
PHYSICAL REVIEW A 109, 042604 (2024)

Generation of complete graph states in a spin-1/2 Heisenberg chain
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Graph states possess significant practical value in measurement-based quantum computation, with complete
graph states that exhibit exceptional performance in quantum metrology. In this work, we introduce a method for
generating multiparticle complete graph states using a spin-1/2 Heisenberg XX chain subjected to a time-varying
magnetic field, which applies to a wide range of systems. Our scheme relies exclusively on nearest-neighbor
interactions between atoms, with real-time magnetic field formation facilitated by quantum optimal control
theory. We focus specifically on neutral-atom systems, finding that multiparticle complete graph states with
N = 3–6 can be achieved in less than 0.25 µs, using a hopping amplitude of J/(2π ) = −2.443 MHz. This
assumes an initial state provided by an equal-weight superposition of all spin states that are encoded by the
dipolar-interacting Rydberg states. Furthermore, we thoroughly address various experimental imperfections
and showcase the robustness of our approach against atomic vibrations, fluctuations in pulse amplitude, and
spontaneous emission of Rydberg states. Taking into account the common occurrence of disturbances in the
experimental setups of neutral-atom systems, our one-step strategy to achieve such graph states emerges as a
viable alternative to techniques based on controlled-Z gates.
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I. INTRODUCTION

Graph states, derived from mathematical graph theory
[1,2], play a central role in quantum information theory.
Graph states describe a class of multiparticle-entangled states,
including Greenberger-Horne-Zeilinger (GHZ) states and
cluster states [3]. Such states form a universal resource for
measurement-based quantum computing without controlled
two-system quantum gates [4–8]. Some of them can also be
widely applied in quantum teleportation [9–11] and quantum
secret sharing [12,13]. Multiparticle complete graph states
mean that any two particles interact with each other, requiring
more projective measurements to be disentangled. When a
single σy measurement is performed at an arbitrary vertex
(qubit), these states can be converted to star graph states (GHZ
type) [1,14]. Such states exhibit excellent performance in
quantum metrology [15,16], quantum error-correction encod-
ing [17], and quantum cryptography [18]. However, although
complete graph states have many advantages, less attention
has been paid to preparing such graph states experimentally,
focusing mainly on linear and two-dimensional cluster states
[8,19–21].

The preparation of multiparticle complete graph states can
be conceptually divided into two primary categories. The first
approach is applicable to arbitrary graph states, employing
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the mathematically proven two-qubit controlled-Z (CZ) gate
[22–24]. However, these protocols are constrained by the op-
erational time and fidelity of the logic gate. On the contrary,
complete multiparticle graph states can also be generated
within the framework of cavity quantum electrodynamics
[25–27]. In particular, certain theoretical schemes [28,28,29]
enable one-step realization, but these one-step approaches re-
quire uniform interaction strengths between all particle pairs,
which poses challenges for experimental implementation. Re-
cently, the proposal of an equivalent Hamiltonian (Heisenberg
XXX model with a staggered field) [30] has sparked interest
in Floquet engineering for the construction of such a Hamilto-
nian [31,32]. Nevertheless, in practice, controlling the impact
of noncommutation of the Hamiltonian under periodic driving
becomes challenging as the particle number increases.

As quantum control theory progresses, optimal quan-
tum control provides a tool kit to craft external field
shapes to perform assigned tasks, such as state generation
[33–36], quantum gate implementation [37,38], and noisy
intermediate-scale quantum technology [39]. These tools aim
to achieve the specified objectives with minimal energy and
resource expenditure. The practical realization of calculated
field shapes has been facilitated by the availability of com-
mercially accessible arbitrary wave-form generators. In this
paper, using the gradient ascent pulse engineering (GRAPE)
optimization algorithm [40,41], we propose an alterna-
tive Hamiltonian represented as a spin-1/2 Heisenberg XX
chain with identical nearest-neighbor interactions under an

2469-9926/2024/109(4)/042604(11) 042604-1 ©2024 American Physical Society

https://orcid.org/0000-0003-4707-3226
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.109.042604&domain=pdf&date_stamp=2024-04-01
https://doi.org/10.1103/PhysRevA.109.042604


X. X. LI, D. X. LI, AND X. Q. SHAO PHYSICAL REVIEW A 109, 042604 (2024)

FIG. 1. (a) Multiparticle complete graph states with the num-
ber of vertices N = 3–6. The graph connecting the two associated
vertices has an edge whenever two particles have interacted. (b) Ex-
perimental geometry. Particles are arranged as a chain with the open
boundary condition and have equivalent interactions between the
nearest particles.

optimized time-dependent magnetic field. Using this Hamil-
tonian, we successfully generate complete graph states for a
particle number ranging from N = 3 to N = 6. Our protocol
boasts two key advantages: (1) It exclusively relies on the
nearest-neighbor interactions, ensuring robust operability and
scalability in experimental setups. (2) The operational time is
significantly reduced to less than 0.25 µs, a crucial factor in
mitigating the effects of decoherence.

