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Quantum annealing (QA) is one of the methods to prepare a ground state of a problem Hamiltonian. In the
absence of noise, QA can accurately estimate the ground-state energy if the adiabatic condition is satisfied.
However, in practice, systems are known to suffer from decoherence. Meanwhile, considerable research effort
has been devoted to noisy intermediate-scale quantum (NISQ) computation. For practical NISQ computation,
many error-mitigation (EM) methods have been proposed to mitigate the effects of noise. This paper proposes
a QA strategy combined with an EM method, namely, dual-state purification, to suppress the effects of deco-
herence. Our protocol consists of four parts: the conventional dynamics, single-qubit projective measurements,
the Hamiltonian dynamics corresponding to an inverse map of the first dynamics, and postprocessing of the
measurement results. Importantly, our protocol works without two-qubit gates that require pulse operations;
hence, it is suitable for devices designed for practical QA. In addition, we present numerical calculations to
show that our protocol is more accurate than the conventional QA in estimating the ground-state energy under
decoherence.
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I. INTRODUCTION

Quantum annealing (QA) [1–5] is a promising approach
for obtaining the ground state of a problem Hamiltonian HP.
Initially, the system is prepared as the ground state of a driver
Hamiltonian HD. In QA, we employ a time-dependent total
Hamiltonian that changes from HD to HP, and we let the
state evolve by such a Hamiltonian. As long as the adiabatic
condition is satisfied, we can obtain the ground state of HP

after the dynamics without noise [6–10].
Specifically, we can obtain the ground state of the Ising-

type problem Hamiltonian by measuring the state after QA in
the computational basis, as long as the state has a finite pop-
ulation of the ground state [11–13]. The density matrix after
QA can be expanded in the energy eigenbasis as follows: ρ =∑

j, j′ d j, j′ |Ej〉 〈Ej′ | where d j, j′ denotes a coefficient, p j ≡ d j, j

denotes a population, and |Ej〉 denotes an eigenvector of the
problem Hamiltonian. In this case, the probability of obtaining
the ground state with the measurement in the computational
basis is expressed as 1 − (1 − p0)Ntrial [14], where p0 de-
notes the population of the ground state and Ntrial denotes the
number of trials. Thus, we can obtain the ground state after
multiple trials as long as p0 has a nonzero value.
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If the problem Hamiltonian is diagonal in the com-
putational basis, we can represent the ground state on a
computational basis. This means that, although we could not
find the ground state efficiently, we can represent it with
classical computation. On the other hand, if the problem
Hamiltonian contains nondiagonal elements, the ground state
is typically an entangled state and difficult to simulate with
a classical computer. If one can implement fault-tolerant
quantum computation, the phase estimation algorithm is an
effective way to estimate the energy of HP [15–17]. On the
other hand, in the NISQ era, QA is a candidate to prepare
and explore the properties of such entangled states, which
can be used for quantum simulation and quantum chemistry
[18,19]. In this case, the main objective is to estimate the
energy of the ground state, which is the focus of our study.
For such a Hamiltonian, we cannot obtain the ground state of
the problem Hamiltonian by the measurements in the compu-
tational basis after QA. The expectation value of the problem
Hamiltonian with the density matrix ρ after QA is expressed
as 〈HP〉 = Tr[HPρ] =∑ j p jE j . The problem Hamiltonian HP
can be expanded by the products of the Pauli matrices such as
HP =∑i ciσi, where ci denotes a coefficient and σi denotes
a tensor product of the Pauli matrices, which we refer to as
Pauli product. To obtain the expectation value of the problem
Hamiltonian, one must determine the expectation value of
each term by the measurements in the Pauli basis after QA,
and take the summation of these expectation values. Notably, a
finite population of the excited state after QA leads to an error
in the estimation of the ground-state energy. Therefore, we
must prepare the ground state with high fidelity to accurately
estimate the ground-state energy.

2469-9926/2024/109(4)/042606(16) 042606-1 ©2024 American Physical Society

https://orcid.org/0000-0001-7611-6323
https://orcid.org/0000-0003-0839-7965
https://orcid.org/0000-0003-2081-1110
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.109.042606&domain=pdf&date_stamp=2024-04-02
https://doi.org/10.1103/PhysRevA.109.042606


SHINGU, NIKUNI, KAWABATA, AND MATSUZAKI PHYSICAL REVIEW A 109, 042606 (2024)

FIG. 1. Conceptual diagram showing the difference between the conventional QA scheme and our QA scheme. (a) In the conventional
scheme, one gradually changes the total Hamiltonian from a driver Hamiltonian HD to a problem Hamiltonian HP. The blue bars in the graph
denote the exact populations without decoherence, which can include the effects of nonadiabatic transitions. By decoherence, we actually
obtain the biased populations as indicated by the red bars. In this case, the estimation of the ground-state energy Eg of HP will be inaccurate if
there is decoherence. (b) Our scheme, which incorporates the EM method, consists of four parts: (1) the conventional dynamics, (2) switching
the sign of the coefficients in HP and single-qubit projective measurements, (3) the Hamiltonian dynamics corresponding to an inverse map
of the first dynamics, and (4) postprocessing of the measurement results. The green bars denote the populations in which the noise effects are
mitigated. Owing to the EM method, we can estimate the ground-state energy more accurately than the conventional QA shown in (a).

However, QA suffers from nonadiabatic transitions and
decoherence [20–28]. There are two types of decoherence
called thermal excitation and dephasing, characterized by
T1 and T2, respectively. Especially in QA, thermal excita-
tion is problematic because this induces unwanted transitions
from the ground to the excited states. If the dynamics are
not sufficiently slow to satisfy the adiabatic condition, un-
wanted transitions occur from the ground state to excited
states. Meanwhile, if the timescale of QA is comparable with
or longer than the thermal excitation time of the qubit, the
system will be affected by decoherence, which also induces
unwanted transitions to the excited states. Thus, the estima-
tion of the ground-state energy will be biased, as shown in
Fig. 1(a).

Many theoretical and experimental studies have been con-
ducted to realize practical noisy intermediate-scale quantum
(NISQ) computation [29–31]. We can employ NISQ devices
to perform quantum computation using tens to thousands of
qubits, with gate errors of 10−3 or lower [32,33]. Here, the
gate error for a quantum computer means the probability
when the corresponding quantum gate operation fails. Many
algorithms for NISQ computation have been proposed. Typ-
ically, variational quantum circuits are used to generate a
trial wave function in order to minimize the cost function
[34–38]. In these algorithms, one must measure observables
on the qubits corresponding to the trial wave function. In the
actual devices, noise prevents one from obtaining the accurate

expectation values of the observables, thereby degrading the
algorithm performance. Sophisticated techniques referred to
as “error mitigation” (EM) suppress the effects of noise by
implementing additional quantum gates and postprocessing
with classical computation [30,35,39–64].

