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Polarization-based cyclic weak value metrology for angular-velocity measurement
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Weak measurement has been proven to amplify the detection of changes in meters while discarding most
photons due to the low probability of postselection. Previous power-recycling schemes enable the failed
postselection photons to be repeatedly selected, thus overcoming the inefficient postselection and increasing
the precision of detection. In this study, we focus on the polarization-based weak value angular-velocity
measurement and introduce three cyclic methods to enhance the accuracy of detecting time shifts in a Gaussian
beam: power-recycling, signal-recycling, and dual-recycling schemes. By incorporating one or two partially
transmitting mirrors into the system, both the power and the signal-to-noise ratio of the detected light are
substantially enhanced. Compared to nonpolarization schemes, polarization-based approaches offer several
advantages, including lower optical loss, unique cyclic directions, and a wider optimal region. These features
effectively reduce crosstalk among different light paths and theoretically eliminate the walk-off effect, thus
yielding improvements in both theoretical performance and application.
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I. INTRODUCTION

Since first introduced by Aharonov, Albert, and Vaidman
in Ref. [1], weak measurement has shown its numerous po-
tentials in various precise measurements. Unlike the classical
(or strong) measurements set forth by von Neumann [2],
weak measurement involves a significantly weak coupling
between the probe and the system, permitting a small change
of coupling parameter to be converted into a large change in
a meter variable [1,3]. Consequently, it can be used to recon-
sider some interesting quantum phenomena such as Hardy’s
paradox [4–7], the three-box problem [8–10], and quantum
Cheshire cats [11–15]. By appropriately preparing pre- and
postselected states, weak measurement enables the determina-
tion of a “weak value” that encapsulates information regarding
the weak interaction process. Generally denoted as Aw =
〈 f |Â|i〉/〈 f |i〉, where |i〉 and | f 〉 are the pre- and postselected
states, respectively, and Â represents the measured observable.
Notably, due to the presence of 〈 f |i〉 in the denominator, Aw

can be very large if |i〉 and | f 〉 are nearly orthogonal. Thus,
it has the potential to detect many small physical effects such
as the spin Hall effect [16–18], Goos-Hänchen shift [19,20],
beam deflection [21], velocity [22], phase shift [23,24], tem-
perature [25], angular-velocity [26–28], and resonance [29],
to name a few.

Theoretical analysis has pointed out that weak measure-
ment can outperform the conventional measurement in the
presence of detector saturation and pixel noise [30]. Besides,
it has been proven that weak measurement can suppress
technique noise in some circumstances [16,31] and can
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even yield several orders of magnitude improvement over
conventional measurements through imaginary weak value
measurements [23,32–34]. Furthermore, some reports even
proposed Heisenberg-scaling precision postselection mea-
surement using coherent states and photon-counting detection
[35–37], which challenges the necessity of entanglement in
quantum-enhanced precision. Conversely, negative discus-
sions have primarily centered around the significant loss of
photons due to low successful postselection probabilities, re-
sulting in a considerable reduction in the attainable Fisher
information [34,35,38,39]. This delicate balance has sparked
controversial debates in previous literature [35,38,39]. To ad-
dress this issue, recycling techniques have been proposed
as they are highly compatible with weak measurement and
offer the potential to optimize the prevalent disadvantage of
diminished Fisher information resulting from low postselec-
tion probabilities. At present, three types of weak-value-based
recycling techniques have been proposed: power recycling,
signal recycling, and dual recycling. The power-recycling
technique [40–44], proposed by introducing a partially trans-
mitting mirror (PTM) at the bright port of an interferometer,
offers an approach for reusing failed postselection photons.
Under ideal conditions, this technique enables the detection of
all input light, thus maximizing the efficiency of the system.
The similar conclusion is obtained for the signal-recycling
weak measurement [45], which works by placing the PTM
at the dark port of the interferometer. Furthermore, these
power-recycling and signal-recycling techniques can be com-
bined within a dual-recycling scheme to achieve an improved
optimal region [46–49].

