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Quantum simulation is one of the major applications of quantum devices. In the noisy intermediate-scale
quantum era, however, the general quantum simulation is not yet feasible, such as that of lattice gauge theories,
which is likely limited due to the violation of the Gauss law constraint and the complexity of the real-time
dynamics, especially in the deconfined phase. Inspired by the recent works of Ashkenazi and Zohar [Phys.
Rev. A 105, 022431 (2022)] and of Tantivasadakarn, Thorngren, Vishwanath, and Verresen [arXiv:2112.01519],
we propose to simulate dynamics of lattice gauge theories by using the Kramers-Wannier transformation via
cluster-state-like entanglers, mid-circuit measurements, and feedforwarded corrections, which altogether is a
constant-depth deterministic operation. In our scheme, specifically, we first quantum simulate the time evolution
under a corresponding symmetric Hamiltonian from an initial symmetric state, and then apply the Kramers-
Wannier procedure. This results in a wave function that has time evolved under the corresponding lattice gauge
theory from a corresponding initial, gauged wave function. In the presence of noises in time evolution, the
procedure succeeds when we are able to pair up magnetic monopoles represented by nontrivial measurement
outcomes. Furthermore, given a noise-free Kramers-Wannier transformation, the resulting wave function from a
noisy time evolution satisfies the Gauss law constraint. We give explicit examples with the low dimensional pure
gauge theories and gauge theories coupled to bosonic or fermionic matters such as the Fradkin-Shenker model.
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I. INTRODUCTION

Lattice gauge theory is a cardinal formulation in modern
many-body physics. The Euclidean formulation of the lattice
gauge theories [1–4] has provided numerous results, such as
predicting phase diagrams [2,3,5–9] in high-energy physics,
while the low-energy properties of lattice gauge theories have
been useful guideposts in condensed-matter physics [10–13]
and quantum information science [14,15] as well. On the other
hand, the Monte Carlo simulation of lattice gauge theories
often suffers from the sign problem [16–19], and the search
for an efficient method to simulate the dynamics of gauge
theories in real time or with finite chemical potentials has
been a central subject of the field. In the Hamiltonian lattice
gauge theory [1,6,20], the dimension of the Hilbert space
grows exponentially with the number of degrees of freedom,
and quantum simulation [21,22] is expected to be one of
the solutions to these issues, which can potentially enable us
to perform the simulation of quantum many-body dynamics
with resources linear in the system size and in the time du-
ration. The quantum simulation of lattice gauge theories is
now one of the major subjects of study [23–28] in the noisy
intermediate-scale quantum (NISQ) era [29].

One challenge in simulating the dynamics of lattice gauge
theories using quantum computers is the complexity of the
wave function, such as in the TORIC code [30]. The ground
state of the TORIC code is identical to those representing the
deconfining phase limit of the Z2 gauge theory in (2 + 1)
dimensions [1]. As the TORIC code possesses long-range

entanglement, preparing its ground state requires a quantum
circuit of the size of the system [31,32], which is challenging
with unitary gates provided in current NISQ devices [33]. In
particular, the Hamiltonian of the gauge theory involves four-
body interaction terms on the square lattice. Thus the quantum
simulation of the model requires a large number of quantum
gates in general. Another challenge in simulating the dynam-
ics of lattice gauge theories is that a noisy quantum simulation
over a large depth induces significant errors, leading to a wave
function with unphysical contributions violating the Gauss
law constraint. Therefore, enforcing the gauge invariance is
one of the primary areas of interest in studies on quantum
simulation of gauge theories [34–50].

The topologically ordered states cannot be reached by
short-depth unitaries alone from a product state [32]. How-
ever, there is a well-known loophole in the context of
the fault-tolerant measurement-based quantum computation
[51–53]. Namely, a combination of the short-range entan-
gler, such as the controlled gate used to create the so-called
cluster state [51,54], and on-site measurements give rise to
a constant-depth operation to prepare the ground state of the
TORIC code. Recently, this idea was extended to further cases,
and it is now recognized that short-range entangled states such
as symmetry-protected topologically (SPT) ordered states
[55–61] can be transformed to topologically ordered states by
constant-depth operations including measurements and feed-
forward [62–67] (see also Refs. [68,69]). In Refs. [62,65],
such operations were interpreted as the celebrated Kramers-
Wannier transformation [1,2,70–72], implying versatility of
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the method to many other contexts. It is indeed a method to
promote a global symmetry to the corresponding gauge sym-
metry (or gauge redundancy); thus, it is also called gauging.
However, its application to quantum simulation of time evolu-
tion in lattice gauge theories has not been much investigated
to date.

A. Summary of results

In this work, we use the idea of the Kramers-Wannier
transformation based on measurements [65] to real- and
imaginary-time quantum simulation of lattice gauge theories.
In (2 + 1) dimensions, the transverse-field Ising model is
transformed into the Z2 lattice gauge theory. We show that
the time evolution under the transverse-field Ising model on a
symmetric initial state is transformed into that of the Z2 lattice
gauge theory on a long-range entangled state with a single-
shot operation [62,65], which is just an entangling operation
followed by single-qubit measurements.

Using the Kramers-Wannier transformation on the time-
evolved wave function of the transverse-field Ising model has
an advantage over directly simulating the gauge theory. First,
since the transverse-field Ising-model Hamiltonian is sim-
pler, the required connectivity of the quantum circuit for this
model will be much simpler than that required for simulating
the corresponding gauge model. Second, since the product
state maps to the TORIC code ground state via the Kramers-
Wannier transformation, the time-evolved wave function is
changed to a long-range entangled state, which is far from
the product states if restricted to unitaries alone. Finally, with
a generic unitary error channel during the time evolution with
e.g., the transverse-field Ising model, the resulting state after
the duality procedure is gauge symmetric, given a perfect
(constant-depth) dualization operation. Due to noises, the cor-
rection part of the dualization operation may fail when we find
an odd number of X = −1 outcomes (instead of X = +1) out
of the measurement, in which case we would have an isolated
magnetic monopole, as explained below. In that case, we may
simply throw away the result and restart the procedure.

The randomness of measurement outcomes induces un-
wanted phase factors on the resulting wave functions. Such
phase factors can be expressed using the so-called byproduct
operators. For pure gauge theories, the byproduct operators
are Pauli Z operators supported on a set of strings whose
endpoints correspond to nontrivial measurement outcomes.
For gauge theories coupled to matters, the byproduct operators
are Z operators acting on the gauge degrees of freedom whose
location corresponds to nontrivial measurement outcomes. In
either case, byproduct operators are correctable.

We generalize our method to a nontrivial SPT Hamiltonian
in (2 + 1) dimensions, which results in a quantum simula-
tion of an Abelian twisted gauge theory [73,74], akin to the
Dijkgraaf-Witten topological field theory on triangulated lat-
tices [75]. We also show that our method works for the gauge
group ZN [20]. Then we generalize the method to obtain mat-
ter theories covariantly coupled to Z2 gauge fields in (1 + 1)
dimensions. We discuss cases with a bosonic matter and a
fermionic matter separately, and, in the latter, the fermion
parity in the Kitaev Majorana chain model [76] is the global
symmetry to be gauged [77]. In (2 + 1) dimensions, we also

FIG. 1. The procedure of the KW transformation of time evolu-
tion. (Top) A quantum circuit expression of the result. Starting from
an ungauged wave function, we perform a time evolution T (t ) via
a quantum circuit. The Kramers-Wannier transformation procedure
consists of entangling the original degrees of freedom with addi-
tional degrees of freedom by entanglers and measuring the original
degrees of freedom. We obtain a gauged wave function evolved with
a time evolution T ∗(t ) with a Hamiltonian obtained by the Kramers-
Wannier duality, up to a byproduct operator Obp, which depends on
the measurement outcomes.

give an example with an Ising model covariantly coupled to
gauge fields, whose phase diagram was studied by Fradkin
and Shenker [5]. The Kramers-Wannier transformation we use
for theories with matter is a generalization of the standard one
given in, e.g., Ref. [72], and we embody a physical realiza-
tion of such mathematical transformations. We concentrate
on the real-time evolution in the main text, but there is no
obstruction to generalizing our method to the imaginary-time
evolution [78–80], simply by replacing t �→ −iτ with τ being
the imaginary time. Postselection is generically required in
implementing the imaginary-time evolution on quantum de-
vices, but the part on the duality transformation in our method
is always deterministic.

Our results are demonstrated with several examples and
can be compactly summarized in a formula as follows:

OM�

bp T M�

(t )|ψgauged〉 = M̂apT M (t )|ψungauged〉. (1)

Here T M (t ) and T M�

(t ) represent the Trotterized time evolu-
tion in the original and dual theories, respectively. The map
M̂ap is a physical operation that implements the duality map,
which consists of applying entanglers and measurements. The
wave function |ψ〉 is the initial state, whose form will be
explained in detail below, and the duality map relates the
gauged and ungauged ones. For example, in (2 + 1) dimen-
sions, when |ψungauged〉 is a product |+〉 state, |ψgauged〉 is
the ground state of the TORIC code. The operator OM�

bp is
the byproduct operator, and its specific form depends on the
dualization. Figure 1 has a schematic diagram illustrating our
result. For convenience, we also summarize our results from
different examples in Table I. (In each case, the equality is up
to a normalization constant but is omitted for convenience.)

B. Related works

In Refs. [81,82] the Kramers-Wannier duality was used
as a mathematical dictionary for the quantum simulation of
the (2 + 1)d Z2 lattice gauge theory. On the other hand, our
method allows us to physically prepare the simulated wave
function of the gauge theory. In Ref. [67], a physical im-
plementation of the Kramers-Wannier transformation using
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TABLE I. Summary of results in our examples. Here, “/ZK ” (K = 2, N) indicates that the Hamiltonian, and the initial wave function we
consider is symmetric under the transformations that form such groups. The names next to the models inside the parenthesis are used for labels
of the models, M or M�.

Dim M d.o.f. M� d.o.f. M̂ap OM�

bp Section

2 Ising/Z2 (TFI) V Pure Z2 gauge theory (GT) E∗ K̂W (60) (64) II E
2 Twisted Ising/Z2 (tTFI) V Twisted Z2 gauge theory (tGT) E∗ K̂W (60) (64) III A

2 Clock/ZN (ZN clock) V ZN gauge theory (ZN GT) E∗ K̂W
ZN (111) (113) III B

1 Ising (TL-Ising) V Gauge theory with Ising matter (GM) V ∗ ∪ E∗ K̂W
GM

(126) (129) IV A
1 Ising (TL-Ising) V Gauged Majorana chain (QED) V ∗ ∪ E∗ ĴW (140) (129) IV B
2 Star-plaquette (SP) E Gauge theory with Ising matter (FS) V ∗ ∪ E∗ F̂S (150) (155) IV C

measurements and postselection was studied in the context
of quantum simulation of gauge theories. Here we explicitly
formulate a procedure for dualizing time evolutions, includ-
ing a method to handle the randomness of the measurement
outcomes. We apply the deterministic measurement-based
gauging method, first elucidated in Ref. [65] for obtaining
topologically ordered ground states. In particular, we reveal
that our method does not require postselections even with
time evolution unitaries, just as in the case of transforming
ground states. Finally, although our models of consideration
and procedures are distinct from theirs, we mention an inter-
esting work, Ref. [83], which utilized the measurement-based
Kramers-Wannier transformation to obtain imaginary-time
evolution under some Ising or gauge quantum Hamiltonian
assisted by classical processing.

C. Organization of the paper

This paper is organized as follows: In Sec. II, we explain
our method with the example of the duality between the
transverse-field Ising model and the pure gauge theory in
(2 + 1) dimensions. We define the map K̂W and demonstrate
our main result. In Sec. III, we generalize our result in two
directions. One is to twist the models on both sides of the dual-
ity, in the sense of twists in (symmetry-protected) topological
orders. The other is to extend the result to cyclic groups ZN .
In Sec. IV, we generalize the idea to incorporate matter fields
after the dualization. Section V is devoted to conclusions and
discussion.

II. TIME EVOLUTION OF GAUGE THEORY VIA
MEASUREMENT-BASED KRAMERS-WANNIER

A. Prelude: Measurement-based Kramers-Wannier
transformation in one dimension

Let us begin with a simple example to demonstrate the core
ideas in our method. We consider a spin model defined on
vertices in a one-dimensional periodic lattice.

We take the model to be symmetric under the Z2 global
symmetries generated by

U (0) :=
∏
v∈V

Xv, (2)

where X is the Pauli X operator. An example of such theory is
described by the transverse-field Ising-model Hamiltonian,

H = −λ
∑
v∈V

Xv −
∑
e∈E

(∏
v⊂e

Zv

)
, (3)

where the second term is the ordinary Ising interaction ZvZv′

for e = 〈v, v′〉, with Z being the Pauli Z operator. The relation
v ⊂ e under the product means that we take a product over
those vertices contained in an edge e.

