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Quantum control and noise protection of a Floquet 0-π qubit
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Time-periodic systems allow engineering new effective Hamiltonians from limited physical interactions. For
example, the inverted position of the Kapitza pendulum emerges as a stable equilibrium with rapid drive of
its pivot point. In this work we propose the Kapitzonium: a Floquet qubit that is the superconducting circuit
analog of a mechanical Kapitza pendulum. Under periodic driving, the bit- and phase-flip rates of the emerging
qubit states are exponentially suppressed with respect to the ratio of the effective Josephson energy to charging
energy. However, we find that dissipation causes leakage out of the Floquet qubit subspace. We engineer a
passive cooling scheme to stabilize the qubit subspace, which is crucial for high-fidelity quantum control under
dissipation. Furthermore, we introduce a hardware-efficient fluorescence-based method for qubit measurement
and discuss the experimental implementation of the Floquet qubit. Our work provides the fundamental steps to
develop more complex Floquet quantum systems from the ground up to realize large-scale protected engineered
dynamics.
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I. INTRODUCTION

Superconducting circuits offer flexible qubit designs,
which hold promise for engineering scalable quantum com-
puters [1–11]. Quantum information is encoded in eigenstates
of the circuit, and qubit properties can be engineered with
different circuit designs. Single-mode circuits such as the
transmon and fluxonium have demonstrated long coherence
times and high gate fidelity [1–4]. In addition, their ease of
fabrication and manipulability make them popular choices as
qubits. More complex multimode circuits have been proposed,
such as the 0-π qubit [5], which in theory provide a greater
level of protection against decay and dephasing. The intrinsic
noise protection of these circuits comes from engineering two
degenerate ground states with disjoint wave functions [12,13].
Many local noise processes are significantly suppressed by
these types of states. However, the protected qubits usually
require circuit parameters that are demanding for current ex-
periments [6,12,13].

Alternative and less demanding approaches to realizing
circuit-level noise protection have emerged over the past
decade. In these approaches, time modulation of the super-
conducting circuit is used to engineer a subspace that is
protected against either bit flips or phase flips or both. Promi-
nent examples of these schemes include the dissipative cats
[14–16], Kerr cats [17,18], and recent proposals and imple-
mentations of autonomously corrected qubits [19–21]. In all
of these works, the modulation frequencies and amplitudes are
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tuned to induce a certain set of transitions, with the notable
exception of Ref. [21], where a Gottesman-Kitaev-Preskill
qubit is stabilized by modulating the Josephson circuit with
a microwave frequency comb. The drive amplitudes are usu-
ally much weaker than the Josephson energy, resulting in
qubit states localized around the single Josephson potential
minimum.

Here we propose a qubit design based on circuits whose
Josephson potentials are strongly modulated in time. The
modulation frequency does not have to align with any partic-
ular transitions, simplifying the handling of ac Stark effects in
the presence of multiple strong drives [20]. In general, the dy-
namics of a time-periodic system is governed by the effective
Hamiltonian from the Floquet theory [22,23]. Engineering the
Floquet Hamiltonian enables new designs of superconducting
qubits [24–26]. The Floquet qubit we study is the supercon-
ducting circuit analog to the mechanical Kapitza pendulum
[27]. In the Kapitza pendulum, the pivot point of the pendulum
is periodically moved up and down [Fig. 1(a)], leading to
qualitatively new dynamics. Notably, the Kapitza pendulum
has two stable equilibria: one at φ = 0 and the other at φ = π ,
where φ is the angle relative to the vertical downward position
of the pendulum. In the qubit that we propose here, superpo-
sitions of the φ = 0 and φ = π configurations make up the
logical subspace of the qubit. We thus name this Floquet 0-π
qubit the Kapitzonium. Note that the quantum Kapitza pen-
dulum along with its connection to protected superconducting
qubits has been studied in Ref. [23]. In this paper we focus on
the quantum control and noise protection of the Kapitzonium.

Our paper is organized as follows. In Sec. II we introduce
the Kapitzonium and its unitary gates. In Sec. III we consider
the open-system dynamics of the Kapitzonium where heating
effects induced by charge noise are suppressed with engi-
neered cooling. In Sec. IV we discuss some technical aspects
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FIG. 1. Schematics of the Kapitzonium. (a) Kapitza pendulum.
(b) Superconducting circuit implementing the Kapitzonium. (c) Ef-
fective double-well potential showing the disjoint wave functions and
degeneracy of |0〉 and |π〉.

of the experimental implementation of the Kapitzonium. In
Sec. V we conclude our discussion with potential directions
for future study.

II. UNITARY DYNAMICS OF THE KAPITZONIUM

A. Kapitzonium Hamiltonian

The Kapitzonium circuit [Fig. 1(b)] is identical to that
of a capacitively shunted superconducting quantum interfer-
ence device (SQUID). The external flux �ext(t ) threading the
SQUID loop is used to emulate the effect of a time-modulated
pivot point of a pendulum. The Kapitzonium Hamiltonian is
derived with the established circuit quantization procedures
[28–31]. The branch flux variable ϕ̂k across each Joseph-
son junction and the conjugate charge variable n̂k satisfy
[ϕ̂k, n̂k] = i for k = 1, 2. The circuit Hamiltonian is

Ĥ =
∑

k=1,2

4ECkn̂2
k − EJk cos ϕ̂k, (1)

where EJk are the Josephson energies and ECk = e2/2Ck are
the charging energies, with Ck the sum of junction capacitance
and shunt capacitance.

Flux quantization sets the constraint of ϕ̂1 − ϕ̂2 = �ext(t ).
In the symmetric case of EJ1 = EJ2 and EC1 = EC2, Eq. (1)
reduces to the Kapitzonium Hamiltonian

Ĥ (t ) = 4ECn̂2 − EJ cos φext(t ) cos φ̂, (2)

where φext(t ) = �ext(t )/2. The flux variable φ̂ = (ϕ̂1 + ϕ̂2)/2
corresponds to the pendulum rotation angle and n̂ = n̂1 + n̂2

is the conjugate charge variable satisfying [φ̂, n̂] = i. The
charging energy is EC = e2/2(C1 + C2) and the Josephson
energy is EJ = EJ1 + EJ2.

To realize the analog of the Kapitza pendulum, we set the
external flux to φext(t ) = ωt . The idling dynamics is described
by a Floquet Hamiltonian

Ĥ0(t ) = 4ECn̂2 − EJ cos ωt cos φ̂ (3)

with a time period of T = 2π/ω. The effective Hamiltonian
of Ĥ0(t ) has been derived in Ref. [23] and is given by

Ĥeff = 4ECn̂2 − ẼJ cos 2φ̂ (4)

up to the second order, where ẼJ = ECE2
J /ω2. Through-

out this paper, we choose Kapitzonium parameters EJ/2π =
100 GHz, ω/2π = 10 GHz, and EC/2π = 0.01 GHz unless
specified otherwise. Such a parameter choice guarantees that
higher-order terms can be neglected where the third-order
term is 0 and the fourth-order term scales as E3

CE2
J /ω4 � ẼJ

[22,23]. Since φ̂ is 2π periodic, Ĥeff has two near-degenerate

ground states (|0〉 ± |π〉)/
√

2 in the deep transmon regime of
ẼJ/EC = 100. Here |0〉 and |π〉 are localized at the two min-
ima of the effective potential Veff(φ) = −ẼJ cos 2φ [Fig. 1(c)]
with exponentially small overlap.

We can understand the noise protection of the Kapitzonium
intuitively from the effective Hamiltonian. Since only two
Cooper pairs tunneling is allowed by cos 2φ̂, one ground state
belongs to the even Cooper pair subspace while the other
belongs to the odd Cooper pair subspace. The distinct parities
of the two ground states hold even in the presence of the offset
charge ng, modeled by replacing n̂ with n̂ − ng. As a result,
the charge operator n̂ does not couple the two ground states.
Furthermore, the ground-state wave functions are delocalized
in the charge space since ẼJ/EC � 1, leading to exponentially
suppressed charge dispersion in ng with

√
ẼJ/EC = EJ/ω,

similar to the usual transmon [3]. For more discussion of the
coherence properties of the Kapitzonium, refer to Sec. IV C.

B. Floquet eigenstates

The effective Hamiltonian provides a useful approximate
picture of the potential and the “ground” states of the Kapitzo-
nium; note that the states (|0〉 ± |π〉)/

√
2 are only the ground

states of the effective Hamiltonian. To better understand the
states, gates, and noise, we need to move beyond the effective
description and consider the Floquet eigenstates of the qubit.
The Floquet eigenstates |�α (t )〉 of the idling Kapitzonium
Hamiltonian Ĥ0(t ) satisfy

Ĥ0(t )|�α (t )〉 = i
d

dt
|�α (t )〉 (5)

and have the form

|�α (t )〉 = e−iεαt |�α (t )〉. (6)

Here |�α (t )〉 = |�α (t + T )〉 are the periodic Floquet modes
and εα are the Floquet eigenenergies.