The previous dual-recycled interferometric weak-value-
amplification (WWA) setup obtains large precision improve-
ment while sacrificing some of the WWA effect of pointer due
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FIG. 1. (a) Schematic of weak-value-based angular-velocity measurement. A laser wave is generated by an acoustic optical modulator
(AOM) and enters a polarization-dependent angular velocity measurement system consisting of two Glan prisms (G1 and G2) and the PHWP.
The small angular velocity ω is induced by the PHWP and finally measured by the detector. The two subfigures below show the different
orientations of the optical axis of the Glan prisms and the HWP. (b) The power-recycling scheme. The PBS, which distinguishes the polarization
between H and V, is combined with the PTM to reuse the failed postselection photons repeatedly. Two QWPs near the PTM provide the initial
polarization and rotate the polarization direction of cyclic light back to V. The filter in front of the PHWP refreshes the beam profile on each
pass. The HWP rotates the polarization of light by π/2. (c) The signal-recycling scheme. The PTM at the output port is combined with the
WWA system to form a signal-recycling cavity, thus improving the detected signal. (d) The dual-recycling scheme. Combining the power- and
signal-recycling PTMs into one scheme further enhances the precision of detection. QWP, quarter-wave plate; HWP, half-wave plate; PBS,
polarization beam-splitter; PHWP, piezo-driven half-wave plate; PTM, partially transmitting mirror; H, horizontal; V, vertical; OH, the optical
axis of the HWP.

to the walk-off effect. In addition, the intricate path of cyclic
photons within the interferometer gives rise to inevitable
crosstalk, thereby increasing system loss. To address these
challenges, we propose a cyclic scheme for polarization-based
weak value amplification, building upon the angular-velocity
measurement framework presented in Ref. [50]. In contrast
to the nonpolarization cyclic schemes, we substitute the po-
larization beam splitter (PBS) for the beam splitter (BS).
This modification simplifies the light path to be exclusively
clockwise � and reduces the optical loss. Moreover, the uni-
directional cyclic paths permit a filter to refresh all cyclic
photons prior to their final weak interaction, eliminating the
walk-off effect.

II. STANDARD WWA SETUP

We first review the standard WWA setup for
angular-velocity measurement in Ref. [50]. As shown
in Fig. 1(a), a non-Fourier limit Gaussian pulse
I0(t ) = (N2/2πτ 2)1/2 exp(−t2/2τ 2), where N is the number
of photons and τ is the length of pulse, is sent to a
polarization-dependent system. The first Glan prism (G1)
combined with the half-wave plate (HWP) provides the

preselected state and the second Glan prism (G2) provides the
postselection. In this system, the optical axis of G1 is vertical
and the angle between G1 and HWP is φ1. The Gaussian
pulse acts as a probe, and the weak interaction is induced
by the piezo-driven half-wave plate (PHWP) with an angular
velocity, ω. After the interaction, the joint state becomes

|�〉 = [sin (2φ1 + 2ωt )|H〉 + cos (2φ1 + 2ωt )|V 〉]

×
(

N2

2πτ 2

) 1
4

e− t2

4τ2 |t〉

= i√
2

[e−2i(φ1+ωt )|R〉 − e2i(φ1+ωt )|L〉]|ϕ0〉, (1)

where we use the circularly polarized states |R〉 = 1√
2
(|H〉 −

i|V 〉) and |L〉 = 1√
2
(|H〉 + i|V 〉) as basis system states, and we

use |ϕ0〉 to express the initial state of probe |ϕ0〉 = √
I0(t )|t〉 =

(N2/2πτ 2)1/4 exp(−t2/4τ 2)|t〉. Compared with the initial
joint state (after the G1) |�0〉 = |V 〉|ϕ0〉 = i√

2
(|R〉 − |L〉)|ϕ0〉,

the PHWP here introduces a (4ωt + 4φ1) phase shift be-
tween the left and right circularly polarized components
of light, including a 4ω frequency shift induced by the
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weak interaction. Thus, we use Ûw = exp(i2ωt Â), where ω

is the angular velocity by rotating the HWP and Â is a
Hermitian operator Â = |L〉〈L| − |R〉〈R|, to express the weak
interaction and we use Ûφ = exp(i2φ1Â) to represent the po-
larization rotation φ1 produced by the PHWP. The preselected
state of the system is |ψpre〉 = Ûφ|V 〉 = i√

