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Quantum kernel methods leverage a kernel function computed by embedding input information into the
Hilbert space of a quantum system. However, large Hilbert spaces can hinder generalization capability, and
the scalability of quantum kernels becomes an issue. To overcome these challenges, various strategies under
the concept of inductive bias have been proposed. Bandwidth optimization is a promising approach that can be
implemented using quantum simulation platforms. We propose trapped-ion simulation platforms as a means to
compute quantum kernels, filling a gap in the previous literature and demonstrating their effectiveness for binary
classification tasks. We compare the performance of the proposed method with an optimized classical kernel
and evaluate the robustness of the quantum kernel against noise. The results show that ion trap platforms are
well-suited for quantum kernel computation and can achieve high accuracy with only a few qubits.
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I. INTRODUCTION

The availability of noisy intermediate-scale quantum
(NISQ) devices [1] has catalyzed a surge in several re-
search areas such as machine learning, many-body physics,
chemistry, and combinatorial optimization [2]. In particu-
lar, quantum machine learning (QML) is a promising route
toward quantum advantage, where some theoretical studies
[3–6] and experimental evidence [7–9] have already indicated
positive progress in this direction. While circuit-based NISQ
computing implementations are developed worldwide [2], an
alternative approach exploits NISQ analog or hybrid designs,
with examples ranging from quantum annealing [10] to boson
sampling [11] and QML itself [12,13]. In this work we will
focus on the QML implementation of a kernel method in an
analog simulation platform.

Kernel methods refer to classification or regression algo-
rithms that leverage a kernel function, denoted as K (x, y),
with x, y ∈ X , where X is the input space. The kernel func-
tion transforms data points residing in the input space into
a higher-dimensional space, called feature space. This trans-
formation usually facilitates the distinction between different
classes of data when they are not linearly separable. A quan-
tum kernel method is generally understood as the case where
a kernel function is computed by embedding the input in-
formation into the Hilbert space of a quantum system (the
feature space), off-loading the optimization process for the
machine learning (ML) algorithm to a classical computer [14].
The most common approach to computing quantum kernels is
based on the quantum state fidelity, i.e., the inner product of
input-dependent quantum states. Quantum advantage has been
claimed as possible in realistic problems if the embedding
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of inputs into these quantum states is classically intractable
[14,15].

However, finding a kernel function that could provide a
quantum advantage remains an open problem. One plausible
strategy that could come to our minds is to propose a very
large quantum Hilbert space as the feature space since, in prin-
ciple, it would be much harder to simulate classically. But very
large Hilbert spaces can hinder the generalization capability
of quantum models [16], performing similarly or even worse
than classical ML models [4]. Indeed, training a kernel-based
model ensures the discovery of the optimal model parameters
as the training landscape is convex. However, this assurance is
based on the assumption that the quantum kernel can be effi-
ciently obtained from quantum hardware. With an increasing
number of qubits, the number of measurements required to
evaluate the kernels to sufficiently high precision might scale
exponentially, hindering trainability [16–18].

Several alternatives have been proposed to avoid this ex-
ponential scaling, all of them under the notion of what is
called inductive bias [8,16]. An inductive bias is a restriction
over the set of functions a given model can reproduce. They
can be implemented in very diverse ways, such as projected
quantum kernels [4], quantum Fisher kernels [18], exploiting
structured-data encoding [19], and bandwidth optimization
[20,21]. While the former inductive biases can be problem
dependent, bandwidth optimization is a general strategy in
which we simply tune the hyperparameters of our model.
In particular, for classical data the decrease in performance
with respect to the number of qubits can be compensated by
the tuning of hyperparameters [20,21], although it might be
possible to find classical kernels that perform as well as them
in some cases [22].

A promising choice for bandwidth optimization is quan-
tum simulation platforms. Quantum simulations are believed
to be a classically hard problem together with instantaneous
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quantum polynomial (IQP) random circuits or boson sampling
[23]. Some analog simulation platforms have already been ex-
perimentally exploited for quantum kernels, such as Rydberg
atoms [19] and NMR platforms [24], while more platforms
have been numerically studied, such as driven-dissipative spin
chains [2], a single Kerr nonlinear mode [25], and quantum
annealers [26]. Each physical platform has its own advan-
tages and challenges, which not only depend on experimental
details but also on the QML technique. For example, NMR
experiments allow the expectation value of observables to be
obtained with a single shot, thus removing the influence of
the statistical noise on the experimental results. The need to
deal with statistical noise can be a source of severe overhead
in some QML techniques such as quantum reservoir comput-
ing [13]. However, NMR platforms are difficult to initialize,
whereas systems such as Rydberg atoms and trapped ions have
very high fidelity [27,28].