In the present work, we consider the (quenched) time evo-
lution starting from an initial wave function, and we assume
that it is symmetric under global symmetry. In the current
example with the transverse-field Ising model, the initial wave
function is written using the Hilbert space spanned by the
basis which is a tensor product of Z eigenvectors over ver-
tices. We write it as

⊗
v∈V |av〉v , or more simply |{av}〉 with

av = 0, 1. The symmetric initial wave function is then written
as

|ψin〉 =
∑

av∈{0,1}
v∈V

C({av})
⊗
v∈V

|av〉v,

such that U (0)|ψin〉 = |ψin〉, (4)

where C({av}) : (Z2)⊗|V | → C is a suitable complex coef-
ficient. The time-evolved wave function with the first-order
Trotter decomposition is written as

|ψ (t )〉 =
(∏

e∈E

e−i�t
∏

v⊂e Zv

∏
v∈V

e−i�tλXv

)k

|ψin〉. (5)

We often use the controlled-NOT gate:

CXc,t = |0〉〈0|c ⊗ It + |1〉〈1|c ⊗ Xt , (6)

where c is the controlling qubit and t is the target qubit. Now,
we describe our transformation procedure, which is adopted
from Ref. [65], for example:

(i) Introduce ancillary degrees of freedom |0〉⊗E on edges.
(ii) Apply entanglers

U1D KW =
∏
v∈V

(∏
e⊃v

CXv,e

)
(7)

to the product state |ψ (t )〉 ⊗ |0〉⊗E . The relation e ⊂ v under
the product indicates that we take a product over those edges
that contain the vertex v.
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FIG. 2. The measurement-assisted Kramers-Wannier transformation in a one-dimensional periodic lattice. (i) A state |ψin〉 is initialized on
vertices (black dots) of the one-dimensional (1d) chain, and is evolved under the Hamiltonian of the TFI model. Ancillary qubits |0〉⊗E are
placed on edges (blue dots) separately. (ii) We apply the controlled-X gate, where the vertex qubits control X gates on edge qubits, as indicated
by the arrows in the figure. (iii) We measure the vertex qubits in the X basis. When the measurement outcome is X = −1 (occurring at check
marks and red dots below), phase operators effectively act on the desired dual time evolution. It can be expressed as Obp, the product of Z
operators on edge qubits that overlap with purple lines which connect red dots. (iv) One can negate the byproduct operator by applying the
counter operator Ocounter, the product of Z operators on edge qubits marked by orange lines that connect red dots. As Obp × Ocounter is trivial
on the state after the map, we obtain the dual time evolution which is not affected by randomness of measurement outcomes.

(iii) Measure all the vertex degrees of freedom in the Pauli
X basis.

(iv) Construct a counter operator Ocounter, which we de-
scribe later, based on the measurement outcomes in (iii).
Apply it to the postmeasurement state.

We illustrate the procedure in Fig. 2 and we claim that the
resulting state is(∏

e∈E

e−i�tZe
∏
v∈V

e−i�tλ
∏

e⊃v Xe

)k

|ψ∗
in〉, (8)

with

|ψ∗
in〉 =

∑
av∈{0,1}

v∈V

C({av})
⊗
e∈E

∣∣∣∣∣∑
v⊂e

av

〉
e

. (9)

Note the basis associated with edges is now a sum of bits that
were associated with the original wave function on vertices. It
is important to observe that this wave function also obeys the
(dual) global symmetry condition:

|ψ∗
in〉 = U (0,dual)|ψ∗

in〉, (10)

U (0,dual) :=
∏
e∈E

Ze. (11)

The wave function (8) is now a quenched time evolution of
the transverse-field Ising model on the dual lattice with the

Hamiltonian being

Hdual = −
∑
e∈E

Ze − λ
∑
v∈V

∏
e⊃v

Xe (12)

= −
∑

v∗∈V ∗
Zv∗ − λ

∑
e∗∈E∗

∏
v∗⊂e∗

Xv∗ , (13)

where V ∗ and E∗ are the sets of dual vertices and dual edges,
respectively. Note that the Hamiltonian is symmetric, i.e.,
[Hdual, U (0,dual)] = 0.

1. Preparation

Before proving the above claim, we collect some facts to
facilitate our demonstration. First, the global symmetry in the
original theory gives rise to a constraint on the measurement
outcomes. Writing the measurement basis in the X basis de-
noted as |sv〉(X )

v with sv = 0 or 1 (depending on the outcome),
we have(⊗

v∈V

〈sv|(X )
v

)
|ψin〉 =

(⊗
v∈V

〈sv|(X )
v

)∏
v∈V

Xv|ψin〉

=
∏
v∈V

(−1)sv

(⊗
v∈V

〈s|(X )
v

)
|ψin〉, (14)

which tells us that ∑
v∈V

sv = 0 mod 2, (15)
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where we have used the global symmetry in the first equality
and the fact that X |0/1〉(X ) = ±|0/1〉(X ) in the second equal-
ity.

As the number of vertices with sv = 1 is even, one can
construct a set of edges γ ⊂ E that pair them up. Namely,

endpoints of γ = {v such that sv = 1}. (16)

The choice of γ is not unique; there are two possibilities in
a one-dimensional (1D) periodic chain. We use the following
relation later that applies to states on the dual lattice (or edges
on the original lattice) to give an equivalent account of the
phase resulting from measuring vertex degrees of freedom:∏

v∈V

(−1)avsv

⊗
e∈E

∣∣∣∣∣∑
v⊂e

av

〉
e

=
∏
e∈γ

Ze

⊗
e∈E

∣∣∣∣∣∑
v⊂e

av

〉
e

. (17)

This relation holds with either of two choices for γ : one
that uses the minimum distance for pairing and the other that
involves a path wrapping around in the other direction. Then
we define the byproduct operator as

Obp(γ ) =
∏
e∈γ

Ze. (18)

Although the precise definition depends on specific examples,
throughout this paper, we call this type of operator—a prod-
uct of Pauli operators that expresses phase factors associated
with the measurement outcomes—the byproduct operators,
adopting the colloquial terminology in measurement-based
quantum computation [54,84,85].

We note that the operators that appear in the original
Hamiltonian get conjugated by the entangler U1D KW as fol-
lows:

Xv �→ Xv

∏
e⊃v

Xe, (19)∏
v⊂e

Zv �→
∏
v⊂e

Zv. (20)

With this, we are ready to give our first example of deter-
ministic duality transformation assisted by measurements and
feedforwarded corrections.

2. Demonstration

Steps (i), (ii) The wave function after applying the entan-
glers can be written as{∏

e∈E

exp

(
−i�t

∏
v⊂e

Zv

)∏
v∈V

exp

(
−i�tλXv

∏
e⊃v

Xe

)}k

×
∑

av∈{0,1}
v∈V

C({av})
⊗
v∈V

|av〉v
⊗
e∈E

∣∣∣∣∣∑
v⊂e

av

〉
e

. (21)

We further rewrite this expression by noticing the following
simple fact: When the Ising term

∏
v⊂e Zv acts on the basis

|av〉v , it gives the phase factor
∏

v⊂e(−1)av . This phase factor
is precisely reproduced by the phase operator Ze, which acts
on |∑v⊂e av〉e. Namely, the Ising term can be replaced by
a Ze operator. One can indeed show that this replacement
is allowed even in the presence of the other operator in the

Hamiltonian Xv

∏
e⊃v Xe. For example, it is simple to check

that the following holds:⎛⎝∏
v′⊂d

Zv′

⎞⎠(Xu

∏
e′⊃u

Xe′

)⊗
v∈V

|av〉v
⊗
e∈E

∣∣∣∣∣∑
v⊂e

av

〉
e

= (Zd )

(
Xu

∏
e′⊃u

Xe′

)⊗
v∈V

|av〉v
⊗
e∈E

∣∣∣∣∣∑
v⊂e

av

〉
e

, (22)

for any d ∈ E and u ∈ V . Hence we have{∏
e∈E

exp (−i�tZe)
∏
v∈V

exp

(
−i�tλXv

∏
e⊃v

Xe

)}k

×
∑

av∈{0,1}
v∈V

C({av})
⊗
v∈V

|av〉v
⊗
e∈E

∣∣∣∣∣∑
v⊂e

av

〉
e

, (23)

which is highlighted by the red color in the Ze operator.
Step (iii) We write the measurement outcomes as sv = 0, 1

in the X basis. After contracting Eq. (23) with
⊗

v∈V 〈sv|(X )
V

and using Eq. (14), the postmeasurement wave function is
written as (up to an unimportant normalization constant){∏

e∈E

exp (−i�tZe)
∏
v∈V

exp

(
−i�tλ(−1)sv

∏
e⊃v

Xe

)}k

×
∑

av∈{0,1}
v∈V

C({av})(−1)avsv

⊗
e∈E

∣∣∣∣∣∑
v⊂e

av

〉
e

=
{∏

e∈E

exp (−i�tZe)
∏
v∈V

exp

(
−i�tλ(−1)sv

∏
e⊃v

Xe

)}k

× Obp(γ )
∑

av∈{0,1}
v∈V

C({av})
⊗
e∈E

∣∣∣∣∣∑
v⊂e

av

〉
e

, (24)

where we have used the relation (17) to replace the phase
factor in the summand with the byproduct operator Obp(γ ).
We note that the commutation relation∏

e⊃v

XeObp(γ ) = (−1)svObp(γ )
∏
e⊃v

Xe (25)

can be used to obtain

Obp(γ )

{∏
e∈E

exp (−i�tZe)
∏
v∈V

exp

(
−i�tλ

∏
e⊃v

Xe

)}k

× |ψ∗
in〉. (26)

Next, we ask: how can we handle the byproduct operator?
Step (iv) With the measurement outcomes, we choose a set

of edges γ ′ ⊂ E just as we defined γ . We construct a counter
operator

Ocounter(γ
′) =

∏
e∈γ ′

Ze. (27)

We note that, due to the ambiguity (or freedom) in construct-
ing γ for the byproduct operators, we have the following
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FIG. 3. An example of 1-chain c1, which defines a basis |c1〉 in
the Hilbert space. The solid lines correspond to one, while ordinary
thin lines correspond to zero.

relation:

Obp(γ )Ocounter
(
γ ′) = 1 or U (0,dual). (28)

Either operator on the right-hand side acts trivially on the
postmeasurement wave function due to [Hdual,U (0,dual)] = 0
and U (0,dual)|ψ∗

in〉 = |ψ∗
in〉. Therefore, after the feedforwarded

correction, we obtain the dualized time-evolved wave func-
tion,{∏

e∈E

exp (−i�tZe)
∏
v∈V

exp

(
−i�tλ

∏
e⊃v

Xe

)}k

|ψ∗
in〉. (29)

We have encountered a bit of clutter in writing some of the
above equations. To suppress it, we introduce a set of useful
notations in the following section. Then the rest of this paper
is to apply the idea we just explained above to many other
examples—gauge theories with or without matter fields in
(1 + 1) or (2 + 1) dimensions. Different from the one-spatial
dimension here, in higher dimensions, we explore phases that
contain intrinsic topological order.

B. Setting up the machinery

Algebraic topology [86] is a useful tool to study topo-
logical quantum codes, which allows for straightforward
generalization; see Ref. [87] for an introduction. In this sec-
tion, we first provide homological terminology, which will
be useful as a shorthand notation and to understand the
mechanism of the duality transformation in a unified manner.
Readers who are only interested in the twisted gauge theory
and Majorana fermion QED can skip this section as we not
use this language there.

In d-dimensional lattices, let V (also denoted as �0) be
the set of vertices, E (or �1) the set of edges, and P (or �2)
the set of plaquettes, and so on. We also write the elements
v as σ0, e as σ1, and p as σ2, and they are called 0-, 1-, and
2-cells, respectively. For the cyclic group Z2, we introduce an
i-chain as a formal linear combination with Z2 coefficients,
a(ci; σi ) ∈ {0, 1 mod 2}; see Fig. 3:

ci =
∑
σi∈�i

a(ci; σi )σi. (30)

The boundary operator ∂ is a map such that ∂σi is a sum of
(i − 1) cells that appear in the boundary of σi. We also make

FIG. 4. An example of the intersection pairing number #(c1 ∩ c∗
1 )

between a 1-chain c1 and a dual 1-chain c∗
1.

use of the dual lattice, and denote the dual vertices as v∗ ∈ V ∗
(or σ ∗

0 ∈ �∗
0), dual edges as e∗ ∈ E∗ (or σ ∗

1 ∈ �∗
1) and dual

plaquettes as p∗ ∈ P∗ (or σ ∗
2 ∈ �∗

2). Both the dual chains c∗
i

(i = 0, 1, 2) and the dual boundary ∂∗ are defined in the same
manner as for the primal ones. Note that there is a natural
identification between the primal cells and the dual cells:

σ ∗
i � σd−i (d dimensions). (31)

We write the set that consists of all possible i-chains as Ci.
For a pair of chains ci and c∗

d−i in d dimensions we define
the intersection pairing

#(ci ∩ c∗
d−i ) =

∑
σi∈�i

a(ci; σi )a(c∗
d−i; σ

∗
d−i ) mod 2. (32)

Intuitively, #(ci ∩ c∗
d−i ) counts the number of overlaps be-

tween ci and c∗
d−i; see Fig. 4. The duality relation,

#(∂ci+1 ∩ c∗
d−i ) = #(ci+1 ∩ ∂∗c∗

d−i ), (33)

for i = 0, . . . , d − 1 and the nilpotency of the boundary oper-
ators, i.e.,

∂2 = 0, (∂∗)2 = 0, (34)

will become useful later.
We have many-body interaction terms in Hamiltonians. As

a convention, we express a product of operators A supported
on multiple i-cells, with which we associate an i-chain ci, as

A(ci ) :=
∏

σi∈�i

Aa(ci;σi )
σi

. (35)

Note the operators to be considered in this paper are mostly
the Pauli operators, such as X and Z . We denote the eigenvec-
tors of the Pauli operators as

Z|s〉 = (−1)s|s〉 (s = 0, 1), (36)

X |s̃〉 = (−1)s|s̃〉 (s = 0, 1). (37)

Namely, |0〉 and |1〉 are the basis states in the standard Z basis
whereas |0̃〉 = |+〉 = (|0〉 + |1〉)/

√
2 and |1̃〉 = |−〉 = (|0〉 −

|1〉)/
√

2 are in the dual (X ) basis.
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We define a basis of a wave function on i-cells with the
following product states; see Fig. 3:

|ci〉 :=
⊗
σi∈�i

|a(ci; σi )〉(Z )
σi

, (38)

|c̃i〉 :=
⊗
σi∈�i

|a(ci; σi )〉(X )
σi

, (39)

where the superscripts (Z ) and (X ) denote that they are
eigenvectors of respective operators.1 A useful example of
this notation is the product state of the Z eigenvectors |0〉
living on i-cells, where the associated i-chain is simply
zero, 0i:

|0i〉 =
⊗
σi∈�i

|0〉(Z )
σi

. (40)

We also use a notation such as

|ci〉 ⊗ |c j〉 = |ci, c j〉 (41)

to indicate a tensor product of two (or more) Hilbert spaces.
Our notation allows us to write multiqubit operations com-

pactly, e.g.,

Z (ci )|c′
i〉 = (−1)#(ci∩c′

i )|c′
i〉, (42)

X (ci )|c′
i〉 = |c′

i + ci〉, (43)

X (ci )Z (c′
i ) = (−1)#(ci∩c′

i )Z (c′
i )X (ci ), (44)

〈c̃i|c′
i〉 = 1

2|�i|/2
(−1)#(ci∩c′

i ). (45)

In the previous example with the 1D transverse-field Ising
models, the equations would be written as, e.g.,

Eq. (3) : H = −λ
∑

σ0∈�0

X (σ0) −
∑

σ1∈�1

Z (∂σ1),

Eq. (13): Hdual = −λ
∑

σ ∗
1 ∈�∗

1

X (∂∗σ ∗
1 ) −

∑
σ ∗

0 ∈�∗
0

Z (σ ∗
0 ),

Eq. (4): |ψini〉 =
∑

c0∈C0

C(c0)|c0〉,

and we see the usefulness of this language in the following
sections. This language is less suitable with some examples in
which the homological structure is not prominent, e.g., twisted
gauge theories with cocycle factors, or Majorana fermion
QED. In these cases, we do not stick to the notation we have
just presented here.