We can calculate the Floquet eigenenergies and eigenstates
to verify the double-well nature of the effective potential.
Here the indices α are sorted based on the overlaps between
|�α (t = 0)〉 and the eigenstates of Ĥeff. In Fig. 2(a) we find
a close match between the exact Floquet eigenenergies εα

and the spectrum of Ĥeff, and the lowest few eigenstates
form near degenerate two-level manifolds with ε2k ≈ ε2k+1

for k = 0, 1, 2. Within each manifold, we define the Floquet
modes |�+

k (t )〉 ≡ |�2k (t )〉 and |�−
k (t )〉 ≡ |�2k+1(t )〉, where

+ and − represent whether the wave function has the same or
opposite sign in the 0 well and π well. In Fig. 2(b) we plot the
localized Floquet modes defined as

∣∣�0
k (t )

〉 = 1√
2

[|�+
k (t )〉 + |�−

k (t )〉],
∣∣�π

k (t )
〉 = 1√

2
[|�+

k (t )〉 − |�−
k (t )〉], (7)

where |�0
k (t )〉 and |�π

k (t )〉 are localized in the 0 well and π

well, respectively.
In contrast to the eigenstates of a static Hamiltonian, Flo-

quet modes are not stationary but periodic in time. Figure 2(c)
shows the φ space probability distributions of the localized
Floquet modes |�0

0(t )〉 and |�π
0 (t )〉. The rapidly inverting
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FIG. 2. (a) Floquet eigenenergies of Ĥ0(t ) compared with the
spectrum of Ĥeff. The energy splitting in the ground-state manifold
is (ε1 − ε0)/2π ≈ 4.7 kHz, which is much smaller than the gap be-
tween the ground and first excited manifolds. (b) Localized Floquet
modes |�0

k (t )〉 and |�π
k (t )〉 at t = 0 for k = 0, 1, 2. (c) Probability

distributions of the localized Floquet modes |�0
0(t )〉 and |�π

0 (t )〉
from 0 to T in the φ space. (d) Effective potential when performing
different gates.

cos φ potential causes φ = 0 and π to alternate between being
stable or unstable equilibrium points, driving oscillations in
the spreads of the wave functions. Such oscillations are ne-
glected in the effective Hamiltonian description but induce
heating despite a zero-temperature bath, as we discuss in
Sec. III.

A single-qubit state (c0, c1) can be encoded in the Kapit-
zonium as

|ψ (t )〉 = c0|�0(t )〉 + c1|�1(t )〉, (8)

where c0 and c1 are invariant under Ĥ0(t ). For (ε1 − ε0)/2π ≈
4.7 kHz, 1/(ε1 − ε0) is much longer than the timescale of any
relevant Kapitzonium operations. We thus assume ε0 = ε1 and
only consider the system at t = nT to simplify our discussion.
In this case, the qubit basis states |�0〉 and |�1〉 become static
and are related to |0〉 and |π〉 by the transformations

|�0〉 = 1√
2

(|0〉 + |π〉),

|�1〉 = 1√
2

(|0〉 − |π〉). (9)

Note that the |0〉 state can be initialized by starting from the
ground state of a transmon and then adiabatically turning on
the Floquet drive (see Appendix B).

C. Kapitzonium gates

The encoded qubit state can be manipulated by engineer-
ing the flux drive φext(t ). The resulting effective potentials
[Fig. 2(d)] provide the intuition for the Kapitzonium gates.
Here we focus on the gate Hamiltonians and details on the
required flux drive are discussed in Sec. IV.

1. The X rotation

The X gate Hamiltonian Ĥx(t ) = Ĥ0(t ) + αx cos φ̂ gener-
ates the rotation along the X axis. The effective potential now
becomes an asymmetric double well V (x)

eff (φ) = −ẼJ cos 2φ +
αx cos φ, which lifts the degeneracy between |0〉 and |π〉.
Therefore, we have Ĥx(t ) ≈ αx(|0〉〈0| − |π〉〈π |) = αxσ̂x in
the {|�0〉, |�1〉} basis, leading to Rabi oscillation between
|�0〉 and |�1〉.

2. The Z rotation

The depth ẼJ of the effective double-well potential can
be controlled dynamically with the flux driving frequency ω.
Increasing ω reduces ẼJ/EC = (EJ/ω)2 and induces stronger
coupling between |0〉 and |π〉. We choose ωz/2π = 20 GHz
for the Z gate, which lifts the degeneracy between |�0〉 and
|�1〉 with a splitting (ε1 − ε0)/2π ≈ 1.8 MHz. This imple-
ments a phase gate for |�0〉 and |�1〉, i.e., the rotation along
the Z axis.

3. Two-qubit XX rotation

We couple two Kapitzoniums with a Josephson
junction to realize the XX gate Hamiltonian Ĥxx(t ) =
Ĥ0(t ) + αxx cos(φ̂1 − φ̂2). Replacing the Josephson junction
with a SQUID makes the coupling tunable. The joint effective
potential is V (xx)

eff (φ1, φ2) = −ẼJ cos 2φ1 − ẼJ cos 2φ2 +
αxx cos(φ1 − φ2), which lifts the degeneracy between
{|00〉, |ππ〉} and {|0π〉, |π0〉}. Therefore, we have Ĥxx(t ) ≈
αxx(|00〉〈00| + |ππ〉〈ππ | − |0π〉〈0π | − |π0〉〈π0|) = αxxσ̂x

⊗ σ̂x in the {|�0〉, |�1〉} basis, generating the XX rotation.

III. OPEN-SYSTEM DYNAMICS OF KAPITZONIUM

A. Heating problem

In an open quantum system, a coupling between the sys-
tem and bath allows the bath to induce transitions between
different eigenstates of the system. Both the form of the cou-
pling and the temperature of the bath go into determining the
transitions and their rates. For simplicity, we consider only a
zero-temperature bath in this paper. For time-independent sys-
tems, any transition from lower to higher energy will require
energy to be absorbed from the bath. Because of this, static
systems coupled to zero-temperature baths eventually decay
to their ground states.

Considering the level structure in Fig. 2(b), we would
naively expect the zero-temperature bath to induce only the
downward transition |�2〉 → |�0〉, with the opposing tran-
sition |�0〉 → |�2〉 being suppressed as that would require
absorption of energy from the bath. This intuition is incor-
rect because the Kapitzonium is a Floquet system, which
is constantly exchanging energy with the Floquet drive. As
a result, the bath-induced transitions happen in both direc-
tions between the Floquet eigenstates: Both |�2〉 → |�0〉 and
|�0〉 → |�2〉 transitions are allowed in a Kapitzonium inter-
acting with a zero-temperature bath. Therefore, in contrast to
the static 0-π qubit [5], the Floquet |0〉 and |π〉 can still decay
out of the qubit subspace through what looks like a heating
process.

Consider a generic Floquet system Ĥ0(t ) = Ĥ0(t + T )
coupled to some bath degrees of freedom B̂(t ) via the
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system operator Ô. The system-bath Hamiltonian in the ro-
tating frame of the bath is

ĤSB(t ) = Ĥ0(t ) + ÔB̂(t ), (10)

where

B̂(t ) =
∑

k

gk (b̂ke−iωkt + b̂†
keiωkt ). (11)

Here ωk � 0 is the frequency of the kth bath mode and gk is
the coupling between the kth mode and the system.

The emission spectrum of the Floquet system can be cal-
culated in the interaction picture of Ĥ0(t ). More specifically,
the unitary Û0(t ) generated by Ĥ0(t ) is given by

Û0(t, t0) =
∑

α

|�α (t )〉〈�α (t0)|, (12)

where |�α (t )〉 are the Floquet eigenstates of Ĥ0(t ), and
Û0(t, t0) satisfies the Schrödinger equation

i
d

dt
Û0(t, t0) = Ĥ0(t )Û0(t, t0). (13)

Now we could perform the unitary transformation Û0(t, t0),
and the system-bath Hamiltonian in the interaction picture
becomes

H̃SB(t ) = Ô(t )B̂(t ), (14)

where

Ô(t ) = Û †
0 (t, t0)ÔÛ0(t, t0) =

∑
αβ

Oαβ (t )|�α (t0)〉〈�β (t0)|,

(15)

with Oαβ (t ) = 〈�α (t )|Ô|�β (t )〉. We set t0 = 0 without loss of
generality.

Since the Floquet modes |�α (t )〉 are periodic in time, we
Fourier expand Oαβ (t ),

Oαβ (t ) = ei(εα−εβ )t 〈�α (t )|Ô|�β (t )〉

= ei(εα−εβ )t
∞∑

n=−∞
Oαβneinωt , (16)

where Oαβn together with {εα} gives the emission spectrum.
Since all b̂k modes are in vacuum, the transition α → β from
|�α (t0)〉 to |�β (t0)〉 is only possible if εα − εβ + nω > 0,
with the transition rate determined by |Oαβn|2 and the bath
spectral density at frequency εα − εβ + nω. Furthermore, the
transition α → β could emit photons at multiple frequencies
and both α → β and β → α could occur, which is different
from the relaxation of static systems.

In Fig. 3(a) we plot |Oαβn|2 for various transitions of
the Kapitzonium under charge noise with Ô = n̂. The dom-
inant heating processes 0 → 2 (red cross) and 1 → 3 (red
dot) occur at near-degenerate frequency around ω02/2π ≈
ω13/2π ≈ 9.5 GHz. The reverse cooling processes 2 → 0
(blue cross) and 3 → 1 (blue dot) are also allowed at a dif-
ferent frequency around ω20/2π ≈ ω31/2π ≈ 10.5 GHz.

