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Asymmetry-enhanced phase sensing via asymmetric entangled coherent states
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We study quantum phase sensing with asymmetric two-mode entangled coherent states (ECSs) in which the
two local amplitudes take different values. We find the asymmetry-enhanced phase-sensing phenomenon in
which the phase-sensing sensitivity is enhanced with increasing the asymmetry in the ECSs. We indicate that
the phase-sensing sensitivity can attain and even surpass the Heisenberg limit in certain regimes of parameters.
We further study the effect of decoherence induced by photon loss on the phase-sensing sensitivity. It is shown
that the asymmetric ECSs have greater capability against decoherence compared with the symmetric ECSs. It
is indicated that the asymmetric ECSs have significant advantages over the symmetric ECSs in quantum phase
sensing. We also study the practical phase-sensing scheme with the intensity-difference measurement and show
that the asymmetry in the asymmetric ECSs can enhance the phase sensitivity in the practical phase-measurement
scheme. Our work reveals the asymmetry in the asymmetric ECSs is a resource for quantum-enhanced sensing
and may be applied to ultrasensitive quantum phase sensing in the presence of photon loss.
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I. INTRODUCTION

Entangled coherent states (ECSs) [1–5] as a kind of sig-
nificant quantum resource of continuous variables have many
potential applications in fundamental tests of quantum physics
and quantum information processing such as Bell-inequality
tests [6–8], tests for nonlocal realism [9,10], quantum tele-
portation [11–15], quantum computation [16–22], quantum
key distribution [23], and quantum precision measurements
[24–32]. An optical four-component ECS [33] was experi-
mentally prepared by using of a very lossy quantum channel.
A two-mode ECS was experimentally realized by using a
Mach-Zehnder interferometer (MZI) equipped with a cross-
Kerr element in each of two spatially separated modes [34]. A
number of schemes for the implementation of ECSs in various
quantum systems have been proposed [35–48].

Enhancing the precision of a measured parameter is always
a basic topic in quantum metrology [49–55]. Quantum states
of light can improve the sensitivity of phase measurements
beyond the limits that apply to classical light sources. The
phase sensitivity of classical light is limited by the shot noise
of independent photon-detection events to the standard quan-
tum limit (SQL) of δφ = 1/

√
N , with N being the number

of photons. Quantum mechanics imposes limits to the mea-
surement precision. Conventional measurement techniques
typically fail to reach these quantum limits. For instance, the
SQL can be overcome by using the multiphoton coherences
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of nonclassical light. Conventional bounds to the precision
of measurements such as the SQL are not as fundamental
as the Heisenberg limit of δφ = 1/N from the Heisenberg
uncertainty principle and can be beaten by using quantum
strategies. Quantum-enhanced metrology studies how to ex-
ploit quantum resources, such as squeezing, entanglement,
and quantum phase transition, to overcome the SQL and to
exhibit quantum advantages [56–77].

Phase estimation is a ubiquitous measurement primitive,
used for precision measurement of length, displacement,
speed, optical properties, and so on. Precise phase estimation
is of particular significance for various applications such as
imaging, sensing, and information processing. Caves [78] pro-
posed the first squeezing-enhanced interferometer scheme for
phase sensing by taking a high-intensity coherent state and
a low-intensity squeezed vacuum state as the input states of
the interferometer, which showed that the precision of phase
estimation can beat the SQL. This principle is widely used
in gravitational-wave observatories to enhance precision be-
yond the limits of classical technology [79,80]. Since Caves’s
scheme of quantum phase sensing, many protocols have been
proposed to improve the precision of phase estimation, such
as NOON states [81–83], entangled coherent states [28], two-
mode squeezed states [84], number squeezed states [85], and
so on.

The NOON-type ECS |α〉|0〉 + |0〉|α〉, which is a specific
coherent superposition of the NOON states, was proposed
as the input state of the MZI phase-measurement scheme
to enhance the precision of phase sensing [28,30,31]. It
was shown that the phase-sensing precision of the NOON-
type ECS scheme can surpass that of the NOON state in
both the absence and presence of photon loss. In general, a

2469-9926/2024/109(4)/042609(10) 042609-1 ©2024 American Physical Society

https://orcid.org/0000-0002-6083-3114
https://orcid.org/0000-0003-4948-0183
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.109.042609&domain=pdf&date_stamp=2024-04-04
https://doi.org/10.1103/PhysRevA.109.042609


CHEN, ZHANG, LU, ZUO, JIAO, AND KUANG PHYSICAL REVIEW A 109, 042609 (2024)

two-mode ECS with components |α1, β1〉 + |α2, β2〉 is called
a symmetric ECS when it remains invariant after exchang-
ing the state parameters of the two modes, i.e., |α1, β1〉 +
|α2, β2〉 = |β1, α1〉 + |β2, α2〉. Otherwise, it is an asymmet-
ric ECS, i.e., |α1, β1〉 + |α2, β2〉 �= |β1, α1〉 + |β2, α2〉. The
NOON-type ECS is just a specific example of the symmetric
two-mode ECS |α〉|β〉 + |β〉|α〉.

