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iSWAP-type geometric gates induced by paths on the Schmidt sphere
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We propose iSWAP-type quantum gates based on geometric phases purely associated with paths on the
Schmidt sphere [Phys. Rev. A 62, 022109 (2000)]. These geometric Schmidt gates can entangle qubit pairs to an
arbitrary degree; in particular, they can create maximally entangled states from product states by an appropriate
choice of base point on the Schmidt sphere. We identify Hamiltonians that generate pure paths on the Schmidt
sphere by reverse engineering and demonstrate explicitly that the resulting Hamiltonians can be implemented in
systems of transmon qubits. The geometric Schmidt gates are characterized by vanishing dynamical phases and
are complementary to geometric single-qubit gates that take place on the Bloch sphere.
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I. INTRODUCTION

Geometric quantum computation [1,2] is the idea to use
Abelian geometric phases [3,4] to build robust quantum gates.
This has been implemented on different experimental plat-
forms, such as nuclear magnetic resonance [5,6], trapped
ions [7], electron spin resonance [8], nitrogen-vacancy (NV)
centers in diamond [9], semiconducting spin and charge
qubits [10,11], superconducting qubits [12,13], and Rydberg
atoms [14,15]. A universal set of geometric gates requires
arbitrary single-qubit gates solely dependent upon paths on
the Bloch sphere, supplemented by a geometric gate that can
entangle pairs of qubits [16].

Realizations of two-qubit gates are particularly challenging
as they are limited by the naturally occurring type of qubit-
qubit interaction in the chosen system [17]. For instance,
while entangling gates such as CNOT and controlled phase flip
can be implemented using a single application of Ising inter-
action terms, iSWAP-type entangling gates such as iSWAP
and

√
SWAP are similarly implementable in the presence of

various forms of spin exchange interactions, such as XY or
Heisenberg [17]. As interaction terms of these types are com-
mon in several qubit systems [18,19], it becomes pertinent to
develop schemes for geometric iSWAP-type gates. Here, we
propose such a general approach to geometric two-qubit gates.

The idea of our proposal is based on the Schmidt de-
composition [20], i.e., that any pure bipartite state can be
written on Schmidt form, being a superposition of Schmidt
vectors. These vectors are products of mutually orthogo-
nal states for each subsystem. When the two subsystems
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are qubits, the Schmidt decomposition can be represented
on a two-dimensional “Schmidt sphere” [21]. This sphere
is parametrized by a polar angle that determines the de-
gree of qubit-qubit entanglement and an azimuthal angle that
takes care of the relative phase of the Schmidt vectors. The
relevance of the Schmidt sphere has been demonstrated ex-
perimentally using polarization-entangled photon pairs [22].

Here, we introduce geometric Schmidt gates that are two-
qubit gates controlled by the solid angle enclosed on the
Schmidt sphere. This is achieved by designing a complete
set of orthonormal two-qubit states that acquire no dynam-
ical phase and whose Schmidt vectors are kept constant
throughout the implementation of the gate. These gates are
the two-qubit analog of the single-qubit geometric gates asso-
ciated with paths on the Bloch sphere. The geometric Schmidt
gates are in a sense optimal as they require the same amount
of parameter control as their single-qubit counterparts. We
examine their ability to entangle the qubit pair by analyzing
Makhlin’s local invariants [23]. We identify the Hamiltonians
that generate the gates by means of reverse engineering [24]
and demonstrate that they can be realized in systems with
controllable spin exchange terms.

II. SCHMIDT GATES

Consider two qubits with local Hilbert spaces Ha and Hb.
Any pure state belonging to Ha ⊗ Hb of the two qubits can,
up to an unimportant overall phase, be written on Schmidt
form [20]

|�+(r)〉 = f |n〉 ⊗ |m〉 + g| − n〉 ⊗ | − m〉, (1)

where | ± n〉 and | ± m〉 are orthonormal vector pairs be-
longing to Ha and Hb, respectively. The amplitudes f =
e−iβ/2 cos α

2 and g = eiβ/2 sin α
2 define the angles α and β that

parametrize a point

r = (sin α cos β, sin α sin β, cos α) (2)

on the Schmidt sphere [21]. Note that only the polar angle
α is related to the amount of entanglement, as the azimuthal
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angle β can be controlled by locally manipulating one of the
qubits. The Bloch vectors of the reduced density operators of
the two qubits point along n and m in the case where | f | �= |g|,
while these vectors distinguish different maximally entangled
states [25,26] when | f | = |g| [27]. Thus, any two-qubit state
is fully specified by the triplet (r, n, m) and the evolution of
the system can be viewed as paths on the local Bloch spheres
and the Schmidt sphere [22].

