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Kazi Reaz,* Md Mehdi Hassan,† Adrien Green,‡ Noah Crum,§ and George Siopsis ‖
Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996-1200, USA

(Received 16 November 2023; revised 7 February 2024; accepted 15 March 2024; published 1 April 2024)

Real-world Bennett-Brassard 1984 quantum key distribution (QKD) systems utilize imperfect devices that
introduce vulnerabilities to their security, known as side-channel attacks. Measurement-device-independent
(MDI) QKD authorizes an untrusted third party to make measurements and removes all side-channel attacks. The
typical implementations of MDI QKD employ nearly symmetric channels which are difficult to realize physically
in many practical scenarios such as when asymmetric channel losses are present, normally a consequence
of the communication environment. Maritime and satellite-based communications are two such instances in
which the channels are characterized by continuously changing losses in different channels. In this work we
perform asymmetric MDI QKD in a laboratory environment with simulated turbulence using an acousto-optic
modulator to interrogate the performance of free-space quantum communication. Under turbulent conditions,
scattering and beam wandering cause intensity fluctuations which decrease the detected signal-to-noise ratio.
Using the seven-intensity optimization method proposed by Wang et al. [Phys. Rev. X 9, 041012 (2019)], coupled
with prefixed-threshold real-time selection (PRTS), we demonstrate enhancement in the secure key rate under
turbulent conditions for finite-size decoy-state MDI QKD. Furthermore, we show that PRTS can yield higher
secure key rates, particularly in the high-loss regime.
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I. INTRODUCTION

Although quantum key distribution (QKD) has been
proven to be unconditionally secure theoretically, practical
systems have back doors that Eve can exploit due to de-
vice imperfections. In particular, detectors can be attacked
through various approaches, such as the blinding-the-detector
attack [1], phase-remapping attack [2], time-shift attack [3],
as well as through other means (see Ref. [4]). Under these
considerations, Lo et al. [5] proposed the measurement-
device-independent (MDI) QKD protocol, which removes
the need for detector security under the condition that Alice
and Bob can prepare near-perfect quantum states. Originally,
implementations of MDI QKD were performed in nearly
symmetric channels [6–12]; however, symmetric channels are
difficult to realize in practical scenarios. For example, in a
free-space implementation, Alice’s and Bob’s channels have
different losses due to being in geographically different loca-
tions. One proposal to balance this asymmetry is to add extra
loss in one channel through the addition of extra fiber, which,
however, lowers the key rate [12]. Moreover, an MDI QKD
implementation in a maritime environment between ships or a
satellite-based system will experience continuously changing
losses in the different channels that cannot be removed with
additional fiber. To overcome these issues, the authors of
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Refs. [12,13] proposed that asymmetric decoy-state intensities
be used to generate a higher key rate instead of adding fiber to
one of the channels. Wang et al. [14] provided theoretical opti-
mizations for seven different decoy-state intensities that have
given the highest expected secure key rates thus far in the liter-
ature and have been verified experimentally [15]. In Ref. [16]
a long-distance four-intensity free-space implementation with
adaptive optics was demonstrated. Among further develop-
ments, a robust, multiuser MDI QKD networking scheme was
demonstrated in fiber which eliminated reference-frame align-
ment and polarization compensation need between users [17],
and in Ref. [18] it was discovered that asymmetric channel
MDI QKD systems have superior secure key rates in systems
integrated with classical networks than symmetric MDI QKD.

For our experiment, we conduct simulations to replicate
atmospheric effects on traveling pulses, aiming to mimic
real-world scenarios. When a signal moves through fiber, at-
tenuation occurs due to various reasons (e.g., absorption or
scattering) but the loss remains relatively uniform in time. In
contrast, a free-space channel suffers variable attenuation as a
result of weather (temperature, clouds, dust, etc.) and altitude.
Fortunately, through consideration of the signal’s wavelength
and the presence of turbulence, there exist well-established
models for statistically describing the free-space optical
channel.

Erven et al. [19] proposed a signal-to-noise-ratio filter
in the postprocessing stage to increase the key rate. After
data collection, the bits are arranged into time blocks whose
duration is adaptive, depending on the detection rate. By opti-
mizing the block duration, an optimum threshold is achieved.
In this protocol, the channel loss is assumed to be static
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(equal to the mean loss), which may not hold under conditions
of strong turbulence and in the high-loss regime.

Vallone et al. [20] investigated channel statistics using an
auxiliary classical laser beam and found a strong correlation
between classical and quantum transmittance data. They cre-
ated the adaptive real-time selection (ARTS) method, which
uses probed channel statistics to postselect bits recorded
during high transmittance periods that exceed a certain trans-
mittance threshold. Higher cutoff thresholds improve the
signal-to-noise ratio at the expense of reducing the number
of available signals, so the optimal threshold is determined
in postselection by numerically maximizing the extracted
secure key.

