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Universal and robust quantum coherent control based on a chirped-pulse driving protocol
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We propose a chirped-pulse driving protocol and reveal its exceptional property for quantum coherent control.
The nonadiabatic passage generated by the driving protocol, which includes the population inversion and the
nonadiabaticity-induced transition as its ingredients, is shown to be robust against pulse truncation. We further
demonstrate that the protocol allows for universal manipulation on the qubit system through designing pulse
sequences with either a properly adjusted sweeping frequency or pulsing intensity.
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I. INTRODUCTION

Exquisite control over the dynamics of quantum systems is
highly sought after in various fields of quantum physics and
engineering, including atomic interferometry [1–3], quantum-
limited metrology [4–6], information processing for qubit
systems [7], and so on. In particular, achieving quantum
gate operations with sufficient accuracy that surpass the er-
ror thresholds of quantum error correcting codes [8,9] is a
crucial aspect in realizing scalable quantum computation. A
variety of fault-tolerant techniques, e.g., geometric quantum
manipulation [10–14], dynamically corrected gates [15–17],
as well as numerical optimization [18,19], have been proposed
to implement coherent manipulation for quantum states and
information processing, aiming to address imperfections in
fabrication or the decoherence induced by the environmental
noise.

Utilization of chirped pulses in driven quantum systems is
able to produce robust state transfer, which has been incor-
porated into quantum control schemes such as rapid adiabatic
passage [20–22] and the composite pulse sequences [23,24].
Comparing with the conventional resonant π -pulse scheme
[25], the adiabatic passage of the chirped-pulse driving of-
fers the advantage of being insensitive to the pulse area.
On the other hand, the occurrence of avoided level cross-
ings in such driven systems can exhibit diverse dynamical
behavior related to the nonadiabatic evolution. For example,
the adiabatic population transfer would be damaged by the
nonadiabaticity-induced transition, e.g., in the well-known
Landau-Zener model [26,27], whereas this state transferring
will be retained under the nonadiabatic evolution in some of
its variants [28,29]. Moreover, chirped pulses assume an ideal
infinite field intensity, which often results in the generation of
a divergent dynamical phase. In realistic systems, field pulses
are inevitably truncated at the starting and ending points.
While this truncation may not significantly impact the fidelity
of the wave function, it does present challenges in accurately

*lixiangcen@scu.edu.cn

controlling the phase factor. This, in turn, will affect the co-
herent dynamics during subsequent information processing.

In this paper, we propose a distinctive chirped-pulse driv-
ing protocol and demonstrate that its coherent dynamics is
immune to the aforementioned pulse truncation. The key to
this property lies in the fact that the total phase integrated
over the nonadiabatic evolution of the driven quantum system
converges to a finite value, despite the infinite chirped field.
Consequently, we are able to reveal that the nonadiabatic pas-
sage, including the population inversion and the nonadiabatic
transition generated by the dynamical evolution, is insensitive
to truncation of the chirped pulse. Furthermore, we illustrate
that this driving protocol enables universal manipulation on
the qubit system by designing a pulse sequence with an ap-
propriately tuned frequency or field strength of the chirped
pulses.

The remaining sections of the paper are organized as fol-
lows. In Sec. II we propose a chirped-pulse driven model and
present an analytic approach to resolving exactly its nonadia-
batic evolution governed by the time-dependent Schrödinger
equation. The time evolution operator of the ideal driving
protocol is shown to incorporate two elements: the popula-
tion inversion and the nonadiabaticity-induced transition. Its
explicit form is then elucidated in relation to different settings
of the field parameters. In Sec. III, we reveal the robustness of
the resulting coherent operation of the protocol in the presence
of truncation of the chirped pulse. Moving forward to Sec.
IV, we demonstrate how universal qubit manipulation can be
achieved through designing a pulse sequence with adjustable
field parameters. Finally, Sec. V provides a summary of the
paper.

