boson sam-
pling with linear modes is similar to the case with quadratic
modes, even without postselecting on collision-free outputs.

Assuming non-number-resolving detectors are used with
a postselection criterion that the detection of photons is re-
stricted to d (< p) modes, with p representing the number
of input photons, Eq. (4) can be reformulated to derive the
total sample efficiency Psample, lin for a linear number of modes
(m ∝ p)

Psample, lin(p, d ) =
d∑

l=0

P(p−l )
sys (1 − Psys)l

(
p

l

)
Pps(p, d, l, m).

(6)

Here, Pps(p, d, l, m) is the probability of detecting an output
state with d − l collisions and p − l photons from an inter-
ferometer with m modes, essentially quantifying the effective
postselection efficiency. This equation involves summing the
probabilities of all possible collision and photon-loss con-
figurations that result in photodetection in d modes. These
probabilities are then multiplied by the occurrence probability
of the given combination of losses and collisions. The com-
putation of Eq. (6) relies on the knowledge of the effective
postselection efficiency Pps(p, d, l, m). To estimate this quan-
tity, we assume uniform sampling of Haar-random scattering
matrices in the Hilbert space. Thus, we can estimate the effec-
tive postselection efficiency as the ratio between the size of the
Hilbert space with p − l photons in m modes with p − l − d
collisions, essentially the postselected portion of the Hilbert
space, and the full Hilbert space for p − l photons in m modes.
This is expressed as

Pps(p, d, l, m) =
(m

d

)(p−l−1
p−l−d

)
(m+p−l−1

p−l

) , (7)
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where
(a

b

)
represents the binomial coefficient for a and b. For

more details, we refer to Appendix B.

D. Path-encoded boson sampling circuit architectures

The physical design of the interferometer architecture de-
pends on the mode encoding employed. We will first present
the architectures for spatial encoding. While theoretical works
typically assume the use of universal interferometer archi-
tectures [8], larger-scale experimental endeavors have so far
featured interferometers constructed from nonuniversal ar-
chitectures [4,25,30] with lower optical depth. Formally, the
complexity arguments from Refs. [8,45] are valid only in
the universal case, but practically, quantum advantage ex-
periments are hard to simulate even in nonuniversal cases.
To provide an overview of how the different approaches
compare, we will examine three interferometer architectures:
a universal architecture, a fully connected architecture with
single-mode encoding, and a fully connected hybrid-mode-
encoded architecture. Here, “fully connected” signifies that
all of the output ports of the interferometer are connected to
all of the input ports, generally resulting in a unitary matrix
where all elements are nonzero, but that in general can be
nonuniversal. In all three cases, the architectures were chosen
to balance the loss per photon to the best possible degree for
all input-output configurations. For the universal architecture,
and to a lesser extent the nonuniversal architecture for a given
mode encoding, paths along the edges traverse fewer MZIs.
Since the number of such edge cases is negligible, we as-
sume uniform loss for all input-output configurations in our
analysis.

The universal architecture introduced by Clements et al.
[48], which we will refer to as the “Clements” architecture
for simplicity, is constructed from m columns of MZIs, as
shown in Fig. 1(a). The interferometer loss in the Clements
architecture is given by ρint = mρMZI. The interferometer loss
can be optimized by employing nonuniversal architectures.
We propose a nonuniversal “rectangular” interferometer ar-
chitecture [see Fig. 1(b)], which maintains full connectivity
but reduces the depth D. This is achieved by reducing the
number of input modes to be equal to the number of input pho-
tons p, while maintaining the same number of output modes
m. The interferometer consists of an initial section where two
modes are added at the edges of each additional column of
MZIs, and a second section fully connecting every input mode
to all output modes. In practice, the rectangular architecture
is equivalent to starting a Clements architecture partway in,
distributing input modes starting from the middle, and re-
moving unused MZIs. The interferometer loss ρint, given by
the number of MZI columns multiplied by the MZI insertion
loss, is (�m

2 � + � p
2 � − 1)ρMZI. Notably, when the number of

output modes is much larger than the number of input modes,
i.e., the number of input photons, such that m 	 p, ρint is
approximately halved compared to the Clements architecture.

Next, we introduce a “hybrid-mode interferometer ar-
chitecture” inspired by recent experiments [25,30]. These
interferometers encode modes over multiple degrees of free-
dom, e.g., path or polarization, resulting in a hybrid-mode
encoding. For instance, one degree of freedom might repre-
sent spatial modes separated in the x direction, while another

FIG. 2. (a) Illustration of the Clements interferometer architec-
ture, as detailed in Ref. [48]. Each cross corresponds to an MZI,
which can be constructed from two 50:50 beam splitters (BSs) and
two phase shifters (PSs). (b) Illustration of a rectangular interferom-
eter with a larger number of output modes than input modes, the
latter of which is equal to the number of input photons. The inter-
ferometer can be described by a rectangular matrix, hence the name.
(c) Illustration of an interferometer with multiple-mode encodings,
i.e., a hybrid-mode encoding. In this case, one mode encoding has
spatial modes separated in the x direction, while the other has modes
separated in the y direction.