C. Lattice models in two dimensions

Consider two models in (2 + 1) dimensions related by the
Kramers-Wannier duality. Namely, the transverse-field Ising

1In figures etc, we often abbreviate a(ci; σi ) as ak ∈ {0, 1}, where
k is a label for i-cells σi. For a 0-chain c0, for example, the basis
|c0〉 = |a1, a2, . . .〉 consists of a bit string in the computational basis
for qubits defined on 0-cells (vertices). The Z eigenvalue 0 or 1
corresponds to the coefficient in the linear expansion of the 0-chain
with the 0-cells.

FIG. 5. The two-dimensional (2d) square lattice and its dual. The
red boxes represent the operators that appear in the Hamiltonian HTFI

and the blue ones in the Hamiltonian HGT and the generator of the
gauge transformation.

model (TFI),

HTFI = −
∑

σ1∈�1

Z (∂σ1) − λ
∑

σ0∈�0

X (σ0), (46)

and the gauge theory (GT),

HGT = −
∑

σ ∗
1 ∈�∗

1

Z (σ ∗
1 ) − λ

∑
σ ∗

2 ∈�∗
2

X (∂∗σ ∗
2 ), (47)

where the degrees of freedom of TFI are defined on the pri-
mary lattice, while those of GT live on the dual lattice; see
Fig. 5. The first-order Trotter decomposition for the real-time
evolution of the respective model is given by

T TFI(t ) =
⎛⎝ ∏

σ0∈�0

ei�tλXσ0

∏
σ1∈�1

ei�tZ (∂σ1 )

⎞⎠k

, (48)

T GT(t ) =
⎛⎝ ∏

σ ∗
2 ∈�∗

2

ei�tλX (∂∗σ ∗
2 )
∏

σ ∗
1 ∈�∗

1

ei�tZσ∗
1

⎞⎠k

, (49)

with t = k�t . We note that in the above for single vertices or
edges, we still use the notations, Xσ0 and Zσ ∗

1
.

D. Gauging and measuring symmetric wave functions

Now we define the (un)gauged wave function [73,88] as∣∣ψ (0)
ungauged

〉 = ∑
c0∈C0

C(c0)|c0〉, (50)

∣∣ψ (1)
gauged

〉 = ∑
c0∈C0

C(c0)|∂∗c0〉, (51)

where C(c0) is a complex coefficient, and ∂∗c0 represents the
Z2 sum of the bits between adjacent vertices connected by
the corresponding edge as illustrated in Fig. 6. |ψ (0)

ungauged〉 is
assumed to be a Z2 symmetric wave function, namely,∏

σ0∈�0

Xσ0

∣∣ψ (0)
ungauged

〉 = ∣∣ψ (0)
ungauged

〉
, (52)
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FIG. 6. (left) The ungauged basis |c0〉 is a tensor product of Z
basis vectors whose eigenvalues are coefficients in the expansion of
0-chain c0 with the 0-cell basis. A 0-chain is naturally identified with
a dual 2-chain. (right) The gauged basis |∂∗c0〉 is a tensor product
of bits living on edges, each of which is a sum of bits on vertices
surrounding it.

or equivalently

C(c0) = C

⎛⎝c0 +
∑

σ0∈�0

σ0

⎞⎠. (53)

Consider measurements in the X basis. We write the mea-
surement outcome at σ0 as s(σ0) ∈ {0, 1} to construct an
associated chain

s0 :=
∑

σ0∈�0

s(σ0)σ0. (54)

After measurements, we have a product state associated with
a set of measurement outcomes, |s̃0〉 (we remind readers that
the symbol̃ indicates the X basis). The Z2 symmetry implies

〈s̃0|
∏

σ0∈�0

Xσ0

∣∣ψ (0)
ungauged

〉 = ∏
σ0∈�0

(−1)s(σ0 )〈s̃0

∣∣ψ (0)
ungauged

〉
= 〈s̃0

∣∣ψ (0)
ungauged

〉
. (55)

Therefore, we obtain the constraint∏
σ0∈�0

(−1)s(σ0 ) = 1, (56)

meaning that the number of the nontrivial outcomes at 0-cells
σ0 with s(σ0) = 1 being even.

On the other hand, the gauged wave function lives on
1-cells, and the global symmetry is promoted to a local sym-
metry generated by the gauge transformation associated with
each dual vertex σ ∗

0 ∈ �∗
0:

Gσ ∗
0

∣∣ψ (1)
gauged

〉 = ∣∣ψ (1)
gauged

〉
, (57)

Gσ ∗
0

:= Z (∂σ ∗
0 ). (58)

The operator Z (∂σ ∗
0 ) is a “divergence operator” in Z2 electro-

magnetism because the product of Z is taken over dual edges
wrapping around a dual vertex. (Note the identification ∂σ ∗

0 =
∂σ2 with σ ∗

0 � σ2.) The gauge invariance is a consequence of
the homological structure: for each basis of the gauged wave
function in Eq. (51), we see that

Z (∂σ ∗
0 )|∂∗c0〉 Eq. (42)= (−1)#(∂σ ∗

0 ∩∂∗c0 )|∂∗c0〉
Eq. (33)= |∂∗c0〉. (59)

The symmetry above is a manifestation of the Gauss law
constraint without charges in the present case. The Hamil-
tonian of the gauge theory is indeed invariant under the
symmetry transformation: [HGT, Gσ ∗

0
] = 0.

E. Kramers-Wannier transformation of time evolution

We now move on to investigate the Kramers-Wannier
transformation of the unitary evolution and present our results
below.

1. Results

We use the Kramers-Wannier map introduced in Ref. [65],
which is given by

K̂W|ψ〉 = 〈s̃0|UKW |01〉 ⊗ |ψ〉, (60)

UKW =
∏

σ0∈�0
σ1∈�1

[
CXσ0σ1

]a(∂∗σ0;σ1 )
, (61)

where CXct is the controlled-X gate defined as

CXct = |0〉〈0|c ⊗ It + |1〉〈1|c ⊗ Xt , (62)

and |ψ〉 is a wave function defined on 0-cells. As indicated by
the power a(∂∗σ0; σ1), which is one when an edge and a vertex
are adjacent to each other and zero otherwise, the entangler
UKW consists of CX gates, each of which is controlled by a
vertex qubit and applies X on qubits on edges that surround
the vertex qubit, as illustrated in Fig. 7(b).

Since the number of nontrivial outcomes s(σ0) = 1 is even,
one can construct pairs of 0-cells with nontrivial outcomes and
connect them with a set of paths that consist of 1-cells. For a
general set of measurement outcomes s(σ0) ∈ {0, 1} and the
associated 0-chain s0, we define a 1-chain ρ1 as

ρ1 =
∑

σ1∈�1

a(ρ1; σ1)σ1 such that ∂ρ1 = s0, (63)

with a(ρ1; σ1) ∈ {0, 1}. Then the byproduct operator Obp for
this duality map is given by

Obp(ρ1) = Z (ρ1), (64)

which is illustrated in Fig. 8.
Now, our claim is summarized by the following expression:

Obp(ρ1)T GT(t )
∣∣ψ (1)

gauged

〉 = K̂WT TFI(t )
∣∣ψ (0)

ungauged

〉
. (65)

We refer the reader to Fig. 7 for a graphic illustration of the
procedure. Furthermore, we note that the equality holds up to
an unimportant normalization constant 2−|�0|/2.

By taking the limit �t → 0 with t = k�t fixed, we also
establish the following corollary:

Corollary.

Obp(ρ1)e−itHGT
∣∣ψ (1)

gauged

〉 = K̂We−itHTFI
∣∣ψ (0)

ungauged

〉
. (66)

The byproduct operator Obp(ρ1) is written with a sum of paths
whose endpoints are at 0-cells with nontrivial outcomes. It can
be removed in the following way: Since after the dualization
procedure we have the data of measurement outcomes, we can
construct a 1-chain τ1 whose endpoints are again at 0-cells
with nontrivial outcomes, ∂τ1 = s0, as illustrated in Fig. 8.
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FIG. 7. Graphic explanation of Eq. (65). (a) On vertices, we have the time-evolved wave function, T TFI(t )|ψ (0)
ungauged〉. We introduce the

ancillary product state |0〉 to the edges of the lattice. (b) We apply the entangler UKW which consists of the CX gates whose controlling qubits
are on vertices and target qubits are on edges. (c) We measure the vertex degrees of freedom with the X basis. (d) The byproduct operator Obp

is a product of Pauli Z operators supported on a set of paths ρ1, whose endpoints are at the vertices with sv = 1.

Then we apply the counter phase operator given by

Ocounter(τ1) = Z (τ1). (67)

The net effect of the byproduct operator will be

Ocounter(τ1)Obp(ρ1) = Z (τ1 + ρ1), (68)

which satisfies ∂ (τ1 + ρ1) = 0, i.e., it is a closed-loop Z oper-
ator; see Fig. 8. It is a product of the Gauss law operators

Z (τ1 + ρ1) =
∏

σ ∗
0 ∈R

G(σ ∗
0 ), (69)

with ∂R = τ1 + ρ1 (see Fig. 8), and thus the action of such an
operator on the physical Hilbert space is always trivial: Z (τ1 +
ρ1) = 1. We emphasize that, because of this mechanism, the
dualization is indeed deterministic.

2. Observation

We move on to investigate the Kramers-Wannier transfor-
mation of the unitary evolution. To be pedagogical, we first
provide some elementary calculations in a more transparent
notation, and later we switch to the notation with algebraic
topology to be more efficient.

First, for a pair of adjacent vertices u, u′ ∈ V , 〈u, u′〉 ∈ E ,
we have

〈{s̃v}|V
∏

CXv,eeiξZuZu′ |0〉⊗E
∣∣ψ (0)

ungauged

〉
V

=
⎛⎝ ∏

e∈string

Ze

⎞⎠ eiξZe
∣∣ψ (1)

gauged

〉
E , (70)

where 〈{s̃v}|V ≡ 〈s̃0| is the X eigenvectors on vertices with
eigenvalues sv = 0, 1, and we have suppressed an overall
normalization constant on the right-hand side of the equal-
ity. Since the number of the nontrivial outcomes sv = 1 is
even, one can construct a set of paths on edges, which
we call “string,” to pair up vertices with nontrivial out-
comes, see Fig. 8. Taking the inner product between 〈{s̃v}|V
and |ψ (0)

ungauded〉V , the basis |c0〉 ≡ |{av}〉V gives us a phase∏
v∈V (−1)svav . For a simple example, let us say we have

sw = 1, sw′ = 1 (w,w′ ∈ V ), and sv = 0 otherwise. The phase
is then (−1)aw (−1)aw′ . The same phase is obtained by act-
ing Z operators on edge degrees of freedom along the path

FIG. 8. An example of the byproduct operator Obp resulting of the randomness of measurements. The vertices v1 and v2 has nontrivial
measurement outcomes: s0 = v1 + v2. The Pauli Z operator is applied along the path ρ1 such that ∂ρ1 = s0, depicted with purple lines.
Magnetic monopoles are induced at these two vertices (dual plaquettes). We apply a counter phase operator Ocounter along the path τ1 (orange)
such that it ends at v1 and v2; ∂τ1 = s0. The resulting phase operator Obp × Ocounter is the product of Gσ∗

0
over dual vertices inside R.
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connecting w and w′, since⎛⎝ ∏
e∈string

Ze

⎞⎠|{av + av′ }〉E

=
⎛⎝ ∏

〈v,v′〉∈string

(−1)av+av′

⎞⎠|{av + av′ }〉E

= (−1)aw (−1)aw′ |{av + av′ }〉E , (71)
where |∂∗c0〉 ≡ |{av + av′ }〉E is the basis for the gauged wave
function.

As the next stepping stone, we consider the Kramers-
Wannier transformation of the other unitary evolution, which
is calculated as follows:

〈{s̃v}|V
∏

CXv,eeiξXu |0〉⊗E
∣∣ψ (0)

ungauged

〉
V

= eiξ (−1)su X (∂∗u)

×
∑

av=0,1

(∏
v∈V

(−1)svav

)
C({av})|{av + av′ }〉E

= eiξ (−1)su X (∂∗u)

×
⎛⎝ ∏

e∈string

Ze

⎞⎠ ∑
av=0,1

C({av})|{av + av′ }〉E

=
⎛⎝ ∏

e∈string

Ze

⎞⎠ eiξX (∂∗u)
∑

av=0,1

C({av})|{av + av′ }〉E

=
⎛⎝ ∏

e∈string

Ze

⎞⎠ eiξX (∂∗u)
∣∣ψ (1)

gauged

〉
E
, (72)

where C(c0) ≡ C({av}); see also Eq. (50). The short-hand
notation ∂∗u denotes the product over edges surrounding the
vertex u in the primary lattice. In other words,

∏
e∈nb(u) Xe =:

X (∂∗u). In the two-dimensional (2d) dual lattice picture, it
is a product over edges surrounding a plaquette. The second
equality follows from the argument given above. In the third
equality, we handled the extra sign in exp[iξ (−1)su X (∂∗u)]
(which is −1 only at the endpoints u of strings, which have
su = 1) using the commutation relation with

∏
e∈string Ze. The

operators X (∂∗u) and
∏

e∈string Ze anticommute only at the
endpoints of the strings, and that is precisely where the extra
sign appears.