In this line of research, we propose to compute quantum
kernels through trapped-ion simulation platforms, filling a gap
in the previous literature. Trapped and laser-cooled atomic
ions offer an excellent benchmark for simulating quantum
spin models with interactions [29–31]. Optical fields can con-
trol the ions’ Coulomb interaction, enabling customizable,
long-range spin-spin interactions [28]. Ion trap quantum com-
puters with logical quantum gates have already been used
for classification tasks [32,33], even with quantum kernel
methods [34,35].

In this work, we will introduce an inductive bias (i.e.,
a change in expressivity) in a transverse-field Ising model
by applying bandwidth optimization, i.e., by tuning some of
the model’s hyperparameters. We show that this approach is
suitable for solving binary classification tasks, comparing the
performance with an optimized classical kernel. Our goal is
to show via numerical simulations that an already available
experimental platform can be harnessed for quantum kernel
methods, demonstrating its robustness against noise. We intro-
duce noise into the system in two different ways: decoherence
with a depolarizing channel after the dynamics, and statistical
noise with white noise at the entries of the kernel. For this, we
require to use an error mitigation technique to keep the kernel
as a positive semidefinite matrix, applying the shift method
(see Sect. II B).

Our results show that ion trap platforms are perfectly suited
for the computation of quantum kernels, being robust against
different sources of noise. We evaluate the classification tasks
for an increasing Hilbert space size, showing that only a few
qubits are needed to obtain the best possible accuracy.

II. METHODS

A. Kernel methods and support vector machines

In machine learning, kernel methods are algorithms used
for classification or regression. They utilize a kernel function,
denoted as K (x, y), where x, y ∈ X and X represents the input
space, that transforms data points X to a higher-dimensional
space, i.e., the feature space, usually facilitating the distinction
between different classes of data. A function K : X × X→R
is defined as a kernel function if it fulfills two conditions:
(1) it is symmetric, such that K (x, y) = K (y, x); and (2) it is

a positive-semidefinite function. The latter is known as the
Mercer condition [36], which can be expressed as

M∑
i=1

M∑
j=1

K (xi, x j )cic j � 0, (1)

where M is the number of training samples and {ci} is the
set of all possible real coefficients. A kernel function eval-
uated over pairs of data points defines a symmetric and
positive semidefinite matrix whose elements are given by
Ki j := K (xi, x j ).

Here we will consider support vector machines (SVM)
as our kernel method [37]. Our starting point will be to in-
troduce the simplest case: linear binary classification. This
problem consists of drawing a straight line that separates
two classes by assigning two different labels to them, like
y = ±1, on opposite sides of the line. The decision function,
i.e., the function that assigns a label for new data, can be
determined as

D(x) = w� · x + b, (2)

where w ∈ Rm is a vector with the same dimension as the
input and b is an offset. The labeling is introduced by using
the sign function:

y(x) = sgn(w� · x + b). (3)

Let us assume we have M training inputs xi belonging either
to Class 1 with yi = 1 or Class 2 with yi = −1. Since we
assume the training data are linearly separable, the following
inequality is fulfilled:

yiD(x) = yi(w
� · xi + b) � 1, i = 1, . . . , M. (4)

That is, the decision function yields D(xi ) � 1 for yi = 1
and D(xi ) � −1 for yi = −1, separating both classes by the
hyperplanes D(x) = 1 and D(x) = −1. We can define a sep-
arating hyperplane between these two: w� · x + b = c, for
−1 < c < 1. The distance between the separating hyperplane
and the training data sample nearest to the hyperplane is
called the margin. The generalization ability of this model
depends on the location of the separating hyperplane, and
the hyperplane with the maximum margin is denoted as the
optimal one.