The structure of this paper is organized as follows. In
Sec. II, we initiate our exploration with the introduction of the
definition of the complete graph state and an analysis of the
corresponding scheme. Subsequently, in Sec. III, we employ
the GRAPE optimization algorithm to articulate a system-
independent realization of complete graph states in a “one-
step” fashion. Transitioning to Sec. IV, we delve into a
specific physical system, the Rydberg-atom array, providing
a comprehensive examination of the experiment’s feasibility.
Our results suggest that, taking into account experimental
noise, the population of the complete graph state with N = 6
can exceed 0.91 in a time frame of 0.25 µs. Finally, Sec. V
encapsulates our findings, offering a concise summary.

II. ONE-STEP GENERATION OF COMPLETE
GRAPH STATES

Mathematically, a graph can be divided into vertices and
edges, G = {V, E}. Physically, such graphs can constitute the
graph states, with the vertices playing the role of physical
systems, while the edges represent interactions. As shown in
Fig. 1(a), the multiparticle complete graph states indicate that
an interaction exists between two arbitrary qubits. Taking the
vertices as spin systems with {|↑〉, |↓〉}, the complete graph
states with N vertices can be defined as

|KN 〉 = 1

2N/2

N⊗
i=1

[
| ↑i〉(−1)N−i

N∏
j=i+1

σ j
z + |↓i〉

]
, (1)

with the convention σ N+1
z ≡ 1. To generate such complete

graph states, we construct a Hamiltonian that holds a global

time-dependent magnetic field, which takes the form (h̄ = 1)

H (t ) = HXX +
N∑

i=1

B(t )Sz
i , (2)

where Sz is the spin operator and

HXX =
∑
〈i, j〉

J

2

(
σ x

i σ x
j + σ

y
i σ

y
j

)
(3)

is a spin-1/2 Heisenberg XX chain model with Pauli operators
σ x(y,z), where 〈i, j〉 indicates that the sum is taken over all
nearest-neighbor pairs (i, j) in the spin chain. Taking N = 3
as an example, the target state can be written as

|K3〉 = 1

2
√

2
(|↑↑↑〉 + |↑↑↓〉 + |↑↓↑〉 − |↑↓↓〉

+ |↓↑↑〉 − |↓↑↓〉 − |↓↓↑〉 − |↓↓↓〉), (4)

which presents as a superposition of eight states that can be
separated into two groups with opposite signs, i.e., {|↑↑↑〉,
|↑↑↓〉, |↑↓↑〉, |↓↑↑〉} and {|↑↓↓〉, |↓↑↓〉, |↓↓↑〉, |↓↓↓〉}.
Hxx described by Eq. (3) has the capability to alter the phase
of the state within the associated excitation subspace through
flip-flop interactions while ensuring the conservation of ex-
citation numbers. Furthermore, the introduction of a global
magnetic field

∑3
i=1 B(t )Sz

i allows the accumulation of dis-
tinct phases in various excitation subspaces. The synergistic
integration of these two factors contributes to the realization
of a complete graph state of three particles.

Since the two parts (HXX and the global magnetic field
term) commute with each other, the evolution can take place
under the Hamiltonian (2) or under HXX and the global
magnetic field separately. Theoretically, any equivalent HXX

model can be applied to this scenario. Under a global magnetic
field with constant amplitude, an exact analytical solution of B
can be found for N = 3, as shown in Appendix A. However,
for N > 3, such an exact solution is nonexistent. Thus, we
consider a time-dependent magnetic field B(t ) and introduce
the GRAPE optimization algorithm to find the optimal solu-
tion for the system. In this way, we can expect to obtain a
multiparticle universal protocol.