Particularly, the virtual distillation (VD) method, which is
known as the exponential error suppression (EES) method,
can mitigate the error without knowing the details of the noise
model [65–68]. Suppose that N qubits are required to imple-
ment a quantum algorithm without EM. In VD (EES), one
must prepare M copies of noisy quantum states ρ composed
of N qubits to mitigate the error. We assume that these states
are generated by the same quantum circuit and influenced by
the same noise model. By entangling gates between M copies
of a quantum state ρ, one can obtain 〈O〉(M )

VD = Tr[Oρ
(M )
VD ] with

ρ
(M )
VD = ρM/Tr[ρM]. The advantage of this scheme is that the

population of the dominant eigenvector of ρ approaches unity;
hence, the stochastic errors are exponentially suppressed as
one increases M. However, VD (EES) requires MN qubits
of the quantum state, which involves high costs for NISQ
computers.

Recently, an alternative scheme called “dual-state purifica-
tion” was proposed to overcome the aforementioned problem
[69]. Let us consider the specific case M = 2. In this scheme,
one can effectively prepare two copies of the quantum state
on the same qubits. One can physically generate one of them
in an original quantum circuit, and the other one can be
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virtually prepared using the inverse of the original circuit,
which is designed as the conjugate transpose of the original
circuit when there is no error. By decomposing an observ-
able O into Pauli products {σi}, one obtains the expectation
value 〈O〉 as

∑
i ai〈σi〉, where ai is a coefficient. In dual-state

purification, one calculates each expectation value 〈σi〉 with
each corresponding circuit and then takes the summation to
compute the expectation value 〈O〉. The entire circuit for dual-
state purification consists of the original circuit, the projective
measurement of a Pauli product σi, the inverse circuit, and
the projective measurement to the initial state. After postpro-
cessing operations with classical computation, one obtains the
expectation value of O, where the stochastic errors during
the implementation of the quantum circuits are mitigated.
Importantly, this scheme requires only N qubits.

In this paper, we propose QA with dual-state purification.
As shown in Fig. 1(b), (1) we perform the same dynamics as
the conventional QA, (2) we change the sign of the problem
Hamiltonian as fast as possible within the limitations of the
devices, and perform single-qubit projective measurements,
(3) we gradually decrease (increase) the driver (problem)
Hamiltonian, and (4) we postprocess the measurement results.
Our strategy requires a quantum device that can not only
create the dynamics described by the QA Hamiltonian but
also perform arbitrary single-qubit operations. Moreover, we
numerically demonstrate that our strategy provides a more
accurate estimation than that provided by the conventional
QA.

II. QUANTUM ANNEALING

Here, we review the conventional QA to obtain the ground
state and the ground-state energy of a problem Hamiltonian
HP [1–3]. Throughout this paper, we set h̄ = 1. We choose a
uniform transverse field on the spins as a driver Hamiltonian
(i.e., HD = −B

∑N
i=1 σ̂ x

i , B > 0), where N denotes the number
of qubits and B denotes a coefficient. Furthermore, the system
is initially prepared as |+〉⊗N , which is the ground state of the
driver Hamiltonian HD, where |+〉 = 1√

2
(|0〉 + |1〉) denotes

the eigenstate of σ̂ x and |0〉 (|1〉) denotes the eigenstate of
σ̂ z which has the eigenvalue +1 (−1). We change the total
Hamiltonian HCQA(t ) from the driver Hamiltonian HD to the
problem Hamiltonian HP over time as follows:

HCQA(t ) = ACQA(t )HD + BCQA(t )HP, (1)

where ACQA(t ) and BCQA(t ) are time-dependent coefficients.
The coefficients of the total Hamiltonian in QA are here given
by

ACQA(t ) = 1 − t

T
(t : 0 → T ),

BCQA(t ) = t

T
(t : 0 → T ),

where T is the annealing time. If the total Hamiltonian
HCQA(t ) is varied sufficiently slowly and the energy level
crossing does not occur, the adiabatic theorem guarantees that
the ground state of HP can be obtained.

The estimation of the ground-state energy by QA involves
two main problems: environmental decoherence and nonadi-
abatic transitions [20–28]. By performing QA with a longer

time schedule, we can avoid the effects of nonadiabatic transi-
tions. However, a longer time schedule will make the quantum
states more prone to decoherence. This tradeoff relationship
makes it difficult to solve practical problems with QA.

Many studies have investigated the suppression of nonadi-
abatic transitions and decoherence during QA. An inhomoge-
neous driver Hamiltonian can be used to accelerate QA for a
specific problem Hamiltonian [70,71]. Seki et al. showed that
the performance of QA for certain types of problem Hamil-
tonians can be improved with “nonstoquastic” Hamiltonians
that have negative off-diagonal matrix elements [72,73]. The
energy gap between the ground state and the first excited
state can be estimated in a robust manner against nonadiabatic
transitions [74–76]. The specific choice of the driver Hamil-
tonian to preserve the symmetry of the system is known to
be useful for efficient QA [77,78]. It is known that shortcuts
to adiabaticity and counterdiabatic driving can avoid nonadia-
batic transitions [18,79–94]. Moreover, several studies have
investigated the suppression of environmental noise. Error
correction with ancillary qubits can be adopted to suppress
decoherence during QA [95]. A scheme with a decoherence-
free subspace for QA has also been proposed [96]. Spin-lock
techniques are beneficial for applying long-lived qubits to QA
[97–99]. In addition, there are several schemes for improv-
ing the performance of QA by using nonadiabatic transitions
and quenching [100–107] and degenerating two-level systems
[108]. Variational methods have also been applied to QA in
order to suppress nonadiabatic transitions and decoherence
[85,109–111].

III. DUAL-STATE PURIFICATION

In this section, we review an EM method called dual-state
purification [69]. First, we introduce VD (EES) methods for
NISQ devices that dual-state purification is based on. In the
VD (EES) methods [65–67,112], by using two copies of
a noisy state ρ, we can obtain a purified state ρ

(2)
VD(EES) =

ρ2/Tr[ρ2]. Let us assume that the noisy state ρ is expressed
by an orthogonal basis {|ψn〉}2N −1

n=0 as

ρ = (1 − p)|ψ0〉〈ψ0| + p
2N −1∑
n=1

λn|ψn〉〈ψn|, (2)

where p denotes an error probability, λn � 0, and
∑2N −1

n=1 λn =
1. Let us call |ψ0〉 a dominant state, and we define ρe =∑2N −1

n=1 λn|ψn〉〈ψn|. In this case, the purified state ρ
(2)
VD(EES)

is closer to the dominant state than the original state for
p > 1

2 . The expectation value of an observable O is esti-
mated as 〈O〉 = 〈ψ0| O |ψ0〉 	 Tr[Oρ2]/Tr[ρ2]. Furthermore,
the noisy state can also be expressed in another form as

ρ = η|φid〉〈φid| + (1 − η)
d∑

k=1

μk|χk〉〈χk|, (3)

where |φid〉 = U |
0〉 denotes the ideal state, U denotes a uni-
tary operator without any noise, |
0〉 denotes an initial state.
Here, η � 0 and

∑d
k=1 μk = 1 are satisfied. Note that the

overlap 〈φid |χk〉 is not always 0. Although the dominant state
is not necessarily equal to the ideal state because of a small
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coherent mismatch in practical cases, 〈ψ0| O |ψ0〉 is known to
be a good approximation to 〈φid| O |φid〉 [65,66,112]. On the
other hand, if there are only incoherent errors, |φid〉 = |ψ0〉
is satisfied. However, in this scheme, the required number of
qubits is twice as large as that of the original scheme without
VD (EES) methods.