In fact, w represents the orthogonal vector of the optimal
separating hyperplane. If input data is bidimensional, w de-
fines a separation line, and in higher dimensions, it defines
a separating hyperplane. However, a linear classifier will not
suffice if the classification problem is nonlinear. Here comes
the concept of the feature map φ(x), which embeds data
points into a higher dimensional space (feature space) such
that the modified inputs may become linearly separable. The
new decision function becomes

D(x) = w′� · φ(x) + b, (5)

where w′ is now the vector of the optimal separating hyper-
plane in the new feature space. The representer theorem [38]
states that the vector w′ can be written as a sum over a subset
S of the training data points with real coefficients αi:

w′ =
∑
i∈S

αiyiφ(xi ). (6)
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In the case of SVM, the subset S corresponds to the support
vectors, that is, only the closest points to the decision bound-
ary contribute. We write again the decision function with this
new information,

D(x) =
∑
i∈S

αiyiφ(xi )
� · φ(x) + b, (7)

finally arriving at the introduction of the kernel, defined as an
inner product between feature vectors:

K (x, x′) = φ(x)� · φ(x′). (8)

Under this definition, the kernel fulfills all the requirements
exposed above. The kernel trick consists then of substituting
the product of feature vectors by the kernel function, exploit-
ing the fact that it might be easier to compute the inner product
than the vectors themselves. This is especially relevant when
the embedding happens in large feature spaces, as it usually
happens with quantum kernels. We will use this fact later to
define our quantum kernel.

The parameters αi can be efficiently computed by solving
the Lagrangian optimization problem for the soft margin SVM
in its dual form:

arg max
αi

⎡
⎣ M∑

i=1

αi − 1

2

M∑
i=1

M∑
j=1

αiα jyiy jK (xi, x j )

⎤
⎦, (9)

subject to
∑M

i=1 αiyi = 0 with 0 � αi � C for i = 1, . . . , M.
The penalty term C > 0 determines the balance between min-
imizing the training error and maximizing the margin. When
C is small, it results in a large margin but potentially high
training error.

For this paper, we will make use of the soft margin SVM
method from the library SCIKIT-LEARN [39]. In order to have a
competitive benchmark to compare with, we take the classical
kernel known as the radial basis function (RBF). This kernel
is defined as

K (x, y) = e−γ ||x−y||2 , (10)

where γ controls the precision of the kernel.

B. Quantum fidelity kernel

Once the SVM framework is introduced, we define the
quantum kernel that we will consider in this work, based on
an analog implementation in an ion trap platform. We start by
specifying the dynamical system that will process the input
information. The Hamiltonian of our system is a transverse-
field Ising model:

H =
N∑

i> j=1

J

|i − j|α σ x
i σ x

j +
N∑

i=1

hiσ
z
i , (11)

where N is the number of spins, hi is the on-site magnetic
field for each spin, σ a

i (a = x, y, z) are the Pauli matrices, and
α is a hyperparameter that controls the decay of the spin-spin
couplings, with maximum strength J for the nearest neighbors
in the chain. This model can be generated using a combination
of an effective magnetic field and Ising interactions in ion trap
platforms, with appropriate settings of the spin phases [28].
Spin-spin interactions are mediated by global laser beams that

couple spin and motion according to the Mølmer-Sørensen
scheme [40]. The coupling decay is approximated by a power
law, where α can be tuned between 0 and 3 by varying pa-
rameters of the trap [28,41]. Here, we will fix α = 1.13 and
J = 1, following the values adopted by experimentalists to
obtain a medium-length interaction range [29]. Our proposal
is to use this ion trap to implement a kernel, by encoding
the inputs in the local magnetic fields, where site-dependent
laser-induced Stark shifts can be used to prepare them [42],
see Refs. [29,43,44] for some examples of experimental im-
plementations. In particular, we introduce the input into the
external magnetic field of some or all the spins as hi = hxi,
depending on the dimension of the input vector. In general,

H (x) =
N∑

i> j=1

J

|i − j|α σ x
i σ x

j + h
N∑

i=1

xiσ
z
i , (12)

where h is the strength of the magnetic field for all spins and
x = {x1, x2, ...} is the input vector for each input instance with
values scaled in the interval xi ∈ [−1, 1]. The chain length N
is set to be equal to or larger than the number of input features.
For less features than the chain length we will set the magnetic
field in the remaining spins to zero: for instance, for an input
of only two features (and N � 2), x = {x1, x2, 0, ..., 0}. If
N is a multiple of the number of input features, one could
redundantly encode the inputs in more than one spin. In this
input protocol, the number of qubits must scale linearly with
respect to the number of input features.