III. THE UTILIZATION OF THE GRAPE
OPTIMIZATION ALGORITHM

Given the known form of the target state |KN 〉, the opti-
mization problem, which is implemented using the gradient
descent algorithm, is translated into the search for the optimal
amplitudes B(t ) of the magnetic field. These amplitudes aim
to guide the initial state ρ(0) to ρ(T ) with maximum similar-
ity to ρK = |KN 〉〈KN | within a specified time duration T . In
our protocol, the system Hamiltonian is segmented into two
distinct parts,

H (t ) = HXX + B(t )Hz, (5)

where Hz = ∑N
i=1 Sz

i is referred to as the control component.
The quantum control landscape, depicting the expectation
value of a Hermitian observable operator ρK at a given time
T , is represented as [42]

�[B(·)] = Tr[ρ(0)ρK (T )], (6)
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FIG. 2. The realization of the multiparticle complete graph states with N = 3–6 governed by Eq. (2) initialized from state |�0〉 =⊗N
i=1[1/

√
2(|↑〉 + |↓〉)]. (a) and (b) respectively show evolution under the magnetic field for random and Gaussian types for N = 3. The

dotted lines correspond to the evolution under the guess field, while the solid lines correspond to the optimized one. (c) and (d) show the
evolution for N = 4, (e) and (f) show that for N = 5, and (g) and (h) show that for N = 6. The insets show the corresponding time-dependent
B(t ) of the initial guess and the optimized result.

where ρK (T ) = U †(T, 0)ρKU (T, 0). The variation of the ob-
servable operator ρK is expressed as

δρK (t ) =
∫ t

0
[ρK (t ′), Hz(t ′)]δB(t ′)dt ′, (7)

where Hz(t ′) = −iU †(t ′, 0)HzU (t ′, 0). This results in the fun-
damental equation

δρK (T )

δB(t ′)
= [ρK (T ), Hz(t ′)], ∀ t ′ < T . (8)

Consequently, the corresponding gradient is given by

g[B(t )] = ∂�[B(·)]
∂B(t ′)

= Tr{[ρ(0), ρK (T )]Hz(t ′)}. (9)

Therefore, the performance function �[B(·)] can be enhanced
by selecting

B(k) → B(k) + αg[B(t )], (10)

where α denotes the learning rate, subject to variation based
on the number of iterations k.

Guided by Eq. (2), the determination of B(t ) involves con-
sidering two forms of guess fields. One takes on a Gaussian
profile, defined as

BG = B0√
2πσ

e− t2
g

2σ2 , (11)

with B0 = J , σ = 0.1, and tg = [−0.5, 0.5], while the other
manifests as a random sequence comprising random numbers
ξ within the range [0,1], denoted as BG = B0ξ . The guess
fields in the GRAPE optimal algorithm consist of discrete
points with a time interval of δt = T/n, where n takes values
of {100, 10} for the Gaussian and random types, respectively.
Figure 2 illustrates the optimized results for N = 3–6. Within
the GRAPE optimal algorithm, the maximum population of
the target state is achievable after optimization, irrespective
of the shape of the guess field, once the evolution time is
specified. The corresponding evolution time T and the op-
timized population P(N )O for various particle numbers are

presented in Table I. The results demonstrate the successful
generation of multiparticle complete graph states under the in-
fluence of a spin-1/2 Heisenberg XX chain in a time-varying
magnetic field optimized by the GRAPE algorithm. Conse-
quently, the preparation of multiparticle complete graph states
can be achieved mathematically in a one-step manner through
Eq. (2). This protocol is universally applicable in systems
capable of nearest-neighbor interactions characteristic of the
spin-1/2 Heisenberg XX chain, including superconducting
quantum circuits [43–46] and ion traps [47–51]. In the follow-
ing, we will delve into the detailed methodology for preparing
the aforementioned multiparticle complete graph states within
a neutral-atom system, closely considering experimental
parameters.

IV. A SPECIFIC IMPLEMENTATION BASED
ON THE RYDBERG-ATOM ARRAY

The Rydberg-atom array, characterized by robust pro-
grammability, recently emerged as a powerful candidate in
quantum simulations, spurred by breakthroughs in experi-
mental technology [52,53]. Individual Rydberg atoms, for
example, can be placed in an optical-tweezer array [54,55].
Leveraging the long-range interactions inherent in highly ex-
cited Rydberg states, the Rydberg-atom array has widespread
applications in quantum state transmission [56], quantum
topology research [57–59], and artificial gauge fields [60,61].

TABLE I. The evolution time and populations of the multiparti-
cle complete graph states governed by Eq. (2).