Recently, it was demonstrated that the symmetric ECS
|α〉|β〉 + |β〉|α〉 is the optimal ECS with respect to the sep-
arable coherent state |α〉|β〉 for quantum phase estimation in
lossy interferometry [32] under the constraint of the same
input mean photon number. Entanglement in the symmet-
ric ECS is the critical. reason to attribute to enhancing the
phase sensitivity. On the other hand, it is noted that the
ECS, |α, β〉 + |−α,−β〉, is an asymmetric ECS when α �= β,
which is not invariant under the exchange of the state pa-
rameters α and β. It becomes the symmetric ECS |α〉|α〉 +
|−α〉|−α〉 when α = β. As is well known, quantum nonlocal-
ity is a powerful resource for quantum information processing.
It was found that the asymmetric ECS has obvious advantages
over the symmetric ECS in testing the Bell-Clauser-Horne-
Shimony-Holt inequality and can significantly increase the
violation of the inequality [8]. This implies that the asymmet-
ric ECS has stronger quantum nonlocality than the symmetric
ECS. Asymmetry-enhanced quantum nonlocality of the asym-
metric ECS inspires an interesting question, whether the
asymmetry of the asymmetric ECS can improve the sensitivity
of quantum phase sensing.

In this paper, we study quantum phase sensing based on the
asymmetric ECS |α, β〉 + |−α,−β〉 and show how to effec-
tively enhance the phase sensitivity by using the asymmetric
ECS. We find that the asymmetry of the asymmetric ECS can
significantly enhance the phase-sensing precision compared
with the symmetric ECS under the constraint of the same
input mean photon number. Furthermore, we show that the
asymmetric ECSs have greater capability against decoherence
induced by photon loss compared with the symmetric ECS. It
is indicated that the asymmetric ECSs have obvious advan-
tages over the symmetric ECSs in quantum phase sensing.
We also study the practical phase-sensing scheme with the
intensity-difference measurement and show that the asymme-
try in the asymmetric ECS can enhance the phase sensitivity
in the practical phase-measurement scheme.

This paper is structured as follows. In Sec. II, we study
the quantum phase sensing with asymmetric ECSs via the
MZI in the absence of photon loss. In Sec. III, we inves-
tigate the quantum phase sensing with asymmetric ECSs
under the effect of decoherence induced by photon loss. In
Sec. IV, we discuss the quantum phase sensing in an optical
intensity-difference-measurement scheme with an asymmet-
ric two-mode ECS. Finally, our conclusions are summarized
in Sec. V.

II. ASYMMETRY-ENHANCED PHASE SENSING WITH
ASYMMETRIC ECSs WITHOUT PHOTON LOSS

In this section, we study asymmetry-enhanced phase sens-
ing with asymmetric ECSs in the absence of photon loss with
the photon-loss rate R = 0. We will show that the performance

FIG. 1. Schematic of the quantum phase sensing with the Mach-
Zehnder interferometer. BS, beam splitter.

of the asymmetric ECS can surpass that of the symmetric ECS
in the quantum phase estimation.

The MZI is a well-known optical device in quantum
metrology. We consider the MZI scheme of the quantum
phases sensing [27] in which the MZI is constructed with two
50:50 beam splitters and one phase shift in one arm, as shown
in Fig. 1. We study quantum phase sensing with the input
sensor state after the first beam splitter being the following
two-component ECS:

|�〉 = N (|α〉1|kα〉2 + |−α〉1|−kα〉2) (k �= 0), (1)

where |±α〉1 and |±kα〉2 are coherent states with ampli-
tudes ±α and ±kα for the first and second sensor modes,
respectively. k is an arbitrary nonzero real number. The nor-
malization constant is given by

N = [
2 + 2e−2(1+k2 )|α|2]−1/2

. (2)

We can see that the ECS given by Eq. (1) is the symmetric
ECS when k = ±1. However, the ECS given by Eq. (1) is
the asymmetric ECS when k �= ±1. In what follows we will
show that the asymmetry of the asymmetric ECS would be
a quantum resource to exhibit the quantum advantage of the
quantum phase sensing.