Another EM scheme called dual-state purification can be
implemented with the same number of qubits as the original
scheme [69]. Here, we consider a situation where there is only
incoherent error (i.e., the dominant state is equal to the ideal
state). To discuss dual-state purification, we consider a noisy
map F (•) =∑k Fk • F †

k , where {Fi} denote Kraus operators
and • denotes an arbitrary matrix. When the noise amplitude
is significantly small, this map is close to the ideal unitary
operator U [i.e., F (•) 	 U • U †]. Since any unitary operation
U is constructed with the dynamics of the corresponding
Hamiltonian, we can always prepare the inverse dynamics
U † by switching all the signs of coefficients of the Hamil-
tonian. We consider the case where, due to noise, we cannot
realize the ideal U † and the actual dynamics is described by
G(•) =∑k Gk • G†

k , where {Gi} denote Kraus operators. If
the noise effect can be ignored, this noisy map G(•) can be
approximated as U † • U .

By using the operations F and G, we obtain

〈
0|G(F (|
0〉〈
0|)) |
0〉 = Tr[Ḡ(|
0〉〈
0|)F (|
0〉〈
0|)] = Tr[ρ̄ρ],

(4)

where ρ=F (|
0〉〈
0|), Ḡ(•)=∑k G†
k • Gk , and ρ̄ = Ḡ(|
0〉〈
0|).

We refer to Ḡ as the dual map of G, and we refer to ρ̄ as
the dual state. Although we call this a dual state, this may
not be a density matrix because the dual map may not be a
completely positive trace-preserving (CPTP) map. However,
this is called a dual state in the original paper [69], and thus
we adopt the same terminology as the previous study. When
the noise strength is low enough, we can approximate Ḡ(•) as
U • U † and Tr[ρ̄ρ] as Tr[ρ2].

Next, we show how dual-state purification increases the
population of the ideal state |φid〉. Here, we assume that
ρ̄ = (1 − p̄)|φid〉〈φid| + p̄ρ̄e, where ρ̄e denotes a normalized
positive-semidefinite state and p̄ denotes an error probability
to satisfy 1 − p̄ > p̄. Furthermore, we assume |φid〉〈φid|ρ̄e = 0
is satisfied [65,66,69]. Since |φid〉〈φid|ρe = 0 is also satisfied
as shown in Eq. (2), the virtually purified state without nor-
malization is defined as follows:

ρρ̄ + ρ̄ρ

2
= (1 − p)(1 − p̄)|φid〉〈φid|

+ pp̄ Tr[ρeρ̄e]
ρeρ̄e + ρ̄eρe

2 Tr[ρeρ̄e]
, (5)

where the state ρρ̄ + ρ̄ρ is Hermitian. ρρ̄ + ρ̄ρ may also not
be a density matrix because this may not be a semidefinite-
positive operator. However, this is called a virtually purified
state in the original paper [69], and thus we adopt the same
terminology as the previous study. It is worth mentioning that
we cannot directly obtain the state ρρ̄ + ρ̄ρ on actual devices.
However, we can compute the expectation values with this
state by postprocessing the measurement results, as we will
explain in the next paragraph. Note that this EM method
decreases the ratios between the error state and the ideal

FIG. 2. Circuits for implementing dual-state purification. We cal-
culate the numerator (denominator) in Eq. (6) with the circuit in
(a) [(b)]. First, we apply a noisy map F in Eq. (4) to an initial state
|
0〉. Second, when we calculate the numerator in Eq. (6), we perform
the projective measurement P±

σ of a Pauli product σ (the gray box),
as shown in (a). To obtain the denominator in Eq. (6) by the circuit in
(b), the projective measurement is not implemented. Third, we apply
a noisy inverse map G in Eq. (4). Finally, we measure the state on the
basis of the initial state |
0〉.

state from p/(1 − p) to pp̄ Tr[ρeρ̄e]/(1 − p)(1 − p̄). More-
over, we can derive the upper bound of the ratio for the EM
method as pp̄ Tr[ρeρ̄e]/(1 − p)(1 − p̄) � pp̄/(1 − p)(1 −
p̄). This means that the ratio of the EM method is smaller
than that of the original method if p < 0.5 and p̄ < 0.5
are satisfied.

We obtain the expectation value of an observable O as
〈O〉 =∑ ai〈σi〉 by decomposing O as the summation of the
expectation values of Pauli products {σi}, where ai is a coeffi-
cient. Dual-state purification gives the expectation value of a
Pauli product σ as follows:

〈σ 〉 	 Tr

[
σ

ρρ̄ + ρ̄ρ

2

]/
Tr

[
ρρ̄ + ρ̄ρ

2

]
, (6)

where Tr[ ρρ̄+ρ̄ρ

2 ] denotes a normalization factor. To obtain this
expectation value, we can use the quantum circuits depicted
in Fig. 2. The circuit in Fig. 2(a) [Fig. 2(b)] is used to ob-
tain the numerator (denominator) in Eq. (6). In this method,
we start by preparing an initial state |
0〉 and let it evolve
through the noisy quantum circuit described by the channel F .
Second, we perform a measurement operator P±

σ associated
with the projective measurement of the Pauli product σ to
obtain the numerator (the gray box), as shown in Fig. 2(a).
Here, the measurement operator corresponding to the outcome
±1 is given by P±

σ = (I ± σ )/2. To implement the projective
measurement P±

σ , we need to perform single-qubit rotations.
When we implement the circuit shown in Fig. 2(b) to obtain
the denominator in Eq. (6), we do not perform the projective
measurement. Third, we let the state evolve by the noisy
quantum process described by the channel G. Finally, we
investigate how much of the population remains in |
0〉 by a
measurement in the basis including |
0〉. If we select the circuit
shown in Fig. 2(b), we can measure the denominator in Eq. (6)
as follows:

P
0 = 〈
0|G(F (|
0〉〈
0|)) |
0〉 = Tr[ρ̄ρ], (7)
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where P
0 denotes the population of |
0〉 in the final state ob-
tained by the measurement. Meanwhile, if we select the circuit
shown in Fig. 2(a), we can measure the numerator in Eq. (6)
as P̃+


0 − P̃−

0 , where

P̃±

0 = 〈
0|G(P±

σ F (|
0〉〈
0|)P±
σ ) |
0〉 = Tr[P±

σ ρP±
σ ρ̄], (8)

and P̃±

0 denotes the population of |
0〉. Thus, the expectation

value is rewritten as

〈σ 〉 = (P̃+

0 − P̃−


0 )/P
0. (9)

In EM, we must also suppress the sampling noise that
leads to the residual error. We can decrease the variance of
the expectation value in Eq. (9) by increasing the number
of measurements. Owing to the denominator, the variance of
Eq. (9) is larger than that of Eq. (8). In particular, when Tr[ρ̄ρ]
approaches 0, the variance diverges to infinity. Therefore, to
implement this method within a finite time, we need a finite
value of Tr[ρ̄ρ].