To implement geometric Schmidt gates, we supplement
|�+(r)〉 with the states

|�−(r)〉 = −g∗|n〉 ⊗ |m〉 + f ∗| − n〉 ⊗ | − m〉,
|�+〉 = |n〉 ⊗ | − m〉, |�−〉 = | − n〉 ⊗ |m〉, (3)

and require n ≡ n0 and m ≡ m0 to be fixed throughout
the implementation of the gate. Thus, the Schmidt gate
scenario is the special case where the evolution path is
nontrivial only on the Schmidt sphere. Provided the dy-
namical phases all vanish or can be factored out as an
overall global phase, a loop C : [0, τ ] � t 	→ rt , rτ = r0 ≡
(sin α0 cos β0, sin α0 sin β0, cos α0) that encloses a solid angle
� on the Schmidt sphere induces the geometric two-qubit gate

Uα0,β0 (C ) = |n0〉〈n0| ⊗ | − m0〉〈−m0|
+ | − n0〉〈−n0| ⊗ |m0〉〈m0|
+ e−i�/2|�+(r0)〉〈�+(r0)|
+ ei�/2|�−(r0)〉〈�−(r0)|. (4)

This is the desired geometric Schmidt gate whose action is
controlled by � enclosed by the loop C on the Schmidt
sphere.

A. Entangling capability

The ability of Uα0,β0 (C ) to entangle the qubit pair relies
on the base point r0 on the Schmidt sphere. To see this,
let us consider two extreme cases: (i) r0 = (0, 0, 1) and (ii)
r0 = (0, 1, 0). We shall see that while (i) cannot entangle,
(ii) contains, up to a rotation around the z axis, the only
special perfect entangler [28], i.e., the only geometric Schmidt
gate that can create maximally entangled states from an or-
thonormal basis of product states. In the following, we put
n0 = −m0 = (0, 0, 1) such that |n0〉 = |0〉 and |m0〉 = |1〉, as
well as use short-hand notation |xy〉 ≡ |x〉 ⊗ |y〉, x, y = 0, 1,
and AB ≡ A ⊗ B for operators A and B acting on Ha and Hb,
respectively.

In case (i), we find the product gate

U(i)(C ) ≡ U0,0(C ) = |00〉〈00| + |11〉〈11|
+ e−i�/2|01〉〈01| + ei�/2|10〉〈10|

= (|0〉〈0| + ei�/2|1〉〈1|)
⊗(|0〉〈0| + e−i�/2|1〉〈1|). (5)

Thus, U(i)(C ) cannot entangle the qubits.
In case (ii), we instead have

U(ii)(C ) ≡ U π
2 , π

2
(C ) = |00〉〈00| + |11〉〈11|

+ e−i�/2|	+〉〈	+| + ei�/2|	−〉〈	−|, (6)

with the maximally entangled states |	±〉 = 1√
2
(|01〉 ±

i|10〉), yielding

U(ii)(C ) =

⎛
⎜⎜⎜⎝

1 0 0 0

0 cos �
2 − sin �

2 0

0 sin �
2 cos �

2 0
0 0 0 1

⎞
⎟⎟⎟⎠, (7)

expressed in the computational basis {|00〉, |01〉, |10〉, |11〉}.
To analyze the entangling capacity of U(ii)(C ), we calcu-

late Makhlin’s local invariants G1 and G2 for a two-qubit gate
U [23]. These are found by the following procedure. First,
introduce the unitary operator Q = |B1〉〈00| + |B2〉〈01| +
|B3〉〈10| + |B4〉〈11| that transforms the computational basis
into the Bell basis |B1〉 = 1√

2
(|00〉 + |11〉), |B2〉 = i√

2
(|01〉 +

|10〉), |B3〉 = 1√
2
(|01〉 − |10〉), and |B4〉 = i√

2
(|00〉 − |11〉).

Second, define m = (Q†UQ)TQ†UQ, in terms of which the
local invariants are found as

G1 = Tr2m

16 det U
, G2 = Tr2m − Trm2

4 det U
, (8)

where the latter is real-valued [23].
Necessary and sufficient conditions for a perfect entangler

(PE) that can maximally entangle a product state are 0 �
|G1| � 1

4 and −1 � G2 � 1 [29]; a special perfect entangler
(SPE) [28], which is a gate that maximally entangles an or-
thonormal product basis, is such that G1 = 0 and −1 � G2 �
1. The SPEs saturate the upper bound 2

9 of the entangling
power for qubit pairs [30]. Direct calculation for U = U(ii)(C )
yields

G1 = cos4 �

2
, G2 = 1 + 2 cos �. (9)

We thus see that we can only find PEs for solid angles π
2 �

|�| � π with the upper bound corresponding to an SPE. In
fact, for � = −π , one finds the iSWAP-type gate