In order to investigate achievable phase sensitivity with
the asymmetric ECS, we directly evaluate the quantum Fisher
information (QFI) of the output state of the MZI sensor after
phase accumulation with the following expression:

|�(φ)〉 = eiφn̂2 |�〉
= N[|α〉1|eiφkα〉2 + |−α〉1|−eiφkα〉2], (3)

where n̂2 = â†
2â2 is the photon number operator of the second

sensor mode.
The QFI of the output state of the phase sensor |�(φ)〉 with

respect to the phase parameter φ is given by

FQ = 4[〈� ′(φ)|� ′(φ)〉 − |〈� ′(φ)|�(φ)〉|2], (4)

where the derivative is given by

|� ′(φ)〉 = ∂

∂φ
|�(φ)〉 = in̂2|�(φ)〉. (5)

Then we can obtain

FQ = 4
[〈

n̂2
2

〉 − (〈n̂2〉)2
]
, (6)

where the expectation values are taken with respect to the
sensor input state |�〉 given by Eq. (1).
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We note that the phase sensitivity should be determined
by the relation between the QFI and the total mean photon
number in the input state of the two sensor modes |�〉. The
total photon number operator is n̂ = n̂1 + n̂2, with n̂1 = â†

1â1

being the photon number operator of the first sensor mode.
It is straightforward to obtain the following the expectation
values of the photon number operators in the input state |�〉
given by Eq. (1):

〈n̂1〉 = |α|2 1 − e−2|α|2(1+k2 )

1 + e−2|α|2(1+k2 )
, (7)

〈n̂2〉 = k2|α|2 1 − e−2|α|2(1+k2 )

1 + e−2|α|2(1+k2 )
, (8)

〈n̂〉 = (1 + k2)|α|2 1 − e−2|α|2(1+k2 )

1 + e−2|α|2(1+k2 )
. (9)

Then we have

〈n̂1〉 = 1

1 + k2
〈n̂〉, 〈n̂2〉 = k2

1 + k2
〈n̂〉. (10)

Similarly, we can get the following expectation values:
〈
n̂2

2

〉 = k2

1 + k2
〈n̂〉 + k4|α|4, (11)

〈
n̂2

1

〉 = 1

1 + k2
〈n̂〉 + |α|4, (12)

〈n̂2〉 = 〈n̂〉 + (1 + k2)2|α|4. (13)

Substituting Eqs. (10)–(13) in Eq. (6), we can express the
QFI of the output state of the MZI sensor |�(φ)〉 in terms of
the total mean photon number and its covariance as

FQ =
(

2k

1 + k2

)2

[〈n̂〉 + k2(�n̂)2], (14)

where 〈n̂〉 and (�n̂)2 are the expectation value and the covari-
ance of the total photon number operator in the input state of
the phase sensor |�〉 given by Eq. (1).

It is interesting to note that a higher phase sensitivity
can be attained in the larger asymmetric regime. Indeed,
from Eq. (14) we obtain FQ ≈ 4

k2 [〈n̂〉 + k2(�n̂)2] in the large
asymmetric regime of k � 1. The ultimate precision of the
phase sensitivity is given by the quantum Cramér-Rao bound
δφmin = 1

√
FQ, so we can find the ultimate precision with the

following expression:

δφmin ≈ k

2
√

〈n̂〉 + k2(�n̂)2
, (15)

which indicates that the phase-sensitivity limit may surpass
the SQL and reach the sub-Heisenberg or even Heisenberg
limit.

In Fig. 2, we plot the QFI with respect to the mean photon
number n̄ for different values of the asymmetric parameter.
The dotted, dash-dotted, and dashed lines correspond to k =
1, 2, and 10, respectively. The solid line denotes the QFI at
the SQL (FQ = n̄). Note that the case with k = 1 corresponds
to the symmetric ECS. From Fig. 2, we can observe that the
QFI in the whole asymmetric-parameter regime of k > 1 is
always larger than the QFI of the SQL. And the QFI of the
asymmetric ECS (k > 1) is larger than that of the symmetric
ECS (k = 1) under the constraint condition of the same input
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FIG. 2. The QFI with respect to the total mean photon number n̄
in the absence of photon loss (R = 0). The dotted, dash-dotted, and
dashed lines correspond to k = 1, 2, and 10, respectively. The solid
line denotes the QFI at the SQL.