A protocol that utilizes a prefixed threshold [prefixed-
threshold real-time selection (PRTS)] was introduced the-
oretically in Ref. [21] and subsequently demonstrated ex-
perimentally across different channel losses [22,23] in the
context of the finite-key decoy-state Bennett-Brassard 1984
protocol. It was demonstrated in [21] that the optimal thresh-
old is dependent on the transmittance only if the device
parameters (e.g., detector efficiency, dark count, and source
intensities) remain fixed. Since this threshold can be pre-
determined, it facilitates real-time data filtering, resulting in
savings in storage memory and analysis time when compared
to ARTS.

In our experiment, we implement asymmetric MDI QKD
following [14]. We use seven asymmetric intensities and the
method of decoupled bases in a protocol for asymmetric chan-
nels. We analyze the PRTS method in this context using a
signal wavelength of 1550 nm and an average channel loss
between 30 and 33 dB with moderate turbulence, which we
model as a log-normal distribution. We test the theoretical
assumptions of the PRTS theory in this context and find
significant improvements in the key rate compared to us-
ing no data rejection, especially for high loss. It should be
noted that there are two spectral windows commonly used in
free-space optics, at wavelengths of approximately 850 nm
and approximately 1550 nm. We use the latter, for which
the atmospheric transmission is higher, especially in urban
areas with higher concentration of aerosols, which scatters
preferably shorter wavelengths [24,25]. It also coincides with
the preferred telecom wavelength, which is convenient as we
anticipate future implementations involving both free-space
and fiber optics communications. The choice of λ = 1550 nm
comes at the expense of less-efficient single-photon avalanche
diodes based on InGaAs/InP which our group used in earlier
studies [22,23]. In the present experiments, we use the more
expensive, but efficient, superconducting nanowire single-
photon detectors.

The structure of this paper is as follows. In Sec. II we
discuss the protocol of polarization-encoded MDI QKD in-
cluding decoy states, and atmospheric turbulence and channel
loss implementation. Our experimental setup and all rele-
vant parameters are detailed in Sec. III. Experimental data
are presented and compared with simulations in Sec. IV.
In Sec. V we present a summary and our conclusions.
All essential equations for our calculations can be found
in Appendix A. Appendix B details the classical channel
we employ.

II. THEORY

Here we describe the theory underpinning MDI QKD
and expound upon the instance of asymmetric channels.
Specifically, we outline the polarization encoding scheme and
describe the implementation of asymmetric MDI QKD using
the seven-intensity method introduced in [14]. We also outline
the atmospheric model under consideration for severe channel
loss with a moderate level of turbulence.

A. Asymmetric MDI QKD

Measurement-device-independent QKD is designed to au-
tomatically remove all detector side channels by employing
time-reversed entanglement. In this protocol, Alice and Bob
send light pulses to a third party, Charlie, who possesses a
Bell-state analyzer based on linear optics and single-photon
detection. Charlie projects the input photons to Bell states and
publicly announces the measurement results, which allows
Alice and Bob to generate a secret key after classical postpro-
cessing. Alice and Bob may choose time-bin encoding [8,26],
phase encoding [27], or polarization encoding [6,9,28]. In this
work, we use polarization encoding. The Bell-state analyzer in
MDI QKD relies on the Hong-Ou-Mandel (HOM) effect [29]
where photons from Alice and Bob interfere at a 50:50 beam
splitter. A high HOM visibility can usually be translated into a
low quantum bit error rate (QBER) and therefore a high secret
key rate. To achieve a high HOM visibility, photons from
Alice and Bob should be indistinguishable in all degrees of
freedom. Furthermore, when MDI QKD is implemented with
weak coherent sources, a high HOM visibility requires the
average photon numbers from Alice and Bob to be matched
at the beam splitter [9]. With polarization encoding, Alice
and Bob encode their random bits on the polarization of their
respective weak coherent states, using one of two bases, rec-
tilinear (Z) or diagonal (X ), and Charlie performs Bell-state
measurements using a setup depicted in Fig. 1. A bit of raw
key is generated whenever Charlie measures a coincidence of
photons with orthogonal polarizations D1H , D1V , D2H , and
D2V using a set of four single-photon detectors, and Alice
and Bob use the same encoding basis. Since photons are
bosons with integer spin, we can write their overall state
as |�〉 = |�spatial〉 ⊗ |�polarization〉. Due to the HOM effect, if
the photons come out of opposite sides of the beam splitter,
both |�spatial〉 and |�polarization〉 must be antisymmetric and
the polarization state should be |�−〉 = 1√

2
(|HV 〉 − |V H〉).