We will now move on to the definition of the quantum
kernel. The system is initialized with all spins in the state |0〉.
Then, we apply the unitary operator of the dynamics:

|ψ (x)〉 = e−iH (x)�t |0〉 , (13)

where �t indicates the time of the simulation. This opera-
tion of encoding the input vector into a new Hilbert space is
the feature mapping. To construct the kernel, we need a dot
product between two vectors in the new feature space. This is
expressed as

K (x, y) = | 〈ψ (y)|ψ (x)〉 |2 = | 〈0|eiH (y)�t e−iH (x)�t |0〉 |2,
(14)

where we introduced the squared absolute value for exper-
imental purposes. In order to compute the kernel matrix
element for inputs x and y, we need to measure the overlap
between states |ψ (x)〉 and |ψ (y)〉. There are several ways of
tackling this problem. The most popular one with quantum
computers is the quantum kernel estimation method [15].
This method would require applying the following chain of
operations in our system:

(1) Initialize the system at |0〉 through optical pumping.
(2) Apply the sequence of unitary operators

eiH (y)�t e−iH (x)�t , where each unitary is simulated as described
after Eq. (11). Examples of programmed sequences of
unitaries in trapped ions can be seen, for instance, in
gate-based quantum computing [45], Floquet systems [43]
and preparation of thermofield states [46].

(3) Measure the state of all qubits in the z direction
through, e.g., fluorescence collected into a CCD camera.
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(4) Repeat the whole process to estimate the frequency of
obtaining the state |0〉 in all qubits after measuring, which
indeed approximates Eq. (14).

Let us now describe the different sources of noise that
we will study in the system. There are common sources of
decoherence for simulations and gate-based computations in
trapped ions, such as stray magnetic and electric fields, mode
frequency drifts, off-resonant motional excitation, and spon-
taneous emission [47]. The main point of decoherence is that
it can set a time limit for quantum simulations. Therefore, we
model the experimental noise produced by decoherence with
a depolarizing channel after the unitary dynamics [48,49],
which is a simple model that can be easily studied in the
context of quantum kernels:

ρ̃(x) = (1 − p)ρ(x) + p
I

2N
, (15)

where p is the probability of replacing the quantum state by
the maximally mixed state I/2N and ρ(x) = |ψ (x)〉 〈ψ (x)|.
We assume that p is the same for all inputs x to simplify the
setting, but this is not necessarily true in general. The quantum
kernel is given now by the Hilbert-Schmidt product of the
feature vectors in the space of density matrices:

K̃ (x, y) = tr[ρ̃(x)ρ̃(y)] = (1 − p)2K (x, y) + p(2 − p)/2N .

(16)

Besides, we can add a Gaussian random number to the kernel
matrix elements in order to simulate statistical noise due to
finite sampling (justified by the central limit theorem):

K̃ ′(x, y) = K̃ (x, y) + ξ (x, y), (17)

where ξ (x, y) is generated from a normal distribution of zero
mean and standard deviation s for each pair of inputs (x, y).
This can be related to the number of measurements V through
the relation s ∼ 1/

√
V . Since the kernel matrix has to be

symmetric, we set ξ (x, y) = ξ (y, x). In this work, we consider
p = 0.01, 0.1 and s = 0.01, 0.1.

In order to use a kernel matrix for classification tasks,
it must be a positive-semidefinite matrix. The two sources
of noise we previously introduced might hinder this feature,
so some mitigation techniques should be applied. We use
the Tikhonov regularization [48], also known as the shifting
technique in this context [49]. It consists of shifting all the
eigenvalues by the minimum nonpositive eigenvalue of K̃ ′.
This is equivalent to subtracting it from the diagonal

K =
{

K̃ ′ − λminI if λmin < 0

K̃ ′ else
, (18)

where K is now a symmetric positive-semidefinite matrix.

C. Optimization

As was mentioned in the Introduction, we will introduce
an inductive bias in our models by applying bandwidth op-
timization. To this end, we perform a grid search that will
help to visualize the performance for all explored values of
hyperparameters. This can be numerically expensive for many
hyperparameters (and hard to visualize), so we limit ourselves
to grid searches that vary two hyperparameters simultane-
ously. For the classical case, we vary the scaling factor of the

RBF kernel γ in Eq. (10) and the regularization parameter C
[introduced after Eq. (9)]. For the quantum case, we will vary
�t and h while fixing C = 1 (recall we already fixed J = 1
and α = 1.13). We will also have a look at the performance as
the number of spins increases for N = 2, 4, 6.