mean photon number n̄. This implies that the phase-sensitivity
limit δφmin of the asymmetric ECS is lower than that of the
symmetric ECS. In particular, Fig. 2 indicates that in the small
mean-photon-number regime of about n̄ < 3, we find FQ ∼
n̄2. So we have phase sensitivity δφmin ∼ 1/n̄ because δφmin =
1/

√
FQ. This means that the Heisenberg limit of the phase sen-

sitivity is attainable in the small mean-photon-number regime.
Therefore, we can conclude that the asymmetry of the sensor
input state can enhance the phase-sensitivity limit.

In order to further demonstrate the sensitivity limit of
the asymmetric ECS in the phase estimation, in Table I we
list some representative data for the QFI and the total mean
photon number n̄ and its square n̄2 when k = 10. From the
data in Table I, we find δφmin < 1/n̄ when 1 < n̄ � 4 be-
cause FQ > n̄2. This implies that the phase-sensitivity limit of
the asymmetric ECS can surpass the Heisenberg limit in the
regime of the small photon number. In the regime of n̄ > 4, we
find n̄ < FQ < n̄2, which indicates that the phase-sensitivity
limit of the asymmetric ECS can surpass the SQL and reach
the sub-Heisenberg limit.

III. QUANTUM PHASE SENSING UNDER DECOHERENCE

In this section, we study the quantum phase sensing in the
presence of decoherence induced by photon loss. We shall
calculate the QFI with decoherence and discuss the influence
of the decoherence on the ultimate precision of the phase
sensitivity. The photon loss can be modeled by inserting two
identical beam splitters in each optical arm of the MZI phase

TABLE I. The QFI of the asymmetric ECS with respect to the
total mean photon number n̄ and its square n̄2 in the absence of
photon loss (R = 0) when the asymmetric parameter is k = 10.

n̄

1.0 1.5 2 2.5 3 3.5 4.0 4.5 5.0

n̄2 1.00 2.25 4.00 6.25 9.00 12.25 16.00 20.25 25.00
FQ 5.78 7.44 9.05 10.48 12.36 13.97 16.05 17.98 20.54
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sensor with the following beam-splitter transformation:

B̂r,r′ (γ ) = exp[i(γ /2)(â†
r′ âr + â†

r âr′ )], (16)

which couples two optical sensor modes r = 1, 2 to two envi-
ronment modes r′ = 1, 2 that are initially in the vacuum. The
beam splitters transform the optical sensor mode into a linear
combination of the optical sensor modes and environment
modes:

B̂r,r′ (γ )â†
r B̂−1

r,r′ (γ ) =
√

T â†
r + i

√
Râ†

r′ , (17)

where T = cos2(γ /2) and R = 1 − T are the transmission
and loss rates of the photons, respectively. When T = 1
(R = 0), there is no photon loss in the interferometer, and
when T = 0 (R = 1), all input photons leak out of the
interferometer.

We consider the case in which the input sensor state is |�〉
given by Eq. (1) while the two environment modes are in the
vacuum state. We assume that the leaks in both arms have the
same transmission coefficient T . Then the total output state of
the sensor modes and environment modes before the second
beam splitter is given by

|�(φ)〉 = B̂1,1′ (γ )B̂2,2′ (γ )Û (φ)|�〉|0, 0〉1′,2′ , (18)

where the phase-shift transformation is defined by Û (φ) =
exp[iφn̂2].

After the actions of the beam-splitter and phase-shift trans-
formations, Eq. (18) becomes

|�(φ)〉 = N[|
√

T α〉1|i
√

Rα〉1′

× |eiφ
√

T kα〉2|eiφ i
√

Rkα〉2′

+ | −
√

T α〉1| − i
√

Rα〉1′

× | −
√

T kαeiφ〉2| − i
√

Rkαeiφ〉2′ ], (19)

which can be simply expressed as

|�(φ)〉 = N+[|φ1(T )〉|i
√

Rα〉1′ |eiφ i
√

Rkα〉2′

+ |φ2(T )〉|−i
√

Rα〉1′ |−i
√

Rkαeiφ〉2′ ], (20)

where we have introduced two sensor-mode states.