Target state Evolution time (in units of J) Population

|K3〉 2.3 1
|K4〉 2.808 0.9931
|K5〉 3.386 0.9710
|K6〉 3.952 0.9346
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FIG. 3. The realization of the multiparticle complete graph states with N = 3–6 governed by the Hamiltonian Hsys initialized from state
|�0〉 = ⊗N

i=1[1/
√

2(|↑〉 + |↓〉)]. (a) and (b) respectively show evolution under the magnetic field for Gaussian and random types for N = 3.
The dotted lines correspond to the evolution under the guess field, whereas the solid lines correspond to the optimized one. (c) and (d) show the
evolution for N = 4, (e) and (f) show that for N = 5, and (g) and (h) show that for N = 6. The insets show the corresponding time-dependent
B(t ) of the initial guess and the optimized result, where B0 = 2π × 1 MHz.

Notably, recent works, such as Refs. [62,63], have realized a
primary quantum computer employing 256 Rydberg atoms,
demonstrating proficiency at various quantum tasks.

Within the Rydberg-atom array, the Rydberg dipole-dipole
interaction serves as a direct means to achieve HXX [64,65].
Additionally, the magnetic field B(t ) can be equivalently ob-
tained through the Stark effect induced by a large detuned
time-dependent laser-field-coupled transition between the in-
termediate state |p〉 and one of the Rydberg states [66,67]. It
is crucial to note that the inevitable long-range interactions
among Rydberg atoms, such as van der Waals (vdW) forces
and long-range dipolar interactions, should also be taken into
consideration with respect to the realistic physical system.

A. The realization of multiparticle complete graph states

We consider a one-dimensional chain geometry with open
periodic boundary conditions, as shown in Fig. 1(b), in which
N atoms are contained in tweezers that are equidistantly
spaced R along the quantized z axis. For the purpose of
illustration, states with opposite parity are transformed into
pseudospin states, using the 87Rb atom as an example, |↑〉 =
|80S1/2, mj = 1/2〉 and |↓〉 = |79P3/2, mj = 1/2〉 [68]. The
resonant dipole-dipole interaction gives rise to the Heisenberg
XX Hamiltonian

HXX =
∑
〈i, j〉

Vdip(θ )

2

(
σ x

i σ x
j + σ

y
i σ

y
j

)
, (12)

where Vdip(θ ) = C3(1 − 3 cos2 θ )/R3, with θ being the polar
angle between the quantization z axis and the vector direc-
tion of atomic connection, and the constant C3 is defined
as 2π × 8.780 GHz µm3 [69]. For θ = 0 and R = 19.3 µm,
we have Vdip � −2π × 2.443 MHz. Additionally, we account
for inevitable interactions, including long-range vdW interac-
tions and dipolar interactions, which are characterized as error

terms:

Herr =
∑
j>i

(U ↑
i j |↑i ↑ j〉〈↑i↑ j | + U ↓

i j |↓i ↓ j〉〈↓i↓ j |)

+
∑

j>i+1

V i j
dip

2

(
σ x

i σ x
j + σ

y
i σ

y
j

)
, (13)

where U ↑(↓)
i j = −C↑(↓)

6 /R6
i j , with C↑

6 = −2π ×
4161.55 GHz µm6 and C↓

6 = 2π × 3452.60 GHz µm6, and
V i j

dip = C3(1 − 3 cos2 θ )/R3
i j . Ri j denotes the distance between

the ith and jth atoms.

Hsys = HXX + Herr +
N∑

i=1

B(t )Sz
i . (14)

Using N = 3–6 as illustrative examples, we depict the evo-
lutions governed by Eq. (14). In Fig. 3, we specifically show
the evolutions under the initial guess and optimized fields
for the Gaussian and random types. Within this framework,
the populations in the target state, denoted as P(N )O, exhibit
multiple peak points corresponding to different values of T (as
shown in Fig. 9 in Appendix B). By scanning the time within
0.25 µs, we successfully obtain the optimized fields under Hsys

for various numbers of particles. The insets in Fig. 3 show
the time-dependent B(t ) of the application, where solid lines
represent the optimized pulse and dotted lines represent the
guess pulse. The evolution time T and the populations of
the target states are summarized in Table II. Although the
population of the target state decreases as N increases, we can
still prepare the six-particle complete state with a population
greater than 0.92.