2
[exp(−i2φ1)|R〉 −

exp(i2φ1)|L〉] and the postselected state is given by the
second Glan prism (G2), |ψpos〉 = cos φ2|H〉 − sin φ2|V 〉 =

i√
2
[exp(−i2φ2)|R〉 + exp(i2φ2)|L〉], where the initial optical

axis of the G2 is horizontal and φ2 is the angle of rotation [see
Fig. 1(a)]. Therefore, the intensity of detected light is

Id (t ) = |〈ψpos|Ûw|ψpre〉|ϕ0〉|2

≈ N√
2πτ 2

sin2φ exp

[
− 1

2τ 2

(
t − 4ωτ 2

φ

)2
]
, (2)

where we introduce the angle φ = 2φ1 − φ2 and assume
2ωτ � φ � 1. The corresponding weak value is given by
Aw = 〈ψpos|Â|ψpre〉/〈ψpos|ψpre〉 ≈ −i/φ. Compared with the
incident light, the time shift induced by the PHWP is δt =
4ωτ 2

φ
= 4ωτ 2|Aw|, which is related to the weak value. Based

on Fisher information (FI) theory [51,52], the FI of δt is
obtained from the detected light Id (t ),

F (δt ) =
∫

dtId (t )

∣∣∣∣ d

dδt
lnId (t )

∣∣∣∣
2

≈ Nφ2

τ 2
. (3)

So the minimum uncertainty of time shift determined by the
Cramér-Rao bound (CRB) satisfies


(δt ) = 1√
F (δt )

= τ

φ
√

N
. (4)

Thus, the minimum uncertainty of angular velocity is


ω = φ

4τ 2

(δt ) ≈ 1

4
√

Nτ
. (5)

Therefore, the corresponding SNR is given by

SNR = ω

(
ω)
= 4ωτ

√
N =

√
Nφ

τ
δt . (6)

III. RECYCLING TECHNIQUE

The methodologies of recycling techniques refer to
Refs. [40,49], where the improvement of precision is orig-
inated from the increasing of weak-value-related photons
being detected. The main difference in this method is that it
effectively eliminates the opposite traverse shift of the recy-
cling profile by utilizing a filter in a manner made possible by
the use of a PBS. This PBS adjusts the optical path within the
recycling loop, thereby mitigating the walk-off effect. In addi-
tion, the Gaussian light here is modulated in the time domain
as opposed to the traditional x domain. Such arrangement
induces a ω-related time shift, which enables higher-precision
detection. These changes distinguish this model from
previous works.

A. Power recycling

The power-recycled weak value setup is shown in Fig. 1(b).
The initial state |V 〉 is provided by the Glan prism (G) and
two QWPs, and we use the combination “HWP1 PBS HWP2”
to replace the G2 for the postselection. The PTM, whose
reflection and transmission coefficients are r and p (r2 + p2 =
1), is placed between two QWPs, thus reflecting the failed
postselected light while rotating the light polarization to |V 〉.
Here we define two orthogonal states |ψ1〉 and |ψ2〉 to rep-
resent the input and output system states, where |ψ1〉 =
|V 〉 = i√

2
(|R〉 − |L〉) and |ψ2〉 = |H〉 = 1√

2
(|R〉 + |L〉). Post-

selected by the input and output ends, the meter states become
|ϕref〉 = 〈V |ÛwÛφ|V 〉|ϕ0〉 and |ϕout〉 = 〈H |ÛwÛφ|V 〉|ϕ0〉, re-
spectively. This produces two measurement operators M11 =
〈ψ1|ÛwÛφ|ψ1〉 = cos (φ + 2ωt ) and M12 = 〈ψ2|ÛwÛφ|ψ1〉 =
sin (φ + 2ωt ). We introduce the nonunitary operator L̂ =√