II. DRIVEN QUANTUM MODEL OF THE PROTOCOL
AND ITS EXACT SOLUTION

The driven quantum model of the chirped-pulse protocol
that we are going to consider is described by the following
time-dependent Hamiltonian,

H (t ) = �(t ) · J = η

[
Jx + νt√

1 − (νt )2
Jz

]
, (1)
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(a) (b)

FIG. 1. Chirped-pulse driving protocol specified by the Hamil-
tonian (1). (a) Field component �z(t ) (solid line) and �x (dashed
line) of the driving protocol. (b) The nonadiabatic energy described
by E±(t )/η = ∓ 1

2 cos ϕ csc θ with ν/η = 1 (solid line) and adiabatic
energy levels in the limit ν/η → 0 (dashed line). The corresponding
gaps at the crossing point t = 0 are shown to be � = 1/

√
2 and

�ad = 1, respectively.

where Ji (i = x, y, z) are angular momentum operators satis-
fying [Ji, Jj] = iεi jkJk , and the amplitude η and the frequency
ν are given constants. The z component of the radical-form
scanning field �(t ), �z(t ) = ηνt√

1−(νt )2
, varies from −∞ to

+∞ during t ∈ (−1/ν, 1/ν) (assuming ν > 0 herein), while
its x component remains constant over time: �x = η. As
the instantaneous energy levels undergo an avoided crossing
(see Fig. 1), the system specifies a distinct example from
those known paradigms such as the Landau-Zener model
[26,27] and tangent-pulse driven model [28]. Note that this
radical-pulse driven model (1) as well as the latter two driv-
ing protocols have been used in the shortcut-to-adiabatic
method [30–32], where their adiabatic evolution is employed
as the target trajectories to achieve the population transfer.
Interestingly, we shall show that the nonadiabatic evolution
of this particular driven model can be rigorously resolved,
which can be utilized to achieve universal quantum coherent
manipulation.

We now show that the wave function of the system gov-
erned by the Schrödinger equation (setting h̄ = 1)

i
∂

∂t
|ψ (t )〉 = H (t )|ψ (t )〉 (2)

can be solved analytically. To this end, we invoke a so-called
gauge transformation [33–35] G(t ) = eiθ (t )Jy eiϕJx , in which the
angle ϕ = arccos η√

η2+ν2
and

θ (t ) = − arccos
�z(t )

�(t )
= − arccos(νt ), (3)

with �(t ) ≡ |�(t )|. The transformed state |ψg(t )〉 =
G†(t )|ψ (t )〉 is verified to satisfy a covariant Schrödinger
equation i ∂

∂t |ψg(t )〉 = Hg(t )|ψg(t )〉 where the effective
Hamiltonian reads

Hg(t ) = G†H (t )G(t ) − iG†∂t G(t ) =
√

η2 + ν2

1 − (νt )2
Jz. (4)

That is to say, in the new representation with respect to
the transformation G(t ), the system possesses a “stationary”
solution |ψg

±(t )〉 = e∓i�(t,t0 )|±〉, in which |±〉 denotes the
eigenstates of Jz with the magnetic quantum number m = ± 1

2
and the total phase �(t, t0) can be rigorously calculated as

�(t, t0) = 1

2

∫ t

t0

√
η2 + ν2

1 − (νt ′)2
dt ′

= 1

2

√
1 + η2

ν2
[arcsin(νt ) − arcsin(νt0)]. (5)

Consequently, the basic solution to the original Schrödinger
equation is obtained as

|ψ±(t )〉 = G(t )|ψg
±(t )〉 = e∓i�(t,t0 )eiθ (t )Jy eiϕJx |±〉, (6)

by which the nonadiabatic energy levels of the system, de-
fined by E±(t ) ≡ 〈ψ±(t )|H (t )|ψ±(t )〉, are worked out to be
E±(t ) = ∓ η

2 cos ϕ csc θ . The avoided crossing phenomena of
these nonadiabatic levels as well as the eigenvalues of H (t )
are depicted in Fig. 1(b).

Following the above result, the evolution operator of the
system over any time interval t ∈ (t0, t f ) is obtained straight-
forwardly as

U (t f , t0) = G(t f )U g(t f , t0)G†(t0), (7)

in which U g(t f , t0) = exp[−i�(t f , t0)Jz] denotes the one gen-
erated by Hg(t ) in the stationary representation. For the ideal
overall evolution during t ∈ (−1/ν, 1/ν), one has θ (t0) = −π

and θ (t f ) = 0. Hence the evolution operator reads

U0(η/ν) ≡ U (1/ν,−1/ν)