Recently, a quantum circuit utilizing the Rydberg-atom
array was demonstrated to generate a complete graph state
of five particles [70]. When coupled with quantum an-
nealing algorithms, the fidelity of the target state can be
increased from approximately 0.85 to 0.999 by increasing
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TABLE II. The evolution time and populations of the multipar-
ticle complete graph states corresponding to the system constructed
by the 87Rb atom array arranged in a line with polar angle θ = 0.

Target state Evolution time (µs) Population

|K3〉 0.141 0.9989
|K4〉 0.172 0.9920
|K5〉 0.203 0.9728
|K6〉 0.233 0.9294

computational depth. However, this increased computational
depth is accompanied by prolonged execution times, leading
to an increased susceptibility to decoherence effects. On the
contrary, our protocol enables the generation of the target
state in a single step, regardless of the number of atoms
involved. This approach significantly reduces operational time
while preserving high levels of fidelity, which presents notable
advantages in mitigating decoherence effects.

B. Experimental feasibility analysis

This section focuses on experimental feasibility by exam-
ining the experimental imperfections and providing a concise
design for an experimental procedure using the Rydberg-atom
array. This includes the production of the initial state and the
final decoupling process.

1. The influence of experimental errors

Here, we rigorously assess the scheme by taking into
account experimental imperfections, such as spontaneous ra-
diation of Rydberg levels, as well as the discrepancy between
the dipole-dipole interaction Vdip and the magnetic field B(t ).
The associated numerical simulations employ Gaussian-type
optimal pulses.

(1) Examine the impact of spontaneous emission of
Rydberg states. To analyze the influence of spontaneous ra-
diation, we introduce an empty ground state |g〉 under the
assumption that all Rydberg states will spontaneously radiate
to this unoccupied state. At a temperature of 0.1 K, the life-
times of the Rydberg states |80S1/2〉 and |79P3/2〉 are τ↑,↓ =
0.569, 1.1 ms, respectively. Thus, the corresponding master
equation can be described as

L[ρ] = −i[Hsys, ρ] +
N∑

i=1, j=↑,↓

γ j

2
(2siρs+

i − s+
i siρ − ρs+

i si ),

(15)

where γ↑(↓)is the decay rate of the Rydberg state |↑(↓)〉, equal
to 1/τ↑(↓), and si = |g〉i〈 j| denotes the decay channel of the ith
atom. Through numerical simulation, dissipation is observed
to lead to a reduction in the population of the target state by
values of {0.0006, 0.0009, 0.0010, 0.0017}, corresponding to
N ranging from 3 to 6, respectively.

(2) Address the impact of the mismatch between the
dipole-dipole interaction Vdip and the magnetic field B(t ). This
discrepancy may arise from different sources: the instability in
the distance between atoms and the fluctuation of the magnetic
field.

FIG. 4. The influence of the mismatch of the dipole interac-
tion Vdip and the magnetic field B(t ) caused by atomic vibration.
(a) Populations of the complete multiparticle graph states with
range error δr under the Hamiltonian Hsys(δr). (b) and (c) Average
evolution results for N = 4, 6 considering a true fluctuation where
the position distribution is Gaussian with variance {σx, σy, σz} �
{193.5, 193.5, 1242.9} nm. Note that the light-red region shows the
results of 50 stochastic simulations, and the dashed lines correspond
to the average results.

To investigate the first, we introduce Vdip(δr) =
−2C3/(R + δr)3 with a range error δr ∈ [−300, 300] nm
for a preliminary estimate. The Hamiltonian H (t ) can be
rewritten as

HδV (t ) =
∑
〈i, j〉

Vdip(δr)

2

(
σ x

i σ x
j + σ

y
i σ

y
j

) +
N∑

i=1

B(t )Sz
i . (16)

It should be noted that as the vdW interaction also depends on
the distance between the atoms, the Hamiltonian Herr should
likewise be formulated as

H err
δV =

∑
j>i

[U ↑
i j (δr)|↑i ↑ j〉〈↑i↑ j | + U ↓

i j (δr)|↓i ↓ j〉〈↓i↓ j |]

+
∑

j>i+1

V i j
dip(δr)

2

(
σ x

i σ x
j + σ

y
i σ

y
j

)
, (17)

where U ↑(↓)(δr) = −C↑(↓)
6 /(Ri j + δr)6 and V i j

dip = C3(1 −
3 cos2 θ )/(Ri j + δr)3. In Fig. 4(a), we present the evolution
results governed by Hsys(δr) = HδV (t ) + H err