U(ii)(C ) =

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 1

⎞
⎟⎟⎠, (10)

which is an SPE that maximally entangles the orthonormal
product states 1

2 (|0〉 ± |1〉) ⊗ (|0〉 ± |1〉) and 1
2 (|0〉 ± |1〉) ⊗

(|0〉 ∓ |1〉).
We next analyze which base points r0 on the Schmidt

sphere allow for PEs, as illustrated in Fig. 1. For the general
Uα0,β0 (C ), we find the local invariants

G1 = 1
16 [4 − 2 sin2 α0(1 − cos �)]2,

G2 = 3 − 2 sin2 α0(1 − cos �), (11)

which confirms that the azimuthal angle β0 is irrelevant to
the entangling capacity, as noted before. We see that there are
no PEs for α0 ∈ [0, π

4 ). We also see that G1 � cos4 α0, which
implies that Uα0,β0 (C ) can be an SPE only for base points on
the equator α0 = π

2 .
In the general case, not only |�±〉 ∈ Span{|01〉, |10〉} but

also �± ∈ Span{|00〉, |11〉} can evolve purely on the Schmidt
sphere. As the two pairs |�±〉 and |�±〉 evolve in orthogonal
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PEs

SPEs

non-PEs
Product gates

FIG. 1. Entangling capacity on the Schmidt sphere with
(x, y, z) = (sin α cos β, sin α sin β, cos α). Perfect entanglers (PEs)
are certain loops based at points with polar angles α0 ∈ [ π

4 , π

2 ] with
the special perfect entanglers (SPEs) on the equator α0 = π

2 . There
are no product states that can be transformed into a maximally entan-
gled state by gates for base points with α0 ∈ [0, π

2 ). Product gates,
such as U(i)(C ) in Eq. (5), are located at the north pole. While we
show only the upper half for clarity, exactly the same classification
of gates can be found on the lower half of the Schmidt sphere.

subspaces, such gates factorize into products of commuting
geometric Schmidt gates

Uα′
0,β

′
0;α0,β0 (C ′,C ) = Uα′

0,β
′
0
(C ′)Uα0,β0 (C ),[

Uα′
0,β

′
0
(C ′), Uα0,β0 (C )

] = 0. (12)

Here,

Uα′
0,β

′
0
(C ′) = |01〉〈01| + |10〉〈10|

+ e−i�′/2|�+(r′
0)〉〈�+(r′

0)|
+ ei�′/2|�−(r′

0)〉〈�−(r′
0)|, (13)

with

|�+(r′
0)〉 = e−iβ ′

0/2 cos
α′

0

2
|00〉 + eiβ ′

0/2 sin
α′

0

2
|11〉,

|�−(r′
0)〉 = −e−iβ ′

0/2 sin
α′

0

2
|00〉 + eiβ ′

0/2 cos
α′

0

2
|11〉. (14)

Thus, the only essential difference between Uα′
0,β

′
0
(C ′) and

Uα0,β0 (C ) is that the first couples |00〉 and |11〉, while the
second couples |01〉 and |10〉); in other words, their entangling
capacity is the same and thus for both captured by the above
analysis.

B. Reverse engineering

We now examine the physical realization of the geometric
Schmidt gates. We focus on the case where only Schmidt
vectors in Span{|01〉, |10〉} evolve and where n0 = −m0 =
(0, 0, 1). Thus, we look for the Hamiltonian that generates the
time dependent Schmidt vectors

|�+(rt )〉 = f (t )|01〉 + g(t )|10〉,
|�−(rt )〉 = −g∗(t )|01〉 + f ∗(t )|10〉,

|�+〉 = |00〉, |�−〉 = |11〉. (15)

To this end, we insert the ansatz

H (t ) = ω22(t ) |01〉〈01| + ω33(t ) |10〉〈10|
+ω23(t )|01〉〈10| + H.c., (16)

and Eq. (15) into the Schrödinger equation, yielding (h̄ = 1
from now on)

i ḟ = ω22 f + ω23g, iġ = ω∗
23 f + ω33g,

−iġ∗ = −ω22g∗ + ω23 f ∗, i ḟ ∗ = −ω∗
23g∗ + ω33 f ∗. (17)

These equations have the solution

ω22 = −ω33 = i( ḟ f ∗ + gġ∗),

ω23 = i( ḟ g∗ − f ġ∗), (18)

where we used that | f |2 + |g|2 = 1, which in turn implies
that ḟ f ∗ + gġ∗ is purely imaginary, ensuring that ω22 and ω33

are real-valued. By using the parametrization f = e−iβ/2 cos α
2

and g = eiβ/2 sin α
2 , we find

ω22 = −ω33 = β̇

2
, ω23 = − α̇

2
(sin β + i cos β ). (19)