1 − γ , where γ is the single-pass power loss, to express
the loss of optical imperfection in one return. Assuming the
length of one traversal is lcav, the pulse transition time of
per traversal is given by tcav = 2lcav/c. Generally, both the
measurement operators and the meter state are related to the
number of traversals n. For example, M11 should be written
as M11

n = cos [φ + 2ω(t − ntcav)]. Fang et al. [44] proved
that this change is small and only induces a constant delay,
which can be eliminated. Therefore, with the resonance cavity,
the amplitude of the detected signal is given by the sum of
amplitudes from all traversal numbers,

|ϕp〉 = pM12

∞∑
n=0

(rLM11)n|ϕ0〉 . (7)

It is a summation of the convergence series so that there is a
maximum value of n, denoted by nmax. Therefore, the formula
above can be simplified as

|ϕp〉 = pM12

nmax∑
n=0

(rLM11)n|ϕ0〉

≈
(

N2

2πτ 2

) 1
4

exp

(
− t2

4τ 2

)
p sin (φ + 2ωt )

1 − rL cos (φ + 2ωt )
|t〉.

(8)

Next, we do a Taylor expansion on the function f (t ) =
p sin (φ + 2ωt )/[1 − rL cos (φ + 2ωt )] and make the approx-
imation f (t ) ≈ f (0) + t f ′(0) ≈ exp[− f ′(0)t/ f (0)]. Then
the amplitude of the detected state is

〈t |ϕp〉 ≈ A

(
N2

2πτ 2

) 1
4

sin2 (φ + 2ωt ) exp

[
−

(
t − δtp

)2

4τ 2

]
,

(9)

where

A = p

1 − r
√

1 − γ cos 2φ
(10)

and

δtp = 2ωτ 2(cos φ − r
√

1 − γ )

sin φ(1 − r
√

1 − γ cos 2φ)
. (11)

Due to the walk-off effect, the time shift changes from δt
to δtp. But if placing a filter in front of the PHWP, each
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time being reflected by the PTM, the light passes through the
filter and is projected into |ϕ0〉. This leaves the prefilter state
as |ϕ′〉pow = M11|ϕ0〉/

√
|M11|ϕ0〉|2. Thus, the probability of

surviving the filter is

p f = |〈ϕ0|ϕ′〉|2 = cos2 φ

sinh 4ω2τ 2 + cos2 φe−4ω2τ 2

≈ 1 − φ2(4ω2τ 2) − (4ω2τ 2)2/2 + · · · , (12)

where we make the approximation in the weak value range,
2ωτ � φ � 1. In this way, the time shift is refreshed every
cycle, eliminating the walk-off effect while adding a minimum
“filter” loss of γmin ≈ 4ω2τ 2φ2 to the system [40]. Therefore,
the power of the detected signal is given by

Ipow ≈
(

N2

2πτ 2

) 1
2

A2 sin2 (φ + 2ωt ) exp

[
− (t − δt )2

2τ 2

]
.

(13)

Similar to the calculation in Eqs. (3)–(6), the correspond-
ing minimum uncertainty determined by the Cramér-Rao
bound is


ωp ≈ 1

4A
√

Nτ
. (14)

So the corresponding SNR is

SNRpow ≈ A

√
Nφ

τ
δt, (15)

which is A times the SNR of standard weak measurement.

B. Signal recycling

Similar methods can be used in the signal-recycled scheme.
As shown in Fig. 1(c), the optical axis of the Glan prism is
vertical, providing the input state |V 〉. The postselection is
provided by the combination HWP PBS QWPs. The PTM
is placed between the two QWPs to reuse the output sig-
nal. This postselection processes provide two measurement
operators: M12 = 〈ψ2|ÛwÛφ|ψ1〉 = sin (φ + 2ωt ) and M22 =
〈ψ2|ÛwÛφ|ψ2〉 = cos (φ + 2ωt ). In this signal-recycled cav-
ity, the amplitude of the detected signal is given by

|ϕs〉 = pM12

nmax∑
n=0

(rLM22)n|ϕ0〉

≈
(

N2

2πτ 2

) 1
4

exp

(
− t2

4τ 2

)
p sin (φ + 2ωt )

1 − rL cos (φ + 2ωt )
|t〉,
(16)

which is equivalent to |ϕd〉pow, indicating that power- and
signal-recycling hold equal significance in weak-value-based
power improvement. Different from previous interferometric
signal-recycling schemes, the only “clockwise” path permits
all cyclic photons to be refreshed prior to the last weak
interaction. With the filter, the prefilter state is |ϕ′〉sig =
M22|ϕ0〉/

√
|M22|ϕ0〉|2, which is also equal to |ϕ′〉pow. Thus,

the same conclusion can be obtained when considering the
calculation of detected power and SNR, where Isig = Ipow and
SNRsig = SNRpow.