represents spatial modes separated in the y direction as shown
in Fig. 2(c). Concatenating fully connected interferometers
in each direction results in an interferometer that is fully
connected across all modes. The power of this approach lies
in the way the number of modes and the depth scale with
degrees of freedom. The total number of modes in the in-
terferometer is equal to the product m = ∏

i mi, where mi is
the number of modes encoded over the ith degree of freedom.
The optical depth, however, is equal to the sum of individual
optical depths ρint = ∑

i DiρMZI,i, where Di is the depth for
the interferometer connecting all modes for the ith degree of
freedom, and ρMZI,i is the MZI insertion loss for the ith degree
of freedom. As an example, if we encode modes over two
degrees of freedom, with mx = √

m modes in the x direction
and my = √

m modes in the y direction, the total number of
modes remains as mxmy = m. A fully connected interferom-
eter can then be constructed from Clements interferometers
over the mx modes followed by Clements interferometers over
the my modes, as illustrated in Fig. 2(c). The total optical depth
will then be Dx + Dy = mx + my = 2

√
m. This approach al-

lows for efficient scaling of both modes and depth, and it is
worth noting that the Clements interferometers in each mode
encoding can be replaced with rectangular interferometers
to reduce depth further. The optical depth scalings for the
different architectures can be summarized as follows:

ρint =
{mρMZI, Clements(�m

2 � + � p
2 � − 1

)
ρMZI, rectangular∑

i DiρMZI,i, hybrid.

(8)
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E. Time-bin-encoded interferometer architectures

Time-bin interferometers make use of time-dependent
MZIs and fiber delays to implement multimode interfer-
ometers with significantly fewer physical resources than
their spatially encoded counterparts. This is achieved by
reconfiguring each physical MZI to implement a different
transformation for every time bin. For this to be possible, the
MZIs must be rapidly reconfigurable, i.e., the bandwidth must
be substantially higher than the repetition rate of the single-
photon source. Several interferometer architectures have been
proposed and implemented [37,38,50,51], which differ in the
number of spatial modes, and number of physical interfer-
ometers. We will analyze the architecture in Ref. [38], with
one modification: instead of using a single MZI, we employ
a cascaded series of multiple physical MZIs based on the
interferometer employed in Ref. [50]. This choice is due to
the lower total propagation loss and higher-input-generation
rate of cascaded interferometers, as explained in Appendix C.
The multiphoton-state input into this time-bin interferometer
is encoded over two spatial modes of the MZI and m/2 time
bins. Each physical MZI in the cascade implements operations
equivalent to a column of MZIs in the Clements or rectangular
interferometer, as illustrated in Fig. 3. The number of physical
MZIs in the cascade then determines the depth D(m) of the
interferometer. In addition, a relative time delay of one time
bin is introduced between the two output arms of the MZI
between each step in the cascade, which ensures interference
between photons in separate time-bins.

Figure 3 shows how certain spatial interferometers can
be converted to time-bin interferometers. Specifically, we
can construct the equivalent of spatial interferometers by
combining three different MZI column types as shown in
Fig. 3(a). All of the interferometer columns have the exact
same construction for the time-bin interferometer architec-
ture, a time-dependent MZI with a delay in one of the output
modes, with the only difference being the sequence of trans-
formations. The first MZI column type, labeled C1, interferes
all modes pairwise, starting with the first mode. The time-bin
implementation of C1 increases the total number of time bins
at the output by 1 due to the time delay, where the first mode
and last mode will occupy their own time bins. The second
interferometer column type C2 differs from C1 in the nature
of the input state, where the first and last time bins of the
input states are occupied by only one mode, as shown in
Fig. 3(c). The operation of the MZI on this asymmetric input
state results in two additional modes (time bins) at the output
in addition to the time delay. The final interferometer column
type C3 takes an input state where the first and final time bins
are only occupied by one of the modes and enacts a swap
transformation

Uswap =
[

0 1
1 0

]

on the first and last time bins, as shown in Fig. 3(d). This
reduces the number of time bins by one compared to the input
state. This type of column effectively interferes the modes
pairwise starting with the second mode, such that the first and
last modes do not interfere with any other mode.

FIG. 3. Illustration of how time-bin interferometers can be
constructed to implement specific features in interferometer archi-
tectures. The red bin symbols � correspond to the modes of the
interferometer, and τ is the temporal separation between photons,
which is equal to the inverse of the SPS emission rate τ = r−1