If the photons come out of the same port, then both must
be symmetric, so the polarization state should be |�+〉 =

1√
2
(|HV 〉 + |V H〉). The other two possible polarization states

1√
2
(|HH〉 ± |VV 〉) are not identifiable with our detector setup.

When Alice and Bob receive the measurement result from
Charlie, they can easily determine the bits they sent. If Charlie
announces |�+〉 or |�−〉 and both Alice and Bob used the
rectilinear basis, then one of them has to perform a bit flip to
their bit. If both used the diagonal basis and Charlie announces
|�+〉, then no bit flip is necessary, but if |�−〉 is announced,
one of them must perform a bit flip. Measurement-device-
independent QKD is free from any attack on the detectors,
but it is not immune to attacks on sources. So our phase-
randomized weak coherent pulses must be protected from the
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FIG. 1. Schematic of the experimental setup for the asymmetric
MDI QKD system. Alice (left) and Bob (right) generate randomly
polarized signal pulse trains using a continuous-wave laser (CWL),
polarization-maintaining fiber (PMF), intensity modulator (IM), po-
larization modulator (POLM), and attenuator (ATT). A tunable
continuous-wave laser (TCL) with an IM is used to create classical
probe pulses. The simulated turbulent channel consists of dense
wave division multiplexers (DWDM) and acousto-optic modulators
(AOM). Charlie measures the incoming signal using a beam splitter
(BS), polarization beam splitters (PBS), superconducting nanowire
single-photon detectors (SNSPDs), where ‘H’ stands for Horizontal
polarization detection, ‘V’ stands for Vertical polarization detection,
and a time interval analyzer (TIA) connected to a computer. The
color code used to distinguish between fibers is as follows: blue for
signal and decoy-state carrying fiber (1550.5-nm laser), red for clas-
sical probe pulse carrying fiber (tunable), purple for fiber carrying
combined pulses, and black for electronic signal carrying wire.

photon-number-splitting attack. In our laboratory, we use cw
laser sources, which have a nonzero probability of multiple
photon pulses. To prevent the photon-number-splitting attack,
decoy states are implemented [30–32].

In the two-user instance of asymmetric MDI QKD, Al-
ice and Bob utilize quantum channels with asymmetric

transmittances ηA and ηB, respectively, where ηA �= ηB. They
must choose optical intensities sA and sB, respectively, such
that the resulting key rate is maximal [12]. The typical choice
is to select intensities obeying sAηA = sBηB, which ensures a
symmetry of photon flux at the relay position, Charlie, pro-
viding higher-quality HOM interference [29]. This approach
is suboptimal in the asymmetric setting and can even result in
a zero key rate for highly asymmetric channels. In particular,
HOM interference is dependent on errors only in the X basis,
namely, the phase error rate, and not those in the Z basis, the
bit error rate. An optimal approach to key generation requires
decoupling the decoy-state estimation performed in the X
basis from that of the bit generation in the Z basis [14].

In the seven-intensity optimization method of [14], Alice
and Bob select a set of four intensities each. These intensities
correspond to the signal state intensities {sA, sB} in the Z basis
and the decoy-state intensities in the X basis, {μA, νA, ω} and
{μB, νB, ω}, for Alice and Bob, respectively. These choices
constitute seven separate intensities, each paired with the
probability of their preparation. As indicated above, the X
basis is reserved for decoy-state analysis, while the Z basis
is used to establish the secret key. Therefore, the X -basis
intensities are selected to ensure high HOM visibility at the
central relay by compensating for the channel asymmetry.
This selection provides symmetry of the photon flux at Charlie
and roughly satisfies μA

μB
= νA

νB
≈ ηB

ηA
. Due to the decoupling of

bases, the signal-state intensity is a free parameter and can
be adjusted independently to provide an optimal key rate. In
general, this approach does not satisfy sA

sB
= ηB

ηB
. Altogether,

Alice and Bob have a set of 12 parameters to optimize, their
intensities and the associated probabilities of preparation,
namely, {sA, μA, νA, psA , pμA , pνA , sB, μB, νB, psB , pμB , pνB}.