3. Demonstration

Now we switch to the notation with algebraic topology
and provide the full proof of our statement. Consider the state
before the measurements,

UKW |01〉 ⊗ T TFI(t )
∣∣ψ (0)

ungauge

〉
=
∏

σ0∈�0
σ1∈�1

[CXσ0σ1 ]a(∂∗σ0;σ1 )

⎛⎝ ∏
σ0∈�0

ei�tλXσ0

∏
σ1∈�1

ei�tZ (∂σ1 )

⎞⎠k

×
⎛⎝∑

c0∈C0

C(c0)|c0, 01〉
⎞⎠. (73)

By propagating the controlled-X operators, we have X oper-
ators in the exponent conjugated as X (σ0) �→ X (σ0)X (∂∗σ0)
due to the commutation relation between the controlled-X and
X gates,

and the basis is mapped as |c0, 01〉 �→ |c0, ∂
∗c0〉:

We also note that as the controls are on �0, the Z operators
remain the same under the controlled-X operators: Z (σ0) �→
Z (σ0). Thus, we find the premeasurement wave function is
equal to

|ψpre〉 =
⎛⎝ ∏

σ0∈�0

ei�tλXσ0 X (∂∗σ0 )
∏

σ1∈�1

ei�tZ (∂σ1 )

⎞⎠k

×
∑

c0∈C0

C(c0)|c0, ∂
∗c0〉. (74)

The term in the first exponent Xσ0 X (∂∗σ0) can also be ex-
pressed as X (σ0 + ∂∗σ0). Note that the last (i.e., rightmost)
Trotter unitary term ei�tZ (∂σ1 ) can be written as ei�tZσ1 because

|∂∗c0〉 ⊗ Z (∂σ1)|c0〉 = Z (σ1)|∂∗c0〉 ⊗ |c0〉, (75)

or graphically:

The phase from the Z operator is (−1)#(∂σ1∩c0 ) on the left-hand
side and (−1)#(σ1∩∂∗c0 ) on the right-hand side [due to Eq. (42)],
and they are equal due to the duality in Eq. (33).

Second, the second to last unitary eiλ�tXσ0 X (∂∗σ0 ) can be
expanded in powers of Xσ0 X (∂∗σ0), giving a product of
cos(�tλ) + i sin(�tλ)Xσ0 X (∂∗σ0). Crucially, the action of
this operator on the basis preserves the structure with which
the phase of Z (∂σ1) is equal to that of Zσ1 . For example,

Indeed, this replacement can be done for all the phase op-
erators in the Trotter unitary; see Appendix B. Thus the
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premeasurement state is equal to

|ψpre〉 =
⎛⎝ ∏

σ1∈�1

ei�tλXσ0 X (∂∗σ0 )
∏

σ1∈�1

ei�tZσ1

⎞⎠k

×
∑

c0∈C0

C(c0)|c0, ∂
∗c0〉. (76)

Now, we consider the postmeasurement wave function. We
take the inner product between 〈s̃0| and |ψpre〉. The effect is (1)
the operator Xσ0 collapses to its eigenvalue (−1)s(σ0 ), and (2)
the inner product gives a phase, 〈s̃0|c0〉 = 2−|�0|/2(−1)#(s0∩c0 )

due to Eq. (45). Note that the 0-cell s0 that represents the
measurement outcomes was previously defined in Eq. (54).
Therefore,

|ψpost〉 =
⎛⎝ ∏

σ0∈�0

ei�tλ(−1)s(σ0 )X (∂∗σ0 )
∏

σ1∈�1

ei�tZσ1

⎞⎠k

× 2−|�0|/2
∑

c0

C(c0)(−1)#(s0∩c0 )|∂∗c0〉. (77)

To deal with the signs originating from the measurement
outcome, we first note the following relation:

Obp(ρ1)|∂∗c0〉 Eq. (42)= (−1)#(ρ1∩∂∗c0 )|∂∗c0〉
Eq. (33)= (−1)#(∂ρ1∩c0 )|∂∗c0〉
= (−1)#(s0∩c0 )|∂∗c0〉. (78)

Let us give a simple example to be more concrete. If we
have nontrivial outcomes at vertices 1 and 3 [i.e., s(σ0) =
1 at σ0 = v1, v3] the phase can be written as (−1)#(s∩c0 ) =
(−1)a1 (−1)a3 . Graphically, it can be rewritten with Z oper-
ators supported on ρ1 with ∂ρ1 = v1 + v3:

Different choices of ρ1 give the same phase.
The inner product is thus equal to

|ψpost〉 =
⎛⎝ ∏

σ0∈�0

ei�tλ(−1)s(σ0 )X (∂∗σ0 )
∏

σ1∈�1

ei�tZσ1

⎞⎠k

× 2−|�0|/2Obp(ρ1)
∑

c0∈C0

C(c0)|∂∗c0〉. (79)

The sum is now equal to |ψ (1)
gauged〉. We use the relation

(−1)s(σ0 )X (∂∗σ0)Obp(ρ1) = Obp(ρ1)X (∂∗σ0), (80)

to move the byproduct operator to the left, canceling the un-
wanted signs (−1)s(σ0 ). Again, this relation is due to Eq. (44)
and the duality #(∂∗σ0 ∩ ρ1) = #(σ0 ∩ ∂ρ1) = #(σ0 ∩ s0) =
s(σ0) given in Eq. (33).

Finally, we formally dualize the lattice. The operator
X (∂∗σ0) defined in the primal lattice is equal to X (∂∗σ ∗

2 ) in
the dual lattice. Also, Zσ1 in the primal lattice is equal to Zσ ∗

1

in the dual lattice. (The edges along a path ρ1 are also now
interpreted as edges in the dual lattice.) Hence we obtain

|ψpost〉 = 2−|�0|/2Obp(ρ1)T GT(t )
∣∣ψ (1)

gauged

〉
, (81)

which completes the demonstration.

F. Effect of noise

Let us briefly analyze the effect of the noise. To focus on
the effect of the noise before the dualization, here we treat the
entangler and the measurements as noise-free. Note that the
dualization operation is constant-depth so that the “volume”
of such quantum operation is typically much smaller than that
of the time evolution before the dualization. In other words,
the errors will be dominated by the time evolution rather than
the dualization operation itself.

We write a generic wave function right before the dualiza-
tion as

|ψpre-KW〉 =
∑

c0∈C0

D(c0)|c0〉, (82)

with a complex coefficient D(c0). Due to noise, we no longer
assume that it is Z2 symmetric. It implies that the number
of nontrivial measurement outcomes s(σ0) = 1 may be even
or odd; in the latter case we cannot find a pair of paths and
thus the correction fails. When it is even, however, we still
can construct a sum of paths τ1. After the dualization and
correction, we have

|ψpost-KW〉 = Z (τ1 + ρ1)
∑

c0∈C0

D(c0)|∂∗c0〉. (83)

It is indeed gauge symmetric:

Gσ ∗
0
|ψpost-KW〉
= Z (τ1 + ρ1)

∑
c0∈C0

D(c0)Z (∂σ ∗
0 )|∂∗c0〉

Eq. (42)= Z (τ1 + ρ1)
∑

c0∈C0

D(c0)(−1)#(∂σ ∗
0 ∩∂∗c0 )|∂∗c0〉

Eq. (33)= |ψpost-KW〉. (84)

We also remark that Z (τ1 + ρ1) = 1 holds since

Z (τ1 + ρ1)|∂∗c0〉 Eq. (42)= (−1)#(τ1+ρ1∩∂∗c0 )|∂∗c0〉
Eq. (33)= (−1)#(∂ (τ1+ρ1 )∩c0 )|∂∗c0〉
= |∂∗c0〉. (85)

If we observe that, if the number of nontrivial measurement
outcomes of s(σ0) = 1 is odd, then there is an isolated mag-
netic monopole (see also the next section) which we would
fail to pair up with the counter operator. Despite this, the
postmeasurement wave function is still invariant under Gσ ∗

0
,
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if we assume the dualization does not induce any error. (With
strong unbiased noises, this would occur with probability
1/2.) We know by measurement outcomes that errors have
occurred and can drop the result and repeat the procedure
until we observe the number of s(σ0) = 1 being even. There
is some error detection capability in our scheme, but it is
not fault-tolerant, however. Then, when the correction suc-
ceeds, the gauge symmetry is guaranteed for the resulting
wave function by the structure of Kramers-Wannier entanglers
represented by |∂∗c0〉, as elucidated in Eq. (84); the “fidelity”
of gauge symmetry is unaffected by the form of time evolution
or noises represented by D(c0).

We also note that the number of quantum gates and de-
grees of freedom involved in the quantum simulation of the
transverse-field Ising model is smaller than those in the gauge
theory; the number of edges is roughly twice as large as the
number of vertices on the square lattice, and the gauge theory
involves a four-body interaction term. It is thus likely that
we obtain a time evolution with a higher fidelity through the
dualization than directly simulating the gauge theory itself.
Related to this point, we remark that a direct simulation of
the gauge theory on quantum devices typically involves con-
tributions that violate the Gauss law constraint, whose amount
would be proportional to the space-time volume of the simula-
tion. One can perform a syndrome measurement for the Gauss
law constraint to perform error correction, just as we do for
the star operators in the TORIC code [30]. In our dualization,
on the other hand, as long as the Kramers-Wannier operation
is error-free and the protocol succeeds (i.e., when the number
of vertices with sv = 1 is even), the Gauss law constraint is
satisfied. Of course, the complete error-free assumption is not
realistic, but we emphasize that the Kramers-Wannier operator
is constant depth.

G. Meaning of byproduct operators

The byproduct operator Obp(ρ1) is supported on paths ρ

connecting two dual plaquettes (primal vertices). Physically
interpreted, it is a set of Dirac strings which possess a mag-
netic flux. In the picture of the transverse-field Ising model,
a monopole is generated by Pauli Z at primal vertices (see
Ref. [12], for example), and in our language, it arises from the
|1̃〉 = Z|0̃〉 outcome of the Kramers-Wannier measurements.

Consider a string ρ
(i)
1 (i = 1, 2) where ρ

(i)
1 ends at σ0 =

v1 and σ0 = v2 individually. The wave function after the
measurements is the same whether we regard the byproduct
operator as Z (ρ (1)

1 ) or Z (ρ (2)
1 ). We apply the counter phase op-

erator Z (τ1). Now one can imagine a situation where ρ
(2)
1 + τ1

is contractible on a torus, but ρ
(1)
1 + τ1 is not as depicted

in Fig. 9. Since both scenarios should give the same phys-
ical wave function, it follows that Z (ρ (1)

1 + τ1) = Z (ρ (2)
1 +

τ1) = 1. Therefore the phase operator supported on a noncon-
tractible loop has to be trivial.

On the other hand, the Z operator on a noncontractible loop
around, say, a torus is called a ’t Hooft loop [89], which is
one of the nontrivial gauge-invariant operators in the Z2 gauge
theory [12]. As noted in Refs. [72,90], the Z2 symmetric spin
models are dual to the Z2 gauge theory with an additional
topological constraint, which is a restriction of values of loop
operators on noncontractible cycles, and thus the dualization

FIG. 9. The byproduct operator Z (ρ (i)
1 ) (i = 1, 2) and the counter

operator Z (τ1) on a torus.

of the transverse-field Ising model leads to a subsector of
the full Z2 gauge theory on a nontrivial manifold. This is in
harmony with the trivialness of the loop operators that arise
from measurement-based dualization.

III. GENERALIZATION TO OTHER PURE
GAUGE THEORIES

In this section, we first consider obtaining the quantum
simulation in the (2 + 1)-dimensional double-semion order
[73] by dualizing a time evolution in the Levin-Gu Z2 SPT
order. Then, we discuss the generalization to broader Abelian
groups, taking the ZN gauge theory as an example.

A. Twisted gauge theory from twisted
transverse-field Ising model

Throughout this section, we use v ∈ V , e ∈ E , etc. to
denote cells for convenience. Consider the following Hamilto-
nian defined on vertices on a triangular lattice, which we call
the twisted transverse-field Ising model (tTFI) (see Fig. 10):

HtTFI = −
∑
v∈V

Ov − g
∑

〈u,u′〉∈E

ZuZu′ , (86)

with

Ov = Xv

∏
〈vuu′〉

e
π i
4 (1−ZuZu′ ), (87)

where 〈vuu′〉 is a triangle that consists of v, u, and u′, 〈u, u′〉
is an edge connecting vertices u and u′. In this section, we
use the notation of vertices, edges, and plaquettes, instead of
cells. This Hamiltonian is symmetric under the Z2 symme-
try generated by

∏
v∈V Xv . When g = 0, the ground state is

described by the Levin-Gu SPT state [73].2 Our model is a Z2-
symmetric deformation of the Levin-Gu SPT Hamiltonian.
The first-order Trotter decomposition of the time evolution is

TtTFI(t ) =
⎛⎝∏

v∈V

ei�tOv

∏
〈u,u′〉∈E

ei�tgZuZu′

⎞⎠k

. (88)

As before, we consider the ungauged wave function
|ψungauged〉 and assume it is Z2 symmetric. One can, for ex-
ample, load the Levin-Gu SPT state as |ψungauged〉. It can

2Note that we have chosen an opposite sign in the Hamiltonian
since X = +1 corresponds to the ground state when g = 0 and if
we remove the twist factor.
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FIG. 10. (a) The Ov term in the Hamiltonian (86). (b) The first term (plaquette term) in the twisted gauge theory Hamiltonian (89). (c) The
Gauss law operator in the twisted gauge theory.

be prepared with a finite depth circuit, i.e., Hadamard, Z ,
controlled-Z , and controlled-controlled-Z gates [85].