single-photon.
Numbers correspond to input modes, and numbers with primes
correspond to output modes. All of the time-bin interferometer ar-
chitectures make use of reconfigurable MZIs, illustrated as boxed
crosses. As is shown in the bottom-left corner, these MZIs are con-
structed using time-dependent phase shifters φ(t) and θ (t), which
determine the unitary transformation U(t) effected by the interfer-
ometer. (a) Illustration of a rectangular interferometer architecture
implemented with spatial modes on the left-hand side and with a
time-bin interferometer on the right-hand side. The MZI columns are
split into three categories C1(m), C2(m), and C3(m), where m is the
number of modes which is assumed to be an even number. (b) Upper:
illustration of a specific MZI column for four input modes C1(4).
Lower: operation protocol of the C1(m) MZI column for a general
even number of input modes m. (c) Upper: illustration of a specific
MZI column for four input modes C2(4). Lower: operation protocol
of the C2(m) MZI column for a general even number of input modes
m. This type of MZI column increases the total number of modes
in the time-bin interferometer by two. (d) Upper: illustration of a
specific MZI column for six input modes C3(6). Lower: operation
protocol of the C3(m) MZI column for a general even number of
input modes m. In the first and last time bins, the MZI must be
configured to perform the operation Uswap, which swaps the two
input modes. This ensures that the number of output modes from
the column is equal to the number of input modes m.

In order to construct a specific architecture, we only need
to identify the order and type of MZI columns that must be
implemented. A Clements interferometer can be implemented
by combining m/2 pairs of C1(m) and C3(m) columns, such
that the optical depth, i.e., the number of physical MZIs in the
interferometer, is m. The rectangular interferometer consists
of a C1(2p) column followed by (m − 2p)/2 C2(m′) columns
where m′ is increased from 2p at the input of the interferom-
eter to m at the interferometer by increasing the number of
modes by 2 for every column. This is followed by p − 1 pairs
of C3(m) and C1(m) columns, resulting in an optical depth
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of (m + 2p)/2 − 1. Note that we have increased the number
of input modes from p in Eq. (8) to 2p as one SPS can only
populate one of the spatial input modes as shown in Fig. 1,
i.e., half of the input modes of the rectangular interferometer.

To account for the effect of delay lines when establishing
hardware requirements for time-bin interferometers, we can
adjust the MZI insertion loss to include the propagation loss
of the output with the longest delay

ρMZI, time bin = ρMZI + τρprop + ρcoupling, (9)

where τ is the separation between time bins, ρprop is the
propagation loss per unit time for the delay lines, and ρcoupling

is the coupling loss associated with going from one MZI to
the next, i.e., coupling into and out of delay lines.

Lastly, we have to account for the empty time bins that are
required to implement an interferometer where the number of
modes (output modes in the case of rectangular interferom-
eters) exceeds 2p. The interferometer can only process m/2
time bins at a time, which necessitates a temporal separa-
tion of m/2 time bins between the start of two input states.
Therefore, the input-state generation rate rinput is limited in
comparison to the single-photon generation rate as

rinput = 2rsingle-photon

m
. (10)

IV. SYSTEM BENCHMARK FOR IMPLEMENTING THE
AARONSON-BROD BOSON SAMPLING ALGORITHM

Before delving into the component-level hardware bench-
marks, we address the overall system requirements, focusing
on the two key system parameters, photon indistinguishability
x2 and system loss ρsys. We analyze the interplay between
these two parameters in implementing the Aaronson-Brod
boson sampling algorithm with lost photons. To provide a
practical assessment of hardware performance, we choose
realistic experimental conditions for run time and error rate of
approximate classical algorithms for QA demonstrations with
p � 50 photons.

We use the coupon collectors problem [26,52] to estimate
the number of samples required for validation

rsampletintegration ≈ m ln(m)/p, (11)

where tintegration is the total run time of the boson sampler and
rsampletintegration is the total number of samples acquired. We
set the target for rsample to be 100 samples per day, rsample =
100/(24 × 3600) Hz, which is in line with the measured
6/3600 Hz photon coincidence rate reported in Ref. [25] that
allowed validating the boson sampling experiment.

We analyze the boson sampling experiment for a determin-
istic single-photon source at the input that emits photons at a
rate of 1 GHz. We will assume that threshold detectors without
number-resolving capabilities are used, where we assume the
dark count rate of the detectors is sufficiently low (∼1 Hz) to
have a negligible effect on the computational complexity, as
explained in Appendix A. We consider both the case with a
demultiplexer and a spatially encoded interferometer as well
as the case with a time-bin interferometer. In the former, the
p-photon input state is generated at a rate of rinput, spatial =
1/p GHz. In the latter, the input state containing M/2 time

bins is generated at a rate of rinput, time bin = 2/m GHz. We
consider two circuit architectures of the interferometer: one
with a quadratic number of modes m = (p − l )2 and another
with a linear number of modes m = 10(p − l ), as detailed in
Secs. III A and III C, respectively. By comparing the two
cases we can examine the influence of mode scaling on the
tradeoff between photon indistinguishability and system-loss
tolerance. We combine Eq. (1) with (4) [Eq. (6)] for the
quadratic (linear) case, to find the level of loss that results in
an rsample of 100 samples per day.

We choose an error rate of E � 0.01, given by Eq. (5), for
approximating the noisy boson sampling output using clas-
sically computed permanents of order k = 49. We plot this
relation for a varying number of detected photons (p − l ),
where the number of lost photons l has been set as high as
possible while keeping the error of the approximation below
the threshold of E � 0.01.