B. Simulating a turbulent atmosphere

In our experiment, we choose the average channel loss
to be at 30 dB as well as 33 dB, which is considered to
be severe loss. We choose representative data points in this
range because we find no improvement from thresholding at
27 dB of loss or below and we obtain no secure key above
33 dB, even with thresholding. Similarly to our previous work
[22,23], we choose the standard and well-accepted log-normal
distribution to model the probability distribution of the trans-
mittance coefficient. Mathematically,

p
η0 ,σ

(η) = 1√
2πση

exp

⎛
⎜⎝−

(
ln η

η0
+ σ 2

2

)2

2σ 2

⎞
⎟⎠. (1)

It depends on two parameters, namely, η0 (average channel
loss) and σ 2 (logarithmic irradiance variance). The latter,
commonly known as the Rytov parameter, is correlated with
turbulence. It should be noted that transmittance changes sig-
nificantly on the order of milliseconds [33], typically 8–10
ms. This allows us to consider constant intensity during a data
taking session that lasts a much shorter time. If the wavelength
remains stable throughout the implementation of the protocol,
the plane-wave approximation yields σ 2 = 1.23C2

n k7/6L11/6,
where k is the wave number, C2

n is the refractive index struc-
ture parameter (n being the refractive index), and L is the
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FIG. 2. Details of the polarization modulator (POLM), which
consists of a polarization controller (PC), a beam circulator (BC),
a phase modulator (PM), and a Faraday mirror (FM).

distance traveled by the wave. While typically C2
n is an in-

tricate function influenced by factors such as time of day,
local wind conditions, solar elevation angle, and terrain type,
most scenarios can be adequately addressed with a simple
mathematical relation connecting C2

n and altitude.
The intensity distribution (1) due to turbulence is essential

for implementing atmospheric effects on quantum channel
simulations in the laboratory. We implement it in the simu-
lation of asymmetric channel statistics using an acousto-optic
modulator (AOM) integrated with an arbitrary wave-function
generator in each channel.

III. EXPERIMENTAL SETUP

Our experimental setup is sketched in Fig. 1(a). To cre-
ate signals, Alice and Bob use identical continuous-wave
lasers as their sources. The semiconductor-based cw lasers are
frequency locked at a central wavelength of 1550.5 nm in 2-
mW low-power output. Polarization maintaining fiber carries
the beam into an intensity modulator. The conversion from
continuous wave to pulse train is carried out by a LiNbO3

intensity modulator. The intensity modulators are driven by
an arbitrary waveform generator (Tektronix) to control the
intensity level of each pulse in order to implement the desired
signal and decoy states with different mean photon numbers.
In our case, the full width at half maximum (FWHM) pulses
are approximately1ns at a 10-MHz repetition rate. The dc bias
voltages are precisely controlled by a null point modulator
bias controller device to achieve a high extinction ratio by
applying compensation bias voltage.

In the next stage, Alice and Bob encode the desired po-
larization state into the pulses using polarization modulators.
Each polarization modulator consists of a polarization con-
troller, a beam circulator, a phase modulator, and a Faraday
mirror (Fig. 2). The phase modulator is driven by an arbi-
trary wave-function generator. Alice’s side contains an extra
polarization modulator to align diagonal and antidiagonal po-
larization [34]. To reach the single-photon level, attenuation
is applied to the pulses. In our experiment, we use both dig-
ital and manual attenuators. The pulses are attenuated to the
single-photon level with the help of variable attenuators. Po-
larization controllers are utilized by both parties to fine-tune

TABLE I. Optimized parameters.

Channel Loss (dB) s μ ν ps pμ pν

30 dB

Alice 20 0.617 0.465 0.098 0.590 0.029 0.253
Bob 10 0.169 0.052 0.011 0.607 0.032 0.249

33 dB

Alice 20 0.590 0.379 0.081 0.600 0.030 0.240
Bob 13 0.187 0.094 0.020 0.595 0.035 0.244

the polarization states to ensure good HOM visibility while
calibrating the setup before recording the data.

Next the quantum states are multiplexed with a classical
beam with the help of a 200-GHz dense wavelength-division
multiplexing (DWDM) device. For the classical signal, we
use tunable classical lasers, tuned at 1554 nm. Another set of
intensity modulators is used to convert the continuous beam
into a pulse train with a pulse rate at 4-kHz repetition at
3-ns FWHM. Classical and quantum signals are mixed in a
DWDM device in ITU channels 29 and 33.5, respectively.
The classical pulses are used to probe the channel’s trans-
mittance statistics. A detailed explanation of estimating the
channel’s transmittance with classical probe pulses is given
in Appendix B. The mixed signals (quantum and classical)
are directed into an AOM device independently in each side,
which are used to simulate the desired atmospheric channel
loss model. The targeted transmittance coefficient distribu-
tion, as defined by Eq. (1), is encoded into an .arb file. This
file is then uploaded to the waveform generator, which in turn
controls the AOM devices. In our experiment, Alice’s channel
suffers a different channel loss as compared to Bob’s channel.
Another set of DWDM devices is used to filter out (demux) the
classical signal from the quantum signal. The classical signal
is then detected by a high-gain detector and analyzed with
an oscilloscope.