|φ1(T )〉 = |
√

T α〉1|eiφ
√

T kα〉2,

|φ2(T )〉 = | −
√

T α〉1|−eiφ
√

T kα〉2, (21)

which satisfy the following nonorthogonal relation:

〈φ1(T )|φ2(T )〉 = e−2T (1+k2 )|α|2 . (22)

In the presence of photon loss, the pure input state of the
sensor modes will evolve to a mixed state. If the eigenvalues
and eigenstates of the mixed state are known, the quantum
Fisher information can be easily calculated by the use of
the diagonalization method for a density matrix developed in
Ref. [31]. The reduced density operator of the sensor modes
is given by

ρ̂(T ) = N2
{|φ1(T )〉〈φ1(T )| + |φ2(T )〉〈φ2(T )|

+ 2e−2R(1+k2 )|α|2 [|φ1(T )〉〈φ2(T )| + H.c.]
}
. (23)

Following the diagonalization method in Ref. [31], through
some tedious calculations we can obtain the eigenvalues and

eigenfunctions of the reduced density operator of the sensor
modes:

λ± = 1
2 (1 ± �), (24)

� =
√

1 − N4
(
1 − e−4T (1+k2 )|α|2)(1 − e−4R(1+k2 )|α|2). (25)

Two orthogonal eigenfunctions of the reduced density opera-
tor are given by

|λ±(φ)〉 = M±(η±|
√

T α〉1|eiφ
√

T kα〉2

+ |−
√

T α〉1| − eiφ
√

T kα〉2), (26)

where the normalization constants are given by

M± = [
(1 + η2

±) + 2η±e−2T (1+k2 )|α|2]−1/2
, (27)

η± = N2
[
2e−2T (1+k2 )|α|2 + e−2R(1+k2 )|α|2]
2λ± − N2

[
2 + e−2(1+k2 )|α|2] . (28)

Since the eigenvalues of the reduced density operator of
the sensor modes are independent of the phase parameter φ,
we can calculate the QFI by using the following formula [31]:

FQ =
∑
i=±

λiFQ,i −
∑
i �= j

8λiλ j

λi + λ j

∣∣〈λ′
i

∣∣λ j
〉∣∣2

, (29)

where the first term is the QFI of the eigenvalues of the
reduced density operator of the sensor modes

FQ± = 4(〈λ′
±|λ′

±〉 − |〈λ′
±|λ±〉|2). (30)

For convenience of calculation, we rewrite Eq. (29) as

FQ = [(FQ1,+ − FQ2,+) + (FQ1,− − FQ2,−)]

− (FQ3,+ + FQ3,−), (31)

where we introduce the following functions:

FQ1,± = 4λ±〈λ′
±|λ′

±〉, (32)

FQ2,± = 4λ±|〈λ′
±|λ±〉|2, (33)

FQ3,± = 8λ+λ−
λ+ + λ−

|〈λ′
±|λ∓〉|2. (34)

Making use of the eigenvalues and eigenfunctions of the
reduced density operator given by Eqs. (24) and (26), we
straightforwardly obtain

FQ1,± = 4λ±|M±|2T k2|α|2[(1 + η2
±)(1 + T k2|α|2)

− 2η±(1 − T k2|α|2)e−2T (1+k2 )|α|2], (35)

FQ2,± = 4λ±|M±|4T 2k4|α|4[(1 + η2
±)

− 2η±e−2T (1+k2 )|α|2]2
, (36)

FQ3,± = 8λ+λ−
λ+ + λ−

|M+|2|M−|2T 2k4|α|4

× |(1 + η±η∓) − e−2T (1+k2 )|α|2 (η± + η∓)|2. (37)

In what follows we numerically analyze the influence of
the asymmetry in the asymmetric ECS on the phase-sensitive
limit determined by the QFI given by Eq. (31). In Fig. 3, we
plot the QFI with respect to the total mean photon number
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FIG. 3. The QFI with respect to the total mean photon number for different values of the asymmetric parameter k and the photon-loss rate
R. (a) The asymmetric parameter takes k = 1, 2, 3, and the photon-loss rate R = 0. (b) The asymmetric parameter takes k = 1, 2, 3, and the
photon-loss rate R = 0.3. (c) The asymmetric parameter takes k = 1, 2, 3, and the photon-loss rate R = 0.5. (d) The asymmetric parameter
takes k = 1, 2, 3, and the photon-loss rate R = 0.6. The dotted, dot-dashed, and dashed lines correspond to the values of k = 1, 2, and 3,
respectively.