Results for mode scalings m = (p − l )2 and m = 10(p −
l ) are shown in the upper and lower rows of Fig. 4, respec-
tively. The lowest indistinguishability x2 ≈ 0.805, found by
setting l = 0 and p = 50 in Eq. (5), corresponds to the maxi-
mal per-photon loss for Aaronson-Arkhipov boson sampling,
i.e., with no photon loss or collisions. Increasing the photon
indistinguishability allows for a higher number of lost photons
with Aaronson-Brod sampling, increasing the per-photon loss
that can be tolerated. We find that >3 dB (i.e., 50%) loss tol-
erance for realistic degrees of indistinguishability of quantum
dot SPSs [36] for all four cases. We find the highest maxi-
mal loss values at an indistinguishability of x2 = 0.98 to be,
from highest to lowest: 3.78 dB for the quadratic spatial case,
3.46 dB for the quadratic time-bin case, 3.35 dB for the linear
spatial case, and 3.20 dB for the linear time-bin case. For
comparison, in the limit of perfect indistinguishability, x2 = 1
where up to l = 12 photons can be lost with 50 detected
photons, the highest maximal loss values would be 3.96 dB for
the quadratic spatial case, 3.65 dB for the quadratic time-bin
case, 3.53 dB for the linear spatial case, and 3.39 dB for the
linear time-bin case.

As the number of detected photons increases the total
loss of the system typically increases, leading to a decreased
maximum per-photon loss. However, for a fixed degree of
indistinguishability, gradually increasing the number of de-
tected photons can lead to abrupt changes when an additional
lost photon can be tolerated according to Eq. (5). Thus, the
optimum number of lost photons and the detected photons
will both depend on the exact photon indistinguishability in
the experiment.

In comparing the different plots it is evident that quadratic-
mode scalings and spatial interferometers lead to higher
overall loss tolerance compared to the linear-mode scaling and
time-bin interferometers. The advantage of quadratic-mode
scaling can be attributed to the added effective postselection
loss associated with linear-mode scaling, described by Eq. (7).
Specifically, the average difference between quadratic- and
linear-mode scalings is 0.430 dB for spatial interferome-
ters and 0.277 dB for time-bin interferometers, in favor of
quadratic interferometers. The advantage of spatial interfer-
ometers can be attributed to the lower input-state generation
rate for time-bin interferometers. The average difference be-
tween spatial and time-bin interferometers is 0.298 dB for a
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FIG. 4. Maximum per-photon loss for the full circuit to perform boson sampling in the QA regime versus degree of indistinguishability
and number of detected photons and for different values l of lost or colliding photons. The two upper plots are for the case where the number
of modes scales quadratically with the number of photons m = (p − l )2, and the two bottom plots are for the case where the number of modes
scales linearly with the number of photons m = 10(p − l ). The two plots to the left are for spatial interferometers with a demultiplexed source,
whereas the two plots on the right are for time-bin interferometers. White contours indicate the added number of lost photons l , which increases
with the indistinguishability, and detected number of photons.

quadratic number of modes and 0.145 dB for a linear number
of modes, both in favor of spatial interferometers.

Although quadratic-mode scalings allow for higher per-
photon loss, the interferometers consist of more MZIs. As
such, there is a tradeoff between lower effective postselection
loss for quadratic interferometers and lower interferometer
loss for linear-mode scalings where the MZI insertion loss
determines which mode scaling is favored. We note that using
photon-number-resolving detectors would allow for the same
maximum per-photon loss in both cases, as the postselection
would allow for an arbitrary number of photon collisions (i.e.,
postselecting on p − l detected photons).

Time-bin interferometers have a similar tradeoff, as they
have a lower maximal per-photon loss due to the lower
input-state generation rate, but do not require the use of a
demultiplexer. However, a demultiplexer can be constructed
from the same MZIs that are used to construct a time-bin inter-
ferometer and, as such, this tradeoff can also be quantified in
terms of MZI insertion loss. Specifically, a demultiplexer has
an optical depth of �log2(p)� = 6, where the equality holds
for the optimal number of detected and lost photons for all
indistinguishabilities considered in Fig. 4. The demultiplexer
also involves a delay on all except the last photon, where the
first photon has to go through the longest delay of (p − 1)

time bins. As for the time-bin interferometer, all of the D(m)
MZIs in the interferometer will in the worst case include one
time bin of delay which is not present in the spatial case. If
we compare the added per-photon loss from the demultiplexer
in the spatial case with the added delay and lower maximum
per-photon loss in the time-bin case, we can find the following
inequality for the regime where time-bin interferometers are
less favorable implementations than spatial interferometers:

6ρMZI + (p − 1)ρprop � [D(m) − 1]ρprop + �,

� = ρsys, spatial − ρsys, time bin. (12)

The average of the value for �, i.e., the difference between
maximal per-photon loss for spatial and time-bin interferome-
ters, was found to be 0.145 dB for the case where m = 10(p −
l ) and 0.298 dB for the case where m = (p − l )2. If we neglect
propagation loss ρprop = 0 and insert the average values we
can estimate this inequality in the two cases considered in
Fig. 4:

ρMZI � 0.05 dB m = (p − l )2,

ρMZI � 0.024 dB m = 10(p − l ). (13)
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FIG. 5. Plot of the requirements on MZI insertion loss (x axis) and ρsys − ρint (y axis) with photon indistinguishability set to x2 = 0.96.
The upper plots show the requirements for Aaronson-Brod boson sampling, where the input state consists of 59 photons with the outputs
postselected to contain 50 photon detection events. The lower plots show the requirements for Aaronson-Arkhipov boson sampling, where
we send in 50 photons and detect 50 photons, not allowing for photon loss or collisions. The first, second, and third columns show hardware
requirements for setups where the interferometers are constructed according to the Clements architecture, the rectangular architecture, and
a set of hybrid architectures, respectively. For the Clements and rectangular architectures, the solid lines correspond to the requirements for
spatially encoded architectures, whereas dashed lines correspond to the requirements for time-bin architectures. For the hybrid architectures,
the solid lines correspond to requirements for an interferometer encoded over two spatial-mode encodings, whereas dashed lines correspond
to requirements for an interferometer encoded over time bins and two spatial-mode encodings. The dotted vertical lines mark the estimated
MZI loss for a state-of-the-art experimental realization with static, nonprogrammable MZIs [25]. The dashed-dotted vertical line in the plots
for hybrid interferometers marks the estimated MZI loss for a state-of-the-art experimental realization with programmable MZIs [55].

In practice, coupling into the delay between MZIs will in-
evitably incur loss and, as such, these inequalities present a
best-case scenario in favor of time-bin interferometers.

V. BENCHMARKING HARDWARE REQUIREMENTS

The requirements on component losses for a given inter-
ferometer architecture can be found by combining Eqs. (3)
and (8), with either Eq. (4) or (6). To simplify the anal-
ysis, we note that only the interferometer loss scales with
the number of modes, and separate the losses into the inter-
ferometer loss, ρint, and the remaining system loss, ρsys −
ρint = ρsps + ρdmx + ρcouplingρdet. We fix the degree of indis-
tinguishability to x2 = 0.96, which is readily achievable with
present-day quantum dot single-photon sources [53], while
routes to achieve even higher values have been laid out [54].
This allows us to fix the number of input photons to p = 59

with up to l = 9 lost photons in accordance with Eq. (5).
We also consider the requirements for Aaronson-Arkhipov
sampling where we postselect on detecting the same number
of photons as are sent into the interferometer, i.e., fixing the
number of input and output photons to p = 50. The hardware
requirements on the interferometer can be formulated as spe-
cific requirements on the MZI insertion loss by specifying the
architecture and number of modes used for the interferometer.

Single-mode encoding. The first two columns of Fig. 5
show the requirements for three different choices of mode
scaling for both Clements and rectangular interferome-
ter architectures, where the top figures show requirements
for Aaronson-Brod [45] boson sampling, and the bottom
figures show requirements for Aaronson-Arkhipov boson
sampling [8], i.e., with postselection on the same number of
detected photons as input photons. The figures include a ver-
tical dotted line corresponding to the state-of-the-art insertion
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TABLE I. Table of state-of-the-art system efficiencies. In the column for demultiplexer efficiency, the number of modes of the demultiplexer
employed is indicated in parentheses. For the current best indistinguishability, we have used the measured photon indistinguishability, whereas
for the near-term estimated best we have used the estimated intrinsic photon indistinguishability which has been corrected for experimental
imperfections.

Reference Psps Pcoupling Pdmx (p) Pdet Total efficiency x2

Current best 0.658 [56] 0.902 [25] 0.83 (20) [25] 0.95 [4] 0.47 0.964 [53]
Near-term estimated best 0.78 [26] 0.902 [25] 0.92 [26] 0.95 [6] 0.615 0.985 [53,58]
Target �0.65 0.96

loss for a static MZI, estimated to be −10 log10(0.987)/(10 +
6) dB ≈ 0.0035 dB, which is the overall interferometer ef-
ficiency in Ref. [25] divided by the number of MZIs
corresponding to the optical depth of a 10-mode interferome-
ter followed by a 6-mode interferometer.

Comparing the requirements on MZI insertion loss with
Eqs. (13), we find that we are in the regime where de-
multiplexing and spatial-mode-encoded interferometers are
favorable in terms of loss even with access to the rapidly
reprogrammable MZIs required to construct a time-bin inter-
ferometer.

As seen from the figure, a QA demonstration using
single-mode-encoding architectures would be within reach
if one could use interferometers with state-of-the-art effi-
ciency in conjunction with a source and detection efficiency
of around PspsPdmxPcouplingPdet � 0.65. This overall efficiency
is currently beyond the state-of-the-art values reported with
quantum dot sources [6,25,56,57] (see Table I for an overview
of parameters already reported in the literature). Further ex-
pected near-term improvements of the approach are also listed
in the table, indicating that explicit QA demonstration with
single-mode encoding is not far outside reach.