C. Dual recycling

The dual-recycled WWA scheme is shown in Fig. 1(d),
where the Glan prism together with two QWPs provide the
input state |ψ1〉 and the output state |ψ2〉 is provided by
the combination HWP PBS QWPs. In this recycling process,
all possible forms of postselections are available so that the
measurement operator of per traversal can be any of M11,
M12, M21, and M22. Similarly, the filter in front of the PHWP
projects the meter state into |ϕ0〉, thus eliminating the walk-off
effect and maintaining the large point shift associated with
the WVA. This also results in a minimum optical loss of
γmin ≈ 4ω2τ 2φ2, which can be ignored in the weak value
range 2ωτ � φ � 1. For simple calculation, we assume the
parameters of PTMs are the same and introduce the measure-
ment matrix

U =
[

M11 M12

M21 M22

]
=

[
cos (φ + 2ωt ) sin (φ + 2ωt )

− sin (φ + 2ωt ) cos (φ + 2ωt )

]
,

(17)

which is formed by four measurement operators and arranged
in the order corresponding to the subscripts. (U n)12 represents
the physical process that the incident light travels through
the dual-recycling cavity n times and finally reaches the de-
tector. Therefore, the steady-state amplitude detected by the
meter is given by the sum of the amplitudes of all traversal
numbers:

〈t |ϕd〉 = p
nmax∑
n=0

(
√

1 − γ )n+1(U n+1)12 p〈α |ϕ0〉

≈ p2

(
N2

2πτ 2

) 1
4

exp

(
− t2

4τ 2

)
L̂

(
U

I − r
√

1 − γU

)
12

= − p2
(

N2

2πτ 2

) 1
4 exp

( − t2

4τ 2

)√
1 − γ sin (φ + 2ωt )

1 + (1 − γ )r2 − 2
√

1 − γ r cos (φ + 2ωt )

≈ − p2
(

N2

2πτ 2

) 1
4 exp

( − t2

4τ 2

)√
1 − γ sin (φ + 2ωt )

1 + (1 − γ )r2 − 2
√

1 − γ r cos φ
,

(18)

where the last approximation is taken with the minimum filter
loss γmin ≈ 4ω2τ 2φ2. In this way, the intensity of the detected
signal is given by

Idua ≈
(

N2

2πτ 2

) 1
2

B2 sin2 (φ + 2ωt ) exp

[
− (t − δt )2

2τ 2

]
,

(19)

where

B = p2

1 + (1 − γ )r2 − 2
√

1 − γ r cos φ
. (20)

Thus, the corresponding SNR is

SNRdua ≈ B

√
Nφ

τ
δt . (21)
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FIG. 2. Comparison of power-, signal- and dual-recycling schemes. Panels (a), (b), and (c) correspond to the cases of A and B varying with
r under different values of γ : 0, 0.1, and 0.2, where φ = 0.1. In panels (d), (e), and (f), we assume r = 0.9 and plot A and B varying with φ

under γ = 0, 0.1, and 0.2, respectively. A and B are the improvement factor of power (or signal) and dual recycling schemes, r is the reflection
coefficient of PTM, and γ is the optical loss.

IV. COMPARISON

Here, we define A and B as the improvement factors of
power (or signal) and dual recycling, respectively. It is clear
that the power-, signal-, and dual-recycling schemes improve
the SNR of standard WWA setup A, A, and B times, respec-
tively. A2 and B2 also correspond to the improvement of the
detected power. Therefore, as shown in Fig. 2, we plot A and B
varying with r [Figs. 2(a), 2(b), and 2(c)] or φ [Figs. 2(d), 2(e),
and 2(f)] under different values of loss γ = 0, 0.1, and 0.2,
which correspond to ideal, low, and regular loss, respectively.

