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Diagonal unitary operators are well known to be key building blocks of many quantum algorithms and
quantum computing procedures, and thus resource-efficient quantum circuit implementations are in demand.
Here we propose a constructive algorithm that can generate a quantum circuit over the primitive gate set {CNOT,
RZ } for realizing any given diagonal unitary operator piece by piece. The theoretical analysis reveals that, for the
general case, our generated circuit not only ensures the asymptotically optimal gate count, but also nearly halves
the circuit depth compared with the previous Welch’s method [New J. Phys. 16, 033040 (2014)]. Specifically,
this substantial depth optimization originates from the use of a uniform circuit rewriting rule developed here. The
performance of our circuit synthesis algorithm is further validated by numerical evaluations on two examples.
First, we achieve a nearly 50% depth reduction over Welch’s method for synthesizing random diagonal unitary
operators with up to 16 qubits. Second, we achieve an average of 22.05% depth reduction for resynthesizing
the diagonal part of the specific quantum approximate optimization algorithm (QAOA) circuits with up to
14 qubits.
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I. INTRODUCTION

Translating a high-level quantum operation into a gate-
based quantum circuit, usually called quantum circuit syn-
thesis, forms one of the theoretical foundations of quantum
computing and has been intensively studied since the 1990s
[1–11]. While the number of elementary gates for realizing
arbitrary unitaries scales with O(4n) [4,6], in some situations
we are more interested in the efficient synthesis of a spe-
cific kind of quantum operator rather than general unitary
matrices, e.g., the diagonal unitary operator that can add
different phase factors to distinct computational basis states.
Diagonal operators and their associated circuits are revealed
to have nontrivial computational power and applications in
quantum computing [12], e.g., as important parts in Grover
search [13–15], quantum approximate optimization algorithm
(QAOA) [16,17], quantum algorithms for string problems
[18,19], quantum simulation [20–22], and the generation of
a t-design of random states [23]. Therefore, the synthesis of
low-cost quantum circuits for implementing diagonal unitary
operators is critical for executing a variety of quantum com-
puting tasks. In general, the gate count and circuit depth of the
synthesized circuits are expected to be minimized to reduce
the impact of gate errors and decoherence in realistic devices
[16,24].

Over the years, methods to construct quantum circuits over
the two-qubit controlled-NOT gate (CNOT) and single-qubit
Z-axis rotation gate RZ (θ ) for implementing diagonal unitary

*lilvzh@mail.sysu.edu.cn

operators with the asymptotically optimal gate count have
been proposed [20,25]. More specifically, given an n-qubit
diagonal unitary operator, a quantum circuit over the gate set
{CNOT, RZ} can be constructed with a total of 2n+1 − 3 gates
in the worst case, including 2n − 2 CNOT gates and 2n − 1 RZ

gates. However, these works have not discussed whether the
depth of the synthesized circuit can be further reduced. As is
well known, depth-optimized circuits are important to a robust
implementation of a quantum algorithm on near-term quan-
tum hardware since a shorter depth corresponds to shorter
circuit execution time as well as a reduction of errors due to
decoherence [24,26]. In this paper, we aim at algorithms that
produce the quantum circuit over the gate set {CNOT, RZ} for
any given diagonal unitary operator, with a particular focus
on reducing the circuit depth, while keeping the asymptoti-
cally optimal gate count. Our contributions are summarized
as follows.

(1) We derive a procedure to construct the quantum
{CNOT, RZ} circuit for implementing a general n-qubit diag-
onal unitary operator with the asymptotically optimal gate
count 2n+1 − 3 (Theorem 1), and then develop a uniform
circuit rewriting rule (Theorem 2) that is well suited for op-
timizing the depth of such circuits.

(2) By observing the structure of the resultant circuits
in (1), we further propose a self-contained depth-optimized
circuit synthesis algorithm (Algorithm 1) that not only en-
sures the asymptotically optimal gate count 2n+1 − 3, but also
provides a nearly half reduction in circuit depth over Welch’s
method [20] for the general case of large size.

(3) Finally, the practical performance of our synthesis al-
gorithm is evaluated on two typical cases. First, we synthesize
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the general random diagonal unitary operator with up to 16
qubits and achieve a nearly 50% depth reduction compared
with Welch’s method. Second, we resynthesize the diagonal
part of specific QAOA circuits with up to 14 qubits and
achieve an average of 22.05% depth reduction.

The rest of this paper is organized as follows. Section II
introduces some useful notations and facts about quantum cir-
cuit design. Section III proposes a depth-optimized synthesis
algorithm for generating quantum circuits over {CNOT, RZ }
gates that can implement arbitrary diagonal unitary opera-
tors with both the asymptotically optimal gate count and an
optimized depth for the general case. Section IV performs
evaluations on two typical instances to illustrate the perfor-
mance of our circuit synthesis algorithm. Section V concludes
the paper.

II. PRELIMINARIES

For the reader’s convenience, in this section we introduce
some basic notations and facts about the quantum circuit
model and synthesis algorithm throughout the paper.