To measure the performance of our kernel methods, we
use the classification accuracy. It is defined as the number
of correct predictions (CP) divided by the total number of
predictions (TP):

A = CP

TP
. (19)

This metric is appropriate since our dataset is well balanced,
with half of each set from each classification class.

In order to find the optimal hyperparameters, we adopted
a training, validation, and testing strategy. Training is used to
find the optimal parameters of the SVM model for the training
set (for a given value of the hyperparameters). The validation
set allows us to compute the performance of the model (with
the same hyperparameters) for new data that the trained model
has not seen. Based on the validation performance, we make
the grid search in order to find the optimal hyperparameters.
Finally, at the test, we evaluate the final performance of the
model, with trained parameters and optimized hyperparame-
ters, for a new set of inputs.

Three binary classification tasks are evaluated. The Circles
(C) and Moons (M) tasks were generated from the library
SCIKITLEARN [39]. These two tasks are paradigmatic examples
of benchmark classification tasks because they are easy to
generate, while not trivially solvable, and are very popular
in the quantum kernel literature [14,26,50–53], even with
experiments [24,54]. The third task, called Ad Hoc (AH), was
extracted from the QISKIT dataset library in PYTHON [55]. This
dataset was originally designed to be exactly separable using
quantum kernels as proposed in Ref. [15]. We evaluate here
the capability of the classical RBF and quantum trapped ion
kernels to solve these three tasks.

For the Circles and Moons tasks, Gaussian noise is intro-
duced during the generation of the datasets (with standard
deviation equal to 0.2 and 0.3, respectively), in such a way
that points belonging to one class can enter into the area that
corresponds to the other class [see Figs. 1(a) and 1(b)]. For the
Ad Hoc task [Fig. 1(c)], we set the separation gap as � = 0.3
(see Ref. [15] for more details). Note that the input data noise
is the only noise source we considered for the classical kernel.

The datasets are equally divided into three sets (train, vali-
dation, and test) with 333 points per set. We remark that given
this number of data points and the resolution of the grid search
(we used 100 points per hyperparameter), we may find more
than one equal-valued minima in the grid search. We need to
select one of them to compute the test accuracy. Our choice
is to take the middle element of the ordered list of minima,
having checked that the other points work equally well.

III. NUMERICAL RESULTS

A. Classical kernel

We begin by presenting the results of the classical RBF
kernel. Table I shows the values of the optimal hyperparame-
ters for the three different tasks, together with the validation
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FIG. 1. Decision function (a)–(c) and optimization landscape
(d)–(f) of the RBF classical kernel model. (a)–(c) were obtained for
the test sets by extracting the optimal hyperparameters of (d)–(f). The
three different tasks are referred to as Circles [(a) and (d)], Moons
[(b) and (e)], and Ad Hoc [(c) and (f)].

accuracy Aval and test accuracy Atest. We observe that the
values of validation accuracy are larger than those of test
accuracy, as expected. The fact that we do not surpass the
value 0.9 of test accuracy in any of the tasks is due to the
presence of noise during the generation of the datasets, as
explained in the previous section.

Figures 1(d)–1(f) represent the classification accuracy dur-
ing the validation procedure of the classical kernel over the
hyperparameter space. The optimal hyperparameters of Ta-
ble I were obtained by selecting the values that maximize
the validation accuracy, as described in Sec. II C. For the
Circles and Moon tasks [Figs. 1(d) and 1(e)], we observe
that a broad combination of hyperparameters allows us to
solve them. However, the Ad Hoc task [Fig. 1(f)] seems to
require a higher nonlinear response from the kernel. Using
the kernel with a small scale factor γ tends to make the SVM
behave like a linear classifier. Conversely, a large scale factor

TABLE I. Optimal hyperparameters for the classical RBF kernel.
The tasks are represented as C (Circles), M (Moons), and AH (Ad
Hoc). The values of Aval and Atest represent the accuracy with the
optimal hyperparameters for the validation and test sets, respectively.