Quantum signals from both sides are fed into a 50:50
beam splitter. Since the setup is properly calibrated, upon
interaction, the photons emerge through the output terminal(s)
and each basis is resolved by a polarization beam splitter.
The outputs of each terminal are detected by superconducting
nanowire single-photon detectors (SNSPDs). All the detec-
tions of our SNSPDs are recorded by a time interval analyzer
(TIA) from IDQ. The TIA is connected to a computer to
analyze the count rate of each channel and the coincidence
detections among them.

Before conducting the experiment, we calculate the op-
timized intensities. The signal state intensities s (in the Z
basis), decoy-state intensities μ, ν, and ω (in the X basis),
and the associated probabilities ps, pμ, and pν are optimized.
The pω can be found using the normalization condition ps +
pμ + pν + pω = 1. We optimize our decoy parameters and
probabilities stochastically using a genetic algorithm, which
is a preferred technique because it does not require any initial
condition. The optimized signal and decoy parameters are
given in Table I.

For our experiment, we send 1012 pulses and collect data
for 27 h at a 10-MHz repetition rate. Prior to the experiment,
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TABLE II. Experimental parameters.

Parameter Value

Number of pulses N 1 × 1012

Detector efficiency 0.84 ± 0.04
Dead time ∼80 ns
Charlie’s optical efficiency 0.42 ± 0.02
Time jitter �50 ps

Polarization error

Rectilinear basis edZ 0.004 ± 0.002
Diagonal basis edX 0.02

Detector dark count probability

Detector Probability (×10−7)
Horizontal (Y ↔

0 ) 4.1 ± 0.6
Vertical (Y 


0 ) 3.7 ± 0.6

Diagonal (Y0 ) 3.2 ± 0.6

Antidiagonal (Y0 ) 3.6 ± 0.6

we choose the total number of pulses N , the Z basis mis-
alignment eZ

d , the X basis misalignment eX
d , the expected dark

counts Y0, the detector efficiency ηD, an estimated channel
transmittance η0 (as shown in Table II), and the Rytov pa-
rameter value to be 1 (moderate turbulence). We then extract
the sets nX

i, j and mX
i, j , where i, j = μ, ν, ω, and calculate the

secure key rate using Eq. (3),

R = PsA PsB

{
sA sB e−(sA+sB )Y X,L

11

[
1 − h2

(
eX,U

11

)]
− f QZ

ssh2
(
EZ

ss

)}
, (2)

where Y X,L
11 is the lower bound of the single-photon yield and

eX,U
11 is the upper bound of the single-photon QBER in the

X basis estimated from decoy-state statistics. In addition, Qz
ss

and EZ
ss are the gain and QBER, respectively, in the Z basis,

which can be determined from experimental data directly. Fur-
ther, f quantifies the error correction efficiency and h2 is the
binary entropy function, given by h2(x) = −x log2(x) − (1 −
x) log2(1 − x). More details of the noise model and finite-key
calculation for our experiment are available in Appendix A.

IV. ANALYSIS

The main objective of our experiment is to apply PRTS
prior to data collection to find a threshold point and compare
the resulting secure key rate to the case of no thresholding
and to the case of thresholding using ARTS. Adaptive real-
time selection is a brute-force optimization, where the secure
key rate is calculated repeatedly throughout the whole range
of different possible transmittance cutoffs in the log-normal
distribution of Eq. (1) and the cutoff giving the highest key
rate is chosen. The method therefore gives the highest possible
secure key rate but it requires additional processing power
and is time consuming. The goal of PRTS is to find the same
transmittance cutoff in a predetermined way without the need
for real-time data analysis.

First, we compare the PRTS method to performing asym-
metric MDI QKD without any transmittance cutoffs. The
secure key rate in the first case is calculated by optimizing

FIG. 3. Using the PRTS method, simulations (dashed lines) and
measurements (triangles) were conducted. The secure key rate im-
proves when an optimized cutoff is applied, as compared to the
asymptotic cutoff or no selection in both simulation and measure-
ment. The asymptotic cutoff does not generate any practical key rate
at 33 dB in either case.