= eiϕJx e−i2�0 (η/ν)Jz e−iϕJx × eiπJy , (8)

with �0(η/ν) =
√

1 + η2

ν2
π
2 . The last factor eiπJy ≡ iσy in the

above expression of U0(η/ν) indicates the population inver-
sion induced by the chirped pulse. The product of the first
three factors can be reexpressed as

Ũ0(η/ν) = e−i2�0 (η/ν)J (ϕ), J (ϕ) ≡ sin ϕJy + cos ϕJz. (9)

It accounts for the nonadiabaticity-induced transition and is
verified to recover a pure phase shift over the basis states |±〉
in the adiabatic limit ν/η → 0 (i.e., ϕ → 0). Owing to the
parameter dependency of Ũ0(η/ν), later on we will demon-
strate that universal manipulation on the qubit system can be
implemented by a sequence of pulsed operations generated by
the protocol with a tunable η/ν. The latter fact distinguishes
the present driving protocol from the previous tangent-pulse
protocol [28] as well as those based on the transitionless
algorithm [30–32].

The above obtained expression for the evolution operator
is applicable to any real parameter η, but it is only valid for
ν > 0. For a Hamiltonian formulated by Eq. (1) but with
ν → −ν, its relation to the original one can be described
by a σx flip, H (t ) → σxH (t )σx, where σi (i = x, y, z) denotes
Pauli matrices. So its generated evolution can be obtained by
applying the same flip operation on U0(η/ν):

U0(η/ν) → σxU0(η/ν)σx = ei2�0 (η/ν)J (ϕ) × e−iπJy . (10)
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Moreover, if we perform further the transformation η → −η

on the Hamiltonian with −ν, the result of Eq. (10) is still valid,
just noticing that ϕ → π − ϕ. At this stage, it is recognized
that the resulting unitary evolution herein indicates an inverse
operation of the original U0(η/ν),

ei2�0(η/ν)J (π−ϕ) × e−iπJy

= e−iπJy × ei2�0 (η/ν)J (ϕ) ≡ U †
0 (η/ν), (11)

where we have used the fact that J (π − ϕ) = e−iπJy J (ϕ)eiπJy .
This result can also be verified in view that the transfor-
mation of the parameters (η, ν) → (−η,−ν) indicates that
H (t ) → σzH (t )σz, hence the evolution operator changes as
U0(η/ν) → σzU0(η/ν)σz = U †

0 (η/ν).

III. ROBUSTNESS OF THE COHERENT OPERATION
AGAINST IMPERFECT PULSES

One remarkable property of the above driven model, which
distinguishes it from the Landau-Zener driving and other
known analogs, is that despite the infinite intensity of the
chirped pulse, it generates a finite total phase. In addition to
the known advantage that population inversion is insensitive
to the truncation at the ending points t0, f = ∓τ as long as
�z(τ ) � �x, this property also suggests that truncating the
chirped pulses in the present model may have a lesser impact
on the accumulated phase �0(η/ν) and, consequently, on
the nonadiabaticity-induced transition specified by Ũ0(η/ν) in
Eq. (9). That is to say, the coherent dynamics generated by this
driving protocol would be robust against arbitrary truncation
provided that �z(τ )/�x � 1.

To be more specific, let us denote by δ ≡ �x/�z(τ ) the
cutoff ratio of the field components of the chirped pulse.
Following Eq. (5), the total phase integrated over t ∈ (−τ, τ )
is given by

�δ (η/ν) =
√

1 + (η/ν)2 arccot δ, (12)

where we have used the relation ντ = (δ2 + 1)−1/2. The
resulting time evolution operator, according to Eq. (7), is
specified by

Uδ (η/ν) = e−i arctan δJy × Ũδ (η/ν) × ei(π−arctan δ)Jy , (13)

in which Ũδ (η/ν) = e−i2�δ (η/ν)Jϕ with Jϕ shown in Eq. (9).
The influence of the truncation on the coherent dynamical
evolution can be conveniently characterized by the following
fidelity:

F (U0,Uδ ) = 1
4 Tr[U †

0 Uδ + U †
δ U0]. (14)

Consider two particular settings of the dynamical pa-
rameter, say, η/ν = √

3 (ϕ = π/6) and η/ν = 1 (ϕ = π/4).
For these two cases the total phases are worked out to be
�0(η/ν) = π and π/