Task γ C Aval Atest

C 2.78 × 10−3 2.98 × 107 0.91 0.89
M 4.98 × 10−2 8.11 × 106 0.94 0.89
AH 2.98 × 100 2.11 × 104 0.85 0.84

TABLE II. Optimal hyperparameters for the quantum kernel
model without noise. The tasks are represented as C (Circles), M
(Moons), and AH (Ad Hoc). N represents the number of qubits, h
is the strength of the external magnetic field, and �t is the unitary
evolution’s time scale. The values of Aval and Atest represent the
accuracy with the optimal hyperparameters for the validation and test
sets, respectively.

No noise

Task N h �t Aval Atest

C 2 0.40 2.11 0.76 0.72
C 4 0.37 16.30 0.91 0.89
C 6 1.87 2.31 0.91 0.87
M 2 0.42 49.77 0.64 0.57
M 4 2.26 2.78 0.93 0.90
M 6 2.98 2.11 0.93 0.90
AH 2 1.63 2.21 0.74 0.72
AH 4 1.56 6.73 0.84 0.78
AH 6 1.56 6.73 0.87 0.82

γ makes the output classifier highly sensitive to small input
changes, which could lead to overfitting even with margin
maximization. Figure 1(f) shows how this task is best solved
with the higher values of γ (higher nonlinearity) but without
overfitting, as the test accuracy of Table I demonstrates.

B. Quantum kernel

Now we introduce the results of the quantum kernel. Ta-
ble II shows the optimal hyperparameters and classification
accuracy of the quantum kernel with the Hamiltonian given
in Eq. (12) for the same tasks. This table contains only the
noiseless case, i.e., the kernel given by Eq. (14). As in the
classical case, we compute the validation and test accuracy
for the optimal hyperparameters (h and �t), while exploring
the number of qubits N as well.

The first thing that captures our attention from the results
presented in Table II is that the performance significantly
improves when increasing the number of qubits from N = 2 to
N = 4 in all tasks. This transition is directly related to the size
of the quantum feature space where the inputs are introduced,
increasing the expressivity of the model. However, the Ad Hoc
task is the only one that also displays a significant change
when increasing the number of spins from N = 4 to N = 6.
This suggests that the task at hand determines the optimal
size of the Hilbert space, depending on the expressiveness
required.

Regarding the effect of statistical (s) and depolarization (p)
noise, we analyze four different situations where the quantum
kernel is given by Eqs. (16)–(18), summarized in Table III.
In the first case, we added a small amount of both statistical
and depolarizing noise, with s = 0.01 and p = 0.01. Here,
the test accuracy is slightly decreased in almost all the cases,
but we also observe that it can be also slightly increased,
as in the Circles task with N = 6. Then, we increase the
statistical noise to s = 0.1, finding a small negative effect
over validation accuracy that was not present with s = 0.01.
Instead, when increasing the depolarizing noise to p = 0.1
while keeping s = 0.01, both validation and test accuracy
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TABLE III. Optimal hyperparameters for the quantum kernel model with noise. The tasks are represented as C (Circles), M (Moons), and
AH (Ad Hoc). N represents the number of qubits, h is the strength of the external magnetic field, and �t is the unitary evolution’s time scale.
The values of Aval and Atest represent the accuracy with the optimal hyperparameters for the validation and test sets, respectively.

s = 0.01 and p = 0.01 s = 0.1 and p = 0.01 s = 0.01 and p = 0.1 s = 0.1 with p = 0.1

Task N h �t Aval Atest h �t Aval Atest h �t Aval Atest h �t Aval Atest

C 2 0.18 19.63 0.78 0.72 0.71 7.39 0.76 0.71 0.49 1.92 0.78 0.71 0.71 7.39 0.76 0.71
C 4 1.02 2.54 0.91 0.88 0.28 29.84 0.90 0.88 0.89 2.92 0.91 0.89 0.42 25.95 0.90 0.88
C 6 0.56 6.73 0.91 0.89 0.74 4.64 0.90 0.88 0.77 5.09 0.91 0.88 0.37 59.95 0.90 0.89
M 2 1.42 2.31 0.64 0.58 1.87 2.54 0.62 0.57 1.56 2.11 0.63 0.60 1.29 3.20 0.63 0.54
M 4 1.18 8.90 0.93 0.87 1.79 3.05 0.91 0.90 1.96 2.92 0.93 0.90 2.26 2.11 0.91 0.89
M 6 2.85 2.21 0.93 0.90 1.87 3.35 0.92 0.90 2.85 2.21 0.93 0.90 1.71 3.20 0.91 0.90
AH 2 1.79 2.01 0.74 0.70 3.77 1.00 0.68 0.68 1.79 2.01 0.74 0.70 1.79 2.01 0.68 0.70
AH 4 1.42 7.06 0.82 0.78 2.36 8.50 0.72 0.76 1.56 6.73 0.81 0.78 1.42 7.39 0.72 0.80
AH 6 1.29 8.50 0.87 0.82 1.18 10.24 0.76 0.80 1.56 18.74 0.86 0.86 1.42 7.39 0.75 0.82