for different values of the asymmetric parameter k in the
presence of photon loss. The numerical simulation parameters
are chosen to be the photon-loss rates R = 0, 0.3, 0.5, 0.6
for the symmetric ECS (k = 1) and the asymmetric ECS
(k = 2, 5). The solid lines in Figs. 3(a)–3(d) denote the QFI
corresponding to the SQL. The dashed lines show the QFI of
the asymmetric-ECS case. The dotted lines denote the QFI
of the symmetric-ECS case. Figures 3(a)–3(d) show that the
QFI of the symmetric-ECS case decreases with the increase
of photon loss. The QFI is larger than that of the SQL in the
regime of smaller photon loss (0 < R < 0.5). The QFI is equal
to that of the SQL when R = 0.5, while the QFI is smaller
than that of the SQL in the regime of the larger photon loss
(R > 0.5).

However, the situation is significantly different in the pres-
ence of the state asymmetry. The dash-dotted and dashed lines
in Figs. 3(a)–3(d) represent the QFI when the asymmetric
parameter is k = 2 and 5, respectively. In Figs. 3(a)–3(d) we
can observe that the QFI of the asymmetric-ECS case is larger
than that of the symmetric-ECS case and the SQL even in the
presence of strong photon loss with R = 0.6.

We can, in detail, observe the ultraprecise limit of the
asymmetric ECS in the phase estimation by comparing the
QFI with values of n̄2. In Table II, we list some representative
data for the QFI and the total mean photon number n̄ and its
square n̄2 when we take the photon-loss rate R = 0.3 and the
asymmetric parameter k = 2. From the data in Table II, we
can see that FQ > n̄2, i.e., δφmin < 1/n̄, when 1 � n̄ � 2. This
implies that the phase-sensitivity limit of the asymmetric ECS
can surpass the Heisenberg limit in the small-photon-number
regime. Especially, it can be shown that the phase-sensitivity
limit of the asymmetric ECS can also surpass the Heisenberg
limit in the small-photon-number regime even in the case of
strong photon loss. For instance, in the case of strong photon

loss we find that FQ > n̄2 and δφmin < 1/n̄ are still valid in the
small-photon-number regime of n̄ < 1.5 when R = 0.6 and
k = 5.

In order to further demonstrate the asymmetric advantage
of the asymmetric ECS in the phase estimation, in Fig. 4
we numerically plot the QFI with respect to photon loss for
the symmetric and asymmetric ECSs under the condition of
the same input mean photon number n̄ = 26; therefore, the
asymmetric parameter is k = 1, 2, 5, and the corresponding
α is 3.60, 2.28, and 1.00, respectively. The dotted line is
the symmetric-ECS case, while the dash-dotted and dashed
lines corresponds to the asymmetric-ECS case with k = 2
and 5, respectively. From Fig. 4 we can see that the QFI
of the asymmetric-ECS case is much larger than that of the
symmetric-ECS case with the same photon loss. This implies
that the asymmetric ECS has greater capability against photon
loss. And the larger the asymmetric degree of the asymmetric
ECS is, the greater the capability against photon loss is.

From the above numerical analyses we can conclude that
the asymmetric ECS can exhibit a greater quantum advan-
tage in the phase estimation over the symmetric ECS in the

TABLE II. The QFI of the asymmetric ECS with respect to the
total mean photon number n̄ and its square n̄2 in the presence of pho-
ton loss. We take the photon-loss rate R = 0.3 and the asymmetric
parameter k = 2.

n̄

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

n̄2 1.00 2.25 4.00 6.25 9.00 12.25 16.00 20.25 25.00
FQ 2.92 4.06 5.11 6.15 7.21 8.26 9.36 10.40 11.50
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FIG. 4. The QFI with respect to the photon-loss rate R for
different values of the asymmetric parameter k under the condi-
tion of the same input mean photon number n̄ = 26. The dotted
line describes the case of the symmetric ECSs (k, α) = (1, 3.60).
The dot-dashed and dashed lines denote the asymmetric-ECS cases
(k, α) = (2, 2.28) and (k, α) = (5, 1.00), respectively.

presence of photon loss under the constraint of the same
input mean photon number. First, the asymmetric ECS can
create a better phase-sensitivity limit than the symmetric ECS.
Second, the asymmetric ECS has a greater capability against
the photon loss. In particular, in the regime of the small photon
number the phase-sensitivity limit of the asymmetric ECS can
also surpass the Heisenberg limit even in the environment with
the strong photon loss.