As expected, the accuracy of both recycling techniques can
easily exceed the corresponding standard scheme’s shot noise
limit, which is proportionally scaled to 1 in Figs. 2 and 3.
The similar conclusions exit in Refs. [41–43,49]. However, we
have to declare that it cannot beat the standard quantum limit
(SQL) since the improvement originates from the increasing
of detected photons Nφ2 → B2Nφ2. Different cyclic schemes
only stretch the standard quantum limit to varying degrees. In
addition, both A and B can reach the maximum value 1/φ =
10, as shown in Figs. 2(a), 2(b), and 2(c), where the SNR
itself is amplified by the large weak value factor. However,
the peak of A decreases faster than that of B, corresponding to
a larger limitation to the improvement of detecting. Therefore,
the dual-recycling cavity has tolerance for a wider range of r
and γ , which applies to more circumstances. In Figs. 2(d),
2(e), and 2(f), we set r = 0.9, a common parameter of the
PTM, and draw the curves of A and B varying with φ where
φ ∈ [0.01, 0.2]. We can see that the improvement factor of
dual recycling is larger in most weak value ranges, thus out-
performing the power or signal recycling.

In the previous dual-recycled interference-based WWA
system [49], the amplification effect of pointer is reduced by
the walk-off effect, leading to a limitation of the precision

gain. From Eqs. (25) and (26) in Ref. [49], without a filter,
the improvement factor B changes to Bnon:

Bnon = ξ
p2

1 + (1 − γ )r2 − 2
√

1 − γ r cos φ
, (22)

FIG. 3. Comparison of polarization-based and interferometric
dual-recycling schemes. Panels (a), (b), and (c) correspond to the
case of B varying with r and φ under different values of γ : 0, 0.1, and
0.2 in three dimensions, respectively. Panels (d), (e), and (f) represent
that Bnon varies with r and φ under different values of γ : 0, 0.1 and
0.2 in three dimensions. B and Bnon are the improvement factors of
polarization-based and nonpolarization dual-recycling schemes, r is
the reflection coefficient of PTM, φ is the postselected angle, and γ

is the optical loss.
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where

ξ = φ
cos φ[1 + r2(1 − γ )] − 2r

√
1 − γ

sin φ[1 + r2(1 − γ ) − 2r
√

1 − γ cos φ]
. (23)

Due to the proper use of the filter, a minimum filter
loss replaces the original performance reduction in the
polarization-based dual-recycling scheme. For clear compar-
ison, in Fig. 3, we similarly set φ = 0.1 and plot B and Bnon

varying with r and φ under different losses. The polarization-
based scheme has obvious improvement and the gaps between
Bnon and B decrease as the loss increases. This is established
on the assumption that both systems experience the same loss
γ . Actually, replacing the BS with the PBS can effectively
reduce optical loss. The probability of photons surviving the
PBS (� 95%) is known to be larger than that of the BS (�
90%). In addition, the PBS simplifies the propagation paths of
cyclic photons, which reduces the crosstalk among photons.
All these reasons make this polarization-based scheme ad-
vantageous in both theoretical performance and experimental
application.

V. CONCLUSION

In summary, we have proposed three polarization-based
cyclic weak measurement schemes based on the angular-
velocity weak measurement setup. By integrating one or two
PTMs into the system to establish a resonant cavity, all in-
cident light can be detected in principle. In our analysis,
these polarization-based schemes can outperform the previous
interferometric schemes due to their lower theoretical loss and
improved cyclic paths. This optimized cyclic path effectively
eliminates the walk-off effect, a significant challenge in pre-
vious signal-recycling and dual-recycling schemes. Notably,
among the proposed schemes, the polarization-based dual-
recycling scheme demonstrates the widest optimal region.