IV. ERROR-MITIGATED QUANTUM ANNEALING

In this section, we describe our QA scheme for obtaining
the ground-state energy of a problem Hamiltonian by mitigat-
ing the environmental noise effects. To adapt the EM method
mentioned in the previous section to QA, we design a QA
schedule to construct the operations F and G. We refer to
this approach as error-mitigated quantum annealing (EMQA).
As we mentioned in the previous section, the inverse map G
should meet G(•) = U † • U when there is no decoherence.
EMQA is designed to satisfy this condition. As long as this
condition is satisfied, the dual-state purification lets us mea-
sure the expectation value accurately even under the effect
of noise, as we explained in the previous section. We show
that this approach provides a more accurate estimation of the
energy than that provided by the conventional approach.

EMQA is expressed as

HEMQA(t ) = AEMQA(t )HD + BEMQA(t )HP, (10)

AEMQA(t ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− t

T
+ 1 (t : 0 → T ),

0 (t : T → T + T ′),

− t

T
+ T ′

T
+ 1 (t : T + T ′ → 2T + T ′),

(11)

BEMQA(t ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t

T
(t : 0 → T ),

− 2t

T ′ + 2T

T ′ + 1 (t : T → T + T ′),
t

T
− T ′

T
− 2 (t : T + T ′ → 2T + T ′).

(12)

This schedule is shown in Fig. 3. From t = T to T + T ′,
we turn off the driver Hamiltonian. Since we only change
the amplitude of the problem Hamiltonian, the nonadiabatic
transitions do not occur. On the other hand, if there is decoher-
ence from the environment, we should change the sign of the
problem Hamiltonian instantaneously. However, it is difficult
to implement such an immediate change in the sign of the

FIG. 3. QA schedule for implementing dual-state purification.
The dynamics from t = 0 to T + T ′/2 corresponds to the noisy map
F , and this schedule from t = T + T ′/2 to 2T + T ′ provides the
dynamics corresponding to the inverse map G in Eq. (4). To calculate
the numerator in Eq. (6), a projective measurement is required at
t = T + T ′/2.

Hamiltonian for QA devices. Therefore, we keep the time as
short as possible within the bandwidth of the devices. Again,
to obtain the numerator of Eq. (9), we must perform a pro-
jective measurement P±

σ at t = T + T ′/2. Thus, the dynamics
from t = 0 to T + T ′/2 represents the map F , whereas the
dynamics from t = T + T ′/2 to 2T + T ′ corresponds to the
inverse map G. In Appendix A, we show that the time evo-
lution from t = T + T ′/2 to 2T + T ′ is equivalent to the
conjugate transpose of the dynamics from t = 0 to T + T ′/2
when there is no decoherence, even if the adiabatic condition
is not satisfied.

To consider the decoherence, we employ the Gorini-
Kossakowski-Sudarshan-Lindblad (GKSL) master equa-
tion to describe the dynamics of the system [113,114]:

dρ

dt
= −i[H (t ), ρ] +

∑
n

λn

2
(2L̂nρL̂†

n − {L̂†
nL̂n, ρ}), (13)

where [•, •] denotes the commutator, λn denotes the decay
rate, L̂n denotes the Lindblad operator, {•, •} denotes the
anticommutator, and H (t ) denotes HCQA(t ) or HEMQA(t ).

Throughout this paper, we assume that we can realize the
dynamics induced by the Hamiltonian and arbitrary single-
qubit rotations, and projective measurements. Owing to the
recent development of quantum technologies, such a device is
feasible, which we will discuss later. However, it is unclear
whether we can implement two-qubit gates with high fidelity.
To perform two-qubit gates, one should quickly change the
interaction Hamiltonian and/or should perform complicated
pulse operations. For these reasons, the infidelity of the two-
qubit gates is usually much larger than that of the single-qubit
gates [32]. Hence, we assume that we cannot apply two-qubit
gates to the devices. This assumption is similar to that of
digital-analog quantum computation (DAQC) [115]. This ap-
proach has been proposed as a hybrid architecture to achieve
flexible NISQ computation on robust analog quantum simula-
tors.

It is worth noting that dual-state purification is more suit-
able for the device considered here than virtual distillation.
Although virtual distillation is also an efficient method for
suppressing stochastic errors, it requires two-qubit gates to
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FIG. 4. Relative error of the ground-state energy of the problem Hamiltonian HP. We define the relative error as (〈HP〉 − Eg)/|Eg|, where
〈HP〉 denotes the expectation value with QA and Eg denotes the actual value of the ground-state energy. We adopt (a) the EMQA and (c) the
conventional schedule with λ = 0. In addition, we adopt (b) the EMQA and (d) the conventional schedule with λ/J = 0.004. The annealing
time T is normalized by J . We show that the EMQA schedule provides a minimum error that is lower than that of the conventional method for
all N (see Table I).

entangle M copies of a noisy state ρ. Thus, it is not straightfor-
ward to implement virtual distillation under our assumption.
Meanwhile, in dual-state purification, we do not prepare M
copies of a noisy state ρ or implement two-qubit gates as men-
tioned in the previous section. Thus, EMQA is more practical
for mitigating the noise effects during QA.

V. RESULTS

In this section, we demonstrate the performance of the
EMQA schedule and compare it with that of the conventional
schedule. For this purpose, we consider the problem Hamilto-
nian as the Heisenberg model expressed as

HP = J
N∑

i=1

(
σ̂ x

i σ̂ x
i+1 + σ̂

y
i σ̂

y
i+1 + 	σ̂ z

i σ̂ z
i+1

)
(14)

with the periodic boundary condition, where J and 	 are
coefficients. Throughout this paper, by setting J = 2π ×
100 MHz, the time and energy are normalized by this value.
This is the typical value for actual experiments [116]. To

simplify the discussion, we select the Lindblad operators as
the Pauli matrices σ̂ x

i , σ̂
y
i , and σ̂ z

i , and we assume that the
decay rate is constant regardless of the index (i.e., λn = λ).
In our numerical simulation, the GKSL master equation is
rewritten as

dρ

dt
= −i[H (t ), ρ] − λ

2

N∑
i=1

∑
j∈{x,y,z}

[
σ̂

j
i ,
[
σ̂

j
i , ρ
]]

. (15)

Furthermore, we set B/J = 1, T ′J = 5, and 	 = −1. To eval-
uate the performances of these schedules, we define a relative
error as (〈HP〉 − Eg)/|Eg|, where 〈HP〉 is the expectation value
of the problem Hamiltonian obtained through the numerical
simulations and Eg denotes the ground-state energy of the
problem Hamiltonian.