For the dualized model, consider a deformed version of the
double-semion model (a twisted gauge theory) [73], whose
Hamiltonian is given by (see Fig. 10)

HtGT = −
∑
v∈V

Õv − g
∑
e∈E

Ze, (89)

with

Õv =
∏
e⊃v

Xe

∏
〈vuu′〉

e
π i
4 (1−Z〈u,u′ 〉 ). (90)

When g = 0, it is one of the stabilizers of the double-semion
model. The Ze term is the electric term, and the other term is
the (twisted) magnetic (plaquette) term. It is symmetric under
the gauge transformations generated by (see Fig. 10)

G� =
∏
e∈�

Ze, (91)

where � denotes a triangle in the primal lattice. In the dual
lattice picture, this is a divergence operator associated with
a dual vertex. The gauged wave function |ψgauged〉 is also
symmetric under this gauge transformation. When the un-
gauged wave function |ψungauged〉 is the Levin-Gu SPT state
|ψLevin-Gu〉, then the gauged wave function |ψgauged〉E is the
ground state of the double-semion model |ψDS〉 [65]:

Õv|ψDS〉 = |ψDS〉 for all v ∈ V, (92)

G�|ψDS〉 = |ψDS〉 for all �. (93)

The transformation with the Kramers-Wannier map
straightforwardly generalizes to this model between the time
evolution of symmetric |ψungauged〉 under HtTFI and that of
|ψgauged〉 under HtGT:

Obp(ρ1)T tGT(t )|ψgauged〉 = K̂WT tTFI(t )|ψungauged〉. (94)

We give a detailed proof in Appendix B.

B. ZN gauge theory from ZN transverse-field clock model

Here we show that the Kramers-Wannier-based gauging
extends to the cyclic group ZN = {0, 1, . . . , N − 1 mod N}. In

this section, the Pauli operators are generalized to the qudit
version of them. The bases are generalized as follows:

Z|s〉 = ωs|s〉, X |s̃〉 = ωs|s̃〉, (95)

with ω = e2π i/N and s ∈ {0, 1, . . . , N − 1 mod N}. The qudit
Pauli operators are written using the generalized computa-
tional basis as

Z =
∑

a=0,..,N−1

ωa|a〉〈a|, X =
∑

a=0,..,N−1

|a + 1〉〈a|. (96)

They satisfy the commutation relation ZX = ωXZ . The X
basis is expressed explicitly as

|s̃〉 = 1√
N

∑
a=0,..,N−1

ω−as|a〉. (97)

The controlled-X gate and the controlled-X −1 gate are defined
as

CXc,t =
∑

a,b=0,...,N−1

|a〉〈a|c ⊗ |b + a〉〈b|t , (98)

CX −1
c,t =

∑
a,b=0,...,N−1

|a〉〈a|c ⊗ |b − a〉〈b|t , (99)

which satisfies

(CXc,t )
ε1 X ε2

c = X ε2
c X ε1ε2

t (CXc,t )
ε1 , (ε1, ε2 = ±1). (100)

We discuss the time-evolved duality between the two fol-
lowing theories. (1) The ZN clock model will be defined
on the primal lattice and (2) the ZN gauge theory will be
defined on the edges in the dual lattice. For ZN , we generalize
the i-chains to have ZN coefficients, a(ci; σi ) ∈ {0, . . . , N −
1 mod N}.

We generalize the boundary operator in the following way:
Consider a dual plaquette surrounded by four dual edges
σ

∗(i)
1 (i = 1, 2, 3, 4) with coordinates σ

∗(1)
1 = {�x̂|0 � � �

1}, σ
∗(2)
1 = {x̂ + �ŷ|0 � � � 1}, σ

∗(3)
1 = {�x̂ + ŷ|0 � � � 1},

σ
∗(4)
1 = {�ŷ|0 � � � 1}. [We omitted the shift of the dual

lattice by 1
2 (x̂ + ŷ) for simplicity.] We set the basis so that

each dual edge is oriented either towards +x̂ or +ŷ directions.
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(a) (b) (c) (d)

FIG. 11. (a) The action of the entangler in the computational basis. The symbol au is a ZN integer. (b) The pattern of the entangler. The
controlled-X gate acts as [CXσ0,σ1 ]a(∂∗σ0;σ1 ), where a(∂∗σ0; σ1) = a(∂∗σ ∗

2 ; σ ∗
1 ) = ±1 (or 0) is determined according to the orientation of dual

edges relative to the boundary of the dual plaquette, as explained in Eq. (101). The basis |c0, 01〉 is mapped to |c0, ∂
∗c0〉 as before. (c) The

entangler transforms the Xσ0 term in the clock model to the product of the five Pauli X s in the figure. The blue square is the plaquette term in
the gauge theory, i.e., X (∂∗σ ∗

2 ). (d) The Gauss’s law operator in the gauge theory, Z (∂σ2) = Z (∂σ ∗
0 ). This is a symmetry in the image of the

Kramers-Wannier map K̂W
ZN : Z (∂σ2)|∂∗c0〉 = ω#(∂σ2∩∂∗c0 )|∂∗c0〉 = |∂∗c0〉.

Then the boundary of the dual plaquette is expressed as

∂∗σ ∗
2 = σ

∗(1)
1 + σ

∗(2)
1 − σ

∗(3)
1 − σ

∗(4)
1 , (101)

i.e., a(∂∗σ ∗
2 ; σ ∗(1)

1 ) = 1, a(∂∗σ ∗
2 ; σ ∗(2)

1 ) = 1, a(∂∗σ ∗
2 ; σ ∗(3)

1 ) =
−1 = N − 1, a(∂∗σ ∗

2 ; σ ∗(4)
1 ) = −1 = N − 1.

On the other hand, the boundary of the primal 1-cell is
defined as follows: Consider primal edges with coordinates
σ

(x)
1 = {(1 − �)x̂|0 � � � 1} and σ

(y)
1 = {�ŷ|0 � � � 1}. The

edges on the primal lattice are taken so that they are oriented
toward the −x̂ or +ŷ directions (i.e., edges on the primal
lattice and those on the dual lattice are identified by local +90
degrees rotation). The boundary of these edges is defined as

∂σ
(x)
1 = {�0} − {x̂}, (102)

∂σ
(y)
1 = {ŷ} − {�0}, (103)

where the points on the right-hand side indicate 0-cells. With
this set of definitions, it follows that

#(c1 ∩ ∂∗c∗
2 ) = #(∂c1 ∩ c∗

2 ) mod N. (104)

We present the Hamiltonian of the clock model, a ZN

version of the transverse-field Ising model, and the ZN gauge
theory (GT). The ZN clock model is given by

HZN
clock = −

∑
σ1∈�1

[Z (∂σ1) + H.c.] − λ
∑

σ0∈�0

(Xσ0 + H.c.),

(105)

which is defined on the vertices on the primal lattice. This
Hamiltonian is invariant under a global symmetry generated
by
∏

σ0∈�0
Xσ0 . We assume that the initial ungauged wave

function |ψ (1)
ungauged〉 is also symmetric under this global sym-

metry. The same argument we gave for the case with Z2 tells
us that the set of measurement outcomes in the X basis |s̃0〉 is
constrained because

∏
σ0∈�0

ωs(σ0 ) = 1. Hence we have∑
σ0∈�0

s(σ0) = 0 mod N. (106)

Then the ZN gauge theory is defined with the Hamiltonian

HZN
GT = −

∑
σ ∗

1 ∈�∗
1

(Zσ ∗
1

+ H.c.) − λ
∑

σ ∗
2 ∈�∗

2

[X (∂∗σ ∗
2 ) + H.c.].

(107)

See Figs. 11(c) and 11(d) for the illustration of the plaquette
term and the Gauss law divergence operator, respectively. The
first-order Trotter decompositions of the respective models are
given by

TZN clock(t )

=
⎛⎝ ∏

σ1∈�1

ei�t (Z (∂σ1 )+H.c.)
∏

σ0∈�0

eiλ�t (Xσ0 +H.c.)

⎞⎠k

, (108)

TZN GT(t )

=
⎛⎝ ∏

σ ∗
1 ∈�∗

1

ei�t (Zσ∗
1
+H.c.)

∏
σ ∗

2 ∈�∗
2

eiλ�t (X (∂∗σ ∗
2 )+H.c.)

⎞⎠k

. (109)

The Kramers-Wannier map is implemented as follows: We
prepare the ancillary degrees of freedom on edges |01〉. The
entangler is

UZN =
∏

σ0∈�0
σ1∈�1

[
CXσ0,σ1

]a(∂∗σ0;σ1 )
, (110)

where σ0 � σ ∗
2 and σ1 � σ ∗

1 ; see Figs. 11(a) and 11(b). The
exponent a(∂∗σ0; σ1) ∈ {0,+1,−1} is used to specify the ori-
entation of the edges relative to a vertex and thus whether
CX , its inverse, or the identity gate is applied. The Kramers-
Wannier map for the ZN is given by

K̂W
ZN = 〈s̃0|UZN |01〉. (111)

Our result is as follows:

OZN
bp (ρ1)TZN GT(t )|ψgauged〉
= K̂W

ZN TZN clock(t )|ψungauged〉. (112)

The ungauged and gauged wave function is defined
by the same formal expression as Eqs. (50) and (51),
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with the bases in Eqs. (38) and (39), where the coeffi-
cient a(ci; σi ) ∈ {0, 1 mod 2} is now replaced by a(ci; σi ) ∈
{0, . . . , N − 1 mod N}. The byproduct operator takes the form

OZN
bp (ρ1) =

∏
σ1∈�1

Z (σ1)a(ρ1;σ1 ) = Z (ρ1), (113)

with ρ1 =∑σ1∈�1
a(ρ1; σ1)σ1 such that ∂ρ1 =∑

σ0∈�0
s(σ0)σ0. Constructing ρ1 as well as finding τ1 is

always possible since
∑

σ0∈�0
s(σ0) = 0 mod N .

The dualization can be shown in the same way as in the
case with Z2. We note that the effect of the entangler on the
ungauged basis is formally the same as in Z2, i.e., |c0, 01〉 �→
|c0, ∂

∗c0〉. We have expressions for ZN as in Eqs. (42), (44),
(45), and (33) with −1 replaced by ω and 2 by N . Thus the
process of rewriting equations is exactly the same throughout
the proof except that there are H.c. terms and changing factors
associated with Z2 to those in ZN .

One can understand the correction of the phase factors in
the case with ZN in the following way: Suppose we found
ns vertices with s(σ0) �= 0. For two such vertices among
them, say σ

(1)
0 and σ

(2)
0 , one can find an oriented path

γ (1,2) connecting these two: ∂γ (1,2) = σ
(1)
0 − σ

(2)
0 . Applying∏

σ1∈γ (1,2) Z (σ1)−s(σ (1)
0 ) cancels the phase factor associated with

the vertex σ
(1)
0 , leaving a phase factor ωa(c0;σ (2)

0 )[s(σ (2)
0 )+s(σ (1)

0 )] at
the vertex σ

(2)
0 . This procedure reduces the number of vertices

with s(σ0) �= 0 as ns → ns − 1 [or ns → ns − 2 if the two
precisely cancel each other, i.e., s(σ (1)

0 ) + s(σ (2)
0 ) = 0 mod

N]. Repeating it, we eventually arrive at the corrected wave
function with ns = 0. (Given that Z operators commute, one
can perform all the necessary corrections in one single step.)
In the language of topological order, the phase factors shall be
regarded as Abelian anyons in the ZN TORIC code [30], and
the reducing the number of nontrivial phases can be seen as
the annihilation of anyons using ribbon operators.

IV. GENERALIZATION TO MATTER MODELS
COVARIANTLY COUPLED TO GAUGE FIELDS

A. (1 + 1)d Ising matter coupled to topological gauge fields

Consider the following Hamiltonian with transverse and
longitudinal terms defined on the vertices in the one-
dimensional primal lattice:

HTL-Ising = −
∑

σ1∈�1

Z (∂σ1) − g
∑

σ0∈�0

Xσ0

− h
∑

σ0∈�0

Zσ0 . (114)

The standard Kramers-Wannier transformation
{Z (∂σ1), Xσ0} �→ {Zσ ∗

0
, X (∂∗σ ∗

1 )} is not well defined for
this Hamiltonian due to the last term. We can, however,
generalize the duality by introducing a topological gauge field
on the edges in the dual lattice, �∗

1, and imposing the Gauss
law constraint on the degrees of freedom in the dual lattice;
see, e.g., Ref. [72]. Namely, the alternative Kramers-Wannier

transformation is given by

Xσ0 �→ Xσ ∗
1
X (∂∗σ ∗

1 ), (115)

Zσ0 �→ Zσ ∗
1
, (116)

and the Gauss law constraint is given by

Gσ ∗
0

:= Zσ ∗
0
Z (∂σ ∗

0 ) = 1. (117)

The other transformation Z (∂σ1) �→ Zσ ∗
0

is obtained by substi-
tuting the second line of the transformation to the Gauss law
constraint. The resulting theory is given by the Hamiltonian
describing a gauge-matter theory:

HGM = −
∑

σ ∗
0 ∈�∗

0

Zσ ∗
0

− g
∑

σ ∗
1 ∈�∗

1

Xσ ∗
1
X (∂∗σ ∗

1 ) − h
∑

σ ∗
1 ∈�∗

1

Zσ ∗
1
.

(118)

The Hamiltonian is invariant under the gauge transformation,
[HGM, Gσ ∗

0
] = 0. The first term is an ordinary matter term.

The second term is a matter kinetic term covariantly coupled
to the gauge field. The last term can be seen as an electric term
in the gauge sector. In this section, we show that such alterna-
tive Kramers-Wannier transformation for time evolution can
be realized by entanglers and measurements, and we denote it
by KWGM . This is a generalization of measurement-assisted
gauging in the literature [65].