Hybrid-mode encoding. Hybrid-encoding schemes make
the algorithms more robust to optical loss and hence put QA
demonstrations within closer reach. We consider two distinct
hybrid architectures, one with two spatial-mode encodings,
like the one employed in Refs. [25,30] and illustrated in
Fig. 2(c), and one with two spatial-mode encodings and one
time-bin encoding. For the former, the number of modes in
each encoding was chosen to optimize the optical depth, as
described by Eq. (8). This optimization procedure allowed
for the total number of modes to be slightly increased if it
led to favorable optical depth. Rectangular interferometers
were employed in each mode encoding to minimize depth.
For the latter encoding, we considered an architecture where
the input state is partially demultiplexed, whereby sets of
two spatial modes are inserted into a time-bin interferom-
eter. By ensuring that there are no empty time bins in the
time-bin interferometer, we avoid the issue of a lowered input-
state generation rate for time-bin interferometers. The output
modes of the time-bin interferometers are then sent into a
two-spatial-mode-encoding hybrid interferometer employing
rectangular interferometers across the two spatial encodings.
The total optical depth of this interferometer, including the
initial demultiplexer, is equal to

D(n, p, m1, m2) = n + 2

⌈
p

2n

⌉
+

⌈
m1

2

⌉
+

⌈
m2

2

⌉
+ 2n

2
,

(14)

where n is the depth of the demultiplexer, such that there are 2n

spatial modes and � p
2n � time bins after the demultiplexer, and

where m1 and m2 correspond to the number of output modes
in each spatial encoding. Similarly to the case of the spatial
hybrid interferometer, we allow for the number of modes to
be increased if it leads to a lower optical depth, only requiring
that

m1m2

⌈
p

2n

⌉
� m,

where the left-hand side is the actual number of modes, and
the right-hand side is the target number of modes, calculated
from the mode scaling. The depth of the demultiplexer and
the number of spatial modes were optimized in order to min-
imize Eq. (14). For the case of a quadratic number of time
bins, the ideal demultiplexer depth was found to be n = 3,
with m1 = m2 = 18, whereas for the linear-mode scalings,
the ideal demultiplexer depth was found to be n = 4 with
the number of spatial modes equal to m1 = 11, m2 = 12 and
m1 = 8, m2 = 9 for the case where m = 10(p − l ) and m =
5(p − l ), respectively.

The resulting hardware requirements for Aaronson-Brod
(Aaronson-Arkhipov) boson sampling are shown in the top
(bottom) plot of the right column of Fig. 5, where the solid
lines (“spatial”) refer to the case with two spatial-mode encod-
ings, and the dashed lines (“time bin”) refer to the case with
time bin and two spatial encodings. In addition to the dashed
line for the state-of-the-art static MZI insertion loss, the plots
include a dashed-dotted line marking the state-of-the-art inser-
tion loss for a reconfigurable MZI, estimated from Ref. [55] to
be 1.1 dB/20 = 0.055 dB, which is the interferometer inser-
tion loss divided by the number of MZIs. We note that though
this circuit was designed for light at telecom wavelengths,
the silicon nitride material platform that was employed is
compatible with the wavelengths of state-of-the-art quantum
dot sources.

The hybrid encoding with the time-bin encoding performs
better at larger mode scalings but seems to perform compa-
rably or slightly worse for the case where m = 5(p − l ). The
advantage at higher mode scalings comes from the fact that the
number of modes is distributed over three encodings, which
means that the sum of the number of modes can be smaller.
This is less of an advantage for the case where m = 5(p − l ),
where the additional demultiplexer loss included in the time-
bin case gives a higher overall depth. It should be noted that
the spatial hybrid interferometer requires the addition of a
demultiplexer at a depth of n = �log2(p)�, which should be
included as part of the source efficiency. As such, the time-bin
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hybrid interferometer would be expected to perform advanta-
geously even for low mode scaling.

Figure 5 clearly shows that the MZI insertion loss de-
termines whether a quadratic mode scaling or linear mode
scaling is favorable. Specifically, at the state-of-the-art static
MZI insertion loss, employing an interferometer with a
quadratic-mode scaling is best, whereas linear-mode scalings
are favored when using MZIs with the state-of-the-art recon-
figurable MZI insertion loss. This is not the case for Clements
or rectangular architectures except for the case where the MZI
insertion loss is vanishingly low. The discrepancy between the
Clements and rectangular architectures and the hybrid archi-
tecture is attributed to how the optical depth scales with the
number of modes, as shown in Eq. (8). With modes distributed
across two mode encodings, the optical depth of hybrid in-
terferometers scales with ∼√

m, as opposed to linearly in m.
As increasing the number of modes has a smaller impact on
interferometer loss, the added effective postselection loss as-
sociated with linear-mode scalings has a proportionally higher
impact on the system loss for hybrid interferometers.