We plot the relative error against the parameter T by chang-
ing the number of qubits N in Fig. 4. We prepare a set of the
annealing time T beforehand and implement QA with each
annealing time. It means that we can minimize the expec-
tation value of HP by choosing the most suitable annealing
time. This strategy is effective especially when the problem
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TABLE I. Minimum expectation values, the relative error, the optimal annealing time T to minimize the energy, and the exact value of the
ground-state energy. Here, we normalize the energy by J (i.e., 〈HP〉/J), and we set J = 2π × 100 MHz for the optimal annealing time. We set
T ′/J = 5 in EMQA in all cases.

Expectation value, relative error, and annealing time T (ns) when λ/J = 0.004

EMQA Conventional Exact

N = 3 −2.96, 0.0119, 9.55 ns −2.63, 0.124, 7.96 ns −3.00
N = 4 −3.95, 0.0114, 9.55 ns −3.46, 0.135, 7.96 ns −4.00
N = 5 −4.69, 0.0624, 23.9 ns −3.84, 0.231, 9.55 ns −5.00
N = 6 −5.76, 0.0395, 19.1 ns −4.85, 0.191, 7.96 ns −6.00
N = 7 −6.56, 0.0630, 22.3 ns −5.53, 0.210, 7.96 ns −7.00

Hamiltonian is nondiagonal [111,117]. The reason why we
can see such a minimal point is that as we increase T , the
decoherence becomes more relevant whereas the nonadiabatic
transitions become less significant. The minimum expectation
values and the relative errors obtained through the numerical
simulations are listed in Table I.

Figure 4(a) shows the result of the numerical simulation
using the EMQA schedule with λ = 0. We check that the rela-
tive errors converge to zero regardless of the number of qubits
when no decoherence occurs. In this case, ρρ̄+ρ̄ρ

2 = |φid〉〈φid|
and Tr[ρρ̄] = 1. This state is the same as that obtained by the
conventional QA except for the relative phase coming from
the dynamics from T to T + T ′. This relative phase does not
affect the estimation of the ground-state energy. Thus, we can
see the same results with the EMQA and the conventional
QA in Figs. 4(a) and 4(c). In addition, we show that even
under the effect of decoherence with λ/J = 0.004, we can
obtain a more accurate estimation of the ground-state energy
than that obtained using the conventional method, as shown in
Table I.

In Fig. 5, we also compare the performance of our method
with that of the conventional one for several decay rates λ

with N = 7. Similar to the results in Fig. 4, we can minimize
the relative error to choose the optimize the annealing time
for each λ. Figure 5(a) [5(b)] represents how the minimized

relative error (the annealing time) increases (decreases) as
λ increases. Figure 5(a) illustrates that the conventional QA
leads to larger relative errors, even when the noise effect is
weak. In contrast, EMQA suppresses the impact of the noise
significantly. In Fig. 5(b), the optimal annealing time of the
conventional method is smaller than that of our method. This
comes from the fact that we can suppress decoherence with
our method, so we can set a larger annealing time to avoid
nonadiabatic transitions.

Finally, we discuss the physical implementation of our
scheme. We can use superconducting flux qubits (or ca-
pacitively shunted flux qubits) for both QA and gate-type
quantum computation [99]. Furthermore, the Hamiltonian of
the Heisenberg model with transverse fields can be realized
using these systems [118]. For these systems, the thermal
excitation time can be as long as tens of microseconds [119],
and the coupling strength can be tens of MHz or higher
[116]. Thus, by using these quantum devices, we can realize
J/λ 	 103, which is similar to those used in our simulations.
Also, when we use the superconducting flux qubits, we can
tune the coupling strength and magnetic fields by changing
the magnetic flux penetrating the SQUID structure [120–122],
and thus we can realize the linear scheduling in Eq. (10) by
applying a suitable magnetic flux. Therefore, these systems
are candidates for realizing our proposal.

FIG. 5. Minimized relative error (a) and the optimized annealing time (b) for several decay rates λ with N = 7. (a) Shows the relative error
with our method is much smaller than that of the conventional one for all λ. (b) Indicates that our method allows us to set a longer annealing
time than the conventional one for all λ. This comes from the fact that we can set longer annealing times due to the decoherence suppression,
which allows us to avoid the nonadiabatic transitions.
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VI. CONCLUSION

We proposed a QA strategy combined with an EM method
for suppressing the effects of decoherence. Among the various
EM methods, we adopted dual-state purification, which does
not require two-qubit gates and is hence suitable for the de-
vices developed for QA. Our protocol consists of four steps.
First, we let the system evolve by the Hamiltonian. Second,
we perform single-qubit projective measurements. Third, we
let the system evolve by the Hamiltonian whose dynamics cor-
responds to an inverse map of the first dynamics. Finally, we
postprocess the measurement results. We numerically showed
that the ground-state energy estimated using our protocol is
more accurate than that estimated using the conventional QA
under decoherence.

Throughout our paper, we only consider incoherent errors
coming from decoherence. On actual devices, we might also
face coherent errors caused by imperfect linear scheduling.
Randomized compiling is an efficient method to convert co-
herent errors into incoherent ones [123]. It is future work to
examine whether we can adopt randomized compiling to our
scheme.
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APPENDIX A: PROOF FOR INVERSE MAP
IN EMQA SCHEDULE

For dual-state purification, we must construct an inverse
transformation of the target unitary dynamics. Here, we show
that, with the EMQA schedule, the dynamics from t = T +
T ′/2 to 2T + T ′ is equivalent to the conjugate transpose of
the dynamics from t = 0 to T + T ′/2 when no decoherence
occurs.

First, the dynamics from t = T + T ′/2 to T + T ′ is equiv-
alent to the conjugate transpose of the dynamics from t = T
to T + T ′/2, i.e.,

U

(
T + T ′

2
, T + T ′

)

= exp

(
−i
∫ T +T ′

T +T ′/2
BEMQA(t )HPdt

)
= exp

(
iHP

T ′

4

)

= exp

(
−i
∫ T +T ′/2

T
BEMQA(t )HPdt

)†

= U

(
T, T + T ′

2

)†

, (A1)

where U (t ′, t ) = T exp(−i
∫ t

t ′ dτ HEMQA(τ )).
Next, let us consider the dynamics from t = T + T ′ to

2T + T ′. By transforming the variable t (t : T + T ′ → 2T +
T ′) into a variable s (s : 0 → T ) by t = s + T + T ′, we obtain

H2(s) = − s

T
HD +

( s

T
− 1
)

HP. (A2)

Thus, using the Trotter decomposition, we can express the
dynamics of the Hamiltonian H2(s) as follows:

T exp

(
−i
∫ T

0
H2(s)ds

)

	 exp(−iH2(Mδt )δt ) exp(−iH2[(M − 1)δt
]
δt ) . . .