A. Notations

We denote the integer set {a, a + 1, a + 2, . . . , b} by [a, b]
with a � b. A t-bit string with all 0 (or 1) is denoted as 0(t )

(or 1(t )). For each string j = j1 j2 . . . jn, we denote the set
of indices of all “1” bits as Pj = {p1, p2, . . . , pm} such that
jp1 = jp2 = · · · = jpm = 1 with m being the Hamming weight
of j. The symbol ◦ is used to concatenate m(m � 2) subcir-
cuits {QC1, QC2, . . . , QCm} to form a circuit QC such that
QC = QC1 ◦ QC2 ◦ . . . ◦ QCm. The commonly used identity
and Hadamard matrices are

I =
(

1 0
0 1

)
, H = 1√

2

(
1 1
1 −1

)
. (1)

B. Quantum circuits over {CNOT, RZ} gates

The CNOT gate and Z-basis rotation gate (RZ ), respectively,
act on the two- and one-qubit basis state as follows:

CNOT(c, t )|kc〉|kt 〉 = |kc〉|kt ⊕ kc〉, (2)

RZ (−β; r)|kr〉 =
(

eiβ/2 0
0 e−iβ/2

)
|kr〉 = eiβ(−1)kr /2|kr〉, (3)

for any qubits c, t, r ∈ [1, n]. The indices c and t in CNOT(c,
t) denote the control and target qubit it acts on, respectively.
The single-qubit gate RZ (−β; r) acts on qubit r with a rotation
angle β ∈ [0, 2π ). A simple {CNOT, RZ} circuit example is
shown in Fig. 1, which consists of two CNOT gates denoted
CNOT(1,2,1) and CNOT(2,4,2) as well as three RZ gates denoted
RZ (−β1; 3, 1), RZ (−β2; 2, 3), and RZ (−β3; 4, 3) indicated by
gray squares. Note the third parameter of the CNOT or RZ gate
indicates its column index in the circuit.

In the following, we introduce some commutation and
rewriting rules that will be used to achieve our substantial
depth-optimization goal in Sec. III C.

Commutation rules for CNOT gates. From the basis trans-
formation about a CNOT gate in Eq. (2), it can be verified
that CNOT(c2, t2) commutes with CNOT(c1, t1) only when both
c2 �= t1 and c1 �= t2 are satisfied. Another useful commutation

FIG. 1. A simple four-qubit and three-depth circuit consisting of
two CNOT gates denoted CNOT(1,2,1) and CNOT(2,4,2) as well as three
RZ gates denoted RZ (−β1; 3, 1), RZ (−β2; 2, 3), and RZ (−β3; 4, 3),
respectively.

relation presented in Fig. 2(a) can be used to reduce three
CNOT gates to two.

Commutation rules for RZ gates. Obviously, any two
RZ (−β ) gates commute with each other and can be directly
merged into a new one according to Eq. (3).

Commutation rules for RZ and CNOT gates. RZ (−β; c) gate
commutes with CNOT(c, t) as shown in Fig. 2(b).

Rewriting rules for { CNOT, RZ } subcircuits. Rewriting rules
indicate broader commutation relations between subcircuits
over {CNOT, RZ } [27]. For example, the combination of rules
in Figs. 2(a) and 2(b) can lead to a result in Fig. 2(c) where
CNOT(c, t ) ◦ RZ (−β; t ) ◦ CNOT(c, t) commutes with CNOT(t ,
r �= c) as well as an extended result in Fig. 2(d). Note the
subcircuit in the red dashed box of Figs. 2(c) and 2(d) can
be generalized to the case that consists of an even number of
CNOT(ci, t) for each control qubit ci together with any number
of RZ (−β; t ).

C. Quantum circuit synthesis algorithm

A quantum circuit synthesis algorithm is an algorithm that
can synthesize a quantum circuit over a certain gate set for
realizing the target unitary operator, and the gate count and
circuit depth are two important cost metrics in circuit synthe-
sis. A quantum circuit can be represented as a directed acyclic
graph (DAG) in which each node corresponds to the circuit’s
gate and each edge corresponds to the input or output of a gate.

FIG. 2. Some useful commutation and rewriting rules for
{CNOT, RZ} circuits.
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Then the circuit depth d is defined as the maximum length of
a path flowing from an input of the circuit to an output [7].
Equivalently speaking, d is the number of layers of quantum
gates that compactly act on all disjoint sets of qubits [26,28],
and thus a smaller d indicates a shorter execution time of
a circuit. In general, a circuit synthesis algorithm can have
different circuit complexities for implementing different input
unitary operators, and the upper bound among all cases is
called the worst-case behavior of this algorithm and usually
used to evaluate the algorithm’s performance.

III. DEPTH-OPTIMIZED SYNTHESIS OF CIRCUITS FOR
DIAGONAL UNITARY OPERATORS

For realizing general diagonal unitary operators, in this
section we first derive a procedure that directly starts from
matrix decomposition to quantum circuit construction with
an asymptotically optimal gate count over {CNOT, RZ} (sum-
marized as Theorem 1), and then propose a uniform circuit
rewriting rule well suited for circuit depth optimization (see
Theorem 2). Based on these results, we make a further step to-
wards a straightforward depth-optimized synthesis algorithm
(Algorithm 1) that can automatically achieve a nearly 50%
reduction in circuit depth compared with Ref. [20] for imple-
menting large-size operators. In addition to the general case,
we also discuss the possible optimization on special cases.

A. Matrix decomposition

For a general size N × N (N = 2n) diagonal unitary oper-
ator in matrix form

D(
−→
θ ) =

⎡
⎢⎢⎢⎣

eiθ00..00 0 0 0
0 eiθ00..01 0 0
...

...
. . .

...

0 0 0 eiθ11..11

⎤
⎥⎥⎥⎦, (4)

its angle parameters
−→
θ = [θ00..00, θ00..01, . . . , θ11..11]T

can be expanded by another set of parameters −→α =
[α00..00, α00..01, . . . , α11..11]T through the n-qubit Hadamard
transform as

−→
θ = H̃−→α , (5)

with H̃ = H⊗n = H̃† and H in Eq. (1). The effect of H̃ on a
basis state | j〉 is

H̃ | j〉 = 1√
2n

∑
k∈{0,1}n

(−1) j·k|k〉, (6)

with j · k = j1k1 ⊕ j2k2 ⊕ · · · ⊕ jnkn for j = j1 j2 . . . jn and
k = k1k2 . . . kn. The element of H̃ is given by H̃j,k = H̃k, j =
〈k|H̃ | j〉 = (−1) j·k 1√