δV , with N varying
from 3 to 6. The population of target states P(N )O consis-
tently exceeds 0.9 for δr � 300 nm. In experimental settings,
the vibration of atoms near the ideal position, induced by
nonzero temperature, follows the Maxwell-Boltzmann distri-
bution and is associated with the atomic temperature as well
as the parameters of the tweezer beam and trap. Accord-
ing to Ref. [71], the atomic temperature can be cooled to
5.2 µK in a 50 µK trap. Setting the corresponding parame-
ters of the laser beams as wavelength λ f = 830 nm, typical
beam power Pf = 174 µW, and waist (1/e2 intensity radius)
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FIG. 5. The influence of the mismatch of Vdip and B(t ) caused
by the fluctuation of the magnetic field. (a)–(d) show the aver-
age evolution results (dashed line) governed by Eq. (18). Note
that the light-red region shows the results of 50 stochastic simu-
lations, while the insets present the magnetic field of one of the
experiments.

ω f = 1.2 µm, we estimate a position distribution in the Gaus-
sian with variance {σx, σy, σz} � {193.5, 193.5, 1242.9} nm.
Thus, in Figs. 4(b) and 4(c), we further assess the robustness
of the protocol with N = 4 and N = 6 as realistically as possi-
ble, considering a three-dimensional random vibration under
these estimated parameters. The distance between the atoms
R is redefined as D = |Ri − Ri+1|, where Ri = (xi, yi, zi ).
Since the evolution time T is less than 0.25 µs, we reasonably
consider only one group of random fluctuation (σx,y,z) errors
throughout the evolution process here. Figure 4(b) and 4(c)
respectively illustrate the populations of the target states |K4〉
and |K6〉, where the light-red regions represent the results of
50 stochastic simulations, and the dashed lines correspond to
the average outcomes. The average populations of |K4〉 and
|K6〉 in this test are 0.9728 and 0.9187, respectively. With
advancements in experimental methods, the actual vibration
of the atoms in the trap is expected to be smaller than our
estimated parameters [72,73], which is more conducive to the
realization of our scheme.

For the latter reason, the fluctuation of the magnetic field
intensity is introduced by a time-dependent fluctuation δB.
It is assumed to follow normal distribution functions with
standard deviations σ (t ) � 2π × 0.5 MHz. Thus, we have the
system Hamiltonian

HδB(t ) = HXX + Herr +
N∑

i=1

[B(t ) + δB]Sz
i . (18)

In Fig. 5, we present the evolution results governed by the
Hamiltonian HδB(t ) averaged over 50 realizations. It is evident
that the fluctuation in the global magnetic field has a negligi-
ble impact on our scheme.

FIG. 6. The decoupling process (dashed lines) and the relevant
levels of the 87Rb atom. The ground states can be chosen as |5S1/2〉
hyperfine clock states, such as |0〉 ≡ |F = 1, mF = 0〉 and |1〉 ≡
|F = 2, mF = 0〉, while the auxiliary Rydberg states can be chosen
as |r〉 = |78S1/2, mj = 1/2〉.

2. Mapping between Rydberg states and ground states

For the neutral-atom system, ensuring the stability of the
target state typically involves encoding it in the ground states
|0〉 and |1〉, which are the hyperfine clock states of |5S1/2〉.
Moreover, given the natural existence of dipole-dipole in-
teractions between Rydberg states, the scheme should be
implemented in three steps, that is, the initial state preparation,
the core evolution governed by Hsys, and the decoupling pro-
cess. In this section, we present separate feasibility proposals
for the initial state preparation and decoupling process.

(1) Preparation of the initial state. In this protocol, the
initial state is selected as

|�N (0)〉 =
N⊗

i=1

[
1√
2

(|↑i〉 + |↓i〉)

]
. (19)

To excite multiple atoms to Rydberg states without being
constrained by the Rydberg blockade, the process can be
initiated by driving the ground state |0〉 → |↑〉 through a
two-photon resonance with an effective Rabi frequency � and
an evolution time t = π/�. Subsequently, the transition from
|↑〉 to |↓〉 is achieved sequentially using a microwave pulse
with Rabi frequency �a

mw and duration tmw = π/(2�a
mw).

This technique to prepare the initial state is well established
in quantum simulations [32,57,74].