× exp(−iH2(δt )δt ) exp(−iH2(0)δt )

=
M∏

j=0

exp(−iH2( jδt )δt ), (A3)

where T denotes the time-ordered product, M denotes a nat-
ural number, and δt = T/M denotes a discretized time. Note
that T exp[−i

∫ T
0 H2(s)ds] is equal to the second line in the

limit of a small δt . Meanwhile, we define the time-dependent
Hamiltonian from t = 0 to T as

H1(t ) =
(

1 − t

T

)
HD + t

T
HP. (A4)

We can decompose the conjugate transpose of the dynamics
from t = 0 to T as

[
T exp

(
−i
∫ T

0
H1(t )dt

)]†

	 (exp(−iH1(Mδt )δt ) exp[−iH1((M − 1)δt )δt] . . .

× exp(−iH1(δt )δt ) exp(−iH1(0)δt ))†

= exp(iH1(0)δt ) exp(iH1(δt )δt ) . . .

× exp[iH1((M − 1)δt )δt] exp(iH1(Mδt )δt )

=
M∏

j=0

exp[iH1((M − j)δt )δt]. (A5)

As exp(−iH2( jδt )δt ) = exp(iH1((M − j)δt )δt ) is satisfied
for each index j, we have

U (T + T ′, 2T + T ′) = T exp

(
−i
∫ T

0
H2(s)ds

)

=
∞∏
j=0

exp(−iH2( jδt )δt ) =
∞∏
j=0

exp(iH1((M − j)δt )δt )

=
[
T exp

(
−i
∫ T

0
H1(t )dt

)]†

= U (0, T )†. (A6)
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Therefore, using Eqs. (A1) and (A6), we show that

U

(
T + T ′

2
, 2T + T ′

)

= U (T + T ′, 2T + T ′)U
(

T + T ′

2
, T + T ′

)

= U (0, T )†U

(
T, T + T ′

2

)†

= U

(
0, T + T ′

2

)†

. (A7)

APPENDIX B: RQA-BASED SCHEDULE

Let us explain a naive schedule inspired by reverse quan-
tum annealing (RQA) [125–130]. First, we change the total
Hamiltonian from HP to HD. Second, we bring back the
Hamiltonian to HP. If there is neither decoherence nor nona-
diabatic transitions, in the first step, the quantum state evolves
from the initial state to the ground state of HP, and in the
second step, the quantum state evolves to the final state
close to the initial state. Thus, in this ideal case, the first
step provides U while the second step seems to provide U †

[125–130]. It means that RQA is a candidate to provide the
inverse map. However, this schedule cannot purify the noisy
state if nonadiabatic transitions occur. It is worth mentioning
that, in the dual-state purification, we use a classical computer
for postprocessing the measurement results, and estimate the
expectation value of the observable. The corresponding den-
sity matrix, which is not directly generated on a quantum
computer, can be unphysical due to the artifact of the post-
processing when using this schedule.

Let us demonstrate the RQA-based schedule. The total
Hamiltonian and the coefficients are written as

HRQA(t ) = ARQA(t )HD + BRQA(t )HP, (B1)

ARQA(t ) =

⎧⎪⎨
⎪⎩

− t

T
+ 1 (t : 0 → T ),

t

T
− 1 (t : T → 2T ),

(B2)

BRQA(t ) =

⎧⎪⎨
⎪⎩

t

T
(t : 0 → T ),

− t

T
+ 2 (t : T → 2T ).

(B3)

This annealing schedule is shown in Fig. 6. To obtain the
numerator of Eq. (9) with dual-state purification, we must im-
plement a projective measurement P±

σ at t = T . The dynamics
from t = 0 to T corresponds to the map F , whereas the
dynamics from t = T to 2T corresponds to the inverse map
G. Here, we consider a specific case in which the following
three conditions are satisfied. First, the adiabatic condition is
satisfied. Second, the initial state is the ground state of the
driver Hamiltonian. Third, no decoherence occurs. If these
conditions are satisfied, the final state returns to the initial
state. This seems to indicate that the RQA-based schedule
provides the inverse map, and dual-state purification using this
schedule may be feasible in practical circumstances. However,
we show that, if nonadiabatic transitions occur, the RQA-
based schedule does not provide the proper inverse map. In

FIG. 6. Schedule inspired by RQA. The dynamics from t = 0 to
T (t = T to 2T ) corresponds to the noisy map F (G) in Eq. (4). At
t = T , we perform a projective measurement to calculate the numer-
ator in Eq. (6). In Appendix B, we show that we cannot accurately
estimate the ground-state energy of HP using this schedule.

this schedule, the virtually obtained state described by Eq. (5)
can be unphysical because the energy of the state can be lower
than the ground-state energy of the problem Hamiltonian. We
explain the origin of this unphysicality using both analytical
and numerical methods.

Figures 7(a) and 7(b) show the performance of the method
using the RQA-based schedule. Regardless of the num-
ber of qubits, the minimum expectation values are lower
than the ground-state energies, as shown in Table II. If
we calculate the energy using Tr[ρHP], we always have
Tr[ρHP] � Eg, where ρ denotes an arbitrary density matrix.
Thus, the method with the RQA-based schedule provides
us with an unphysical state. In this case, even if we min-
imize the expectation value of the energy by changing T ,
the minimized value is not always the closest to the ac-
tual value, which is a significant disadvantage of using the
method with the RQA-based schedule. In Figs. 7(a) and
7(b), we can see the irregular behavior. Since we cannot
construct the strict inverse map, the nonadiabatic transitions
occur, and a combinational effect of relative phase and nona-
diabatic transitions occurs in the state. We consider that this
is the reason for the irregular behavior. In Appendix C, we

TABLE II. Minimum expectation values, the relative error, the
optimal annealing time to minimize the energy, and the exact value
of the ground-state energy. Here, we normalize the energy by J (i.e.,
〈HP〉/J), and we set J = 2π × 100 MHz for the optimal annealing
time.