2n . Therefore, −→α can be solved from the

given
−→
θ as

−→α = H̃
−→
θ , (7)

with

α j =
∑

k∈{0,1}n

H̃ j,kθk = 1√
2n

∑
k∈{0,1}n

(−1) j·kθk . (8)

By inserting Eq. (5) into Eq. (4), the matrix D(
−→
θ ) can

be decomposed into a product of N commutative diagonal
matrices Bj (α j ) as

D(
−→
θ ) =

∏
j∈{0,1}n

B j (α j ), (9)

where the diagonal element indexed by k ∈ {0, 1}n of Bj (α j )
is

B(k)
j (α j ) = exp[iH̃k, jα j] = exp

[
iα j√

2n
(−1) j·k

]
. (10)

Therefore, the effect of Bj (α j ) on an n-qubit computational
basis state |k〉 is to apply a phase shift as

Bj (α j )|k〉 = exp

[
iα j√

2n
(−1) j·k

]
|k〉. (11)

Using Pj = {p1, p2, . . . , pm} associated with the string j as
defined in Sec. II A, Eq. (11) can be written as

Bj (α j )|k1〉|k2〉 · · · |kn〉

= exp

[
iα j√

2n
(−1)kp1 ⊕kp2 ⊕···⊕kpm

]
|k1〉|k2〉 · · · |kn〉, (12)

where the added phase factor of the basis state |k〉 =
|k1〉|k2〉 · · · |kn〉 is uniquely determined by j and k.

B. Gate-count optimal circuit construction

For implementing the target diagonal operator in Eq. (4),
we consider constructing a {CNOT, RZ } circuit module Mj

to perform each matrix Bj (α j ) described in Eq. (12) in three
steps: (i) apply (m − 1) CNOT gates denoted by CNOT(p1, pm),
CNOT(p2, pm),..., CNOT(pm−1, pm), respectively; (ii) apply a
RZ (−β j ; pm) gate in Eq. (3) with

β j = α j/
√

2n−2 (13)

and α j given in Eq. (8); (iii) apply (m − 1) CNOT gates denoted
by CNOT(pm−1, pm), CNOT(pm−2, pm), . . ., CNOT(p1, pm), re-
spectively.

According to Eqs. (2) and (3), such a constructed module
Mj acts on any input basis state |k1〉|k2〉 . . . |kn〉 as

|k1〉|k2〉 . . . |kpm〉 . . . |kn〉
(i)−→ |k1〉|k2〉 . . .

∣∣∣∣ m⊕
i=1

kpi

〉
. . . |kn〉

(ii)−→ exp

[
iα j√

2n
(−1)kp1 ⊕kp2 ⊕...⊕kpm

]
|k1〉 . . .

∣∣∣∣ m⊕
i=1

kpi

〉
. . . |kn〉

(iii)−→ exp

[
iα j√

2n
(−1)kp1 ⊕kp2 ⊕...⊕kpm

]
|k1〉 . . . |kpm〉 . . . |kn〉,

(14)

which thus exactly performs Bj (α j ) described in Eq. (12).
Note the matrix Bj (α j ) and its associated circuit module

Mj have the following features.

(1) For j = 0(n), Eq. (10) shows B0(α0) = eiα0/
√

2n
I is just

an identity matrix.
(2) For j including only one “1” such that Pj = {p1}, Mj

only consists of a single-qubit gate RZ (−α j/
√

2n−2; p1).
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FIG. 3. An example with n = 3 qubits to demonstrate circuit
construction and optimization as described in Sec. III B. (a) {CNOT,
RZ } circuit QCD = Gpm=1 ◦ Gpm=2 ◦ Gpm=3 consisting of 2n − 1 =
7 RZ gates and n2n − 2n+1 + 2 = 10 CNOT gates with total depth 15.
(b) Circuit consisting of 2n − 1 = 7 RZ gates and 2n − 2 = 6 CNOT

gates with depth 11 after CNOT-count optimization of (a), which can
be transformed into (c) with a shorter depth 8.

(3) The N diagonal matrices Bj (α j ) can be arranged in any

order for realizing the target D(
−→
θ ) due to their commutativity,

i.e., Eq. (9) can be written as

D(
−→
θ ) = Bs1 (αs1 ) . . . BsN−1 (αsN−1 ), (15)

where the trivial identity matrix B0(α0) is omitted
and {s1, s2, . . . , sN−1} is an arbitrary permutation of
{00 . . . 01, 00 . . . 10, . . . , 11 . . . 11}. Accordingly, the order
of all nontrivial circuit modules {Mj : j ∈ {0, 1}n\0(n)} in the
entire quantum circuit QCD for realizing D can be exchanged
at will.

In the following, we first specify the whole circuit QCD by
dividing all constituent modules Mj into n different groups,
and then optimize each group by a technique from binary Gray
codes to reduce the CNOT gate count.

We categorize a total of (N − 1) modules Mj into n
groups denoted by Gpm=1, . . . , Gpm=n, where the integer
pm ∈ [1, n] specifies the index of the rightmost “1” bit in
j = j1 j2 . . . jn. According to our circuit module construc-
tion above Eq. (14), each Mj in the group Gpm applies a
RZ (−β; pm) gate as well as 2(m − 1) CNOT gates between
the control qubits {p1, p2, . . . , pm−1} and the target qubit pm.
As a consequence, each Mj in a given Gpm can be uniquely
represented by a (pm − 1)-bit string j1→pm−1 = j1 j2 . . . jpm−1

such that the index of each “1” bit in j1→pm−1 indicates
the control qubit of each CNOT gate in Mj . In this view,
each group Gpm totally has

∑pm
m=1 Cm−1

pm−1 = 2pm−1 such Mj

and 2
∑pm

m=1 (m − 1)Cm−1
pm−1 = (pm − 1)2pm−1 CNOT gates by

simple counting principles, and thus QCD = Gpm=1 ◦ Gpm=2 ◦
· · · ◦ Gpm=n includes

∑n
pm=1 2pm−1 = 2n − 1 RZ gates and∑n

pm=1 (pm − 1)2pm−1 = n2n − 2n+1 + 2 CNOT gates. The ex-
ample with n = 3 qubits for the circuit QCD constructed in
this way is presented in Fig. 3(a).