To distinguish the undualized and dualized degrees of free-
dom, we write the degrees of freedom on primal 0-cells with
the double bracket | 〉〉. As before, we use the following bases
for the wave functions:

|c0〉〉 :=
⊗

σ0∈�0

|a(c0; σ0)〉〉(Z )
σ0

, (119)

|c̃0〉〉 :=
⊗

σ0∈�0

|a(c0; σ0)〉〉(X )
σ0

, (120)

and

|c0〉 :=
⊗

σ0∈�0

|a(c0; σ0)〉(Z )
σ0

, (121)

|c1〉 :=
⊗
σ1∈�1

|a(c1; σ1)〉(Z )
σ1

. (122)

First, consider the time evolution with HTL-Ising, whose
Trotterization is written as T TL-Ising(t ). We take the initial state
as any state defined on the vertices:∣∣ψ (0)

ungauged

〉〉 = ∑
c0∈C0

C(c0)|c0〉〉. (123)

In particular, we do not impose a Z2 symmetry for this wave
function.

We load a gauged state on edges and vertices on the dual
lattice. We emphasize that an edge in the dual lattice is iden-
tical to a vertex in the primal lattice, but we treat them as
separate degrees of freedom. We initiate the wave function
as

|0〉⊗|�0||0〉⊗|�1| = |00, 01〉. (124)

Note that this state satisfies the Gauss law constrained gener-
ated by (117).
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FIG. 12. The procedure of obtaining the time evolution with the gauged Ising (left), Majorana fermion (right) model. (a) The ungauged
wave function placed on vertices (black dots) is evolved under the Hamiltonian of the transverse and longitudinal Ising model. Separate degrees
of freedom are prepared on the dual chain as a product state. On the left, to obtain the gauged Ising model, the product state is placed on both
dual vertices (v∗: blue circle) and dual edges (e∗: blue square). On the right, to obtain the gauged Majorana fermion model (Z2 QED), the
fermionic vacuum state is placed on dual vertices (v∗: orange circles) while the bosonic product state is placed on dual edges (e∗: blue squares).
(b) We apply the entanglers. For the gauged Ising model, we apply CX gates, according to the arrows that point from controlling qubits to
target qubits. For the Z2 QED, we apply CX and CS gates, where the edges are oriented to the right as a convention. (c) We measure the
original degrees of freedom (black dots), resulting in a time-evolved gauged wave function on the dual chain (blue and orange dots) up to
byproduct operators. Circles are the matter field while squares represent the gauge field.

We consider an entangler

UGM =
∏

σ0∈�0

⎛⎜⎜⎝ CXσ0,σ0︸ ︷︷ ︸
c: undualized
t : dualized

∏
σ1∈�1

[
CXσ0,σ1

]a(∂∗σ0;σ1 )

⎞⎟⎟⎠, (125)

where the first CX gate is controlled by the undualized qubits
(also labeled as c) and applies X on the dualized degrees
of freedom (also labeled as t ; note that both c and t are on
the same 0-cell σ0); see Fig. 12. The generalized Kramers-
Wannier map is now defined as

K̂W
GM = 〈〈s̃0|UGM |00, 01〉. (126)

We denote the Trotterized time evolution with the Hamilto-
nian HGM by T GM(t ).

We show that the time evolution of the gauged Ising model
can be obtained by the Kramers-Wannier map KWGM; see
Fig. 12:

OGM
bp (s0)T GM(t )

∣∣ψ (0,1)
gauged

〉 = K̂W
GM

T TL-Ising(t )
∣∣ψ (0)

ungauged

〉〉
.

(127)

Here the gauged wave function is∣∣ψ (0,1)
gauged

〉 = ∑
c0∈C0

C(c0)|c0, ∂
∗c0〉, (128)

and it satisfies the Gauss law constraint.

The byproduct operator for this dualization is given by

OGM
bp (s0) =

∏
σ0∈�0

Z (σ0)s(σ0 ). (129)

Here, the exponent s(σ0) is associated with the undualized
degrees of freedom, but the operator Z (σ0) acts on the dual
degrees of freedom. We emphasize that it is no longer a string
operator; rather, it acts on the 0-chain s0 defined in Eq. (54)—
the sum of 0-cells that correspond to s(σ0) = 1. Correction
can be done directly by applying OGM

bp . We present the proof in
Appendix C 2. It turns out this is a generic feature in the gauge
theories coupled to matter fields, as we see in other examples.

B. (1 + 1)d Z2 QED with spinless fermion

In this section, we discuss a Jordan-Wigner transformation
of time evolution. It is an alternative Jordan-Wigner trans-
formation that leads to a gauged Majorana fermion model,
analogous to the case discussed for the Ising model covari-
antly coupled to gauge fields; see Ref. [72]. We also refer to
Ref. [77] for the study of the phase diagram of the gauged
Majorana fermion model.

Let (χv∗ , χ ′
v∗ ) (v∗ ∈ �∗

0) be a pair of Majorana fermion
operators per (dual) site. They are related to the fermion
operators cv∗ and c†

v∗ as c = (χ + iχ ′)/2, c† = (χ − iχ ′)/2.
They satisfy {c†

u, cv} = δu,v , {χu, χv} = 2δu,v , {χu, χ
′
v} = 0.
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We write ∂∗e∗ = v∗
+ − v∗

−. We define the following two
bosonic fermion-bilinear operators:

Se∗ = −iχ ′
v∗−

χv∗+ , (130)

Pv∗ = iχ ′
v∗χv∗ = 1 − 2c†

v∗cv∗ . (131)

The operator Pv∗ is a fermion number operator at site v∗
and its eigenvector can be written as |p〉v∗ = (c†

v∗ )p|0〉v∗ with
its eigenvalue (−1)p for p ∈ {0, 1}. We note that locally
(P, χ, χ ′) forms the same algebraic relation as (Z, X,Y ). Thus
the fermionic basis can also be written as |p〉v∗ = (χv∗ )p|0〉v∗ .

As before, the alternative Jordan-Wigner transformation is
given by [72]

Xv �→ SvXv = Se∗Xe∗ for v = 1, . . . , N − 1, (132)

XN �→ qSN XN = q Se∗
N
Xe∗

N
, q ∈ {+1,−1}, (133)

Zv �→ Zv = Ze∗ , (134)

with the associated Gauss law constraint being

Gv∗ = Ze∗Pv∗Ze′∗ = 1 (e∗, e′∗ ⊃ v∗). (135)

Every operator on the right-hand side of the map commutes
with the operator Gv∗ ; note that whenever Se∗Xe∗ and Gv∗ have
an overlap, Xe∗ and Ze∗ anticommute, but Se∗ and Pv∗ also
anticommute.

As noted in Ref. [72], the choice of the parameter q is
important for consistency on a periodic chain. Namely, for the
parity-even sector, we have to use the antiperiodic boundary
condition for the fermion (q = −1), when the original spin
theory is periodic. Essentially, this is because if we transport
a fermion over the circle by multiplying Sv∗ , we should get
a −1 sign by commuting with an odd number of fermions.
On the other hand, for the parity odd sector we have to use
the periodic boundary condition for the fermion (q = +1).
A similar result was also obtained for the ordinary Jordan-
Wigner transformation of the XY chain in Ref. [91].

Under this set of maps, the Ising interaction is mapped via
ZvZu �→ Pv∗ , where v∗ = 〈u, v〉. The Hamiltonian (114),

HTL-Ising = −
∑

〈v,v′〉∈E

ZvZv′ − g
∑
v∈V

Xv − h
∑
v∈V

Zv, (136)

is thus mapped to a Majorana fermion model covariantly
coupled to gauge fields (QED):

HQED = −
∑

v∗∈V ∗
Pv∗ − g

∑
e∗∈E∗

Xe∗Se∗ (−1)δe∗,N − h
∑

e∗∈E∗
Ze∗ .

(137)

We denote the Trotterized time evolution of respective models
as T TL-Ising(t ) and T QED(t ).

Our setup for the Jordan-Wigner transformation that will
be applied to the state after time evolution T TL-Ising(t ) is as
follows: The ungauged wave function is defined in the same
way as (123). We initialize the ancillary state as |0〉⊗E∗ |0〉⊗V ∗

.
This state trivially satisfies the Gauss law constraint. We con-
sider the entangler defined by

U JW =
∏
v∈V

CSv,e∗CXv,e∗ , (138)

where CX is the usual controlled-X operator and CSv,e∗ is a
controlled-hopping operator given by

CSv,e∗ = |0〉v〈0| ⊗ Iv∗,u∗ + |1〉v〈1| ⊗ Se∗ (−1)δe∗ ,N . (139)

The Jordan-Wigner map is thus defined as

ĴW = 〈{s̃v}|V U JW|0〉⊗E∗ |0〉⊗V ∗
, (140)

and we claim that

OQED
bp (s0)T QED(t )|ψgauged〉E∗∪V ∗

= ĴWT TL-Ising(t )|ψungauged〉V . (141)

Here, OQED
bp (s0) takes the same form as OGM

bp (s0).
A brief demonstration of this duality is as follows: The

transformation Zv �→ Ze∗ in the exponent of T TL-Ising(t ) is an
immediate consequence of the CXv,e∗ in the entangler, which

is exactly the same as in K̂W
GM

. The transverse-field term is
conjugated by the entangler as Xv �→ XvXe∗Se∗ (up to a sign at
v = N). Each term in the expansion of the exponential com-
mutes with the Gauss law generator Gv∗ . We note that, for any
basis that satisfies the Gauss law constraint, the duality map
ZvZv′ �→ Pv∗ holds. Therefore, the first term and the third term
in the Hamiltonian (114) are correctly transformed to the cor-
responding terms in (137). Now, by measurements, the term
XvXe∗Se∗ in the exponent is projected to (−1)sv Xe∗Se∗ . The
inner product between 〈{sv}|V and |{av}〉V gives us a phase,
which is again expressed as the Pauli Z operator Zsv

e∗ . Moving
these operators to the front gives us the equation (141).

C. (2 + 1)d Ising theory coupled to gauge fields
from a star-plaquette model

Consider a model defined on edges in a two-dimensional
square lattice, which we call a star-plaquette model:

HSP = − μ
∑

σ0∈�0

X (∂∗σ0) − 1

μ

∑
σ1∈�1

Zσ1

− λ
∑

σ2∈�2

Z (∂σ2) − 1

λ

∑
σ1∈�1

Xσ1 . (142)

We illustrate terms in this Hamiltonian in Fig. 13. Here the
term X (∂∗σ0) is a product of X over edges surrounding the
vertex σ0. The term Z (∂σ2) is a product of Z over edges sur-
rounding the plaquette σ2. We consider the following model
with matter fields on dual vertices and gauge fields on dual
edges; see Fig. 13:

HFS = − μ
∑

σ ∗
2 ∈�∗

2

X (∂∗σ ∗
2 ) − 1

μ

∑
σ ∗

1 ∈�∗
1

Zσ ∗
1

− λ
∑

σ ∗
0 ∈�∗

0

Zσ ∗
0

− 1

λ

∑
σ ∗

1 ∈�∗
1

Xσ ∗
1
X (∂∗σ ∗

1 ). (143)

The superscript FS denotes the reference to the work by
Fradkin and Shenker [5], who elaborated the phase diagram
of this model. This includes deconfinement, confinement, and
Higgs phases. It is invariant under the gauge transformation
generated by

Gσ ∗
0

= Zσ ∗
0
Z (∂σ ∗

0 ). (144)
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FIG. 13. The red boxes represent the operators that appear in the
Hamiltonian HSP and the blue ones in the Hamiltonian HFS and the
generator of the gauge transformation.

The former model is obtained by a gauge-fixing of the latter,
eliminating the matter degrees of freedom [6,15]. We men-
tion that the model (143) has been re-investigated recently in
Ref. [92], where the Higgs phase was identified as an SPT
phase. The quantum simulation of the model on Rydberg atom
arrays with the protection of gauge invariance was discussed
in Ref. [49].

1. Results

We aim to obtain the Trotterized time evolution of the
model with the Hamiltonian HFS from that with HSP. We
denote the former as T FS(t ) and the latter as T SP(t ). We show
that an application of entanglers followed by measurements of
primal edge qubits, which we call the Fradkin-Shenker map
in this paper, implements a map from the star-plaquette model
to the Fradkin-Shenker model. For a set of measurement out-
comes s(σ1) ∈ {0, 1}, we define the associated 1-chain as

s1 =
∑

σ1∈�1

s(σ1)σ1. (145)

To distinguish the undualized and dualized degrees of free-
dom, we again write the degrees of freedom on primal 1-cells
with the double bracket | 〉〉. As before, we use the following
bases for the wave functions:

|c1〉〉 :=
⊗
σ1∈�1

|a(c1; σ1)〉〉(Z )
σ1

, (146)

|c̃1〉〉 :=
⊗
σ1∈�1

|a(c1; σ1)〉〉(X )
σ1

, (147)

|c2〉 :=
⊗

σ2∈�2

|a(c2; σ2)〉(Z )
σ2

, (148)

|c1〉 :=
⊗
σ1∈�1

|a(c1; σ1)〉(Z )
σ1

. (149)

We write the Fradkin-Shenker map as

F̂S = 〈〈s̃1|UFS |01, 02〉, . (150)

FIG. 14. The entangler used to implement the Fradkin-Shenker
map.