IV. QUANTUM PHASE SENSING WITH
INTENSITY-DIFFERENCE MEASUREMENT

In this section, we study the quantum phase sensing in a
real measurement scheme. We consider the ultimate phase
sensitivity with the MZI in the optical intensity-difference
measurement given by the following intensity-difference
operator:

Ŝz = 1
2 (â†â − b̂†b̂). (38)

The sensor output state after the second beam splitter is
given by

ρ̂out(φ) = B̂1,2(π/2)ρ̂(φ)B̂†
1,2(π/2), (39)

where B̂1,2(π/2) is the second 50:50 beam-splitter transfor-
mation in the MZI, and the reduced density matrix ρ̂(φ) of the
sensor modes is given by Eq. (23), which can be expressed as

ρ̂(φ) = λ+|λ+(φ)〉〈λ+(φ)| + λ−|λ−(φ)〉〈λ−(φ) |. (40)

It is straightforward to calculate the expectation value of
the intensity-difference operator Ŝz in the output state ρ̂out of
the MZI with the following result:

〈Ŝz〉 = λ+〈λ+|B̂†
1,2ŜzB̂1,2|λ+〉 + λ−〈λ−|B̂†

1,2ŜzB̂1,2|λ−〉
= Sz,+ + Sz,−, (41)

where Sz,± is given by

Sz,± = − λ±kT |α|2 sin φM2
+
[
(1 + η2

±) − 2η±e−2T |α|2(k2+1)
]
.

(42)

Similarly, the expectation value of the operator Ŝ2
z in the

sensor output state ρ̂out can be obtained with the following
expression:

〈
Ŝ2

z

〉 = Sz2,+ + Sz2,−, (43)

where Sz2,± is given by

Sz2,± = λ±T 2|α|4k2 sin2 φ + λ±
4

|M±|2T |α|2(1 + k2)

× [
(1 + |η±|2) − e−2(1+k2 )|α|2 (η± + η∗

±)
]
. (44)

Hence, the phase sensitivity in the intensity-difference mea-
surement scheme is given by the error transfer equation

�φ =
√〈

Ŝ2
z

〉 − 〈Ŝz〉2

|∂〈Ŝz〉/∂φ| . (45)

In Fig. 5, under the condition of the same input mean
photon number n̄ = 26 we plot the phase sensitivity in the
intensity-difference-measurement scheme for different val-
ues of the asymmetric parameter (k, α) = (1, 3.60), (k, α) =
(2, 2.28), and (k, α) = (5, 1.00). Figures 5(a) and 5(b) cor-
respond to the two cases with and without photon loss,
respectively. The solid lines in Fig. 5 denote the quantum
Cramér-Rao bound given in the previous section. From Fig. 5
we can see that the phase sensitivity described by �φ be-
comes better as the asymmetric parameter k increases for
both the cases without and with photon loss, and it more
closely approaches the quantum Cramér-Rao bound. There-
fore, we can conclude that the asymmetry of the asymmetric
ECS may enhance the phase sensitivity in the practical phase-
measurement scheme.

Finally, we investigate the asymmetry-enhanced phase
sensing by calculating the classical Fisher information for the
above intensity-difference-measurement scheme. In general,
the classical Fisher information determines the phase sensi-
tivity once we have chosen a single specific measurement
with positive operator-valued measure (POVM) elements. The
POVM of the intensity-difference measurement is given by

�̂nm = |n, m〉〈n, m|, (46)

where |n, m〉 is the eigenstate of the intensity-difference oper-
ator Ŝz defined in Eq. (38) with the eigenvalue (n − m)/2.

For simplicity, we consider the situation without photon
loss. In this case, the sensor output state after the second beam
splitter is given by

|ψ (φ)〉out = B̂12(π/4)|�(φ)〉, (47)

where B̂12(π/4) is the 50:50 beam-splitter transformation and
|�(φ)〉 is given by Eq. (3).

The conditional probability distribution associated with the
specific measurement Ŝz is given by

P(Sz|φ) = Tr[ρout (φ)�̂nm], (48)

where the density operator of the sensor output state is given
by ρout (φ) = |ψ (φ)〉out〈ψ (φ)|.
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FIG. 5. The phase sensitivity in the intensity-difference measurement scheme for different values of the asymmetric parameter k and
photon-loss rate R under the condition of the same input mean photon number n̄ = 26. (a) The case without photon loss. (b) The case in the
presence of photon loss. Here the solid line denotes the corresponding quantum Cramér-Rao bound �φCR when k = 1 and n̄ = 26.