Next, since all modules Mj in each Gpm commute, here
we can explore the reduction in CNOT gate count by making
use of GRAY codes [29,30]. As shown in the transformation
from Figs. 3(a) to 3(b), when two adjacent modules Mj and
Mj′ in a Gpm lead to only one “1” bit in the resultant string
j1→pm−1 ⊕ j′1→pm−1, all but one CNOT gates will cancel be-
tween any two consecutive RZ gates in Mj and Mj′ . Based on
this observation, we can arrange each Gpm as a sequence of
modules Mj with j, respectively, taken as

j = g110(n−pm ), g210(n−pm ), . . . , gt 10(n−pm ), (16)

and t = 2pm−1. Here {g1, g2, . . . , gt } = GCt is a (pm − 1)-bit
reflected GRAY code sequence which can be constructed itera-
tively for each pm as

pm = 2 : GCt = {0, 1}, (17a)

pm � 3 : GCt = {GCt/2{0}, GCt/2{1}}, (17b)

where GCt/2 is the reverse string sequence of GCt/2, and
GCt/2{0} or GCt/2{1} indicates adding a suffix “0” or “1” to
each string in GCt/2 or GCt/2. This GRAY code sequence for
each pm would lead to only one CNOT gate located between
any two consecutive RZ gates in Gpm . More specifically, all
these 2pm−1 CNOT gates in each Gpm are targeted on qubit pm,
and from Eq. (17) we can iteratively identify the set of their
control qubits denoted by λpm (pm � 2) as

pm = 2 : λ2 = [1, 1], (18)

and

pm � 3 : λk−1(2k−2) ← k − 1, λk ← [λk−1, λk−1], (19)

with k increasing from 3 to pm.
In this way, the group Gpm=1 contains one RZ gate while

each group Gpm�2 contains 2pm−1 RZ gates and 2pm−1 CNOT

gates after CNOT cancellation. As a result, our whole quan-
tum circuit QCD = Gpm=1 ◦ Gpm=2 ◦ · · · ◦ Gpm=n contains 1 +∑n

pm=2 2pm−1 = 2n − 1 RZ gates and
∑n

pm=2 2pm−1 = 2n −
2CNOT gates with the total number of gates being 2n+1 − 3.
Note that this total gate count has been proved to be asymp-
totically optimal for implementing n-qubit diagonal unitary
matrices in the worst case [25]. For convenience, we summa-
rize the above circuit construction procedure as Theorem 1,
with an instance circuit for n = 3 shown in Fig. 3(b).

Theorem 1. Asymptotically gate-count optimal circuit con-
struction. An n-qubit {CNOT, RZ} quantum circuit QCD for
implementing a given operator D(

−→
θ ) in Eq. (4) can be con-

structed as a sequence of n groups QCD = Gpm=1 ◦ Gpm=2 ◦
· · · ◦ Gpm=n, where Gpm=1 is a RZ (−β10(n−1) ; 1) gate and each
Gpm�2 consists of an alternating sequence of 2pm−1 RZ gates
acting on qubit pm and 2pm−1 CNOT gates with their targets be-
ing pm. More precisely, in each Gpm�1 the angle parameters β j

of these RZ (−β j ; pm) gates can be solved by first determining
2pm−1 different indices j according to Eqs. (16) and (17) and
then using Eqs. (13) and (8), while all CNOT gate controls in
each Gpm�2 can be determined by using Eqs. (18) and (19).
The total gate count of such QCD is asymptotically optimal as
2n+1 − 3.
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In addition to the gate count of the generated circuit, it
is worth considering the circuit depth as another important
circuit cost metric. For example, our constructed circuit in
Fig. 3(b) has depth 11 for n = 3, which is shorter than Welch’s
three-qubit circuit of depth 13 (see Fig. 5 of Ref. [20]). The
reason for this advantage is that our construction introduced
above actually adopts a different Gray code sequence [see
Eq. (17)] from Welch’s for reducing the number of CNOT

gates in each Gpm , which naturally enables the parallelization
of certain gates in two adjacent Gpm . Furthermore, note that
such circuits can be further optimized in terms of depth by
considering appropriate circuit rewriting rules, e.g., the circuit
of depth 11 in Fig. 3(b) can be transformed into one of depth
8 as shown in Fig. 3(c) by using the rule in Fig. 2(c). In
the following, we investigate how to significantly reduce the
depth of an n-qubit circuit obtained from Theorem 1 by further
parallelizing its constituent gates and subcircuits, and finally
derive a direct depth-optimized circuit synthesis algorithm in
Sec. III C.

C. Depth-optimized synthesis algorithm

Step by step, in this section we first describe how to put
forward a uniform circuit rewriting rule in Theorem 2 to
significantly reduce the depth of the synthesized {CNOT, RZ }
circuit QCD in Theorem 1, and then further derive a self-
contained synthesis algorithm denoted Algorithm 1 that can
directly produce a depth-optimized circuit for realizing target
D(

−→
θ ).
Intuitively, the movements of RZ and CNOT gates or subcir-

cuits within their located rows to fill vacancies of the original
circuit by following certain rules are likely to cause a re-
duction in circuit depth, such as from Figs. 3(b) to 3(c). In
this three-qubit circuit example, we move the subpart CNOT ◦
RZ (−β110)◦ CNOT in columns 3 to 5 of Fig. 3(b) to the right
to fill the vacancies in columns 10 to 12 according to the rules
in Fig. 2(c) and then parallelize RZ (−β100), RZ (−β010), and
RZ (−β001) into one column, leading to a depth reduction from
11 to 8 as shown in Fig. 3(c). A more general instance to illus-
trate such depth-optimization procedure is provided in Fig. 4,
where we present the four-qubit circuit constructed by The-
orem 1 that consists of four subcircuits Gpm=1,2,3,4 with total
depth 24. For convenience, each gate is indexed by its row (1
to 4) and column (1 to 29) number before depth-optimization,
and then we declare the subcircuits Gpm=1, Gpm=2, and Gpm=3

can all be moved and embedded into appropriate vacancies of
Gpm=4 by the following steps.