Assuming the bath spectral density is flat, we trace out
the bath degrees of freedom and derive a master equa-
tion for the Kapitzonium. In the interaction picture, the master
equation is ˙̂ρ = κD[Ô−(t )](ρ̂) (see Appendix A), where

(a)

(b)

(c) (d)

In
fid

el
ity

284 8 12 16 20 24 32

Idle

Z
X

Protected

Unprotected

0

3
2

1

FIG. 3. (a) Emission spectrum of the Kapitzonium under charge
noise. The upper (lower) m → n label within each rounded rectangle
corresponds to the cross (dot). Only transitions involving |�0–3〉 with
emission frequencies less than 25 GHz are shown here. (b) Schematic
for the Kapitzonium coupled to a bandpass filter. (c) Two different
regimes of the emission spectrum, which determines whether the
qubit can be protected or not. (d) Idling and gate fidelity for different
intrinsic loss rate κ , with (crosses and diamonds) and without (dots)
the filter.

D[Â](ρ̂) = Âρ̂Â† − 1
2 {Â†Â, ρ̂}. Here κ is the intrinsic loss rate

and

Ô−(t ) =
∑
αβ

O−
αβ (t )|�α (t0)〉〈�β (t0)|, (17)

where

O−
αβ (t ) = ei(εα−εβ )t

∑
εα−εβ+nω<0

Oαβneinωt . (18)

Numerically the matrix elements |O−
20(t )| and |O−

31(t )| are of
order 1; therefore, the intrinsic loss rate κ is approximately the
heating rate from the logical subspace. For a flat bath spectral
density, κ also corresponds to the amplitude damping rate of
the transmon when the Floquet driving is turned off.

Selection rules

We can derive the selection rules for the Kapitzonium
under charge noise to better understand the emission spectrum
in Fig. 3(a). The selection rules come from the symmetry of
the Floquet modes |�α (t )〉 under two different charge parity
transformations �̂1 = ∑

n |−n〉〈n| and �̂2 = ∑
n(−1)n|n〉〈n|,

where {|n〉} are the charge eigenstates.
The Kapitzonium Hamiltonian (3) is invariant under �̂1

with [�̂1, Ĥ0(t )] = 0; therefore, the Floquet modes are parity
eigenstates where �̂1|�α (t )〉 = (−1)π1(α)|�α (t )〉, π1(α) =
0, 1. The parities π1(α) for the first 12 Floquet modes are
given in Table I, which agrees with the eigenstates of Ĥeff

under transformation �̂1. The parity is the same within
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TABLE I. Parities π1(α) and π2(α) for Floquet modes |�α (t )〉
transformed under transformations �̂1 and �̂2.

α 0 1 2 3 4 5 6 7 8 9 10 11

π1(α) 0 0 1 1 0 0 1 1 0 0 1 1
π2(α) 0 1 1 0 0 1 1 0 0 1 1 0

each two-level manifold, whereas it alternates between even
and odd parity for different manifolds. Since �̂1n̂�̂1 =
−n̂, transition between two Floquet eigenstates |�α (t )〉 and
|�β (t )〉 is forbidden, i.e., 〈�α (t )|n̂|�β (t )〉 = 0, if π1(α) =
π1(β ). Therefore, the only allowed transitions are between
{0, 1, 4, 5, . . .} and {2, 3, 6, 7, . . .}, which agree with the
emission spectrum in Fig. 3(a). For example, transitions be-
tween {2, 3} and {0, 1, 4, 5, 8, 9} are allowed while transitions
between {2, 3} and {6, 7, 10, 11} are forbidden.

Furthermore, each allowed transition can happen at multi-
ple frequencies, and we can derive additional selection rules
to characterize the emitted photon frequencies from the par-
ity transformation �̂2. Note that �̂2Ĥ0(t )�̂2 = Ĥ0(t + T/2);
the transformation of the Floquet modes are therefore given
by �̂2|�α (t )〉 = (−1)π2(α)|�α (t + T/2)〉, π2(α) = 0, 1. The
parities π2(α) for the first 12 Floquet modes are given in
Table I.

We can Fourier transform the Floquet modes as

|�α (t )〉 =
∞∑

k=−∞
cαkeikωt |�αk〉, (19)

which leads to

Oαβn =
∞∑

k=−∞
c∗
αkcβ,k+n〈�αk|Ô|�β,k+n〉. (20)

The Fourier components |�αk〉 are parity eigenstates of �̂2:

�̂2|�αk〉 = 1

T cαk

∫ T

0
dt e−ikωt�̂2|�α (t )〉

= (−1)π2(α) 1

T cαk

∫ T

0
dt e−ikωt |�α (t + T/2)〉

= (−1)π2(α)+k|�αk〉. (21)

Since �̂2n̂�̂2 = n̂, for charge noise Ô = n̂ we have

[1 − (−1)π2(α)+π2(β )+n]Oαβn = 0. (22)

Therefore, 2 | π2(α) + π2(β ) + n is a necessary condition to
have Oαβn 
= 0. For example, the transitions 0 ↔ 2 and 1 ↔ 3
can only emit photons at odd n, such as the emissions around
10 GHz with n = 1 [Fig. 3(a)]. On the other hand, the tran-
sitions 0 ↔ 3 and 1 ↔ 2 can only emit photons at even n,
such as the emissions around 0 and 20 GHz with n = 0 and 2
[Fig. 3(a)].

To summarize, the selection rules for the Kapitzonium
under charge noise are (i) the transition between two Flo-
quet eigenstates |�α (t )〉 and |�β (t )〉 is only possible if
π1(α) + π1(β ) = 1 and (ii) for each allowed transition, pho-
ton emission at frequency nω ± (εα − εβ ) is only possible if
2 | π2(α) + π2(β ) + n.

B. Enhanced cooling with a filter

The frequency dependence of the cavity emission suggests
that we can enhance a specific transition rate by increasing
the bath’s spectral density at the transition frequency [32,33].
More concretely, we propose to capacitively couple the Kapit-
zonium to a bandpass filter around 10.5 GHz with 800 MHz
bandwidth [Fig. 3(a) gray shaded region]. The bandpass filter
enhances the cooling processes without causing extra heating,
which preserves the qubit basis states {|�0〉, |�1〉}. Further-
more, the environment cannot distinguish whether the emitted
photon comes from the 2 → 0 or 3 → 1 transition since
ω20 ≈ ω31. Therefore, the phase coherence between |�0〉 and
|�1〉 is also preserved by the cooling processes, enabling fully
autonomous protection of the qubit subspace.

The bandpass filter can be modeled as a chain of linearly
coupled harmonic oscillators â1, . . . , âN [33]. The first filter
mode â1 also couples capacitively to the Kapitzonium via the
interaction gn̂(â1 + â†

1). The full Hamiltonian is [Fig. 3(b)]

Ĥ (t ) = Ĥ0(t ) + ω f

N∑
k=1

â†
k âk + gn̂(â1 + â†

1)

+ J
N−1∑
k=1

(âk â†
k+1 + â†

k âk+1), (23)

where ω f is the center frequency of the filter and J is the
coupling rate between two adjacent filter modes. The last filter
mode âN decays into a zero-temperature bath at rate κ f , which
is described by the Lindblad dissipator κ f D[âN ].

The qubit subspace is autonomously protected when the
engineered cooling rate is sufficiently larger than the intrin-
sic loss rate κ of the Kapitzonium. Following Ref. [33], we
choose N = 3, κ f = 2J , and g = κ f /5 such that the filter
bandwidth is 2κ f and the filter modes are only weakly excited.
The cooling rate is about κc = 4g2/κ f = 4κ f /25 after adia-
batically eliminating all filter modes [33–35], which has been
derived in the Appendix of Ref. [33]. For κ f /2π = 400 MHz
we have κc/2π = 64 MHz. In Fig. 3(d) we plot the average
fidelity of the Kapitzonium idling for 50 ns with (blue crosses)
and without (blue dots) the filter for different values of 1/κ .
The cooling enhanced by the filter reduces the idling infidelity
by more than two orders of magnitude.

C. Gate protection

The filter that protects idling may not protect the Kapit-
zonium gates since the emission spectrum could be different
during the gates. The filter performance is determined by two
quantities of the emission spectrum. One quantity is the fre-
quency spacing B ≡ |(ω20 + ω31) − (ω02 + ω13)|/2 between
the dominant heating and cooling transitions. The B limits the
filter bandwidth κ f and thus the maximal cooling rate κc. The
other quantity is the degeneracy of the two heating (cooling)
transitions measured by � ≡ |ω02 − ω13| = |ω20 − ω31|. In
the degenerate regime where � � κc, such as idling with
�/2π ≈ 0.2 MHz, the qubit subspace is protected [Fig. 3(c)].
In the nondegenerate regime where � � κc, the environment
could distinguish which cooling transition the emitted photon
comes from and dephase the qubit [Fig. 3(c)]. Therefore, the
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qubit basis states |�0〉 and |�1〉 are protected but not their
coherent superpositions.

For the X gate with relatively small αx/2π ≈ 5.2 MHz,
the emission spectrum is similar to the idling emission spec-
trum. Therefore, the idling filter also protects the X gate, with
�/2π ≈ 0.8 MHz well within the degenerate regime.