UFS =
∏

σ1∈�1

⎛⎜⎜⎝ CXσ1,σ1︸ ︷︷ ︸
c: undualized
t : dualized

∏
σ2∈�2

[
CXσ1,σ2

]a(∂∗σ1;σ2 )

⎞⎟⎟⎠, (151)

where the first CX gate is controlled by undualized 1-cells and
applies X on dualized 1-cells as depicted in Fig. 14. We take
the ungauged wave function as any wave function defined for
edge qubits: ∣∣ψ (1)

ungauged

〉〉 = ∑
c1∈C1

C(c1)|c1〉〉. (152)

On the other hand, the gauged wave function is∣∣ψ (1,2)
gauged

〉 = ∑
c1∈C1

C(c1)|c1, ∂
∗c1〉. (153)

Our key result here is summarized as follows:

OFS
bp (s1)T FS(t )

∣∣ψ (1,2)
gauged

〉 = F̂ST SP(t )
∣∣ψ (1)

ungauged

〉〉
. (154)

The byproduct operator for this dualization is given by

OFS
bp (s1) :=

∏
σ1∈�1

Z (σ1)s(σ1 ), (155)

with s1 =∑σ1∈�1
s(σ1)σ1 as defined in Eq. (145).

2. Demonstration

The following is the demonstration of the above equality.
To distinguish operators acting on the undualized and dualized
degrees of freedom, we write those acting on the undualized
qubits with bold symbols such as X . (In the figures, operators
for undualized qubits are indicated by red, dualized ones by
blue.) We propagate the entangler of the Fradkin-Shenker map
to the ungauged wave function, and we obtain time evolution
terms with the X on primal edges conjugated:

X (∂∗σ0) �→ X (∂∗σ0)X (∂∗σ0), (156)

X (σ1) �→ X (σ1)X (σ1)X (∂∗σ1), (157)
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FIG. 15. The left two columns depict the conjugation of the X operators in Eqs. (156) and (157) via the entangler UFS (top two rows),
and the operator resulting after the measurement (bottom two rows). The right two columns show the operator map for the Z operators; see
Eqs. (159) and (160).

see the top two rows in the left two columns in Fig. 15. Then,
the premeasurement wave function is the following:

|ψpre〉 =(UFST SP(t )UFS†)
∑

c1∈C1

C(c1)|c1〉〉|c1, ∂
∗c1〉. (158)

In the time evolution unitary, the Z operators on primal edges
are replaced with those on dual edges or vertices. We write
|c1〉〉|c1, ∂

∗c1〉 = |c1; c1, ∂
∗c1〉. Then, we have

Z(σ1)|c1; c1, ∂
∗c1〉 = Z (σ1)|c1; c1, ∂

∗c1〉, (159)

Z(∂σ2)|c1; c1, ∂
∗c1〉 = Z (σ2)|c1; c1, ∂

∗c1〉, (160)

the latter of which is due to #(∂σ2 ∩ c1) = #(σ2 ∩ ∂∗c1); see
the right two columns in Fig. 15. Note that the action of the
operators depicted in the left two columns (the middle row) of

Fig. 15 preserves such replacements, namely,

Z(σ1)X|c1; c1, ∂
∗c1〉 = Z (σ1)X|c1; c1, ∂

∗c1〉, (161)

Z(∂σ2)X|c1; c1, ∂
∗c1〉 = Z (σ2)X|c1; c1, ∂

∗c1〉, (162)

where the operator X is given as follows:

X =
∏

σ0∈�0

[X (∂∗σ0)X (∂∗σ0)]�(σ0 )

×
∏

σ1∈�1

[X (σ1)X (σ1)X (∂∗σ1)]�(σ1 )
, (163)

with �(σ0),�(σ1) ∈ {0, 1}. Therefore the transformations
Z(∂σ2) �→ Z (σ2) and Z(σ1) �→ Z (σ1) can be done consis-
tently within the time evolution unitary. Hence, we have

|ψpre〉 =
⎛⎝ ∏

σ0∈�0

ei�tμX (∂∗σ0 )X (∂∗σ0 )
∏

σ1∈�1

ei �t
μ

Z (σ1 )
∏

σ2∈�2

ei�tλZ (σ2 )
∏

σ1∈�1

ei �t
λ

X (σ1 )X (σ1 )X (∂∗σ1 )

⎞⎠k ∑
c1∈C1

C(c1)|c1〉〉|c1, ∂
∗c1〉. (164)

By measurements of primal edge degrees of freedom, the X operators on the primal edges in the time evolution unitaries
become X (σ1) = (−1)s(σ1 ), and also we obtain a phase 〈〈s̃1|c1〉〉 = 2−|�1|/2(−1)#(s1∩c1 ). This phase can be equally written with
the byproduct operator OFS

bp (s1). Moving this operator through the time evolution unitary to the leftmost position flips the signs
in the exponent in the time evolution unitary, precisely canceling the unwanted factors (−1)s(σ1 ). We then arrive at

|ψpost〉 = 2−|�1|/2OFS
bp (s1)

⎛⎝ ∏
σ0∈�0

ei�tμX (∂∗σ0 )
∏

σ1∈�1

ei �t
μ

Z (σ1 )
∏

σ2∈�2

ei�tλZ (σ2 )
∏

σ1∈�1

ei �t
λ

X (σ1 )X (∂∗σ1 )

⎞⎠k

|ψgauged〉. (165)

The operators in the exponents of the unitaries have been
mapped as

X (∂∗σ0) �→ X (∂∗σ0) = X (∂∗σ ∗
2 ), (166)

X (σ1) �→ X (σ1)X (∂∗σ1) = X (σ ∗
1 )X (∂∗σ ∗

1 ), (167)

and

Z(σ1) �→ Z (σ1) = Z (σ ∗
1 ), (168)

Z(∂σ2) �→ Z (σ2) = Z (σ ∗
0 ), (169)

and thus we have demonstrated the claim (154).
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FIG. 16. An interpretation of the relation between the (2 + 1)d
TFI and the gauge theory in terms of the corresponding three-
dimensional (3d) Euclidean lattice theories [1]. A discussion on the
mobility of the Kramers-Wannier duality defect or operator is given
in Refs. [93–95], for example

V. CONCLUSIONS AND DISCUSSION

We show that the time evolutions in various models can be
transformed into those in corresponding gauge theories via a
deterministic procedure involving constant-depth entangling
gates, local measurements, and corrections. With the presence
of noises, when the number of nontrivial outcomes satisfies a
certain condition (e.g., when it is even, in the case of Z2),
the procedure succeeds, and the resulting wave function is
gauge symmetric under the assumption that the duality trans-
formation itself is noise-free. We also generalize the gauging
method with measurement to gauge theories coupled to mat-
ters.

Our procedure could be interpreted in terms of the cor-
responding Euclidean lattice theories [1], as illustrated in
Fig. 16. Namely, we imagine a Kramers-Wannier duality
interface that separates two theories, say (2 + 1)d transverse-
field Ising model and the Ising gauge theory. The interface
turns out to be able to freely move in space-time. Fusing it
with the past boundary, which defines the initial ungauged
wave function, gives a new boundary that corresponds to the
gauged initial wave function.

In two dimensions, a spin model with the Z2 global sym-
metry is mapped to a gauge theory restricted by a topological
condition. In our language, it is related to the ambiguity in
choosing the paths for the byproduct operator, which gives
rise to constraints on noncontractible loop operators. On the
other hand, spin models without global symmetry may be
mapped to gauged spin models via a suitable generalization of
the Kramers-Wannier map (and to Z2 QED via a generalized
Jordan-Wigner transformation) without any addition of topo-

logical sectors [72]. Consistently, for gauge theories coupled
matter fields, our procedure does not produce string operators,
and the correction of the phase factors has nothing to do with
the topology of the background manifold.

We showed that the time evolution under a symmetric
Hamiltonian describing an SPT phase is mapped to that un-
der a twisted gauge theory. An appropriate generalization of
the Kramers-Wannier map to higher space-time dimensions
would give us a time evolution describing a corresponding
twisted higher-form gauge theory. Another interesting direc-
tion of generalization is to non-Abelian gauge theories. For
solvable groups, it has been shown that appropriate gener-
alizations of the Kramers-Wannier map can transform the
short-range entangled states to that of non-Abelian (twisted)
quantum double models [30,62,65,66,74]. It would be inter-
esting to explicitly formulate a procedure to obtain the time
evolution of non-Abelian lattice gauge theories by measure-
ments.

Our method enables us a shortcut to the quantum simula-
tion in the long-range entanglement regime, e.g., a quenched
dynamics. Some current quantum devices may already fur-
nish the basic demands of our procedure, such as locally
addressed mid-circuit measurements and sufficient coherence.
The recent result of demonstrating the gauging method on
real devices on trapped ions [96–98] encourages us to take
further steps and implement the duality transformation of the
time evolution in gauge theories. The Rydberg atom arrays
[49,99–109] may also be suitable for processing the gauging
procedures [63]. Other quantum devices which support the
mid-circuit measurements are also interesting to be consid-
ered for implementing the idea in this work.
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APPENDIX A: DUALIZING TO Z2 QED: EXPANDED FORM

We explain our result in Sec. IV A with expanded notation.
The undualized model is defined on the vertices in the one-

dimensional lattice, and the Hamiltonian is given by

HTL-Ising = −
∑
e∈E

∏
v⊂e

Zv −
∑
v∈V

(gXv + hZv ). (A1)

We consider a generalized Kramers-Wannier duality by intro-
ducing a topological gauge field on the edges in the dual lattice
denoted by e∗ (which is dual to a primal vertex; e∗ � v), and
imposing the Gauss law constraint on the degrees of freedom
in the dual lattice. The duality map is given by

Xv �→ Xe∗
∏

v∗⊂e∗
Xv∗ , (A2)

Zv �→ Ze∗ , (A3)
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and the Gauss law constraint is given by

Gv∗ := Zv∗
∏

e∗⊃v∗
Ze∗ = 1. (A4)

We also have another transformation
∏

v⊂e Zv �→ Zv∗ , which
is obtained by substituting the second line of the transforma-
tions to the Gauss law constraint. The resulting theory is a
gauge-matter theory:

HGM = −
∑

v∗∈V ∗
Zv∗ −

∑
e∗∈E∗

(
gXe∗

∏
v∗⊂e∗

Xv∗ + hZe∗

)
. (A5)

The Hamiltonian is invariant under the gauge transformation,
[HGM, Gv∗ ] = 0. The first term is an ordinary matter term. The
second term is a matter kinetic term covariantly coupled to the
gauge field. And the last term can be seen as an electric term
in the gauge sector.

To distinguish the undualized and dualized degrees of free-
dom, we write the degrees of freedom on primal 0-cells with
the double bracket | 〉〉. The original wave function can be
expanded with the basis ⊗

v∈V

|av〉〉v, (A6)

and that in the dualized theory can be expanded with⊗
v∈V

|av〉v and
⊗
e∈E

|ae〉e. (A7)

First, consider the time evolution with HTL-Ising, whose
Trotterization is written as T TL-Ising(t ). We take the initial state
as any state defined on the vertices:∣∣ψ (0)

ungauged

〉〉 = ∑
{av}∈{0,1}⊗V

C({av})
⊗
v∈V

|av〉〉v. (A8)

In particular, we do not impose a Z2 symmetry for this wave
function.

We load a gauged state on edges and vertices on the dual
lattice. We emphasize that an edge in the dual lattice is iden-
tical to a vertex in the primal lattice, but we treat them as
separate degrees of freedom. We initiate the wave function
as

|0〉⊗V |0〉⊗E . (A9)

Note that this state satisfies the Gauss law constraint.
We consider an entangler

UGM =
∏
v∈V

⎛⎜⎜⎝ CXv,v︸ ︷︷ ︸
c: undualized
t : dualized

∏
e⊃v
e∈E

CXv,e

⎞⎟⎟⎠, (A10)

where the first CX gate is controlled by the undualized qubits
(also labeled c) and applies X on the dualized degrees of
freedom (also labeled t ; note that both c and t are on the
same vertex but separate degrees of freedom). The generalized
Kramers-Wannier map is now defined as

K̂W
GM =

⊗
v∈V

〈〈sv|(X )
v UGM

⊗
v∈V

|0〉(Z )
v

⊗
e∈E

|0〉(Z )
e , (A11)

where the notation (Z ) and (X ) indicates that the basis is the
eigenvector of the operator, and sv ∈ {0, 1} is the measure-
ment outcome. We denote the Trotterized time evolution with
the Hamiltonian HGM by T GM(t ).

We claim that the time evolution of the gauged Ising model
can be obtained by the Kramers-Wannier map KWGM:

OGM
bp ({sv})T GM(t )

∣∣ψ (0,1)
gauged

〉
= K̂W

GM
T TL-Ising(t )

∣∣ψ (0)
ungauged

〉〉
. (A12)

Here the gauged wave function is

∣∣ψ (0,1)
gauged

〉 = ∑
{av}∈{0,1}⊗V

C({av})
⊗
v∈V

|av〉v
⊗
e∈E

∣∣∣∣∣∑
v⊂e

av

〉
e

,

(A13)

and it satisfies the Gauss’s law constraint Ze
∏

v⊂e Zv = 1.
The byproduct operator for this dualization is given by

OGM
bp ({sv}) =

∏
v∈V

(Zv )sv . (A14)

Here, the exponent sv is associated with measurement out-
comes of undualized degrees of freedom, but the operator Zv

acts on the dual degrees of freedom. We emphasize that it is
no longer a string operator. Correction can be done directly by
applying OGM

bp after measurements.