√
2, and the ideal chirped-pulse driving

gives rise to a spin flip U0(
√

3) = eiπJy (along the y axis) and a
composite flip operation U0(1) = e−iπ (Jy+Jz )eiπJy , respectively.
For the practical driving process with pulse truncation, the
corresponding evolution operator Uδ (η/ν) is given by Eq. (13)
with

Ũδ (
√

3) = e−i2 arccot δ(Jy+
√

3Jz ),

Ũδ (1) = e−i2 arccot δ(Jy+Jz ). (15)

FIG. 2. Fidelities of coherent operations yielded by the driving
protocol with pulse truncation. (a) F (U0,Uδ ) of the evolution op-
erator with η/ν = 1 (blue solid line) and

√
3 (red dashed line).

(b) Fidelity between Ũ0 and Ũδ accounting for the nonadiabaticity-
induced transition in the evolution operator. (c) Fε (η/ν ) between the
desired evolution U0(η/ν ) and the one U0(η̃/ν̃ ) with deviation of the
control parameter η̃/ν̃ = η/ν + ε.

We plot in Fig. 2 the fidelities F (U0,Uδ ) of the above two co-
herent operations with η/ν = √

3 and 1 as well as F (Ũ0, Ũδ )
responsible for those of the nonadiabaticity-induced transi-
tion. For all these quantities, the numerical results display that
the errors induced by the truncation could be reduced below
the order of 10−3 as long as �z(τ )/�x � 30.

In addition to pulse truncation, practical implementa-
tions may also introduce deviations in the control pa-
rameters. To account for the potential errors caused by
these imperfections, we evaluate the fidelity between the
desired U0(η/ν) and the one U0(η̃/ν̃) with deviation
η̃/ν̃ = η/ν + ε, i.e.,

Fε (η/ν) = 1
4 Tr[U †

0 (η/ν)U0(η̃/ν̃) + U †
0 (η̃/ν̃)U0(η/ν)]. (16)

The numerical result displays that the error is below 10−3 as
long as ε � 0.03 [see Fig. 2(c)].

IV. UNIVERSAL QUBIT MANIPULATION

Generally, an arbitrary single-qubit operation can be
implemented by employing two noncommutative unitary
transformations, e.g., the rotations along the y axis eiφyσy and
along the z axis eiφzσz . In the present protocol described by
the Hamiltonian (1), while noncommutative U0(η/ν)’s can be
achieved by setting different pulsing strength η or sweeping
frequency ν, they distinctly differ from those conventional ro-
tations along fixed axes. Therefore, it is interesting to inquire
about the possibility and method of implementing universal
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manipulation on the qubit system by the present driving pro-
tocol. Below we provide an affirmative answer by outlining a
pathway to this goal.

Let us start by rewriting the time evolution operator shown
in Eq. (8) as

U0(η/ν) = r0I2 + ir · σ, (17)

where r0 and r satisfy r2
0 + r2 = 1 and are specified by

r0(η/ν) = sin �0 sin ϕ,

r(η/ν) = − sin �0 cos ϕêx + cos �0êy. (18)

We employ the evolution operators generated by a couple
of consecutive driving pulses, i.e., U0(η/ν) and U0(η′/ν ′) =
r′

0I2 + ir′ · σ. Combining these two operations gives rise to

R(η′/ν ′, η/ν) ≡ U0(η′/ν ′)U0(η/ν) = R0I2 + iR · σ, (19)

in which

R0 = r′
0r0 − r′

xrx − r′
yry, Rx = r0r′

x + r′
0rx,

Ry = r0r′
y + r′

0ry, Rz = rxr′
y − r′

xry. (20)

To proceed, we show the capability of the opera-
tion R(η′/ν ′, η/ν) to implement universal rotation on a
spin initially along either the y or the z axis. Straight-
forwardly, we characterize the corresponding outcomes
as RσyR† = S · σ and RσzR† = T · σ, in which the
two Bloch vectors S(η′/ν ′, η/ν) and T (η′/ν ′, η/ν) are
specified by

Sx(η′/ν ′, η/ν) = 2R0Rz + 2RxRy,

Sy(η′/ν ′, η/ν) = R2
0 − R2

x + R2
y − R2

z ,

Sz(η′/ν ′, η/ν) = −2R0Rx + 2RyRz, (21)

and

Tx(η′/ν ′, η/ν) = −2R0Ry + 2RxRz,

Ty(η′/ν ′, η/ν) = 2R0Rx + 2RyRz,

Tz(η′/ν ′, η/ν) = R2
0 − R2

x − R2
y + R2

z , (22)

respectively. The parametric surfaces of S(η′/ν ′, η/ν) and
T (η′/ν ′, η/ν) are shown in Fig. 3. The universality of the
rotation is justified by the fact that the function domains cover
over the entire surface of the Bloch sphere through tuning
appropriately the ranges of η/ν and η′/ν ′.