For the Z gate with ωz/2π = 20 GHz, we have B/2π ≈
468 MHz and �/2π ≈ 27 MHz. A different filter is required
with center frequency at about 20 GHz. The Z gate is un-
protected, since the largest possible cooling rate 4B/25 ≈
75 MHz is comparable to �.

The full protection of the X gate can be verified numeri-
cally, and the gate infidelity is reduced by about two orders
of magnitude with the filter [Fig. 3(d), orange diamonds and
dots]. The partial protection of the qubit basis states during
the Z gate is verified in Appendix B. In principle, the XX gate
should also be fully protected for αxx on the order of a few
megahertz, since its � and B are similar to those of the X
gate. However, we did not simulate the XX gate due to the
high computational cost. The simulations are done by first
finding the Floquet eigenstates in the charge basis and then
transforming into the interaction picture with a cutoff of 30
Floquet eigenstates, keeping all terms with |Oαβn|2 � 10−4 in
Eq. (16). Following Ref. [33], we choose four basis states for
the three filter modes restricted to the zero- and one-excitation
manifolds.

The design and noise protection of Kapitzonium gates lead
to various factors to consider when choosing the Kapitzo-
nium parameters EC , EJ , and ω. First, the Z gate requires
smaller EJ/ωz to lower the effective potential well. This sets
an upper limit on the permissible value of EJ since otherwise
ωz would exceed the range of current microwave generators.
Second, the idling and X gate favor larger EJ/ω, as a deeper
effective potential well widens the gap between the ground
and first excited manifolds, resulting in larger spacing B and
higher cooling rate κc. Finally, EC/ω � 1 is essential to sup-
press higher-order terms in the effective Hamiltonian (4), and
numerically we find EC/ω ∼ 10−3 suitable to preserve the
0-π nature of the Kapitzonium. Given these considerations,
we have chosen the parameters EJ/2π = 100 GHz, ω/2π =
10 GHz, and EC/2π = 0.01 GHz in Sec. II.

D. Fluorescence-based state measurement

Kapitzonium measurements can be performed by engi-
neering a measurement Hamiltonian Ĥmeas(t ) with Floquet
eigenstates {|� ′

α〉} in the unprotected regime. By measuring
the frequency of the emitted photon through the cooling filter,
we learn about which transition it comes from and randomly
project the system to either |� ′

0〉 or |� ′
1〉 [Fig. 4(a)]. For the X

measurement, we choose Ĥmeas(t ) = Ĥ0(t ) + αx cos φ̂, which
is similar to the X gate but with a much larger αx to lift
the degeneracy between ω20 and ω31. In this case, |� ′

0〉 and
|� ′

1〉 are localized in either well, which corresponds to the
measurement basis {|0〉, |π〉} [Fig. 4(b)]. On the other hand,
we choose Ĥmeas as the unprotected Z gate which dephases
the qubit and naturally performs the Z measurement with
measurement basis {|�0〉, |�1〉} [Fig. 4(b)].

The measurement rate is proportional to the occupation
of the excited states |� ′

2〉 and |� ′
3〉. We could increase the
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FIG. 4. (a) Kapitzonium measurement by measuring the fre-
quency of the emitted photon. (b) The measurement basis depends
on how the degeneracy is lifted between ω20 and ω31. (c) Quantum
trajectory simulation of the Kapitzonium X measurement. (d) Single
trajectory corresponding to the red dashed line in (c), where S(ω)
is plotted in the rotating frame of ω f . (e) Charge sensitivity of the
Floquet eigenenergies and the emission spectrum.

measurement rate by capacitively driving |� ′
0〉 ↔ |� ′

2〉 and
|� ′

1〉 ↔ |� ′
3〉 at the heating transition frequency [Fig. 4(a)].

From Eq. (15), the charge operator within the {|� ′
0∼3〉} sub-

space is

n̂(t ) = |� ′
0〉〈� ′

2|(n02eiω02t + n20e−iω20t )

+ |� ′
1〉〈� ′

3|(n13eiω13t + n31e−iω31t ) + H.c., (24)

where we include only the dominant transitions, and for
each transition nαβ (t ) has only one dominant Fourier com-
ponent (16), which we define as n02 ≈ n20 ≈ n13 ≈ n31 ≈ 1.
We apply a charge drive 2�[cos(ωd1t ) + cos(ωd2t )]n̂(t ) to the
Kapitzonium where ωd1 = ω02, ωd2 = ω13, and � � �, κc.
This leads to the coupling �(n02|� ′

0〉〈� ′
2| + n13|� ′

1〉〈� ′
3| +

H.c.) after the rotating-wave approximation (RWA). Further-
more, {|� ′

2〉, |� ′
3〉} are only weakly excited since � � κc,

which decay back to {|� ′
0〉, |� ′

1〉} after the measurement with
the charge drive turned off.

Kapitzonium measurements can be simulated with quan-
tum trajectory methods [36]. Here we demonstrate the X
measurement, while the Z measurement results are similar
(see Appendix C). Starting from an initial state of (|� ′

0〉 +
|� ′

1〉)/
√

2, we monitor the output field from the filter with a
heterodyne measurement for 2 µs and then calculate the power
spectrum S(ω) for each measurement record S(t ). Depending
on whether the system is projected into |� ′

0〉 or |� ′
1〉, S(ω)

shows a peak at ω20 or ω31 [Fig. 4(a)]. We therefore define
the signal as S = S31 − S20, where Si j is the integrated power
within a narrow frequency window around ωi j ; S < 0 or S > 0
represents a measurement result of 0 or 1. The measurement

042607-6



QUANTUM CONTROL AND NOISE PROTECTION OF A … PHYSICAL REVIEW A 109, 042607 (2024)

fidelity is about 99.4%, estimated from a total of 3000 tra-
jectories [Fig. 4(c)]. We plot a single trajectory in Fig. 4(d)
showing the measurement result S(t ), the occupation pi of
|� ′

i 〉 during the measurement for i = 0, 1, and the spectrum
S(ω).

IV. EXPERIMENTAL IMPLEMENTATION

A. Parameter disorder

Ideally, the SQUID in Fig. 1(b) should be symmetric to
engineer the Kapitzonium Hamiltonian (2). However, in ac-
tual experiments, there always exists some amount of disorder
which requires a more general treatment of the circuit.

The circuit Hamiltonian in the presence of parameter dis-
order is [29,37]

Ĥ (t ) = 4ECn̂2 − EJ1 cos

(
φ̂ − C2

C�

�ext(t )

)

− EJ2 cos

(
φ̂ + C1

C�

�ext(t )

)
, (25)

where C� = C1 + C2 is the total junction capacitance and
EC = e2/2C� . To symmetrize the flux allocation inside the
two cosines, we move to another reference frame by perform-
ing the unitary transformation

Û = exp

(
in̂

C2 − C1

2C�

�ext(t )

)
, (26)

where the Hamiltonian becomes

Ĥ (t ) = 4ECn̂2 − EJ1 cos

(
φ̂ − 1

2
�ext(t )

)

− EJ2 cos

(
φ̂ + 1

2
�ext(t )

)
− C2 − C1

2C�

�̇ext(t )n̂.

(27)

We will drop the unwanted term proportional to �̇ext(t )n̂ since
in principle it can be compensated for with the gate voltage at
the cost of increased control complexity.

For disorder in junction energies, we define δe = (EJ1 −
EJ2)/(EJ1 + EJ2). With the idling flux drive φext(t ) = ωt , the
effective Hamiltonian is

Ĥeff = 4ECn̂2 − ẼJ (1 − δ2
e ) cos 2φ̂. (28)

Therefore, disorder in junction energies reduces the effective
ẼJ , and for small δe on the order of 0.05 this reduction is likely
negligible.

B. Flux control

Here we discuss the flux control for implementing
the Kapitzonium gates and measurements. The flux drives
φext(t ) = ωt (idling) and φext(t ) = ωzt (Z gate and Z measure-
ment) are not feasible experimentally, since the required bias
current grows linearly with time. One natural solution is to use
a triangle waveform instead

φ̃ext(t ) =
{

u(t ), 0 � u(t ) < 2π

4π − u(t ), 2π � u(t ) < 4π,
(29)

where u(t ) = φext(t )(mod4π ). Such a flux choice is ex-
actly equivalent to the ideal flux drives since cos[φ̃ext(t )] =

cos[φext(t )], making φ̃ext(t ) suitable for implementing idling,
the Z gate, and the Z measurement. On the other hand,
cos[φ̃ext(t )] has a zero dc component, while a nonzero dc
component is necessary for the X gate and X measurement.
To achieve a nonzero dc component for cos[φ̃ext(t )], we can
choose a triangle waveform with maximal flux φmax 
= 2π

such that φ̃ext(t ) increases from 0 to φmax and then decreases
to 0.