(1) Move the subcircuit inside the red solid line box in
columns 7 to 13 of Gpm=3 to the right, which can commute
with the CNOT gate in column 21 according to Fig. 2(d) and
then fill the vacancies in columns 22 to 28 of Gpm=4.

(2) Move the gate RZ (−β0010) inside the purple solid line
box in column 6 of Gpm=3 to the vacant position at row 3 and
column 14 of Gpm=4.

(3) Move the subcircuit inside the blue solid line box in
columns 3 to 5 of Gpm=2 to the right, which can commute with
the CNOT gate in column 17 according to Fig. 2(c) and then fill
the vacancies in columns 18 to 20 of Gpm=4.

ALGORITHM 1. Depth-Optimized {CNOT, RZ } Circuit Syn-
thesis for implementing D(θ ).

Input: A target diagonal operator D(θ ) in Eq. (4).
Output: A depth-optimized {CNOT,RZ } circuit

QCD for realizing D(θ ).
1 Calculate all 2n − 1 rotation angles β j using Eqs. (13)

and (8), QCD ← Vacancy(n, 2n), λ ← [0],
GC2 ← {0, 1};

2 for r = 1 to n − 1 do // Embed n − 1 RZ gates in

column 1 of QCD at first.

3 Embed RZ (−β0(r−1)10(n−r) ) in QCD(r, 1);
4 end
5 for pm = 2 to n do
6 t ← 2pm−1;
7 λ(t/2) ← pm − 1;
8 λ ← [λ, λ]; // Identify all CNOT gate controls

in Spm>1.

9 if pm < n then // Identify and Embed gates

of Spm<n defined in Theorem 2.

10 Embed a CNOT in QCD(1, pm, 2pm + 1);
11 for i = 2 to t do

12 j ← GCt (i)10(n−pm );
13 Embed RZ (−β j ) in QCD(pm, 2pm + 2i − 2);
14 Embed a CNOT in

QCD(λ(i), pm, 2pm + 2i − 1);
15 end

// Generate Gray code sequence.

16 GC2t ← {GCt {0}, GCt {1}}; // GCt:reverse

string sequence of GCt.

17 end
18 end
19 for i = 1 to 2n−1 do // Identify and Embed gates

of Gpm=n finally.

20 j ← GC2n−1 (i)1;
21 Embed RZ (−β j ) in QCD(n, 2i − 1);
22 Embed a CNOT in QCD(λ(i), n, 2i);
23 end
24 return QCD.

(4) Move the gate RZ (−β0100) inside the orange solid line
box in column 2 of Gpm=2 to the vacant position at row 2 and
column 14 of Gpm=4.

(5) Move the gate RZ (−β1000) inside the green solid line
box in column 1 of Gpm=1 to the vacant position at row 1 and
column 14 of Gpm=4.

As a result, the depth of such optimized 4-qubit circuit is
the same as that of Gpm=4 and equal to 16.

In above steps (1) and (3), the use of rewriting rules in
Figs. 2(d) and 2(c) can reduce the entire circuit depth by
commuting and parallelizing quantum gates in a collective
manner. That is, the subcircuit Spm=2 or Spm=3 inside a blue
or red solid line box in Fig. 4 can commute with the CNOT

gate in column 17 or 21, respectively. In the following we
formulate a uniform version of such circuit rewriting rules as
Theorem 2.

Theorem 2. Uniform circuit rewriting rule. In an n-qubit
quantum circuit, we use Spm to denote a subcircuit that consists
of an alternating sequence of 2pm−1CNOT gates and 2pm−1 −
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FIG. 4. Depth-optimization of the four-qubit circuit constructed
from Theorem 1. When we move the subcircuits inside colored solid
line boxes in Gpm=1, Gpm=2, and Gpm=3 to the right to fill dashed
vacant boxes of the same color in Gpm=4, the overall circuit depth
can be reduced from 24 to 16. This is an example of applying
Theorem 2.

1 RZ gates, where the control qubits of these CNOT gates
targeted on qubit pm are given in Eqs. (18) and (19), and all RZ

gates act on qubit pm. Then Spm commutes with a CNOT(pm, n)
gate for any integer pm ∈ [2, n − 1], that is,

Spm ◦ CNOT(pm, n) = CNOT(pm, n) ◦ Spm ,

which is called a uniform circuit rewriting rule.
Proof. It can be seen from Eqs. (18) and (19) that each

different CNOT control must appear an even number of times
inside any Spm . Therefore, such a sequence Spm consisting
of alternating CNOT and RZ gates clearly commutes with a
CNOT(pm, n) gate by alternately using the commutation rules
in Figs. 2(a) and 2(b), where all additional CNOT gates would
cancel out.