The application of these cyclic modes is not limited to our
specific experimental setup but can be extended to various
WVA realizations. This is due to the inherent presence of post-
selection in all weak value setups. In addition, postselection
has been proven to improve the information-cost rate, and
negative quasiprobabilities enable postselected experiments
to outperform optimal postselection-free experiments [53].
The combination of recycling and negative quasiprobabilities
represents a different and meaningful approach. Moreover,
leveraging quantum resources allows for precision enhance-
ment beyond the standard quantum limit [54–56], providing
a predictable pathway towards further augmenting the perfor-
mance of weak-value-based metrology.
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APPENDIX A: FISHER INFORMATION ANALYSIS OF
CONVENTIONAL MEASUREMENT

Consider a system prepared in |R〉, one of the
basis system states. After the weak interaction,
the parameter ω is encoded in the meter state as

FIG. 4. Optical mode matching and cavity length locking. The
lenses L1, L2, and L3 with matched focal lengths are set on proper
positions to ensure that the place of the waist and self-reproduction
of Gaussian beam are at PTM1 and PTM2. QWP, quarter-wave
plate; HWP, half-wave plate; PBS, polarization beam splitter; PHWP,
piezo-driven half-wave plate; PTM, partially transmitting mirror.

|ϕc〉 = (N2/2πτ 2)1/4 exp (−2iωt ) exp(−t2/4τ 2)|t〉. Using
the quantum Fisher information (QFI) formula

QF (ω) = 4

[(
d〈ϕ|
dω

)(
d|ϕ〉
dω

)
−

∣∣∣∣〈ϕ|
(

d|ϕ〉
dω

)∣∣∣∣
2
]
, (A1)

we can easily get the QFI encoded in |ϕc〉 as

QF c(ω) = 16Nτ 2, (A2)

which is also the maximum FI over all possible generalized
measurements. Thus, the minimum uncertainty of ω is


ωc = 1√
QF c(ω)

= 1

4
√

Nτ
. (A3)

The corresponding SNR is

SNRc = ω


ωc
= 4ωτ

√
N . (A4)

Comparing 
ωc and SNRc with 
ω and SNR [Eqs. (5) and
(6)], we can get the conclusion that standard weak value
measurement cannot offer better metrological precision of
detecting the time shift of the Gaussian beam, which is con-
sistent with the analysis in Ref. [35]. Postselection here acts
as a concentration of the information about the parameter to
be estimated into small collected parts.

However, by comparing Eqs. (A3) and (A4) to Eqs. (14),
(15), and (21), it can be seen that recycled weak value
measurement can really enhance metrological precision and
outperform conventional measurement. Moreover, this en-
hancement is consistent with the SQL since it comes from
an increase in participating photons N → A2N (or B2N). In
this process, the SQL is stretched from 1/

√
N to 1/

√
A2N (or

1/
√

B2N), without being exceeded.
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APPENDIX B: OPTICAL MODE MATCHING AND
STABILITY ANALYSIS

Generally, the beam will be a diffracting Gaussian beam
with a waist, as opposed to the parallel beam treated above.
Therefore, the waist size and positions of the incident Gaus-
sian beam should match those of the resonance cavity itself,
forming a stable self-reproduction. Here, we take the most
challenging dual-recycling as an example, as illustrated in
Fig. 4. Similar to the solutions of Refs. [41,49], several well-
designed lenses L1, L2, and L3 are employed to ensure the
waists are located at PTM1 and PTM2.

The phase locking of the cavity is also essential since the
ambient noise can introduce length offsets in the cavity. In
Ref. [41], an error signal extracted from the output light is

used to provide feedback and stabilize the power-recycling
cavity using the Pound-Drever-Hall (PDH) method, which
is also applicable to the signal-recycling cavity. However,
when implementing the dual-recycling cavity with two dif-
ferent lengths, relying solely on an error signal does not
provide sufficient information regarding the offsets of the
PTMs. A possible approach is to adjust the postselected an-
gle and parameters of the PTMs such that the light reflected
towards the laser is largely independent of PTM2, allowing
the first PDH system to initially lock the length of PTM1
before using the second PDH system to stabilize the length
of PTM2. Alternatively, a custom-designed enclosure with
fixed positions for the instruments can simplify the locking
operations.
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