Alternatively, we could set φext(t ) = α cos ωt with

cos φext(t ) = J0(α) + 2
∞∑

n=1

(−1)nJ2n(α) cos 2nωt, (30)

where we have applied the Jacobi-Anger expansion and Jn(x)
is the nth Bessel function of the first kind. The effective
Hamiltonian for Eq. (2) now becomes

Ĥeff = 4ECn̂2 − EJJ0(α) cos φ̂

− ẼJ

∞∑
n=1

(
J2n(α)

n

)2

cos 2φ̂. (31)

In principle, we could choose α = α0, where α0 ≈ 2.4 is the
first zero of J0(α) for Kapitzonium idling, the Z gate, and
the Z measurement, and α = α0 + δα such that J0(α) 
= 0
for the X gate and X measurement. For the X gate, we have
δα ≈ αx/EJJ ′

0(α0) ≈ 10−4. However, it may be challenging
to achieve a rather large flux modulation α0 with a precise
control over δα. Furthermore, the multifrequency flux drive
[Eq. (30)] may cause unwanted effects beyond the effec-
tive Hamiltonian description, which will be left for future
explorations.

C. Coherence properties

In this section we give a preliminary discussion of how
various noise processes, such as offset charge, flux, and quasi-
particle noise, may affect the coherence of the Kapitzonium.
Our focus is to qualitatively understand possible effects of
the noises, particularly whether or not the qubit subspace and
gates are protected. Quantitative estimations and noise mitiga-
tion require technical details in implementing the flux control
as well as more accurate modeling of the noise processes,
which are beyond the scope of the present work.

In the ideal scenario without any imperfections, both
the bit-flip rate 1/T1 and phase-flip rate 1/T2 are 0 since
〈�α (t )|n̂|�β (t )〉 = 0 for α, β ∈ {0, 1} (see Sec. III A). With-
out cooling, the dominant error is the leakage from the qubit
subspace due to the Floquet driving, with a leakage rate
1/Tl ∝ κ . The filter implemented in Sec. III suppresses the
leakage rate by κ/κc, so 1/Tl ∝ κ2/κc. Such a cooling process
also induces dephasing error due to the frequency difference
� in the emitted photons, with a rate of 1/T2 ∝ κ

2 ( �
κc

)2.
In the deep-potential-well regime EJ/ω � 1, we have � ∝
exp(− π2EJ

8
√

2ω
) and the induced dephasing rate is exponentially

small in EJ/ω.

1. Offset charge noise

With a deep potential well EJ/ω � 1 during idling, the
first few Floquet eigenenergies [Fig. 4(e), left graph] and
Floquet eigenstates are insensitive to ng. Numerically, both
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bit-flip and phase-flip rates are exponentially small in EJ/ω

with ng 
= 0 (see Appendix D). The weak dependence of the
Floquet eigenenergies on ng also holds when adding αx cos φ̂

to the Hamiltonian. Therefore, idling, the X gate, and the X
measurement are all insensitive to charge noise.

Due to the shallow potential well, the Z gate and Z mea-
surement are not robust to charge noise where the emitted
photon frequencies ω20 and ω31 depend on ng [Fig. 4(e),
middle and right graphs]. For example, the Z gate and Z
measurement cannot be performed at ng = 0.5 where the two
cooling transitions emit photons at the same frequency since
ε0 = ε1, ε2 = ε3, and ω20 = ω31. This ng dependence poses
challenges to the practical application of the Kapitzonium due
to the offset charge drift and charge parity jumps [38,39]. One
strategy to mitigate these challenges is to track and correct the
Z errors with quantum error correction using, for example, a
repetition code.

2. Flux noise

The flux imposed on the loop will be invariably accom-
panied by additional flux noise δφ, which typically has an
f −α spectral density [12] and thus a small spectral weight
at high frequencies. The effects of δφ depend on how we
choose to drive the flux. For φext(t ) = ωt + δφ(mod4π ), δφ

corresponds to a shift in time which does not change the
Floquet eigenenergies. Because the idling gate, the Z gate, and
the Z measurement can be implemented in this way [Eq. (29)],
all these operations are robust to flux noise. However, experi-
mental constraints in implementing a flux drive, as well as the
proposed approach to the X gate and X measurement, make
other driving schemes such as φext(t ) = α cos ωt (Sec. IV B)
more attractive. In this case, flux noise leads to an imposed
flux of φext(t ) = α cos ωt + δφ where δφ has a nontrivial ef-
fect on the effective Hamiltonian.

Flux sensitivity at arbitrary flux bias occurs in other pro-
tected qubits subject to experimental constraints. For example
it is also present in the static soft 0-π qubit [12,13]. Nonethe-
less, as in the case of the soft 0-π qubit [13], it is possible
to operate at a flux sweet spot where the dephasing rate is
protected to first order against flux noise. For a Kapitzonium
with a noisy periodic flux drive φext(t ) = α cos ωt + δφ, the
effective Hamiltonian is

Ĥeff(δφ) = 4ECn̂2 − EJJ0(α) cos(δφ) cos φ̂

− ẼJ cos2(δφ)
∞∑

n=1

(
J2n(α)

n

)2

cos 2φ̂

− 4ẼJ sin2(δφ)
∞∑

n=1

(
J2n−1(α)

2n − 1

)2

cos 2φ̂, (32)

which is also insensitive to first order to δφ around δφ = 0
with leading-order terms scaling as δφ2. Therefore, operating
at the sweet spot δφ = 0 can reduce errors of the X gate and
X measurement.

3. Quasiparticle noise

Quasiparticle tunneling changes the charge parity. This
may induce both energy relaxation and dephasing [3,40–44]
of the Kapitzonium. Here we note that in a highly simplified

model of quasiparticle dynamics, the frequency shifts in the
{|0〉, |π〉} basis induced by quasiparticles are proportional to
〈0| sin ϕ̂k

2 |0〉 ≈ (−1)k−1 sin φext (t )
2 , where k = 1, 2 is the index

of the junction, and 〈π | sin ϕ̂k

2 |π〉 ≈ cos φext (t )
2 . Therefore, for

φext(t ) = ωt , |0〉 and |π〉 on average do not accumulate extra
phase and should be robust to quasiparticle tunneling. This
analysis may not hold when φext(t ) = α cos ωt . A more ac-
curate model of quasiparticle tunneling is also likely to be
needed to better understand the effects of quasiparticles in the
Kapitzonium, such as the photon-assisted effects [45] induced
by the modulation drive.

D. Higher harmonics of the Josephson junction

A single cos φ̂ potential may not be adequate for a precise
description of the Josephson junction, and in reality multiple
Cooper pairs can tunnel simultaneously, giving rise to higher
harmonics of the Josephson potential energy [46]. Here we
derive the effective Hamiltonian for the Kapitzonium cir-
cuit [Fig. 1(b)], taking into account higher harmonics of the
Josephson junctions.

Assuming symmetric circuit parameters, the circuit Hamil-
tonian is

Ĥ (t ) = 4EC (n̂ − ng)2 −
∑
m�1

EJm(cos mϕ̂1 + cos mϕ̂2)

= 4EC (n̂ − ng)2 − 2
∑
m�1

EJm cos mωt cos mφ̂, (33)

where φ̂ = (ϕ̂1 + ϕ̂2)/2, EJm is the Josephson energy for m
Cooper pairs tunneling together, and we have applied the
flux quantization condition ϕ̂1 − ϕ̂2 = 2ωt . The second-order
effective Hamiltonian of Eq. (33) can be derived as [22,23]

Ĥeff = 4EC (n̂ − ng)2 − 4EC

ω2

∑
m�1

(EJm)2 cos 2mφ̂, (34)

where φ = 0, π are the two degenerate potential minima.
Since only an even number of Cooper pairs tunneling is
allowed, the two ground states belong to even and odd
Cooper pair subspaces, respectively. Furthermore, in the deep-
potential-well regime, the charge dispersion in ng is still
exponentially suppressed. In practice, the higher harmonics
EJm (m > 1) are often only a few percent of EJ1 [46], and
we expect the Kapitzonium to be protected in the presence of
higher Josephson harmonics.

V. CONCLUSION

We have proposed a quantum Kapitza pendulum in a su-
perconducting circuit as a Floquet 0-π qubit. We identified
how single- and two-qubit gates can be implemented and
proposed a cooling scheme to protect the Kapitzonium against
charge noise. Remarkably, we found that this exceedingly
simple Floquet superconducting circuit, a flux-modulated ca-
pacitively shunted SQUID loop, can support a protected qubit
subspace. Our work revealed some of the subtle features of
Floquet qubits: We elucidated the challenges associated with
noise-induced heating, as well as how they can be overcome
using filter cavities and even used to our advantage to realize
a fluorescence-based method for qubit state measurement.
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Our work lays the groundwork to study new Floquet systems
for quantum information processing with superconducting
circuits and outlines a path towards experiments with such
devices.
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APPENDIX A: FLOQUET MASTER EQUATION

In this Appendix we derive the Floquet master equa-
tion [47] and the Kapitzonium dissipator. The system-bath
Hamiltonian Ĥ (t ) = Ô(t ) ⊗ B̂(t ) in the interaction picture
generates the dynamics

d

dt
ρ̂SB(t ) = −i[Ĥ (t ), ρ̂SB(t )]

= −i

[
Ĥ (t ), ρ̂SB(0) − i

∫ t

0
[Ĥ (τ ), ρ̂SB(τ )]dτ

]

= −i[Ĥ (t ), ρ̂SB(0)]

−
[

Ĥ (t ),
∫ t

0
[Ĥ (τ ), ρ̂SB(τ )]dτ

]
. (A1)