Expectation value, relative error, and annealing time (ns) when
λ/J = 0.004

RQA-based Exact

N = 3 −3.41, −0.138, 4.77 ns −3.00
N = 4 −5.32, −0.329, 3.18 ns −4.00
N = 5 −5.83, −0.167, 9.55 ns −5.00
N = 6 −17.2, −1.87, 3.18 ns −6.00
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FIG. 7. Relative error of the ground-state energy of the problem Hamiltonian HP. We define the relative error as (〈HP〉 − Eg)/|Eg|, where
〈HP〉 denotes the expectation value with QA and Eg denotes the actual value of the ground-state energy. We adopt the RQA-based schedule with
λ/J = 0 and 0.004 in (a) and (b), respectively. The annealing time T is normalized by J . We show that the relative error with the RQA-based
schedule can be lower than zero at some T for all N . Thus, the RQA-based schedule may produce unphysical results where the corresponding
density matrix has negative eigenvalues.

analytically show an example that the RQA-based schedule
actually provides an unphysical state by using a simple model.

APPENDIX C: THEORETICAL ANALYSIS
OF RQA-BASED SCHEDULE

In Appendix B, we noted that the expectation value of
HP becomes lower than the ground-state energy in the case
of the RQA-based method in the numerical simulations. To
better understand this phenomenon, we derive the analytic
expressions of the RQA-based method with a single qubit.
We will show that, for this case, the state ρρ̄ + ρ̄ρ becomes
unphysical in the sense that the eigenvalues of this state be-
come lower than 0 unlike the physical density matrices. In
this Appendix, we do not consider the effect of decoherence,
as we can observe such an unphysical situation even if there
is no decoherence, as shown in Fig. 7(a). We redefine the
time-dependent Hamiltonian from t = 0 to T for the QA as
follows:

HRQA(t ) = − sin

(
πt

2T

)
σ̂ z − cos

(
πt

2T

)
σ̂ x. (C1)

We can diagonalize this Hamiltonian using a unitary matrix
that is expressed as

V (t ) =

⎛
⎜⎜⎜⎜⎝

cos

(
π (t + T )

4T

)
− sin

(
π (t + T )

4T

)

sin

(
π (t + T )

4T

)
cos

(
π (t + T )

4T

)
⎞
⎟⎟⎟⎟⎠. (C2)

We obtain a diagonalized matrix as follows:

D ≡ V (t )HRQA(t )V †(t ) =
(

1 0
0 −1

)
. (C3)

By using the matrices V (t ) and D, we define an effective
Hamiltonian as

Heff = i
dV (t )

dt
V †(t ) + D

=

⎛
⎜⎜⎜⎝

1 − iπ

4T

iπ

4T
−1

⎞
⎟⎟⎟⎠. (C4)

If no decoherence occurs, the time-evolved state |ψ (T )〉 with
the Hamiltonian HRQA(t ) from the initial state |+〉 is ex-
pressed as

|ψ (T )〉 = T exp

(
−i
∫ T

0
HRQA(t )dt

)
|+〉

= V †(T ) exp(−iT Heff )V (0) |+〉

=

⎛
⎜⎜⎜⎝

cos
(

1
4

√
π2 + 16T 2

)+ 4iT sin
(

1
4

√
π2+16T 2

)
√

π2+16T 2

π sin
(

1
4

√
π2+16T 2

)
√

π2+16T 2

⎞
⎟⎟⎟⎠.

(C5)

In this case, we obtain the density matrix ρ as |ψ (T )〉〈ψ (T )|.
Meanwhile, the time-dependent Hamiltonian from t = T

to 2T , which corresponds to the inverse map G, is defined as

HRQA(t ) = − cos

(
π

2T
(t − T )

)
σ̂ z − sin

(
π

2T
(t − T )

)
σ̂ x.

(C6)
We can also diagonalize this Hamiltonian using a unitary
matrix that is expressed as

U (t ) =
(

sin
(

π (t−T )
4T

) − cos
(

π (t−T )
4T

)
cos
(

π (t−T )
4T

)
sin
(

π (t−T )
4T

)
)

. (C7)
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We obtain an effective Hamiltonian for this time range as

H ′
eff = i

dU (t )

dt
U (t )† + D =

⎛
⎜⎜⎜⎝

1
iπ

4T

− iπ

4T
−1

⎞
⎟⎟⎟⎠ (C8)

because the diagonalized matrix of the Hamiltonian in
Eq. (C6) is also D. Using this effective Hamiltonian, we define
a state |φ(T )〉 as

|φ(T )〉 =
[
T exp

(
−i
∫ 2T

T
HRQA(t )dt

)]†

|+〉

= (U (2T )† exp(−iT H ′
eff )U (T ))† |+〉

=

⎛
⎜⎜⎜⎝

cos
(

1
4

√
π2 + 16T 2

)− 4iT sin
(

1
4

√
π2+16T 2

)
√

π2+16T 2

π sin
(

1
4

√
π2+16T 2

)
√

π2+16T 2

⎞
⎟⎟⎟⎠. (C9)

Using this state, we have ρ̄ in Eq. (4) as |φ(T )〉〈φ(T )|. For
our purpose, it is sufficient to consider only ρρ̄ + ρ̄ρ because

Tr[ρρ̄ + ρ̄ρ] > 0 is satisfied in this case. We obtain the mini-
mum eigenvalue λmin(T ) of the state ρρ̄ + ρ̄ρ as

λmin(T ) = A − (π2 + 16T 2)
√

A

(π2 + 16T 2)2
, (C10)

where

A = π4 + 8π2T 2 + 256T 4 + 32π2T 2 cos
(

1
2

√
π2 + 16T 2

)
− 8π2T 2 cos(

√
π2 + 16T 2). (C11)

We plot λmin(T ) against the parameter T in Fig. 8(a). As can
be seen in Fig. 8(a), λmin(T ) can be negative for some T . Thus,
the state ρρ̄ + ρ̄ρ is unphysical in the sense that the eigen-
value is negative, even if we normalize this state. As long as
the state ρρ̄ + ρ̄ρ has a negative eigenvalue, the expectation

values of the energy Tr[HP(ρρ̄ + ρ̄ρ)]/Tr[ρρ̄ + ρ̄ρ] will be
lower than the ground-state energy.

We expect this negative eigenvalue of ρρ̄ + ρ̄ρ to be re-
lated to the nonadiabatic transitions during QA. Actually, we
confirm that the unphysical state appears at relatively small
T , as shown in Fig. 7(a). For further investigation, we define
a transition rate P(T ) as

P(T ) = | 〈1〉 ψ (T )|2 = π2 sin2
(√

π2+16T 2

4

)
π2 + 16T 2

. (C12)

When P(T ) is not zero, non-diabatic transitions occur during
the dynamics. Using the transition rate P(T ), we have

λmin(T ) =
(√

1 − 64T 2P(T )2

π2
− 1

2

)2

− 1

4
. (C13)

We plot T 2P(T )2 against the parameter T in Fig. 8(b). Further,
we confirm that the eigenvalue λmin(T ) decreases (increases)
as T 2P(T )2 increases (decreases) in Fig. 8. Thus, the nonadia-
batic transitions are closely related to the negative eigenvalues
of the state ρρ̄ + ρ̄ρ in Eq. (C13).