With the above results, we are now able to show that
the universal set of the gate operations eiφyσy and eiφzσz with
φy,z ∈ [−π/2, π/2] can be achieved by applying the driving
protocol. Specifically, one can exploit the following sequence
of pulsed operations:

R†(η′/ν ′, η/ν)U0(η̄/ν̄)R(η′/ν ′, η/ν) ⇒ eiφy,zσy,z . (23)

Here, U0(η̄/ν̄ ) = r̄0I2 + ir̄ · σ [cf. Eq. (17)] denotes a
“source” operation generated by the driving protocol with
a given value of η̄/ν̄. The universality of the rotation
R(η′/ν ′, η/ν) shown previously warrants that the Bloch
vector r̄ can be transformed along the ±y or ±z axis
by the corresponding inverse transformation R†(η′/ν ′, η/ν).
Consequently, the two gate operations eiφy,zσy,z ≡ cos φy,zI2 +

FIG. 3. Schematic to illustrate the universality of the rotation
R(η′/ν ′, η/ν ) acting on σy and σz. (a) Parameter surfaces of
S(η′/ν ′, η/ν ) in which the domains of η/ν and η′/ν ′ responsible for
the left, middle, and right panels are η/ν ∈ (−1, 1), (−2, 2), (−3, 3)
and η′/ν ′ ∈ (−1, 1), (−2, 2), (−3, 3), respectively. (b) Parameter
surfaces of T (η′/ν ′, η/ν ) with respect to the same domains of η/ν

and η′/ν ′ specified in (a) for the left to right panels.

i sin φy,zσy,z are obtained and the corresponding angle φy,z,
according to Eq. (18), is specified by

cos φy,z = sin �0(η̄/ν̄) sin ϕ̄, (24)

where ϕ̄ = arccos η̄√
η̄2+ν̄2

and we have used the fact that the

coefficient of I2 in U0(η̄/ν̄) is invariant under the rotation
of Eq. (23). A simple numerical analysis is able to reveal
that the value of |φy,z| covers the domain [0, π/2] by tuning
the ratio η̄/ν̄ within 0 � η̄/ν̄ �

√
3. As the sign of φy,z, i.e.,

the orientation of eiφy,zσy,z along ±y and ±z, can be freely
adjusted by the rotation R(η′/ν ′, η/ν), one can conclude that
the pulse sequence of Eq. (23) is able to perform the promising
universal gate operation.

V. CONCLUSION

In a practical implementation, the spectral broadening due
to the large amplitude of the chirped pulse may result in leak-
age out of the computational qubit states. Especially, this error
may become dramatic for the transmon qubits [36], since their
computational states are isolated by the weak anharmonicity
and enhancing the latter (i.e., the charging energy) will lead
to a large dephasing rate. At this stage, it is of interest to
explore further the possible way to incorporate the dynamical
decoupling strategy [37] into the present driving protocol in
order to mitigate these noise effects.

In summary, we have proposed a robust design for quan-
tum coherent control based on a particular chirped-pulse
driving protocol. The nonadiabatic passage induced by the
driven model, including the population inversion and the
nonadiabaticity-induced transition associated with dynamical
evolution, is shown to be insensitive to the truncation of the
chirped pulse. Moreover, we illustrate that this driving proto-
col enables universal manipulation of single-qubit systems by
designing pulse sequences with appropriately tuned frequen-
cies or field strengths. Note that this universality of local qubit
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operations, together with an arbitrary two-qubit interaction,
is sufficient to perform universal quantum computation [38].
The simple and unified form of the driving protocol undoubt-
edly will mitigate the intricacies with respect to quantum
information processing hardware design. We therefore expect
that this protocol holds a significant potential for a physical

realization, encompassing not only quantum coherent control
but also scalable quantum computation.
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