the data cutoffs for both Alice and Bob as well as their re-
spective decoy-state parameters {sA, μA, νA, psA , pμA , pνA , ω}
and {sB, μB, νB, psB , pμB , pνB , ω} and can be done before the
experiment begins by taking into account Charlie’s detection
setup parameters, the average channel loss η0, and the Rytov
parameter σ . Figure 3 shows measured and theoretical secure
key rates for the zero-threshold cutoff (static) case and the
optimized cutoff case over the examined total mean channel
loss. The graph shows that PRTS gives a substantially higher
key rate compared to the static case and in particular allows for
a key to be generated with approximately 2 dB additional loss.
Our experimental secure key rate is very close to the simula-
tion curve in both cases. The reasons for the small deviation
are optical misalignment and fluctuation in the average signal
and decoy photon number and the difference between mea-
sured detector efficiencies. There is an uncertainty of ±0.005
in our setting during the experiment for the desired signal
photon number (sA and sB) and weak decoy photon number
(μA, νA, ωA, μB, νB, and ωB) given in Table I.

In Fig. 4(a) we show the experimentally measured secure
rate for a total mean channel loss of 30 dB, with Alice’s
channel experiencing an average channel loss of 20 dB and
Bob’s an average of 10 dB loss using ARTS-type postselec-
tion. We note that at this level of asymmetry between the
channels, the near-symmetric technique does not generate a
secure key [15]. To derive the optimized threshold, we analyze
the distilled key rate as a function of threshold transmittance
ηth for both channels by scanning successive transmit-
tance cutoffs and extract the corresponding secure key rate.
The red arrow corresponds to the optimal cutoff that maxi-
mizes the key rate, which corresponds to ηth = 0.0029 for an
average channel loss of 20 dB and ηth = 0.025 for an average
channel loss of 10 dB. These results closely match our PRTS
results, where we derive ηth = 0.003 05 for 20 dB average
channel loss and for ηth = 0.026 33 for 10 dB average channel
loss. The difference in the secure key rate due to the minor
change in the threshold values is negligible, showing that the
PRTS method allows for a reduction in computation time and
resources without a reduction in key rate.

Figure 4(b) shows an example of the cross section of the
three-dimensional (3D) plot at optimal cutoff (red triangles).
These cross sections are shown to illustrate the optimal cutoff
selection point.
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FIG. 4. Finding an optimal threshold point for asymmetric MDI
QKD at a total mean channel loss of 30 dB using an ARTS-type
distribution. (a) A 3D plot of all the measurement data points corre-
sponding to ARTS-type postselection where we scanned successive
transmittance cutoffs ηth and extracted the corresponding logarithm
of secure key rate R at a total average channel loss of 30 dB. The
optimal thresholds are ηth = 0.0029 and 0.025 for Alice and Bob,
respectively. (b) Example of the cross section of the 3D plot at the
optimal cutoff (red triangle) point.

Figure 5 shows ARTS-type postselection data points for
a total of 33 dB average channel loss (Alice at 20 dB and
Bob at 13 dB), where again the red arrow points to the op-
timal cutoff. The PRTS derived optimal cutoffs in this case
are ηth = 0.003 01 for 20 dB average channel loss and ηth =
0.025 84 for 10 dB average channel loss, which again gives
a negligible difference in secure key rate compared to using
ARTS thresholds. We note that for both of the loss levels in
Figs. 4 and 5, a positive key rate cannot be generated if no
transmittance cutoff is used to reject high-loss data.

FIG. 5. A 3D plot of ARTS-type measurements, showing the
logarithm of the secure key rate R for increasing applied transmit-
tance cutoff ηth at a total average channel loss of 33 dB, where Alice
experiences a 20 dB mean channel loss and Bob experiences a 13 dB
mean channel loss.

V. CONCLUSION

We have implemented an experimental demonstration of
decoy-state MDI QKD with asymmetric channels in a free-
space environment where Alice and Bob are at different
distances from Charlie and whose channels experience dif-
ferent channel losses. Our study used a realistic log-normal
model to describe moderate atmospheric turbulence.

Our experiment showed that the PRTS method finds the
same optimal cutoff that would be found using the ARTS
method, demonstrating proof of the PRTS theory in the con-
text of asymmetric, finite-key decoy-state MDI QKD and the
secure key rate can be significantly improved in turbulent
atmospheric conditions, especially at high loss. This selection
method can be seamlessly integrated without major techno-
logical upgrades, saving computational resources.

It is worth noting that one could combine both PRTS and
ARTS types of selection method depending on the knowl-
edge of the turbulence statistics. The two selection approaches
could be employed in conjunction, depending on the knowl-
edge of turbulence statistics. To maximize the extracted secure
key rate, a conservative transmittance threshold might be used
to perform PRTS-type real-time data rejection, followed by an
ARTS-type scan during postselection.