(2) Dynamical decoupling process. As dipole-dipole in-
teractions naturally persist, the system evolution under the
Hamiltonian HXX cannot be voluntarily stopped by controlling
external electric or magnetic fields. To address this challenge,
we select an auxiliary Rydberg level |r〉 characterized by
non-dipole-dipole interactions, such as |78S1/2, mj = 1/2〉.
Illustrated by the dashed lines in Fig. 6, the dynamics can
be decoupled by driving atoms in states |↓〉 to this auxiliary
Rydberg level via a microwave pulse �b

mw. Given that the Rabi
frequency of the microwave pulse can reach 200 MHz [31],
this process is rapid. By combining this step with the two-
photon resonance process with an effective Rabi frequency
�, we can further drive the Rydberg levels to hyperfine clock
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FIG. 7. A complete evolution via the resonant dipole-dipole in-
teraction for N = 3 with the initial state |000〉. The dashed and dotted
lines respectively correspond to the initial-state preparation and the
decoupling process, and the solid line presents the core evolution
with the optimized B(t ) in the Gaussian type. The parameters are
set as � = 2π × 4 MHz, �a

mw = 2π × 70 MHz, and �b
mw = 2π ×

200 MHz.

states with an evolution time t = π/�, thus obtaining com-
plete graph states encoded by ground states of the 87Rb atom.

Figure 7 illustrates a complete evolution with N = 3. To
enhance observability, we depict the evolution of the target
states for each process, where |ψ1〉 = ⊗3

i=1[1/
√

2(|↑i〉 −
i|↓i〉)], |ψ2〉 = 1/(2

√
2)

⊗3
i=1[|↑i〉(−1)3−i

∏3
j=i+1 σ

j
z −

i|↓i〉], |ψ3〉 = 1/(2
√

2)
⊗3

i=1[|↑i〉(−1)3−i
∏

j=i+1 σ
j

z − |ri〉],
and |ψ4〉 = 1/(2

√
2)

⊗3
i=1[−|0i〉(−1)3−i

∏
j=i+1 σ

j
z + |1i〉].

The dashed and dotted lines correspond to the initial-state
preparation and the decoupling process, respectively,
while the solid line represents the core evolution with
the optimized B(t ) in the Gaussian type. Under the
parameters � = 2π × 4 MHz, �a

mw = 2π × 70 MHz,
and �b

mw = 2π × 200 MHz, the population of the target
state can reach about 0.9916 with a total evolution time
ttot = 0.3971 µs. Given that the independent evolution process
of the core operation can reach perfection with N = 3, the
error caused by the preparation of the initial state and the
return driving is approximately 0.0074.

It should be noted that this three-step scheme is specifically
designed for the Rydberg-atom-array system. In other sys-
tems, such as superconducting systems, the mapping process
mentioned here may no longer be necessary.

As shown in Table III, we estimate the population of com-
plete states with N = 3–6 considering the experimental errors
to make a comparison with the other protocol. In recent ex-
periments, the fidelity of the two-qubit entanglement gate was
improved to 99.5% [75,76]. Based on this analysis, we can
estimate the time and fidelity necessary to achieve complete
graph states using CZ gates for comparison. For N = 3, a
minimum of three CZ gates is required, with an estimated
fidelity of approximately 0.985. For N = 6, 15 CZ gates are
needed, with an estimated fidelity of 0.928, demonstrating

TABLE III. Error estimation of the population for the multiparti-
cle complete graph states with N = 3–6 corresponding to the system
constructed by the Rydberg-atom array.

Error budget

|K3〉 |K4〉 |K5〉 |K6〉
Initial preparing and decoupling 0.0074

Spontaneous radiation 0.0006 0.0009 0.0010 0.0017
Atomic vibration (±100 nm) 0.0009 0.0016 0.0020 0.0038
P(N )O 0.99 0.9821 0.9624 0.9165

performance comparable to our approach. However, for the
gate-based approach, although a single gate operation time
can be less than 300 ns, such CZ gate operations cannot be
performed simultaneously. The evolution time will increase
rapidly with an increasing number of particles N . On the con-
trary, the evolution time required by our protocol is shorter,
which can avoid some unknown errors. This reduction is cru-
cial from the perspective of decoherence.