return to values similar to the noiseless case, with even higher
performance in the Ad Hoc task for N = 6. Finally, the case of
larger statistical and depolarizing noise (s = 0.1 and p = 0.1)
shows that test performance is almost identical to the noiseless
situation, even larger in some cases. However, the validation
accuracy decreases again as in the case of s = 0.1 and p =
0.01, meaning that this effect is produced by the statistical
noise.

To visualize the change in performance with noise, Fig. 2
represents the performance of the quantum kernel for the Ad
Hoc task in all the studied situations. The x axis describes the
noise parameters and the y axis represents the test accuracy.
The color of each bar corresponds to a given number of qubits.
Figure 2 illustrates our main findings, namely, that test accu-
racy increases with system size and that statistical noise can be
detrimental, although an appropriate amount of depolarizing
noise can compensate for this negative effect, even finding the
best performance for the Ad Hoc task for N = 6 with s = 0.01
and p = 0.1.

When comparing the optimal quantum kernels with the
classical kernel, the quantum models for N = 4 and N = 6
obtain a very similar performance to the classical case, even

FIG. 2. Test accuracy of the quantum kernel model for the Ad
Hoc task. The color of each bar corresponds to a given number
of qubits and each group of bars corresponds to a set of noise
parameters.

under the effect of noise. For the Ad Hoc task, we can also find
one situation where the test accuracy of the quantum kernel
is larger than in the classical case (N = 6 for s = 0.01 and
p = 0.1). On the one hand, the fact that statistical noise (less
measurement precision) tends to decrease the performance is
an evident negative effect that can have severe consequences,
such as the loss of any possible generalization advantage
of quantum kernels [49]. However, as shown in Ref. [5],
quantum kernels with a controlled additive sampling noise in
SVM are robust, where the noisy hyperplane is close to the
noiseless hyperplane. On the other hand, depolarizing noise
corresponds to a loss of information about the quantum state
with probability p, so large values of p would also hinder the
performance of quantum devices. But, as we observe here,
it can act as a regularization parameter for small values. We
remark that in any case, techniques can be carried out to
mitigate the effect of both sources of noise [34,48,49].

We now proceed to visualize the relationship between
the optimal hyperparameters and task performance. Figure 3
shows the validation accuracy in terms of the hyperparameters
h and �t for the systems associated with s = 0.01 and p =
0.01 in Table III. We notice that the optimization landscape is
qualitatively similar in all the studied situations, so Fig. 3 is a
representative example. The left and right columns correspond
to N = 2 and N = 6, respectively, while each row corresponds
to a different task. As already observed in Table III, the valida-
tion accuracy reaches higher values for N = 6 than for N = 2
due to the larger Hilbert space. But, Fig. 3 also shows that
the region of hyperparameters that could solve the tasks may
be broad. The Circles task [Fig. 3(d)] exhibits a wide range of
hyperparameters yielding high accuracy, with a possible linear
trend for h�t ∼ cte in the center. The Moons task [Fig. 3(e)]
reveals an even wider range of successful hyperparameters.
Interestingly, also for the Ad Hoc task [Fig. 3(f)], optimal
hyperparameters consistently cluster in the center of the fig-
ures. Our analysis illustrates that these central hyperparameter
combinations lead to high kernel expressivity.