FIG. 8. Relationship between the transition rate P(T ) in
Eq. (C12) and the minimum eigenvalue λmin(T ) in Eq. (C10) of the
state ρρ̄ + ρ̄ρ. We plot λmin(T ) and T 2P(T )2 against the annealing
time T in (a) and (b), respectively. We check that they have peaks
at the same points of T . This serves as evidence of the eigenvalue
being closely related to the nonadiabatic transition, as shown by
Eq. (C13).

APPENDIX D: ESTIMATION OF p AND p̄

To understand the improvement by EMQA in Fig. 4, here
we calculate the values of p and p̄ in Eq. (5) in numerical
simulation. We denote the noisy map defined by the time
evolution according to Eq. (15) with EMQA from t = a to
b as Fb

a . As we discussed in Sec. III, the quantum state ρ after
the time evolution from t = 0 to T + T ′/2 is described as

FT +T ′/2
0 (|+〉〈+|⊗N ) = (1 − p)|φid〉〈φid| + pρe, (D1)

where |φid〉 = U (0, T + T ′/2) |+〉⊗N and ρe |φid〉 = 0.
U (t ′, t ) is defined in Eq. (A1). Thus, we can numerically
compute

p = 1 − 〈φid|FT +T ′/2
0 (|+〉〈+|⊗N )|φid

〉
. (D2)

Let us consider the dual state ρ̄ described by the dual map of
the noisy map F2T +T ′

T +T ′/2 as

F̄2T +T ′
T +T ′/2(|+〉〈+|⊗N ) = (1 − p̄)|φid〉〈φid| + pρ̄e. (D3)
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FIG. 9. Populations of the ideal state |φid〉 in (a) the density
matrix without EM and (b) the virtually purified state (see the main
text). All the parameters J,	, B, λ, and T ′ and the noise model are
the same in the main text. In each case of the number of qubits,
the virtually purified state maintains the population close to 1 longer
compared to the density matrix without EM.

We can also numerically compute the population of |φid〉 in
the virtually purified state (ρρ̄ + ρ̄ρ)/2Tr[ρρ̄] as follows:

(1 − p)(1 − p̄)

Tr[ρρ̄]
= (P̃+ − P̃−)

Tr[ρρ̄]
, (D4)

where

P̃± = 〈+|⊗N F2T +T ′
T +T ′/2

[
P±FT +T ′/2

0 (|+〉〈+|⊗N )P±] |+〉⊗N ,

(D5)
and P± = (I ± |φid〉〈φid|)/2.

We plot the populations 1 − p and (1 − p)(1 − p̄)/Tr[ρρ̄]
of |φid〉 in Fig. 9. We use the same values for all parameters
J,	, B, λ, and T ′ and the same noise model as in the main
text. The results show that, by using the EMQA schedule, the
population of the ideal state is almost the unity for T J � 10−1.
On the other hand, the population of the ideal state during QA
without EM is much smaller than that with EM for all T . This
means that we can take a longer annealing time to suppress

FIG. 10. Relative error of the ground-state energy of the problem
Hamiltonian HP with the noise model described by the quantum
adiabatic master equation. The relative error is defined as (〈HP〉 −
Eg)/|Eg|, which is the same as that in Fig. 4. We adopt (a) the EMQA
and (b) the conventional schedule with λ/J = 0.004. We obtain the
minimum relative error 0.0338 (0.256) in T = 6.37(6.37) ns with the
EMQA (conventional) method.

the nonadiabatic conditions when we use the EM. Therefore,
the numerical results here are consistent with those in Fig. 4,
which shows the advantage of the EMQA.

APPENDIX E: MORE REALISTIC SIMULATION

Here, we investigate the performance of our method when
we adopt a more realistic noise model. More specifically, we
consider the quantum adiabatic Markovian master equation
[131–135]. Let us define the total Hamiltonian for the system
and the environment as

Htotal(t ) = Hsys(t ) + Hbath + Hint, (E1)

where Hsys(t ), Hbath, and Hint are the system, bath, and inter-
action Hamiltonian, respectively. In the numerical simulation,
we set either Hsys(t ) = HCQA(t ) or Hsys(t ) = HEMQA(t ). Also,
we define the interaction Hamiltonian as Hint =∑M

k=1 Ak ⊗
Bk where Ak (Bk) denotes an operator acting on the system (the
bath). We can describe the dynamics of the total Hamiltonian
with the von Neumann equation as

dρtotal

dt
= −i[H (t ), ρtotal]. (E2)

By assuming the Born-Markov approximation and small
nonadiabatic transitions, we obtain the quantum adiabatic
Markovian master equation for the system density matrix ρ

in the interaction picture [133,136,137] as

dρ

dt
= 1

2

∑
k,l

∑
ω,ω′

ei(ω−ω′ )t�kl (ω
′)

×{Al (ω
′)ρA†

k (ω) − A†
k (ω)Al (ω

′)ρ} + H.c., (E3)
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where Ak (ω) =∑ε′−ε=ω |ψε〉〈ψε |Ak|ψε′ 〉〈ψε′ | denotes a noise
operator associated with the energy ω, |ψε〉 denotes the in-
stantaneous eigenvector of the Hamiltonian Hsys(t ) with an
eigenvalue of ε, and �kl denotes the power spectrum density.
Here, we ignore the cross correlations between different in-
dices k and l [i.e., �kl (ω) = �(ω)δkl ]. We choose the noise
operator as Ak = σ̂ z

k . Also, we choose the power spectrum
density as

�(ω) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ηω
(

1
eω/Tenv −1 + 1

)
(ω > 0),

ηTenv (ω = 0),

η(−ω)
(

1
e−ω/Tenv −1 + 1

)
(ω < 0),

(E4)

where η denotes the strength of the decoherence and Tenv

denotes the temperature of the environment. For the nu-
merical simulation, we need to set the cutoff parameters
ωc and δ. Thus, we modify the power spectrum density

as

�(ω)(co) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ηωe−ω/ωc

(
1

eω/Tenv − 1 + δ
+ 1

)
(ω > 0),

ηTenv (ω = 0),

η(−ω)eω/ωc

(
1

e−ω/Tenv − 1 + δ
+ 1

)
(ω < 0).

(E5)

We set ωc/J = 20, δ = 10−7, η = 0.01, N = 3, and
Tenv/J = 10 in the numerical simulation. Particularly, Tenv =
10Jh̄/kB 	 4.8 mK. This temperature can be achieved in ac-
tual devices [138,139].

We plot the relative error of the EMQA and the conven-
tional QA under the effect of decoherence described by the
quantum Markovian master equation in Fig. 10. We show that
our method provides a more accurate expectation value of the
ground-state energy than the conventional method. Therefore,
our method is still promising even when we adopt a realistic
noise model.
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