VI. HARDWARE REQUIREMENTS FOR NEAR-TERM QA
DEMONSTRATIONS

From Fig. 5 it is observed that an explicit QA demonstra-
tion is within reach with a deterministic quantum dot source.
Indeed, using state-of-the-art static interferometers would im-
ply that QA is reached for PspsPdmxPcouplingPdet � 0.45, where
the required efficiency of each subcomponent was already
realized experimentally (see Table I). As time-bin interfer-
ometers require the use of reprogrammable MZIs, one could
not make use of hybrid architectures with time-bin encoding
in this case. As for state-of-the-art reconfigurable interfer-
ometers, this would require a setup with combined source
and detection efficiencies around 0.65 (0.7) for the time-bin
(spatial) hybrid architectures. These values are reachable with
the estimated near-term values of the approach (cf. Table I).
It is important to note that the state-of-the-art values of MZIs
hold for thermo-optic phase shifters, which are unsuitable for
realizing time-bin interferometers due to their slow response
time. Consequently, this would limit the present implemen-
tations of hybrid time-bin architectures. On the other hand,
hybrid interferometers with spatial-mode encodings appear
to be promising candidates for near-term QA demonstrations
with quantum dot single-photon sources.

It is clear from Table I that the source efficiency is the
main bottleneck in realizing a demonstration of QA. In the
following, we restrict the focus to the exact requirements for
the single-photon source by fixing other losses to state-of-the-
art values. We fix the MZI insertion loss to the state-of-the-art
value for static MZIs shown in Fig. 5. The demultiplexer
efficiency and coupling losses are fixed to realistic parameters
extrapolated from Refs. [26,30]:

ρdmx = 0.458

5
�log2(p)�dB,

ρcoupling = 0.458 dB.

We examine how the requirements on the source efficiency
change as a function of the photon indistinguishability. The
resulting curves for quadratic- and linear-mode scalings are

FIG. 6. Requirements on source efficiency for a given indis-
tinguishability with a hybrid interferometer encoded in two mode
encodings as per Fig. 1(d). Rectangular interferometers have been
used within both mode encodings. The requirements are defined to
allow for 100 samples to be obtained per day with a 1-GHz single-
photon generation rate. For each value of indistinguishability, the
number of photons detected and lost has been optimized to increase
the loss tolerance while maintaining an error bound higher than 1%
for the approximation algorithm.

shown in Fig. 6. It is clear from the figure that quadratic-mode
scaling is favored regardless of photon indistinguishability.
For realistic photon indistinguishability, x2 � 0.96, the results
show that a QA demonstration is within reach for single-
photon source efficiencies greater than 0.6, which has been
demonstrated experimentally [56]. The challenge will be to
construct a demultiplexer and an interferometer that are suf-
ficiently large while maintaining sufficiently low loss, and
connecting them to an exceedingly large number of low-loss
detectors.

VII. CONCLUSION

In conclusion, we have presented an in-depth analysis of
the hardware requirements for realizing boson sampling in the
QA regime with deterministic single-photon sources, notably
quantum dots in nanophotonic cavities and waveguides. The
estimated benchmarks provide precise requirements on opti-
cal circuits and single-photon sources that must be reached,
thereby offering a road map for future engineering efforts
to realize that goal. Our analysis elucidates the precise ad-
vantages and disadvantages of strategies that are commonly
employed in experiments to lower hardware requirements,
such as making use of specialized interferometer architectures
and employing interferometers with linear-mode scaling. We
have identified interferometers with hybrid-mode encoding
and quadratic-mode scaling as a key strategy to demonstrating
QA, an approach that has yet to see realization in experiments.
Specifically, we have shown that a QA experiment based
on single-photon boson sampling is within reach of current
state-of-the-art hardware, provided that one can reach source
efficiencies as high as 60%–70%.

In examining the requirements for time-bin-encoded inter-
ferometers, we have found time-bin interferometers utilizing
the Clements and rectangular architectures to be inferior
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to equivalent spatial interferometers for QA demonstrations.
This is due to the disadvantages associated with empty time
bins in the input state in the regime where MZI insertion
loss is low enough for a QA demonstration to be feasible.
For hybrid interferometer architectures, however, encoding a
subset of the modes in time bins leads to improved hardware
requirements on MZI insertion loss. As such, the development
of phase shifters that can be reconfigured in-between time bins
and that would be compatible with low-loss delays to enable
low-loss time-bin-compatible MZIs is a promising direction
to enable QA demonstrations.

Our analysis has focused on the requirements of the inter-
ferometers and single-photon sources, however, an underlying
assumption for parts of the analysis was that the loss as-
sociated with coupling photons from the source and into
the interferometer were comparable with the losses quoted
in Refs. [25,30]. Achieving ultra-low-loss chip-to-fiber cou-
pling is an important engineering challenge and an area of
active research [59–61]. Ultimately, coupling losses could
be further mitigated by a partial or full-scale system inte-
gration, whereby sources, demultiplexer, interferometers, and
detectors would be combined in a single device [18], which
constitutes an important future research direction.
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APPENDIX A: ESTIMATING ERRORS INDUCED
BY DARK COUNTS