APPENDIX B: REPLACING PHASE OPERATORS

Here we show the replacement Z (∂σ1) → Z (σ1) in the
Trotter unitary, which we omitted from the main text. We note
that

Z (ci )X (c′
i ) = (−1)#(ci∩c′

i )X (c′
i )Z (ci ), (B1)

by appropriately regarding one of the chains as its dual. For
σ1 ∈ �1 and σ0 ∈ �0,

Z (∂σ1)Xσ0 X (∂∗σ0) = (−1)#(∂σ1∩σ0 )Xσ0 X (∂∗σ0)Z (∂σ1),
(B2)

and

Z (σ1)Xσ0 X (∂∗σ0) = (−1)#(σ1∩∂∗σ0 )Xσ0 X (∂∗σ0)Z (σ1). (B3)

Due to the Poincaré duality, we have (−1)#(∂σ1∩σ0 ) =
(−1)#(σ1∩∂∗σ0 ). Using the relation (75), we find

Z (∂σ1)

⎛⎝ ∏
σ0∈�0

[Xσ0 X (∂∗σ0)]�(σ0 )

⎞⎠|c0, ∂
∗c0〉

= Z (σ1)

⎛⎝ ∏
σ0∈�0

[Xσ0 X (∂∗σ0)]�(σ0 )

⎞⎠|c0, ∂
∗c0〉, (B4)

with �(σ0) ∈ {0, 1}.
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APPENDIX C: DELEGATED PROOF OF
KRAMERS-WANNIER TRANSFORMATION

OF TIME EVOLUTIONS

1. Twisted gauge theory in (2 + 1)d

The Kramers-Wannier transformation of the tTFI is mostly
identical to that of TFI. It is calculated as follows. We first
apply the entangler and obtain(∏

CXv,e

)
TtTFI(t )|ψungauged〉V |0〉E

=
⎛⎝∏

u∈V

ei�tOu
∏

e⊃u Xe
∏

〈u,u′〉∈E

eig�tZuZu′

⎞⎠k

×
∑

av=0,1

C({av})|{av + av′ }〉E |{av}〉V . (C1)

As before, ZuZu′ can be replaced by Z〈u,u′〉 because the opera-
tor Ou

∏
e⊃u Xe preserves such structure. Furthermore, we can

replace the operator Ou
∏

e⊃u Xe by XuÕu.
Now we take the inner product between 〈{s̃v}|V and

|{av}〉V . We find the resultant wave function for the edge
degrees of freedom is equal to(∏

u∈V

exp(i�t (−1)suÕu)
∏
e∈E

eig�tZe

)k

Obp(ρ1)|ψgauged〉E .

(C2)

Using the commutation relation (−1)suÕuObp(ρ1) =
Obp(ρ1)Õu, we obtain

Obp(ρ1)

⎛⎝∏
u∈V

exp(i�tÕu)
∏
e〉∈E

eig�tZe

⎞⎠k

|ψgauged〉E . (C3)

2. Gauged Ising model in (1 + 1)d

To distinguish operators acting on the undualized and
dualized degrees of freedom, we write those acting on the

undualized qubits with bold symbols such as X . We propagate
the entangler UGM to the ungauged wave function, and we
obtain time evolution terms with the X on primal vertices
conjugated,

X (σ0) �→ X (σ0)X (σ0)X (∂∗σ0). (C4)

Then, the premeasurement wave function is the following:

|ψpre〉 = (UGMT TL-Ising(t )UGM†)
∑

c0∈C0

C(c0)|c0〉〉|c0, ∂
∗c0〉�1 .

(C5)

With this wave function, the Z operators on primal vertices
are replaced with those on dual edges or vertices. We write
|c0〉〉|c0, ∂

∗c0〉 = |c0; c0, ∂
∗c0〉 and then we have

Z(σ0)|c0; c0, ∂
∗c0〉 = Z (σ0)|c0; c0, ∂

∗c0〉, (C6)

Z(∂σ1)|c0; c0, ∂
∗c0〉 = Z (σ1)|c0; c0, ∂

∗c0〉, (C7)

the latter of which is due to #(∂σ1 ∩ c0) = #(σ1 ∩ ∂∗c0). Note
that for arbitrary σ0 ∈ �0, we have

Z(σ0)X|c0; c0, ∂
∗c0〉 = Z (σ0)X|c0; c0, ∂

∗c0〉, (C8)

Z(∂σ1)X|c0; c0, ∂
∗c0〉 = Z (σ1)X|c0; c0, ∂

∗c0〉, (C9)

with

X =
∏

σ0∈�0

[
X (σ0)X (σ0)X (∂∗σ0)

]�(σ0 )
, (C10)

with �(σ0) ∈ {0, 1}. So the replacement of Z operators holds
even with the action of the conjugated X operators in the time
evolution unitary. The premeasurement wave function is thus

|ψpre〉 =
⎛⎝∏

σ1

ei�tZ (σ1 )
∏
σ0

ei�thZ (σ0 )
∏
σ0

ei�tgX (σ0 )X (σ0 )X (∂∗σ0 )

⎞⎠k ∑
c0∈C0

C(c0)|c0〉〉|c0, ∂
∗c0〉�1 . (C11)

By measurements of the undualized degrees of freedom, the X operators on the primal vertices in the time evolution unitaries
become (−1)s(σ0 ). We also obtain a phase 〈〈s̃0|c0〉〉 = 2−|�0|/2(−1)#(s∩c0 ):

|ψpost〉 =
⎛⎝∏

σ1

ei�tZ (σ1 )
∏
σ0

ei�thZ (σ0 )
∏
σ0

ei�tg(−1)s(σ0 )X (∂∗σ0 )X (σ0 )

⎞⎠k

2−|�0|/2
∑

c0∈C0

C(c0)(−1)#(s0∩c0 )|c0, ∂
∗c0〉�1 . (C12)

This phase (−1)#(s0∩c0 ) can be equally written as

OGM
bp (s0) =

∏
σ0∈�0

Z (σ0)s(σ0 ) (C13)

acting on |ψgauged〉. Moving this operator through the time evolution unitary to the left flips the signs in the exponent in the time
evolution unitary, precisely canceling the unwanted factors (−1)s(σ0 ). Thus we have mapped the operators in the exponents of
the unitaries as

Z(σ0) �→ Z (σ0) = Z (σ ∗
1 ), (C14)
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Z(∂σ1) �→ Z (σ1) = Z (σ ∗
0 ), (C15)

X (σ0) �→ X (σ0)X (∂∗σ0) = X (σ ∗
1 )X (∂∗σ1). (C16)

More concretely, we have shown

|ψpost〉 = 2−|�0|/2OGM
bp (s0)

⎛⎝∏
σ1

ei�tZ (σ1 )
∏
σ0

ei�thZ (σ0 )
∏
σ0

ei�tgX (σ0 )X (∂∗σ0 )

⎞⎠k

|ψgauged〉 = 2−|�0|/2OGM
bp (s0)T GM(t )|ψgauged〉.

(C17)

APPENDIX D: TWO-DIMENSIONAL GAUGED
JORDAN-WIGNER TRANSFORMATION

The authors of Ref. [110] considered a duality map be-
tween a Pauli spin model on the 2d square lattice, which
involves up to six-body interaction terms, and a lattice gauge
theory coupled to spinless fermions. Here, we consider the
mapping in Ref. [110] and implement it using local unitary
operators and measurement. We also remark that authors of
Ref. [111] constructed a unitary transforation to eliminate
matter degrees of freedom from lattice gauge theories with
fermionic matter fields.

The Hamiltonian of the latter is defined on a lattice with
oriented edges (with ∂e = v+ − v−) pointing towards +x and
−y directions, and is expressed in terms of Majorana fermions
as

HMGT =t
∑

e

(iχ ′
v− Z̃eχv+ − iχv− Z̃eχ

′
v+ ) + μ

2

∑
v

Pv

− J
∑

p

∏
e⊂p

Z̃e − h
∑

e

X̃e. (D1)

The Majorana fermions above are related to the com-
plex fermion as c = (χ + iχ ′)/2, c† = (χ − iχ ′)/2, so that
{χ, χ} = {χ ′, χ ′} = 2 and {χ, χ ′} = 0. The operator Pv is the
local fermion parity operator Pv := iχ ′

vχv . We also make use
of a fermionic bilinear operator Se = −iχ ′

v−χv+ .
We generalize the construction of the 2d Jordan-Wigner

transformation enabled by entangler and measurement in
Ref. [65] to incorporate gauge fields in the Majorana fermion
model.

We begin with a simpler setup with a Hilbert space HV ⊗
HE of qubits defined on vertices and edges of the 2d (periodic)
square lattice. Let CSe be an operator such that it applies Se to
two Majorana fermions controlled by the qubit on e. We set

UCS :=
∏

e

CSe, (D2)

with the following ordering. Within a horizontal layer, the op-
erators CSe commute with each other, and we let them appear
in the product simultaneously. Such a product is ordered so
that as we go down in the −y direction, we go to the left within
the product. It was noted that

UCSPvU−1
CS =

Zeu

|
Ze�

— Pv — Zer

|
Zed

, (D3)

UCS

⎛⎝ |
Xe

|

⎞⎠U−1
CS =

iχ ′
v−|

Xe

|
Ze′ — χv+

, (D4)

UCS (— Xe —)U−1
CS =

χ ′
v− — Xe — iχv+
|

Ze′

.

(D5)

As discussed in Refs. [65], the local entanglers CSe do not
commute (i.e., the one in the vertical direction and the one in
the horizontal direction that overlap at a vertex), and different
orderings of the product in entanglers give different duality
transformations, where dual Pauli spin models have different
spatial anisotropy. Here, we have chosen a particular ordering
following Ref. [44].

Generalizing the entangler above, we consider a Hilbert
space HV ⊗ HE ⊗ HẼ and we define (note a similar use of
notation in Eq. (151),

UMGT := UCS ×
∏

e

CZ̃e,e︸ ︷︷ ︸
c∈E
t∈Ẽ

, (D6)

where the wide tilde denotes the Pauli operator acting on
qubits on edges different from those in UCS . (Namely, for ev-
ery edge, we have a copy of qubits—tilded and untilded—and
the controlled-Z gate acts on them.) We get

UMGTPv U−1
MGT =

Zeu

|
Ze�

— Pv — Zer

|
Zed

= U−1
MGTPv UMGT,

(D7)

UMGT

⎛⎝ |
Xe

|

⎞⎠U−1
MGT =

iχ ′
v−|

XeZ̃e

|
Ze′ — χv+

, (D8)

UMGT(— Xe —)U−1
MGT =

χ ′
v− — XeZ̃e — iχv+
|

Ze′

.

(D9)
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Let |0〉V denote the fermionic vacuum state. We define a
duality operator D̂ : HE → HẼ ⊗ HV ,

D̂ := 〈+|EUMGT|+〉Ẽ |0〉V . (D10)

We immediately obtain the following equalities:

D̂

⎛⎜⎜⎜⎜⎝
I
|

Xe

|
Ze′ — I

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
iχ ′

v−|
Z̃e

|
I — χv+

⎞⎟⎟⎟⎟⎠D̂, (D11)

D̂

⎛⎝ I — Xe — I
|

Ze′

⎞⎠
=
⎛⎝χ ′

v− — Z̃e — iχv+
|
I

⎞⎠D̂, (D12)

D̂

⎛⎜⎜⎜⎜⎝
Zeu

|
Ze�

— I — Zer

|
Zed

⎞⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎝
I
|

I — Pv — I
|
I

⎞⎟⎟⎟⎟⎠D̂, (D13)

D̂(— Ze —) = (— X̃e —
)
D̂ (D14)

D̂

⎛⎝ |
Ze

|

⎞⎠ =
⎛⎝ |

X̃e

|

⎞⎠D̂. (D15)

Combining some of the duality relations above, some al-
gebras, and χ ′P = iχ and χP = −iχ ′, we also find the dual
Pauli terms for the other Majorana fermion terms coupled to
the gauge field:

D̂

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Z
|

Z — I — Z
|

Xe

|
I — I — Z

|
Z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
iχv−

|
Z̃e

|
I — χ ′

v+

⎞⎟⎟⎟⎟⎠D̂, (D16)

and

D̂

⎛⎜⎜⎜⎜⎝
Z Z
| |

Z — I — Xe — I — Z
| |
I Z

⎞⎟⎟⎟⎟⎠
=
⎛⎝χv− — Z̃e — iχ ′

v+|
I

⎞⎠D̂. (D17)

Similarly, combining the minimal-coupling terms yields the
dualization of the plaquette operator:

D̂

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Z
|

I — XZ — I — Z
| |
X p XZ
| |
I — X — I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎝
I — Z̃ — I
| |
Z̃ p Z̃
| |
I — Z̃ — I

⎞⎟⎟⎟⎟⎠D̂. (D18)

To summarize, let us write the L-shaped Pauli operators
as Le (=XeZe′ ) with the appropriate anisotropic assignment of
e′. Let Wv = Zeu Ze�

Zer Zed be the plaquette operator associated
with the vertex v (which is dual to the dual plaquette). The six-
body terms can be expressed as a product LeWv+Wv− , where
∂e = v+ − v−. Then, the duality transformation implemented
by D̂ is given by

D̂Hdual−MGT = HMGTD̂, (D19)

with

Hdual−MGT = t
∑

e

(Le − LeWv+Wv− ) + μ

2

∑
v

Wv

− J
∑

p

Wne(p)

∏
e⊂p

Xe − h
∑

e

Ze, (D20)

where nw(p) is the vertex at the northeast corner of the pla-
quette p. This dual model was obtained in Ref. [110].

The equation (D19) implies

D̂(e−itHdual−MGT |ψ〉E ) = e−itHMGT D̂|ψ〉E

= e−itHMGT |ψgauged〉Ẽ∪V , (D21)

where |ψgauged〉Ẽ∪V = D̂|ψ〉E is the gauged initial wave func-
tion. Thus one can obtain the time evolution with the lattice
gauge theory with spinless Majorana fermions from that with
the dual model Hdual−MGT.

The operator D̂ can be realized by (1) introducing ancillas
as a product state of |+〉 on edges and |0〉 (the fermion vac-
uum) on vertices, (2) applying the entangler UMGT, and (3)
measuring the (original) edge degrees of freedom in the X ba-
sis. In the third step, the measurement outcomes might be the
|−〉 state, which differs from the bra state in D̂. The difference
can be accounted for just as in the case with the Fradkin-
Shenker model, but here we present a concise argument to
show that the correction is possible. Since |−〉e = Ze|+〉e and
the Ze operator commutes with UMGT, the minus measurement
outcome can be expressed as the Ze operator acting on the
Hilbert space HE of the model to be dualized. Due to the
duality map (D15), the operator Ze is mapped to the X̃e op-
erator that acts on the Hilbert space HẼ . Each X̃e operator
converted from each Ze operator can be thus corrected based
on the information gathered from the measurement outcomes
after the third step. In sum, one can realize a clean duality
operator D̂ deterministically.
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