Now we make the Born approximation ρ̂SB(t ) = ρ̂(t ) ⊗ ρ̂B,
where ρ̂(t ) is the system density matrix and ρ̂B is the station-
ary bath density matrix. In addition, we also make the standard
assumption that Tr[B̂(t )ρ̂B] = 0 [48]. The system dynamics
becomes

d

dt
ρ̂(t ) = −TrB

[
Ĥ (t ),

∫ t

0
[Ĥ (t − τ ), ρ̂(t − τ ) ⊗ ρ̂B]dτ

]

=
∫ t

0
[Ô(t − τ )ρ̂(t − τ )Ô(t )

− Ô(t )Ô(t − τ )ρ̂(t − τ )]

× CB(t, t − τ )dτ + H.c., (A2)

where we define the two-point correlation functions

CB(t, t − τ ) = 〈B̂(t )B̂(t − τ )〉
= TrB[B̂(t )B̂(t − τ )ρ̂B] = CB(t − τ, t )∗. (A3)

To proceed, we assume that the bath is stationary with a very
short correlation decay time. In other words,

CB(t, t − τ ) = CB(τ, 0) ≡ CB(τ ) ∼ e−τ/τB , (A4)

where τB is much shorter than any timescale we are interested
in. Assuming weak system-bath coupling, we have |Ô(t ) −
Ô(t − τB)| ∼ |Ô| and |ρ̂(t ) − ρ̂(t − τB)| ∼ |Ô|2, which is
second order in the coupling strength. Therefore, we could

make the Markov approximation and replace ρ̂(t − τ ) with
ρ̂(t ) in Eq. (A2). Since only τ ≈ 0 contributes significantly
to the integration, the upper limit of the integration can be
extended to ∞:

d

dt
ρ̂(t ) =

∫ ∞

0
[Ô(t − τ )ρ̂(t )Ô(t ) − Ô(t )Ô(t − τ )ρ̂(t )]

× CB(τ )dτ + H.c. (A5)

For Floquet systems, we have Ô(t ) = ∑
ω Ô(ω)e−iωt with

Ô(ω) = Ô†(−ω) since Ô(t ) is Hermitian. Therefore,∫ ∞

0
Ô(t − τ )CB(τ )dτ =

∑
ω

Ô(ω)e−iωt�(ω), (A6)

where

�(ω) =
∫ ∞

0
eiωτCB(τ )dτ. (A7)

We could decompose �(ω) into its real and imaginary parts as
�(ω) = 1

2γ (ω) + iS(ω), where

γ (ω) =
∫ ∞

−∞
eiωτCB(τ )dτ,

S(ω) =
∫ ∞

−∞

dω′

2π
γ (ω′)P

(
1

ω − ω′

)
. (A8)

Physically, the real part γ (ω) represents the decay rate while
the imaginary part S(ω) can be absorbed into the system
Hamiltonian, which we will ignore for now.

Consider a zero-temperature bath with a flat spectral den-
sity function

γ (ω) =
{
γ , ω > 0
0, ω � 0 (A9)

as an example. We could decompose Ô(t ) into positive- and
negative-frequency parts where

Ô+(t ) =
∑
ω<0

Ô(ω)e−iωt , Ô−(t ) =
∑
ω>0

Ô(ω)e−iωt , (A10)

and Ô+(t ) = Ô†
−(t ). Therefore,∫ ∞

0
Ô(t − τ )CB(τ )dτ = γ

2

∑
ω>0

Ô(ω)e−iωt = γ

2
Ô−(t )

(A11)

and Eq. (A5) gives the Floquet master equation

d

dt
ρ̂(t ) = γ

2
Ô−(t )ρ̂(t )Ô(t ) − γ

2
Ô(t )Ô−(t )ρ̂(t ) + H.c.

= γ D[Ô−(t )]ρ̂(t ), (A12)

where we apply the RWA to drop Ô2
±(t ) terms. This justifies

the Kapitzonium dissipator (17) in the main text.

APPENDIX B: GATE SIMULATION

1. Average gate fidelity

We benchmark the Kapitzonium gates with the measure of
average fidelity F̄ [49,50]. Intuitively, F̄ describes how well
the qubit subspace is preserved under some quantum process.
More specifically, the average fidelity of a quantum channel
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M over all states |ψ〉 = ∑N
n=1 cn|n〉 in an N-dimensional

qubit subspace is

F̄ =
∫

dψ Tr[M(|ψ〉〈ψ |)|ψ〉〈ψ |]

=
∑
mn

Tr[M(|m〉〈n|)ρmn], (B1)

where

ρmn =
∫

dψ cmc∗
n|ψ〉〈ψ | =

∑
kl

|k〉〈l|
∫

dψ cmc∗
nckc∗

l

= δmn

⎛
⎝ 2

N (N + 1)
|n〉〈n| +

∑
k 
=n

1

N (N + 1)
|k〉〈k|

⎞
⎠

+ (1 − δmn)
1

N (N + 1)
|n〉〈m|. (B2)

Therefore, the average fidelity can be simplified as

F̄ = 1

N (N + 1)

∑
n

Tr

(
M(|n〉〈n|)

∑
k

(1 + δnk )|k〉〈k|
)

+ 2

N (N + 1)

∑
m<n

Re{Tr[M(|m〉〈n|)|n〉〈m|]}. (B3)

To compare M with some target unitary Û , we could compare
M′ with identity instead, where M′(ρ̂) ≡ Û †M(ρ̂)Û .

2. Unitary case

The gates are designed such that the system Hamiltonian
adiabatically evolves from the idling Ĥ0(t ) to the gate Hamil-
tonian Ĥgate(t ) and then adiabatically evolves back to Ĥ0(t )
after a certain amount of gate time. The average gate fidelity
is calculated for the single-qubit subspace with N = 2 or the
two-qubit subspace with N = 4. We choose the pulse shape

α(t, tgate, τ ) =

⎧⎪⎨
⎪⎩

sin
(

πt
2τ

)2
, 0 � t < τ

1, τ � t � tgate − τ

sin
(π (tgate−t )

2τ

)2
, tgate − τ < t � tgate,

(B4)

where tgate is the total gate duration and τ is the adiabatic
ramping time.

a. The X gate

The Hamiltonian is

Ĥx(t ) = Ĥ0(t ) + αxα(t, tx, τx ) cos φ̂, (B5)

where tx = 60 ns, τx = 10 ns, and αx/2π ≈ 5.2 MHz. The X
gate implements the mapping of |�0〉 → |�1〉 and |�1〉 →
|�0〉 with an infidelity of 1.7 × 10−7.

b. The Z gate

The Hamiltonian is

Ĥz(t ) = 4ECn̂2 − EJαz(t ) cos φ̂, (B6)

where

αz(t ) = [1 − α(t, tz, τz )] cos ωt + α(t, tz, τz ) cos ωzt . (B7)

We choose tz = 296.2 ns, τz = 20 ns, and ωz/2π = 20 GHz.
The Z gate implements the mapping of |�0〉 → |�0〉 and
|�1〉 → −|�1〉 with an infidelity of 4.6 × 10−6.

Another Floquet drive that seems reasonable at first is to
have frequency modulation instead of amplitude modulation:

αz(t ) = cos{[(1 − α(t, tz, τz )]ω + α(t, tz, τz )ωz]t}. (B8)

However, this Floquet drive always leads to unstable dynam-
ics which heats up the Kapitzonium even with very slow
ramping.

c. The XX gate

The Hamiltonian is

Ĥxx(t ) = Ĥ (1)
0 (t ) + Ĥ (2)

0 (t ) + αxxα(t, txx, τxx ) cos(φ̂1 − φ̂2),
(B9)

where Ĥ (i)
0 (t ) = 4ECn̂2

i − EJ cos ωt cos φ̂i is the idling Hamil-
tonian for each qubit with i = 1, 2. We choose txx =
39 ns, τxx = 12 ns, and αxx/2π = 10 MHz. The XX gate
implements the mapping of |�0�0〉 → |�1�1〉, |�0�1〉 →
|�1�0〉, |�1�0〉 → |�0�1〉, and |�1�1〉 → |�0�0〉 with an
infidelity of 2.4 × 10−7.

d. State initialization

To initialize the system state into |0〉, we could start from
the ground state of the static transmon Hamiltonian Ĥ =
4ECn̂2 − EJ cos φ̂ and adiabatically apply the Floquet drive

Ĥ (t ) = 4ECn̂2 − EJ{α(t ) cos ωt + [1 − α(t )]} cos φ̂, (B10)

where α(t ) increases from 0 to 1.

3. Open system without a filter

In the open-system simulation without a filter, the Floquet
drives are identical to the unitary case. The only difference is
that during t ∈ [τ, tgate − τ ] we add loss to the system. More
specifically, the simulation is performed in the interaction
picture with Hamiltonian 0 and a single Lindblad dissipator
κD[Ô−(t )]. Notice that the interaction picture here is defined
with respect to Ĥgate(t ) instead Ĥ0(t ).

During the ramping parts of the Floquet drive, the Hamil-
tonian is not strictly time periodic, which makes it difficult to
calculate the time-dependent dissipator. Therefore, the ramp-
ing parts are always assumed to be unitary and the simulation
is done in the laboratory frame.