Based on Theorem 2, we can develop a depth-optimization
procedure for reducing the depth of the n-qubit circuit from
Theorem 1. By generalizing Fig. 4 to the circuit of any size
n consisting of subcircuits {Gpm : pm = 1, 2, . . . , n}, all 2pm

gates in each G1<pm<n can be divided into two subparts:
(i) its leftmost RZ gate and (ii) the rest 2pm−1 CNOT and
2pm−1 − 1 RZ gates together denoted Spm . At first, the subpart
Spm of Gpm=n−1 can commute with all gates on the left of the
leftmost CNOT(n − 1, n) gate in Gpm=n by noting Eq. (19),
and then commute with this CNOT(n − 1, n) gate according
to Theorem 2 to exactly fill vacancies on its right. Next, the
subpart (i) of Gpm=n−1 as a single RZ gate can be moved
to the vacant position at row n − 1 and the first column of
Gpm=n. Similarly, the subpart Spm of Gpm=n−2 can be moved
to the right and filled the vacancies on the right of the left-
most CNOT(n − 2, n) gate of Gpm=n according to Theorem
2, and then the subpart (i) of Gpm=n−2 as a single RZ gate
can be moved to the vacant position at row n − 2 and the
first column of Gpm=n. In this way, all these subcircuits Gpm

with pm = n − 1, n − 2, . . . , 3, 2 can be regularly moved and
embedded into corresponding vacancies of Gpm=n one after
another, and at last Gpm=1 as a single RZ gate can be moved to
the position at row 1 and the first column of Gpm=n. As a final
result, the depth of such an obtained n-qubit circuit is equal to

that of Gpm=n, that is, 2n, which nearly halves the circuit depth
2n+1 − 3 resulted from previous Welch’s method [20].

At this point, one can construct a circuit by Theorem 1
and then use Theorem 2 for optimizing the circuit depth.
More significantly, we find these two steps can be skillfully
combined to give a new circuit synthesis algorithm that not
only ensures the asymptotically optimal gate count, but also
automatically achieves an optimized depth as introduced in
the following.

Note the essence of using Theorem 2 to optimize the depth
of a circuit from Theorem 1 is to move gates in its smaller sub-
circuits Gpm with pm = 1, 2, . . . , n − 1 into specific vacancies
of the rightmost subcircuit Gpm=n, indicating that the positions
of all these gates in the final optimized circuit can actually
be predetermined. Based on this crucial observation, here we
present Algorithm 1 as the key contribution of this paper,
which can directly identify-and-embed CNOT and RZ gates
in each Gpm (pm = 1, 2, . . . , n) for piecing up the whole n-
qubit circuit of depth 2n. Specifically, we initialize the desired
circuit QCD as a substrate consisting of n rows and 2n columns
of vacancies, and then identify and embed each Gpm<n con-
sisting of a RZ gate and a subpart Spm<n, followed by the final
Gpm=n.

To illustrate the working principle of Algorithm 1 in a more
intuitive way, we demonstrate the four-qubit depth-optimized
circuit synthesis for implementing a diagonal operator D(θ =
[θ0000, . . . , θ1111]) as an example depicted in Fig. 5 with a
description as follows.

(1) In Fig. 5(a), we initialize the four-qubit circuit QCD as
a substrate consisting of 4 rows and 16 columns of vacancies,
and calculate all rotation angles denoted [β0001, . . . , β1111]
of 15 nontrivial RZ gates from the given [θ0000, . . . , θ1111].
We also initialize the CNOT gate control set as λ ← [0] and
the one-bit Gray code sequence GC2 ← {0, 1} according to
Eqs. (17a).

(2) In Fig. 5(b), we embed three RZ gates denoted
RZ (−β1000), RZ (−β0100), RZ (−β0010) into row 1, 2, 3 and
column 1 of QCD as marked green, orange, purple, re-
spectively. Note each such RZ gate belongs to Gpm=1,2,3,
respectively.

(3) In Fig. 5(c), we construct the subcircuit Spm=2 =
CNOT(1, 2) ◦ RZ (−β1100; 2) ◦ CNOT(1, 2) by identifying all
CNOT gate controls as λ = [1, 1] and the angle parameter of
the RZ gate via GC2, and then embed Spm=2 into columns 5-7
of QCD with gates marked blue. Also, we generate the two-bit
Gray code sequence GC4 = {00, 10, 11, 01}.

(4) In Fig. 5(d), we construct the subcircuit Spm=3 =
CNOT(1,3) ◦RZ (−β1010; 3)◦CNOT(2,3) ◦RZ (−β1110; 3)◦
CNOT(1,3) ◦RZ (−β0110; 3)◦CNOT(2,3) by identifying
all CNOT gate controls as λ = [1, 2, 1, 2] and angle
parameters of three RZ gates via GC4, and then embed
Spm=3 into columns 9-15 of QCD with gates marked
red. Also, we generate the three-bit Gray code sequence
GC8 = {000, 100, 110, 010, 011, 111, 101, 001}.

(5) Finally, in Fig. 5(e) we construct the
subcircuit Gpm=4 = RZ (−β0001; 4)◦ CNOT(1,4)
◦RZ (−β1001; 4)◦CNOT(2,4) ◦RZ (−β1101; 4)◦CNOT(1,4)
◦RZ (−β0101; 4)◦CNOT(3,4) ◦RZ (−β0111; 4)◦ CNOT(1,4)
◦RZ (−β1111; 4)◦CNOT(2,4) ◦RZ (−β1011; 4)◦CNOT(1,4)
◦RZ (−β0011; 4)◦CNOT(3,4) by identifying all CNOT gate
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FIG. 5. Four-qubit depth-optimized circuit synthesis as an exam-
ple to demonstrate Algorithm 1. In (a) we initialize the circuit as
a substrate consisting of 4 rows and 16 columns of vacancies, and
then successively identify and embed three RZ gates marked green,
orange, and purple, Spm = 2 with three gates marked blue, Spm = 3
with seven gates marked red, and Gpm=4 with 16 gates marked black
to achieve (b), (c), (d), and the final desired circuit QCD in (e).

controls as λ = [1, 2, 1, 3, 1, 2, 1, 3] and angle parameters of
eight RZ gates via GC8, and then embed Gpm=4 into columns
1 to 16 of QCD with gates marked black. As a result, this
circuit in Fig. 5(e) can realize any diagonal unitary matrix of
size 16 × 16.