In order to estimate the error induced by dark counts,
we can take a similar approach as in Ref. [62] and find the
likelihood that a sample has an additional photon loss replaced
by a dark count. For commercially available superconducting
nanowire single-photon detectors, the dark count rate rdc is
typically on the order of 1 Hz and, correspondingly, the prob-
ability that a detector gets a dark count pdc for any given
detected event will be

pdc = rdc/rinput. (A1)

The error due to a photon loss being replaced with a dark
count compared to no photon loss and no dark counts can then
be estimated by calculating(p−l

1

)
(1 − psys)

(m−p
1

)
pdc(1 − pdc)m−p

psys(1 − pdc)m−p
, (A2)

where the numerator is the probability for one out of p − l
photons being lost and one out of m − p remaining detectors
producing a dark count, with the denominator being the prob-
ability that the photon is not lost with no dark counts. For a
dark count rate of 1 Hz, with 61 input photons (11 of which
are lost) and a loss rate of 3.6 dB, i.e., the most lossy scenario
with the lowest input rate, this expression evaluates to 0.0098.

In order to evaluate the impact of this effect on the com-
putational complexity, we will assume a best-case scenario
for the approximation algorithm, where every instance with a
photon loss replaced by a dark count is simulable to zero error.
The error the algorithm makes Edc can then be estimated as

Edc = 0.0098 × 0 + (1 − 0.0098)Ealgorithm, (A3)

where Ealgorithm is the error made by the algorithm in approxi-
mating the output with zero dark counts. If we set Edc � 0.01,
we can find a corrected bound on the error of the algorithm

Ealgorithm � 0.0101, (A4)

i.e., a negligibly small correction. Although we have only
considered the case where a single photon loss is replaced
by a dark count, and the probability of two photon losses or
more being replaced by two or more dark counts is orders
of magnitude lower, if we generously assume that the actual
proportion of outputs with dark counts is a factor of 2 larger
than this estimate, this would still only lead to a corrected
bound of

Ealgorithm � 0.0102. (A5)

APPENDIX B: SIZE OF THE HILBERT SUBSPACE FOR A
GIVEN NUMBER OF PHOTON COLLISIONS

The number of basis states in the Hilbert space with a given
number of collisions is equal to the product of the number of
ways one can distribute d nonzero modes in m modes, and
the number of ways one can place p − l − d collisions into
d nonzero modes. The first number is equal to the number
of combinations without replacements with d choices from m
possibilities: (

m

d

)
.

The second number is equal to the number of combinations
with replacements with p − l − d choices from d possibilities(

(p − l − d ) + d − 1

p − l − d

)
=

(
p − l − 1

p − l − d

)
.

Consequently, the size of the Hilbert subspace with p − d − l
collisions, ncollisions(p, d, l, m), will be

ncollisions(p, d, l, m) =
(

m

d

)(
p − l − 1

p − l − d

)
. (B1)

The size of the full Hilbert space nfull will be the number
of ways one can place p − l photons into m modes. This is
equivalent to the number of combinations with replacements
of p − l choices with m possibilities:

nfull(m, p, l ) =
(

m + p − l − 1

p − l

)
. (B2)
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We can then take the ratio between Eqs. (B1) and (B2) to find
Eq. (7)

APPENDIX C: DOWNSIDES OF USING LOOP
ARCHITECTURES FOR TIME-BIN INTERFEROMETER

Although it is possible to implement large multimode inter-
ferometers using only a single physical MZI connected to fiber
delay loops, as in Refs. [37,38], this has two major downsides:
higher propagation loss and severely reduced input-state rate.
Much in the same way as in the cascaded case, a column of
MZIs in the Clements or rectangular scheme can be imple-
mented by sending the time bins through the MZI one by
one and reconfiguring the MZI transformation for each time
bin. In order to reuse the same physical MZI to implement
additional columns, we can connect the outputs to the inputs
through a delay loop, where the delay is sufficiently long that
all output modes back at the input after the previous MZI
column have been finished. As each column processes up to
m/2 time bins, this requires that the loops have a delay of at
least m/2 time bins. This is in comparison to the cascaded
scheme where no such delay is necessary apart from the delay
of one time bin in one of the modes, which will still be present
in the loop architecture. To see the difference, we can compare

the total delay tdelay for the worst case of the Clements scheme
with a cascaded architecture and a loop architecture

tdelay, cascaded = m

2
− 1τ, (C1)

tdelay, loop = (m − 1)
(m

2
− 1

)
τ, (C2)

where τ corresponds to the separation between time bins. In
other words, the total propagation loss scales linearly with
the number of modes for cascaded time-bin interferometers,
whereas it scales quadratically with the number of modes for
loop time-bin interferometers.

The second downside is that one has to wait for the full
output state to come out of the interferometer before process-
ing a new input state. The time difference between the first
time bin in the input state and the last time bin of the output
state is equivalent to the delay in Eq. (C2). As the time-bin
separation is related to the rate of the single-photon source, the
input generation rate rinput for the loop time-bin interferometer
will be given by

rinput = 2rsingle-photon

m(m − 1)
. (C3)

This is approximately a factor 1/m worse than the correspond-
ing rate for a cascaded interferometer.
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