It should be mentioned that our security assumption [35]
relies on the random phase of Alice’s and Bob’s quantum
signals, which can be achieved by using phase modulators on
both sides [36]. Our setup did not randomize the phase of the
quantum signals. However, our detection statistics are prac-
tically the same as a phase randomized system because the
coherence times of Alice’s and Bob’s lasers are significantly
shorter than the data collection time.
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Altogether, overcoming atmospheric turbulence is crucial
for establishing a global quantum network and the results
presented here further demonstrate the capabilities of QKD
systems in harsh environments. It would be interesting to
extend our results to other promising protocols, such as
twin-field QKD [37,38], and perform experiments to opti-
mize thresholding for free-space implementations of these
protocols.
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APPENDIX A: NOISE MODEL FOR ASYMMETRIC MDI
QKD AND FINITE-KEY CALCULATION

In this Appendix we establish a noise model to connect
the 13 parameters for secret key calculation with a few QKD
system parameters which can be easily calibrated. The QKD
system parameters considered here are detector dark count
rate or detection efficiency, polarization misalignment in the Z
basis, and the HOM visibility in the X basis. Note that HOM
visibility depends on both the polarization misalignment in
the X basis and the distinguishability of the photons from

Alice and Bob. We denote the detector dark count rate by Y0,
detector efficiency by ηd , polarization misalignment in the Z
basis (the probability that an H photon goes to a V detector, or
vice versa) by edZ , and HOM visibility in the X basis by VHOM.
To quantify the polarization misalignment, we use Charlie’s
polarization frame as a reference.

1. The Z basis

When Alice and Bob send opposite polarization to Charlie
the number of effective detection events

nz1 = 1
2 NPsA PsB (1 − e−ηAηd sA )(1 − e−ηBηd sB )(1 − 2edZ ).

The number of effective detection events when both Alice and
Bob send the same polarization

nz2 = 1
2 NPsA PsB (1 − e−(1−edZ )ηAηd sA e−(1−edZ )ηBηd sB )

× (edZηAηd sA + Y0 + edZηBηd sB + Y0).

We denote the total detection count by nZ
ss and the error count

by mZ
ss in the Z basis. Here nZ

ss = nz1 + nz2 and mZ
ss = nz2.

2. The X basis

We denote by nX
i, j the total number of detections given that

Alice prepared i photon states in the X basis and Bob prepared
j photon states in the X basis (i, j = μ, ν, ω). In the X basis,
the correct detection for {A, D} and {D, A} is |�−〉, while the
correct detection for {A, A} and {D, D} is |�+〉. When Alice
and Bob prepare {A, D} or {D, A} we consider three cases
based on the photon number arrived at by the detectors: For
the {1, 0} and {0, 1} case the corresponding probability of
|�−〉 events is

Y0(ηdηAμA + ηdηBωB)e−ηAηd μA−ηBηd ωB

and the corresponding probability of |�+〉 events is

Y0(ηdηAμA + ηdηBωB)e−ηAηd μA−ηBηd ωB ;

for the {1, 1} case the corresponding probability of |�−〉 events is
1
2 (1 − 2edX )ηAηdμAηBηdωBe−ηAηd μA−ηBηd ωB

and the corresponding probability of |�+〉 events is
1
4 (1 − 2edX )ηdηAμAηdηBμBe−μAηd μA−ηBηd (μA+ωB );

and for the {2, 0} and {0, 2} case the corresponding probability of |�−〉 events is
1
4 [(ηdηAμA)2 + (ηdηBωB)2]e−μAηd μA−ηBηd ωB

and the corresponding probability of |�+〉 events is
1
4 edX [(ηdηAμA)2 + (ηdηBωB)2]e−μAηd μA−ηBηd ωB .

Combining these three cases, we obtain the total number of |�−〉 events

nc1 = 1
2 NPμA PωB{Y0(ηdηAμA + ηdηBωB)e−ηAηd μA−ηBηd ωB + 1

2 (1 − 2edX )ηAηdμAηBηdωBe−ηAηd μA−ηBηd ωB

+ 1
4 [(ηdηAμA)2 + (ηdηBωB)2]e−μAηd μA−ηBηd ωB}

and the total number of |�+〉 events

nw1 = 1
2 NPμA PωB{Y0(ηdηAμA + ηdηBωB)e−ηAηd μA−ηBηd ωB + 1

4 (1 − 2edX )ηdηAμAηdηBμBe−μAηd μA−ηBηd (μA+ωB )

+ 1
4 edX [(ηdηAμA)2 + (ηdηBωB)2]e−μAηd μA−ηBηd ωB}.
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When Alice and Bob prepare {D, D} or {A, A}, the analysis will be similar to {A, D} or {D, A}, except the roles of |�+〉 and |�−〉
are interchanged. Here nc2 = nc1 and nw2 = nw1 . Therefore, nX

i, j = 2(nc1 + nw1 ) and mX
i, j = 2nw1 .