Similar to above example with n = 4, we can use Algo-
rithm 1 to synthesize a {CNOT, RZ} circuit of depth at most 2n

to realize any diagonal unitary operator given in Eq. (4). Since
the depth of the circuit constructed by Welch’s method [20]
is 2n+1 − 3, our generated circuit can achieve a nearly 50%
depth reduction for the general case when all angle parameters
of RZ gates are nonzero.

D. Discussion on further optimization

As mentioned in Sec. II C, a circuit synthesis algorithm can
have different performances on cases with different structures.
For a more comprehensive study, here we have some discus-
sions of possible further gate-count and depth optimization
in terms of special cases besides the general case. Although

FIG. 6. Simplification techniques for canceling two CNOT gates
in green boxes. The dashed red box generally indicates any subcircuit
that commutes with the CNOT gate in green box.

the circuits obtained in Algorithm 1 hold for realizing general
D(θ ) with the asymptotically optimal gate count, it is worth
noting that the number of required gates for implementing
specific matrices may be further reduced. For example, if D(θ )
is given by θ = [0, 0, 0, 0, 0, 0, π, π ], then the four RZ gates
in columns 1, 3, 5, 7 of the synthesized circuit in Fig. 3(c)
have rotation angle values β001 = β101 = β111 = β011 = 0 and
thus can be removed as identity matrices. Accordingly, the
four CNOT gates in columns 2, 4, 6, 8 can be canceled by not-
ing Fig. 2(c). In fact, a variety of commutation and rewriting
rules related to the gate set {CNOT, RZ} have been intro-
duced for quantum circuit synthesis and optimization [20,27].
Considering the structure of our circuits synthesized from
Algorithm 1, here we suppose a simple procedure that first
removes all RZ gates with angle parameters β = 0 and then
implements the CNOT gate cancellation in Fig. 2(a) and Fig. 6
is usually effective for further reducing the gate count as
well as circuit depth. Later, we will show how to apply the
combination of our Algorithm 1 and optimization techniques
described here to a practical use case in Sec. IV B.

IV. PERFORMANCE EVALUATION

In Sec. III C we theoretically revealed the circuit synthe-
sized from Algorithm 1 can exhibit a depth reduction over the
previous result. To evaluate the practical performance of our
depth-optimized circuit synthesis algorithm, in this section we
apply Algorithm 1 to a general case (the random diagonal
operator) as well as a specific use case (the QAOA circuit).

A. Random diagonal unitary operators

In principle, our Algorithm 1 can generate a quantum
circuit for implementing any give diagonal unitary matrix.
Without loss of generality, we investigate the synthesis of
n-qubit random diagonal matrices D(θ ) such that 2n angle
parameters of θ are uniformly distributed random variables
in the interval (0, 2π ). In particular, such random diagonal
unitaries may have an application in a quantum informational
task called unitary 2-designs [31]. Specifically, we perform
Algorithm 1 aimed at 300 random diagonal matrices D(θ ) and
obtain target {CNOT, RZ } circuits with an average depth d1(n)
for 2 � n � 16 as shown in Table I. For comparison, we also
employ Welch’s method [20] to construct n-qubit {CNOT, RZ}
circuits with the average depth denoted d2(n) as recorded in
Table I. As a result, the red curve in Fig. 7 shows that our cir-
cuits achieve substantial reductions in circuit depth compared
with Welch’s method [that is, 1 − d1(n)/d2(n)] from 20% to
49.999% as n increases from 2 to 16.
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TABLE I. Performance of our Algorithm 1 and Welch’s method [20] to synthesize circuits aimed at implementing 300 n-qubit random
diagonal unitary operators with 2 � n � 16, where the average circuit depths are denoted as d1 and d2, respectively.

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

d1 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16 384 32 768 65 536
d2 5 13 29 61 125 253 509 1021 2045 4093 8189 16 381 32 765 65 533 131 069

B. QAOA circuits on complete graphs

Quantum approximate optimization algorithm (QAOA) is
one of the most promising quantum algorithms in the noisy
intermediate-scale quantum (NISQ) era [32,33], which is
suited for solving combinatorial optimization problems. Here
we investigate the n-qubit QAOA circuit that generates QAOA
ansatz state for MaxCut problem on an n-node complete graph
as introduced in Ref. [17], where the internal part QCD, sand-
wiched between Hadamard and RX gates, consists of a series
of (n2 − n)/2 subcircuits denoted

SC(γ ; c, t ) = CNOT(c, t ) ◦ RZ (−2γ ; t ) ◦ CNOT(c, t ), (20)

each of which acts on qubits c and t with 1 � c < t � n and
can transform the basis state |k〉 as

|k〉 = |k1〉 . . . |kc〉 . . . |kt 〉 . . . |kn〉 → ei(−1)kc⊕kt γ |k〉. (21)

As a whole, the main subcircuit of QAOA is

QCD(γ ) = SC(γ ; 1, 2) ◦ SC(γ ; 1, 3) ◦ · · · ◦ SC(γ ; 1, n)◦
× SC(γ ; 2, n) ◦ SC(γ ; 2, n − 1)

× · · · ◦ SC(γ ; n − 1, n), (22)

which can realize a diagonal matrix D(γ ) as

D(γ ) =
∑

k∈{0,1}n

eiθk |k〉〈k| (23)
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FIG. 7. Depth reduction by comparing the circuits synthesized
from our Algorithm 1 with Welch’s method [20] for implementing
random diagonal unitary operators, which is calculated from Table I
as 1 − d1/d2 and approaches nearly 50% as the system size n in-
creases to 16 qubits.

with the angle parameter

θk = γ
∑

1�c<t�n

(−1)kc⊕kt (24)

by using Eq. (21).
It can be seen that the circuit QCD(γ ) in Eq. (22) has totally

(n2 − n) CNOT gates, (n2 − n)/2 RZ (−2γ ) gates, and depth
3(n2 − n)/2 as exemplified by Fig. 8(a) for n = 4 [17], and
we aim at the resynthesis of this important building block
in QAOA circuits for achieving an optimized depth. For the
original QAOA circuit with QCD(γ ), the positions of all CNOT

and RZ (−2γ ) gates are fixed while the parameter γ is updated
in each loop during running the QAOA. Accordingly, here for
each size n we consider performing experiments on resyn-
thesizing 100 circuit instances QCD(γ ) with their parameter
value γ varying over (0, π ).