It is straightforward to get the conditional probability dis-
tribution and its derivative with the following expressions:

Pn,m(Sz|φ) = 2N2e−(1+k2 )|α|2 [1 + (−1)n+m]
In
+(φ)Im

− (φ)

n!m!
,

(49)
∂Pn,m(Sz|φ)

∂φ
= 2k cos φN2|α|2e−(1+k2 )|α|2 [1 + (−1)n+m]

× nIn−1
+ (φ)Im

− (φ) − mIn
+(φ)I (m−1)

− (φ)

n!m!
, (50)

where N is the normalization constant given by Eq. (2) and
we have introduced the following expressions:

I±(φ) = 1
2 |α|2(1 ± 2k sin φ + k2). (51)

The classical Fisher information is given by the following
expression:

Fc(φ) =
∞∑

n,m=0

1

Pn,m(Sz|φ)

(
∂Pn,m(Sz|φ)

∂φ

)2

, (52)

from which we can obtain the classical Cramér-Rao bound of
the phase sensitivity expressed in terms of the classical Fisher
information [55]:

�φCCR = 1√
Fc

. (53)

Under the constraint of the same input mean photon
number n̄ = 26, in Fig. 6 we plot the classical Cramér-Rao
bound of the phase sensitivity in the intensity-difference mea-
surement scheme when n̄ = 26 for the symmetric-ECS case
(k, α) = (1, 3.60) and the asymmetric-ECS cases (k, α) =
(2, 2.28) and (k, α) = (5, 1.00). From Fig. 6 we can see that
the phase sensitivity of the asymmetric ECS is better than that
of the symmetric ECS, and it becomes better as the asym-
metric parameter k increases. Therefore, we can conclude
that the asymmetry of the asymmetric ECS may enhance the
phase sensitivity in the practical phase-measurement scheme.
In Fig. 6, we also plot the corresponding quantum Cramér-
Rao bound �φCR when k = 1 and n̄ = 26. From Fig. 6, it
is straightforward that to see that the classical Cramér-Rao
bound of the phase sensitivity in the intensity-difference mea-
surement scheme is larger than the quantum Cramér-Rao

bound under the condition of the same input mean photon
number.

V. CONCLUSIONS

In this work, we have studied the quantum phase sensing
with asymmetric two-mode ECSs via the MZI. We first inves-
tigated quantum phase sensing with the asymmetric ECS in
the absence of photon loss. We showed that the asymmetry of
the input asymmetric ECS can be used as a quantum resource
to enhance the sensitivity of the quantum phase estimation.
In particular, we found that the phase-sensitivity limit of the
asymmetric ECS can reach and even surpass the Heisenberg
limit in certain parameter regimes.

We then studied the quantum phase sensing with the asym-
metric two-mode ECS under the effects of decoherence. We
used an optical beam splitter to describe the photon loss.
We showed that the asymmetric ECS can exhibit a quantum

FIG. 6. The classical Cramér-Rao bound of the phase sensitivity
in the intensity-difference measurement scheme for different values
of the asymmetric parameter k under the condition of the same
input mean photon number n̄ = 26. The dotted line describes the
case of the symmetric ECSs (k, α) = (1, 3.60). The dot-dashed and
dashed lines denote the asymmetric-ECS cases (k, α) = (2, 2.28)
and (k, α) = (5, 1.00), respectively. Here the solid line denotes the
corresponding quantum Cramér-Rao bound �φCR when k = 1 and
n̄ = 26.
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advantage in phase sensing over the symmetric ECS in the
presence of photon loss. We found that the asymmetric ECS
not only can create a better phase sensitivity limit than the
symmetric ECS but can also have greater capability against
photon loss. In particular, in the regime of the small photon
number the phase-sensitivity limit of the asymmetric ECS can
also surpass the Heisenberg limit even in the environment with
strong photon loss.

We also investigated quantum phase sensing in a practical
measurement scheme with asymmetric two-mode ECSs. As
a concrete example, we studied phase sensitivity with the
MZI in the optical intensity-difference-measurement scheme.
We found that the asymmetry in the asymmetric ECS can
significantly enhance the phase sensitivity in the practi-
cal phase-measurement scheme. In summary, our results
reveal that the asymmetry in the asymmetric ECS is a

quantum-sensing resource, and the present work may be ap-
plied to ultrasensitive quantum phase sensing in the presence
of photon loss.
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