4. Open system with a filter

Due to the hybridization between the Kapitzonium and
the filter, |�α (t )〉 ⊗ |0 f 〉 is no longer the Floquet eigenstates
of the full Hamiltonian (23), where |0 f 〉 is the ground state
of the filter. Therefore, we work with the dressed Floquet

eigenstates ˜|�α (t )〉 of Eq. (23) instead. The qubit basis states

{ ˜|�0(t )〉, ˜|�1(t )〉} are chosen based on their overlap with
{|�0(t )〉 ⊗ |0 f 〉, |�1(t )〉 ⊗ |0 f 〉}.

The Floquet drive parameters require a slight fine-tuning
due to this hybridization. During the gate time t ∈ [τ, tgate −
τ ], the simulation is performed in the interaction picture
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FIG. 5. (a) The Z gate simulation with a filter for different initial
states. (b) The Z measurement results.

defined by Ĥgate(t ) with Hamiltonian 0 and two Lindblad dis-
sipators κD[Ô−(t )] and κ f D[âN (t )]. Here âN (t ) is calculated
similarly to Eq. (17) with Ô = âN + â†

N . To remove any tran-
sient effects at the beginning of the cooling [51], we prepare
the initial states for benchmarking the gates by evolving the
qubit basis states for 50 ns of idling until the system reaches
equilibrium.

In Fig. 5(a) we simulate the unprotected Z gate for different
initial states. Here |�0〉 and |�1〉 are the dressed Floquet
eigenstates with ω/2π = 20 GHz and |±〉 are their even
and odd superpositions. We choose ω f /2π ≈ 20.234 GHz,
κ f /2π = 200 MHz, J = κ f /2, and g = κ f /5 for the Z gate
filter.

We use QUTIP [52,53] for all the simulations and modify
the built-in mesolve function to speed up the open-system
simulation with time-dependent dissipators.

APPENDIX C: MEASUREMENT SIMULATION

The full Hamiltonian including the charge drive and the
filter modes for the measurement simulation is

Ĥ (t ) = 2�[cos(ωd1t ) + cos(ωd2t )]n̂(t )

+ gn̂(t )(â1e−iω f t + â†
1eiω f t )

+ J
N−1∑
k=1

(âk â†
k+1 + â†

k âk+1), (C1)

which is in the interaction picture of the measurement Hamil-
tonian Ĥmeas(t ) and the rotating frame of the filter modes. Note
that the simulation only includes the first four Floquet eigen-
states with n̂(t ) in Eq. (24) represented by a 4 × 4 matrix.

For the X measurement, we choose Ĥmeas(t ) = Ĥ0(t ) +
αx cos φ̂, with αx/2π = 500 MHz, and calculate n̂(t ) from
the emission spectrum of Ĥmeas(t ). The charge drive frequen-
cies are ω02/2π ≈ 9.44 GHz and ω13/2π ≈ 9.52 GHz. The
emitted photon frequencies are ω20/2π ≈ 10.56 GHz and
ω31/2π ≈ 10.48 GHz. We choose �/2π = 6.4 MHz and the
filter parameters g, J , and ω f are the same as for the idling
filter.

For the Z measurement, Ĥmeas(t ) is the same as for the Z
gate. The charge drive frequencies are ω02/2π ≈ 19.78 GHz
and ω13/2π ≈ 19.75 GHz. The emitted photon frequencies
are ω20/2π ≈ 20.22 GHz and ω31/2π ≈ 20.25 GHz. We
choose �/2π = 2.3 MHz and the filter parameters are the

6 8 10 12 14 16
EJ/ω

10−19

10−16

10−13

10−10
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10−4

Γ
α
→

β

1 → 0

0 → 0

1 → 1

FIG. 6. Kapitzonium transition rates for ng = 0.3. The junc-
tion energies are EJ/2π = 60, 80, 100, 120, 140, 160 GHz, with
ω/2π = 10 GHz and EC/2π = 0.01 GHz fixed.

same as for the Z gate filter. Starting from the initial state
(|�0〉 + |�1〉)/

√
2, we simulate 1000 trajectories for the Z

measurement with a measurement time of 10 µs [Fig. 5(b)]
and the measurement fidelity is about 99.8%.

We would like to make a few comments on Kapitzonium
measurement. First, the charge drive could be slightly off-
resonant from the heating transitions with ωd1 ≈ ω02 and
ωd2 ≈ ω13, which shifts the emitted photon frequencies as
well. Second, the charge drive frequency should be outside the
filter passband. In principle, setting ωd1 ≈ ω20 and ωd2 ≈ ω13

also drives the Rabi oscillation via the cooling transitions.
However, this could cause measurement error if there is any
direct leakage from the charge drive to the output of the filter.
Finally, choosing � to be comparable to or larger than � will
cause measurement error due to crosstalk between the drives.
On the other hand, a very small � reduces the measurement
rate and requires a long measurement time.

APPENDIX D: KAPITZONIUM LIFETIME ESTIMATION

The Kapitzonium Hamiltonian in the presence of offset
charge ng is

Ĥ0(t ) = 4EC (n̂ − ng)2 − EJ cos ωt cos φ̂. (D1)

For ng 
= 0, Ĥ0(t ) does not have the symmetry under �̂1 and
the bit-flip and phase-flip rates are no longer exactly 0 (see
Sec. III A). However, since the Kapitzonium is in the deep-
potential-well regime EJ/ω � 1, we still expect the Floquet
eigenstates to be insensitive to ng. We define the total transi-
tion rate from |�α〉 to |�β〉 as

�α→β ≡
∑

εα−εβ+nω>0

|Oαβn|2, (D2)

where 1/T1 ∼ �1→0 and 1/T2 ∼ �0→0, �1→1. In Fig. 6 we
plot the transition rates for different values of EJ/ω at ng =
0.3. The results indeed show an exponential suppression of
both the bit-flip and phase-flip rates with EJ/ω.

042607-11



ZHAOYOU WANG AND AMIR H. SAFAVI-NAEINI PHYSICAL REVIEW A 109, 042607 (2024)

[1] A. Blais, A. L. Grimsmo, S. M. Girvin, and A. Wallraff, Rev.
Mod. Phys. 93, 025005 (2021).

[2] M. Kjaergaard, M. E. Schwartz, J. Braumüller, P. Krantz, J. I.-J.
Wang, S. Gustavsson, and W. D. Oliver, Annu. Rev. Condens.
Matter Phys. 11, 369 (2020).

[3] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster,
J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J.
Schoelkopf, Phys. Rev. A 76, 042319 (2007).

[4] V. E. Manucharyan, J. Koch, L. I. Glazman, and M. H. Devoret,
Science 326, 113 (2009).

[5] P. Brooks, A. Kitaev, and J. Preskill, Phys. Rev. A 87, 052306
(2013).

[6] A. Gyenis, A. Di Paolo, J. Koch, A. Blais, A. A. Houck, and
D. I. Schuster, PRX Quantum 2, 030101 (2021).

[7] K. Kalashnikov, W. T. Hsieh, W. Zhang, W.-S. Lu, P. Kamenov,
A. Di Paolo, A. Blais, M. E. Gershenson, and M. Bell, PRX
Quantum 1, 010307 (2020).

[8] I. V. Pechenezhskiy, R. A. Mencia, L. B. Nguyen, Y.-H. Lin,
and V. E. Manucharyan, Nature (London) 585, 368 (2020).

[9] N. Ofek, A. Petrenko, R. Heeres, P. Reinhold, Z. Leghtas,
B. Vlastakis, Y. Liu, L. Frunzio, S. M. Girvin, L. Jiang,
M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf, Nature
(London) 536, 441 (2016).

[10] L. Hu, Y. Ma, W. Cai, X. Mu, Y. Xu, W. Wang, Y. Wu, H. Wang,
Y. P. Song, C.-L. Zou, S. M. Girvin, L.-M. Duan, and L. Sun,
Nat. Phys. 15, 503 (2019).

[11] P. Campagne-Ibarcq, A. Eickbusch, S. Touzard, E. Zalys-
Geller, N. E. Frattini, V. V. Sivak, P. Reinhold, S. Puri, S.
Shankar, R. J. Schoelkopf, L. Frunzio, M. Mirrahimi, and M. H.
Devoret, Nature (London) 584, 368 (2020).

[12] P. Groszkowski, A. D. Paolo, A. L. Grimsmo, A. Blais, D. I.
Schuster, A. A. Houck, and J. Koch, New J. Phys. 20, 043053
(2018).

[13] A. Gyenis, P. S. Mundada, A. Di Paolo, T. M. Hazard, X.
You, D. I. Schuster, J. Koch, A. Blais, and A. A. Houck, PRX
Quantum 2, 010339 (2021).

[14] M. Mirrahimi, Z. Leghtas, V. V. Albert, S. Touzard, R. J.
Schoelkopf, L. Jiang, and M. H. Devoret, New J. Phys. 16,
045014 (2014).

[15] Z. Leghtas, S. Touzard, I. M. Pop, A. Kou, B. Vlastakis, A.
Petrenko, K. M. Sliwa, A. Narla, S. Shankar, M. J. Hatridge,
M. Reagor, L. Frunzio, R. J. Schoelkopf, M. Mirrahimi, and
M. H. Devoret, Science 347, 853 (2015).

[16] R. Lescanne, M. Villiers, T. Peronnin, A. Sarlette, M. Delbecq,
B. Huard, T. Kontos, M. Mirrahimi, and Z. Leghtas, Nat. Phys.
16, 509 (2020).