We can use the identities |0〉〈0| = 1
2 (1̂ + Z), |1〉〈1| = 1

2 (1̂ −
Z), |0〉〈1| = 1

2 (X + iY), and Eq. (19) to derive the reverse
engineered Hamiltonian

H = − α̇

2
sin β hXY + α̇

2
cos β hDM + β̇

2
hZ, (20)

where we identified the XY , Dzyaloshinskii-Moriya (DM),
and Zeeman terms

hXY = 1
2 (XX + YY ), hDM = 1

2 (Y X − XY ),

hZ = 1
2 (Z 1̂ − 1̂Z ), (21)

respectively. One can verify that these operators satisfy the
standard SU(2) algebra: [hXY, hDM] = 2ihZ with cyclic per-
mutations. Thus, H in Eq. (20) describes an effective “spin- 1

2 ”
S ≡ 1

2 (hXY, hDM, hZ) interacting with an effective “magnetic
field” B ≡ (−α̇ sin β, α̇ cos β, β̇ ).

The paths generated by H are controlled by only two
parameters and give rise to geometric gates provided the dy-
namical phases vanish. The latter can be assured most easily
by following a pair of geodesic segments forming a loop on
the Schmidt sphere, in analogy with the orange-slice-paths on
the Bloch sphere used to implement geometric single-qubit
gates [31–33].

We illustrate this latter point by demonstrating a realization
of the iSWAP-type gate U(ii)(C ) in Eq. (10). A geomet-
ric implementation of this gate is obtained by traversing an
orange-slice path on the Schmidt sphere that connects the
points r0 = (0, 1, 0) and rt1 = (0,−1, 0) along the equator
and thereafter back along a geodesic through the north pole

t ∈ [0, τ ] 	→ rt

=
{ [

sin
(
π t

t1

)
, cos

(
π t

t1

)
, 0

]
, 0 � t � t1,[

0, cos
(
π t−t1

τ−t1

)
, sin

(
π t−t1

τ−t1

)]
, t1 � t � τ,

(22)
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r0

FIG. 2. Orange-slice curve on the Schmidt sphere that imple-
ments the special perfect entangler U(ii)(C ) in Eq. (10). The curve
starts and ends at r0 = (0, 1, 0) and consists of two path segments
generated by sequentially applying Zeeman and XY interactions to
the qubit pair. The enclosed solid angle is −π .

thereby enclosing a solid angle −π , see Fig. 2. This is
achieved by applying the two-pulse Hamiltonian

H (t ) =
{ − π

2t1
hZ, 0 � t � t1,

− π
2(τ−t1 ) hXY, t1 � t � τ.

(23)

C. Example: Transmon setting

Our scheme is implementable in any qubit system that
naturally include XY and DM spin exchange interaction. For
instance, the above path that generates U(ii)(C ) can be real-
ized for two transmon qubits coupled by a transmssion line
on a chip [34]. Here, the first Zeeman pulse in Eq. (23) is
generated by detuning the qubits by an amount ±δ = ∓ 1

2t1
,

respectively, from their idle frequencies [35], while the second
pulse is realized via exchange of virtual photons in the cavity
by tuning the transition frequencies of the two transmon qubits
into resonance [34]. In this way, one takes advantage of the

naturally occuring XY interaction term for direct implemen-
tion of the geometric iSWAP-type gate in Eq. (10).

Realization of more general paths in the transmon set-
ting would require simultaneous applications of the XY and
Zeeman terms. To achieve this, one may use Suzuki-Trotter-
based techniques [36] to simulate the effect of such spin
models [35]. For instance, by performing the second path
segment so as to make an angle θ to the yz plane would require
application of the Hamiltonian

Hθ (t ) = − π

2(τ − t1)
(cos θ hXY − sin θ hZ), t1 � t � τ,

(24)

which implements U(ii)(C ) in Eq. (7) with � = 2θ . This can
be simulated by performing

Un = ei π
2n cos θ hXY e−i π

2n sin θ hZ (25)

n times. In this way, the solid angle dependence of the gate
can be tested by varying θ .

III. CONCLUSION

In conclusion, we demonstrated a class of two-qubit gates
associated with paths on the Schmidt sphere. These gates
control the entangling capacity of the two-qubit evolution and
have a clear geometric interpretation in terms of solid angles
enclosed on the Schmidt sphere. A key point of our proposal
is that it provides means for experimentally implementing
iSWAP-type geometric gates based on spin exchange terms
that naturally appear in several qubit architectures.

To complete a universal set, one needs to implement suf-
ficiently flexible single-qubit gates. One may achieve this by
means of paths on the local Bloch spheres, while keeping the
Schmidt parameters α, β fixed. These gates can be assured
to be geometric by designing the paths so that the dynamical
phases all vanish, for instance by using geodesic segments on
the Bloch spheres. Thus, by generating ordered sequences of
paths on Schmidt and Bloch spheres, any quantum computa-
tion can be realized efficiently by purely geometric means.
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