For each target circuit determined by n and γ , we first use
Eq. (24) to calculate all 2n angle parameters denoted {θk :
k ∈ {0, 1}n} of the diagonal unitary matrix D(γ ) represented
by the circuit QCD(γ ). Then we perform our Algorithm 1 to
synthesize circuits for realizing each D(γ ), followed by the
suitable optimization procedures introduced in Sec. III D. An
example of our result with n = 4 is shown in Figs. 8(b) and
8(c), such that we obtain a circuit with a shorter depth of 12

FIG. 8. Quantum circuit of depth 18 in (a) is an example of
Eq. (22) to implement the diagonal operator inside a four-qubit
QAOA circuit [17], which can be resynthesizd by our Algorithm 1 as
shown in (b) and further optimized into a new one with 6 RZ gates,
11 CNOT gates and depth 12 as shown in (c).
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TABLE II. For implementing the diagonal operator in Eq. (23)
of the n-qubit QAOA circuits with 3 � n � 14, d0 and d1 represent
the depth of original circuits in Eq. (22) and our final resynthesized
circuits, respectively.

n 3 4 5 6 7 8 9 10 11 12 13 14

d0 9 18 30 45 63 84 108 135 165 198 234 273
d1 6 12 21 33 48 66 87 111 138 168 201 237

compared to the original circuit of depth 18 in Fig. 8(a). For
the size 3 � n � 14, the depths of original circuits in Eq. (22)
denoted d0 and our constructed circuits denoted d1 are re-
ported in Table II. The result presented in Fig. 9 reveals that
our strategy can achieve a depth reduction over the original
circuit (that is, 1 − d1/d0) ranging from 13.19% to 33.33%
with an average value of 22.05%.

Moreover, our synthesized {CNOT, RZ (−β )} circuits are
shown to have the same configurations with β = 2γ when
we vary the input parameter value γ in Eq. (22), as exempli-
fied by Fig. 8(c). Therefore, in this way we actually provide
a functionally equivalent but depth-optimized ansatz circuit
to implement the diagonal operator in such QAOA circuits
instead of Eq. (22).

V. CONCLUSION

In this paper, we focus on the synthesis of quantum cir-
cuits over the gate set {CNOT, RZ} for implementing diagonal
unitary matrices with both asymptotically optimal gate count
and an optimized circuit depth, and conduct our study in a
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FIG. 9. Depth reduction by comparing the circuits resynthesized
from our Algorithm 1 followed by simple optimizations in Sec. III D
with the original circuits in Eq. (22) as an important part of QAOA
circuits [17] for 3 � n � 14, which is calculated from Table II as
1 − d1/d0 and in the range of 13.19% to 33.33%.

step-by-step way. First, we derive a kind of {CNOT, RZ } circuit
with a regular structure and the asymptotically optimal gate
count for general cases (see Theorem 1). Next, we develop
a depth optimization procedure based on the uniform circuit
rewriting rule (see Theorem 2) that can change the gate order
for significantly reducing the n-qubit circuit depth. Finally,
we further propose a circuit synthesis algorithm denoted Al-
gorithm 1 such that once a circuit with the asymptotically
optimal gate count is generated, its circuit depth has already
been nearly halved compared with that from the previous
well-known method [20], which is the key contribution of
this paper. For the reader’s convenience, we present intuitive
instances to illustrate the working principle of our main re-
sults, e.g., Fig. 4 for Theorem 2 and Fig. 5 for Algorithm
1. Furthermore, we demonstrate the performance of our syn-
thesis algorithm on two cases, including a random diagonal
operator with up to 16 qubits and a QAOA circuit with up
to 14 qubits, which can both achieve noteworthy reductions
in circuit depth and thus might be useful for other cases in
quantum computing as well. In addition, the proposed circuit
rewriting rule in Theorem 2 can act as a subroutine for opti-
mizing other similar {CNOT, RZ } circuits, e.g., the dashed red
box in Fig. 6 including a subcircuit Spm in Theorem 2 can lead
to CNOT cancellation. We believe these easy-to-follow and
flexible techniques in this paper can facilitate the development
of design automation for quantum computing [34].

Some problems that are worthy of further study are raised
here.

(1) A recent study declares that any n-qubit diagonal uni-
tary matrix can be realized by a quantum circuit that has depth
O(2n/n) and 2n+3 + O(n2/ log n) gates [10]. As comparison,
our constructed circuit has depth 2n and only 2n+1 − 3 gates.
Whether there exists a {CNOT, RZ } circuit that has the gate
count 2n+1 − 3 and circuit depth O(2n/n) for implementing
the n-qubit diagonal operator is a quite attractive issue.

(2) Our synthesis procedure may need to apply CNOT gates
to all pairs of qubits, and thus is suitable for physical sys-
tems with all-to-all connectivity such as neutral atoms [35],
trapped ions [36,37], or more general ones [38]. Considering
the restrictions on other near-term quantum hardware (e.g.,
superconducting systems), how to implement diagonal unitary
operators with respect to certain hardware constraints (e.g.,
limited qubit connectivity) is a more complicated issue. In
future work, we will consider how to adapt our synthesis
algorithm to produce circuits that obey the connectivity re-
strictions and then compare its performance with existing
schemes for NISQ architectures [39,40].
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