Combining the above, we obtain the total number of detection counts

nX
μω =NPμA PωB [2Y0(ηdηAμA + ηdηBωB)e−ηAηd μA−ηBηd ωB + 1

4 (ηdηAμA + ηdηBωB)2e−ηAηd μA−ηBηd ωB ].

Combining the above, we obtain the total number of error counts

mX
μω = NPμA PωB{Y0(ηdηAμA + ηdηBωB)e−ηAηd μA−ηBηd ωB + 1

8 [(ηdηAμA)2 + (ηdηBωB)2 + 8edX ηdηAμAηdηBωB]e−ηAηd μA−ηBηd ωB}.
All the other terms can be determined by simply replacing all possible average photon numbers with the corresponding
combinations of μ, ν, and ω.

3. Finite-key calculation

Next we account for the finite-size effect using standard
error analysis [12]. We denote the observed total counts
and error counts by nX

i, j and mX
i, j , respectively, where i, j =

μ, ν, ω. The corresponding gains are

QX
i, j = nX

i, j

NPiA PjB

and the errors are given by

EX
i, j = T X

i, j

QX
i, j

, T X
i, j = mX

i, j

NPiA PjB

.

The upper and lower bounds of gains and errors are

QX
i, j = QX

i, j + γ

√
QX

i, j

NPiA PjB

,

QX
i, j = QX

i, j − γ

√
QX

i, j

NPiA PjB

,

T X
i, j = T X

i, j + γ

√
T X

i, j

NPiA PjB

,

T X
i, j = T X

i, j − γ

√
T X

i, j

NPiA PjB

,

where γ is related to the failure probability ε via ε =
erfc( γ√

2
). We choose γ = 5.3 so that ε � 10−7. The lower

bound of yield Y X,L
11 is estimated as

Y X,L
11 = 1

μ − ν

(
μ + ω

(ν − ω)2
QM1

νν + ν + ω

(μ − ω)2
QM2

μμ

)
,

where

QM1
νν = e2νQX

νν + e2ωQX
ωω + eν+ωQX

νω + eω+νQX
ων,

QM2
μμ = e2μQX

μμ + e2ωQX
ωω − eμ+ωQX

μω − eω+μQX
ωμ.

The upper bound of error eX,U
11 is estimated as

eX,U
11 =

e2νT X
νν + e2ωT X

ωω − eν+ωT X
νω − eω+νT X

ων

(μ − ν)Y X,L
11

.

The final secure key rate is

R = PsA PsB

{
Y X,L

11 sA sB e−(sA+sB )
[
1 − h2

(
eX,U

11

)] − f QZ
ssh2

(
EZ

ss

)}
.

(A1)

APPENDIX B: CLASSICAL CHANNEL

To estimate the channel’s transmittance with classical
probe pulses we follow the same procedure as in [22]. In
our experimental setup, the classical probe pulses are set at
a repetition rate of 4 kHz and a FWHM of approximately
3 ns. The laser power of the classical channel is 7 dBm.
The classical pulses are sent along with quantum pulses to
the AOM using ITU channel 29. After reaching the AOM,
the classical pulses are separated from the quantum pulses
using a DWDM. The classical pulses are then sent to the
high-gain classical photodetector, which is connected to the
DPO 7205 Tektronix Oscilloscope. The oscilloscope has a
fast-frame feature to store high-resolution pulse data in a short
(16-ns) interval around the trigger, sampled at 5 gigasam-
ples per second [Fig. 6(a)]. A Gaussian fit is performed on

FIG. 6. Using classical probe pulses to estimate the quantum
channel’s transmittance. (a) Example of the Gaussian fit of a classical
probe pulse obtained using the oscilloscope’s fast-frame feature.
(b) Correlation between the programmed transmittance and the area
under the pulse using a polynomial fit.
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the measured classical pulses in order to calculate the area
under the pulse to quantify the intensity. Finally, the trans-
mittance is extracted from the measured pulse area using a
polynomial fit. Figure 6(b) shows that a similar resolution
can be achieved by summing all the samples of each frame,
with a significantly faster computation time than the Gaussian
fit procedure.

It should be noted that in our experimental setup, quan-
tum and classical signals travel together a distance of
approximately 5m. This is too short a distance to observe any
Raman scattering for which a fiber over 1 km long is needed.
In a real-life implementation of our experiment, the classical
channel will be a separate channel used to estimate channel
transmittance.
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