V. SUMMARY

In summary, we introduced an efficient single-step tech-
nique for generating multiparticle complete graph states. Our
approach relies solely on a constant nearest-neighbor in-
teraction strength and a time-varying magnetic field which
is optimized using the GRAPE algorithm. This methodol-
ogy is applicable to various physical systems capable of
implementing a spin-1/2 Heisenberg XX chain, such as super-
conducting systems, trapped-ion systems, and neutral-atom
systems. We thoroughly investigated the protocol’s execution
in the Rydberg-atom-array system, evaluating its resilience
in the face of experimental errors. Our numerical findings
underscore the robustness of our approach against challenges
such as atomic position inaccuracies and pulse oscillations.
Our one-step solution significantly reduces operating time
while maintaining a relatively high estimated fidelity. We
anticipate that this discovery will quickly contribute to the
practical implementation of quantum computing and quantum
error correction in neutral-atom systems.
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APPENDIX A: A PROTOCOL FOR N = 3 UNDER
CONSTANT-AMPLITUDE MAGNETIC FIELD

In the three-particle case, the preparation of the com-
plete graph state is particularly unique. Governed by the
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Hamiltonian with a time-independent global magnetic field,
represented as

Hcon =
∑
〈i, j〉

Ji j
(
σ x

i σ x
j + σ

y
i σ

y
j

) +
3∑

i=1

BSz
i , (A1)

the system has definite solutions to realize the corresponding
complete state. According to Schrödinger equation,

i
d|�(t )〉

dt
= H |�(t )〉, (A2)

we have

|�(t )〉 = ψ1(t )|↓↓↓〉 + ψ2(t )|↓↓↑〉 + ψ3(t )|↓↑↓〉
+ψ4(t )|↓↑↑〉 + ψ5(t )|↑↓↓〉 + ψ6(t )|↑↓↑〉
+ψ7(t )|↑↑↓〉 + ψ8(t )|↑↑↑〉, (A3)

where

ψ1(t ) = e− 3itB
2

2
√

2
,

ψ2(t ) = e−i 1
2 t (4

√
2J+B)[2 + √

2 − (
√

2 − 2)e4i
√

2Jt ]

8
√

2
,

ψ3(t ) = e−i 1
2 t (4

√
2J+B)[1 + √

2 − (
√

2 − 1)e4i
√

2Jt ]

4
√

2
,

ψ4(t ) = 1

4
e

itB
2

(√
2 cos

4Jt√
2

− i sin
4Jt√

2

)
,

ψ5(t ) = e−i 1
2 t (4

√
2J+B)[2 + √

2 − (
√

2 − 2)e4i
√

2Jt ]

8
√

2
,

ψ6(t ) = 1

4
e

itB
2

(√
2 cos

4Jt√
2

− 2i sin
4Jt√

2

)
,

ψ7(t ) = 1

4
e

itB
2

(√
2 cos

4Jt√
2

− i sin
4Jt√

2

)
,

ψ8(t ) = e
3itB

2

2
√

2
, (A4)

with the assumption that Ji j = J is a positive real number. By
solving the equations, we find that when

B = 4J (1 − 4C1)√
2(2C1 − 2C2 − 1)

, C2 � C1 ∈ Z, (A5)

the triatomic complete graph state with a global phase −i
can be realized at t = √

2π [1 + 2(C2 − C1)]/(4J ), as shown
Fig. 8(a). However, this is just a particular set of solutions.
When considering other global phases, more solutions may
exist, as shown in Fig. 8(b) which is obtained by scanning
the population of the target state under different parameters.
We find that three of the peaks correspond exactly to our
analytical results, although more peaks exist. However, in the
case of a system with more than three qubits, such a solution

FIG. 8. Evolution governed by the Hamiltonian (A1) with N =
3. (a) The intensity of the constant-amplitude pulse B satisfies the re-
lationship shown in Eq. (A5). (b) Scanning results for the population
of the target state with different parameters.

is nonexistent, and the application of the time-dependent mag-
netic field with quantum optimal control is necessary.

APPENDIX B: THE MULTISELECTIVITY
OF EVOLUTION TIME

Within this protocol, populations in the target state ex-
hibit multiple peaks corresponding to different values of T .
Taking N = 3 as an example, Fig. 9 presents the evolution
results with T = {0.141, 0.42, 0.696} µs. We find that un-
der these three evolution times, the population of the target
state will reach the peak which corresponds to three good

FIG. 9. The multiple peaks corresponding to different T . (a) The
optimized magnetic fields B(t ) under different evolution times T .
(b) The corresponding evolution governed by Hsys with N = 3.
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optimization results. As we know, a shorter evolution time is
more beneficial for the suppression of atomic decoherence.
Thus, after comprehensively considering the evolution time,

the population of the target state, and the strength of the
magnetic field, we choose the parameters of the first peak for
simulation in the main text.
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