[17] S. Puri, S. Boutin, and A. Blais, npj Quantum Inf. 3, 18 (2017).
[18] A. Grimm, N. E. Frattini, S. Puri, S. O. Mundhada, S. Touzard,

M. Mirrahimi, S. M. Girvin, S. Shankar, and M. H. Devoret,
Nature (London) 584, 205 (2020).

[19] E. Kapit, Phys. Rev. Lett. 116, 150501 (2016).
[20] Z. Li, T. Roy, D. R. Pérez, K.-H. Lee, E. Kapit, and D. I.

Schuster, Autonomous error correction of a single logical qubit
using two transmons, Nat. Commun. 15, 1681 (2024).

[21] L.-A. Sellem, A. Sarlette, Z. Leghtas, M. Mirrahimi, P.
Rouchon, and P. Campagne-Ibarcq, A GKP qubit protected by
dissipation in a high-impedance superconducting circuit driven
by a microwave frequency comb, arXiv:2304.01425.

[22] A. Eckardt, Rev. Mod. Phys. 89, 011004 (2017).

[23] J. Venkatraman, X. Xiao, R. G. Cortiñas, A. Eickbusch, and
M. H. Devoret, Phys. Rev. Lett. 129, 100601 (2022).

[24] N. Didier, E. A. Sete, J. Combes, and M. P. da Silva, Phys. Rev.
Appl. 12, 054015 (2019).

[25] Z. Huang, P. S. Mundada, A. Gyenis, D. I. Schuster, A. A.
Houck, and J. Koch, Phys. Rev. Appl. 15, 034065 (2021).

[26] A. Gandon, C. Le Calonnec, R. Shillito, A. Petrescu, and A.
Blais, Phys. Rev. Appl. 17, 064006 (2022).

[27] L. D. Landau and E. M. Lifshitz, Mechanics, 3rd ed. (Pergamon,
Oxford, 1976), Vol. 1.

[28] U. Vool and M. Devoret, Int. J. Circuit Theory Appl. 45, 897
(2017).

[29] X. You, J. A. Sauls, and J. Koch, Phys. Rev. B 99, 174512
(2019).

[30] T. Rajabzadeh, Z. Wang, N. Lee, T. Makihara, Y. Guo, and A. H.
Safavi-Naeini, Quantum 7, 1118 (2023).

[31] S. P. Chitta, T. Zhao, Z. Huang, I. Mondragon-Shem, and J.
Koch, New J. Phys. 24, 103020 (2022).

[32] K. W. Murch, U. Vool, D. Zhou, S. J. Weber, S. M. Girvin, and
I. Siddiqi, Phys. Rev. Lett. 109, 183602 (2012).

[33] H. Putterman, J. Iverson, Q. Xu, L. Jiang, O. Painter,
F. G. S. L. Brandão, and K. Noh, Phys. Rev. Lett. 128, 110502
(2022).

[34] F. Reiter and A. S. Sørensen, Phys. Rev. A 85, 032111 (2012).
[35] C. Chamberland, K. Noh, P. Arrangoiz-Arriola, E. T. Campbell,

C. T. Hann, J. Iverson, H. Putterman, T. C. Bohdanowicz,
S. T. Flammia, A. Keller, G. Refael, J. Preskill, L. Jiang,
A. H. Safavi-Naeini, O. Painter, and F. G. S. L. Brandão, PRX
Quantum 3, 010329 (2022).

[36] H. M. Wiseman and G. J. Milburn, Quantum Measurement
and Control, 1st ed. (Cambridge University Press, Cambridge,
2009).

[37] R.-P. Riwar and D. P. DiVincenzo, npj Quantum Inf. 8, 36
(2022).

[38] D. Ristè, C. C. Bultink, M. J. Tiggelman, R. N. Schouten, K. W.
Lehnert, and L. DiCarlo, Nat. Commun. 4, 1913 (2013).

[39] K. Serniak, S. Diamond, M. Hays, V. Fatemi, S. Shankar, L.
Frunzio, R. J. Schoelkopf, and M. H. Devoret, Phys. Rev. Appl.
12, 014052 (2019).

[40] R. Lutchyn, L. Glazman, and A. Larkin, Phys. Rev. B 72,
014517 (2005).

[41] R. M. Lutchyn, L. I. Glazman, and A. I. Larkin, Phys. Rev. B
74, 064515 (2006).

[42] J. M. Martinis, M. Ansmann, and J. Aumentado, Phys. Rev.
Lett. 103, 097002 (2009).

[43] G. Catelani, J. Koch, L. Frunzio, R. J. Schoelkopf, M. H.
Devoret, and L. I. Glazman, Phys. Rev. Lett. 106, 077002
(2011).

[44] K. Serniak, M. Hays, G. de Lange, S. Diamond, S. Shankar,
L. D. Burkhart, L. Frunzio, M. Houzet, and M. H. Devoret,
Phys. Rev. Lett. 121, 157701 (2018).

[45] M. Houzet, K. Serniak, G. Catelani, M. H. Devoret, and L. I.
Glazman, Phys. Rev. Lett. 123, 107704 (2019).

[46] D. Willsch, D. Rieger, P. Winkel, M. Willsch, C. Dickel, J.
Krause, Y. Ando, R. Lescanne, Z. Leghtas, N. T. Bronn, P. Deb,
O. Lanes, Z. K. Minev, B. Dennig, S. Geisert, S. Günzler, S.
Ihssen, P. Paluch, T. Reisinger, R. Hanna et al., Observation
of Josephson harmonics in tunnel junctions, Nat. Phys. (2024),
doi:10.1038/s41567-024-02400-8.

042607-12

https://doi.org/10.1103/RevModPhys.93.025005
https://doi.org/10.1146/annurev-conmatphys-031119-050605
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1126/science.1175552
https://doi.org/10.1103/PhysRevA.87.052306
https://doi.org/10.1103/PRXQuantum.2.030101
https://doi.org/10.1103/PRXQuantum.1.010307
https://doi.org/10.1038/s41586-020-2687-9
https://doi.org/10.1038/nature18949
https://doi.org/10.1038/s41567-018-0414-3
https://doi.org/10.1038/s41586-020-2603-3
https://doi.org/10.1088/1367-2630/aab7cd
https://doi.org/10.1103/PRXQuantum.2.010339
https://doi.org/10.1088/1367-2630/16/4/045014
https://doi.org/10.1126/science.aaa2085
https://doi.org/10.1038/s41567-020-0824-x
https://doi.org/10.1038/s41534-017-0019-1
https://doi.org/10.1038/s41586-020-2587-z
https://doi.org/10.1103/PhysRevLett.116.150501
https://doi.org/10.1038/s41467-024-45858-z
https://arxiv.org/abs/2304.01425
https://doi.org/10.1103/RevModPhys.89.011004
https://doi.org/10.1103/PhysRevLett.129.100601
https://doi.org/10.1103/PhysRevApplied.12.054015
https://doi.org/10.1103/PhysRevApplied.15.034065
https://doi.org/10.1103/PhysRevApplied.17.064006
https://doi.org/10.1002/cta.2359
https://doi.org/10.1103/PhysRevB.99.174512
https://doi.org/10.22331/q-2023-09-25-1118
https://doi.org/10.1088/1367-2630/ac94f2
https://doi.org/10.1103/PhysRevLett.109.183602
https://doi.org/10.1103/PhysRevLett.128.110502
https://doi.org/10.1103/PhysRevA.85.032111
https://doi.org/10.1103/PRXQuantum.3.010329
https://doi.org/10.1038/s41534-022-00539-x
https://doi.org/10.1038/ncomms2936
https://doi.org/10.1103/PhysRevApplied.12.014052
https://doi.org/10.1103/PhysRevB.72.014517
https://doi.org/10.1103/PhysRevB.74.064515
https://doi.org/10.1103/PhysRevLett.103.097002
https://doi.org/10.1103/PhysRevLett.106.077002
https://doi.org/10.1103/PhysRevLett.121.157701
https://doi.org/10.1103/PhysRevLett.123.107704
https://doi.org/10.1038/s41567-024-02400-8
https://doi.org/10.1038/s41567-024-02400-8


QUANTUM CONTROL AND NOISE PROTECTION OF A … PHYSICAL REVIEW A 109, 042607 (2024)

[47] M. Grifoni and P. Hänggi, Phys. Rep. 304, 229 (1998).
[48] D. Manzano, AIP Adv. 10, 025106 (2020).
[49] M. A. Nielsen, Phys. Lett. A 303, 249 (2002).
[50] Z. Wang, T. Rajabzadeh, N. Lee, and A. H. Safavi-Naeini, PRX

Quantum 3, 020302 (2022).

[51] E. Kapit, Phys. Rev. Lett. 120, 050503 (2018).
[52] J. Johansson, P. Nation, and F. Nori, Comput. Phys. Commun.

183, 1760 (2012).
[53] J. R. Johansson, P. D. Nation, and F. Nori, Comput. Phys.

Commun. 184, 1234 (2013).

042607-13

https://doi.org/10.1016/S0370-1573(98)00022-2
https://doi.org/10.1063/1.5115323
https://doi.org/10.1016/S0375-9601(02)01272-0
https://doi.org/10.1103/PRXQuantum.3.020302
https://doi.org/10.1103/PhysRevLett.120.050503
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.11.019