One may try to explain the previous results by establishing
a connection between the value of the optimal hyperparam-
eters and the underlying dynamical features of the model.
However, it seems more complicated than that. Notice that
the kernel of Eq. (14) has three hyperparameters related to
the dynamics, J , h, and �t , but in fact, only two of them
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FIG. 3. Optimization landscape for the quantum kernel model
with the validation datasets. The statistical noise strength is given by
s = 0.01 and the depolarizing noise parameter is p = 0.01. The left
column corresponds to N = 2 while the right column corresponds to
N = 6. The top row is the Circles task, the middle row is the Moons
task, and the bottom row is the Ad Hoc task.

are independent (when combined as J�t and h�t in the uni-
tary operator). Then, the coefficient J/h indicates the relative
weight of each of the two terms of the Hamiltonian in Eq. (12).
Recalling that we previously fixed J = 1, our results suggest
that the relative weight of the external magnetic field term
to the coupling term would only become a relevant factor in
solving some specific tasks. For instance, the Moons task does
not strongly depend on the rate J/h: in Fig. 3(e) we observe
that values of the hyperparameters such as 0.3 < h < 3 with
�t ∼ 10 provide a similar performance. That is, the rates
1/3 < J/h < 3 work equally well. On the contrary, the Ad
Hoc task requires a very specific ratio J/h: Fig. 3(f) shows a
clear optimal region of hyperparameters in the center of the
figure, around �t ∼ 10 and h ∼ 1.

IV. DISCUSSION

Kernel methods are a promising direction in the search
for applications of quantum machine learning techniques. In
particular, classically intractable quantum simulation mod-
els can be exploited to explore quantum advantages. Our
work proposes ion trap platforms as an analog experimental
platform to compute quantum kernels, demonstrating their
viability through numerical simulations of realistic scenarios
with depolarizing and statistical noise.

The computation of quantum kernels proposed here for
trapped ions builds on the kernel estimation protocol of
Ref. [15]. Computing the unitary dynamics given by −H (y)
only requires the change of sign of the couplings and the
definition of new magnetic fields depending on the input y.
One potential challenge is whether it is possible to make this
sudden change between H (x) and −H (y) on the fly. There
are other possible routes to measure the overlap between two
quantum states that might be applied to this quantum simu-
lation platform. For example, the SWAP test and extensions
[56,57] would allow evolving in parallel the states |ψ (x)〉
and |ψ (y)〉 without the sudden quench. Classical machine
learning techniques can help here [58,59], and full tomog-
raphy allows us to obtain the quantum kernel as well [60].
Finally, a promising direction might be to use randomized
measurements [61,62], where the overlap of states generated
by independent Hamiltonians can be measured.

We evaluated the performance of the proposed quantum
kernel in three different binary classification tasks and com-
pared the results with the well-known RBF classical kernel.
We made a grid search of optimal hyperparameters for both
classical and quantum models, also exploring the number
of qubits in the latter. The bandwidth optimization of the
quantum model introduces an inductive bias that restricts
the type of functions that can be solved. We find that both
classical and quantum models reach a very similar perfor-
mance, closely saturating the maximum possible test accuracy
for the given test sets without overfitting. This means that
the proposed quantum model is operational for classification
tasks, being robust under the presence of different sources
of noise.

The search for optimal quantum kernels was carried out for
only two hyperparameters with a very specific Hamiltonian
[Eq. (11)] and input scheme, but more possibilities can be
explored. The hyperparameters α and C can be also tuned, the
input can be redundantly injected [like x = {x1, x2, x1, x2, ...}
in Eq. (11)], or we can even add new terms to the Hamilto-
nian such as a magnetic field in the x axis. We tested these
possibilities for the presented tasks, reaching a similar or
worse performance. However, we do not discard that a more
systematic evaluation of these strategies could bring an im-
provement. In fact, the quantitative performance in different
tasks is expected to vary under different interactions or driving
in the Hamiltonian.

Future work will be devoted to exploring the effect of
increasing the number of qubits to solve tasks with a larger
number of input features. On the one hand, one can expand
the number of features that can be codified in a single qubit
by feeding them over time with an input-dependent driving
field, as presented in Ref. [60]. On the other hand, projected
quantum kernels can be explored in this setting [4], limiting
the effective Hilbert space dimension to maximize the gener-
alization ability of the model.
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[12] D. Marković and J. Grollier, Quantum neuromorphic comput-
ing, Appl. Phys. Lett. 117, 150501 (2020).

[13] P. Mujal, R. Martínez-Peña, J. Nokkala, J. García-Beni, G. L.
Giorgi, M. C. Soriano, and R. Zambrini, Opportunities in quan-
tum reservoir computing and extreme learning machines, Adv.
Quantum Technol. 4, 2100027 (2021).

[14] M. Schuld and N. Killoran, Quantum machine learning
in feature Hilbert spaces, Phys. Rev. Lett. 122, 040504
(2019).
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