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Asymmetric entanglement for quantum target sensing
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Entanglement is beneficial to enhancing a phase sensitivity beyond the classical limit that is given by a
coherent state. The best performance is achieved with symmetric entangled states, which is enhanced further by
sending more photons to the signal mode. We delve into which entanglement structure is valuable for quantum
target sensing, such as a reflectivity parameter. We show that an asymmetric entangled state can approach the
local joint measurement bound of a two-mode squeezed vacuum state which is a nearly optimal input state for
quantum target sensing, whereas it cannot beat the performance of the coherent state for quantum phase sensing.
The result is demonstrated with an asymmetric entangled coherent state whose performance is evaluated with
quantum Fisher information and confirmed by the signal-to-noise ratio with an optimal observable. The best
quantum advantage is achieved in the case of sending fewer photons to the signal mode and many more photons
to the idler mode.
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I. INTRODUCTION

Phase sensing arises from gravitational wave detection us-
ing the Laser Interferometer Gravitational-Wave Observatory
(LIGO) [1], where a beam path-length difference verifies the
existence of a gravitational wave. In a laboratory, the beam
path-length difference is artificially simulated by putting a
phase shifter in one arm of an interferometer. The phase
sensitivity is derived by postprocessing the measurement out-
comes in the output ports of the interferometer. As a classical
benchmark, a coherent-state light is injected into an input port
of the interferometer. It is enhanced by adding a squeezed
state light into the other input port [2], where the input state
is transformed into an entangled state after the first beam
splitter. Fundamentally, entanglement can enhance the phase
sensitivity by the mean photon number of a signal mode
(NS), assuming the phase sensitivity is represented by a mean-
squared error. The fundamental scaling limit is achieved by
the combination of a coherent state and squeezed vacuum state
[2], a single-mode squeezed state [3,4], a two-mode squeezed
vacuum (TMSV) state [5], NOON-type states [1,6–9], and
other types of entangled states [10,11].

Aside from the phase parameter, there is another inter-
esting parameter, such as reflectivity (or transmittivity) of a
target that determines the detection intensity in a receiver.
In a thermal-noise environment, the scenario of sensing the
target reflectivity is related to quantum illumination [12,13]
that discriminates the presence or absence of a target with
entangled states in a strong thermal-noise environment. The
target sensitivity can be lower bounded by an inverse of quan-
tum Fisher information (QFI) and the target discrimination is
evaluated by detection error probability. Assuming the target
reflectivity (η) is close to zero, the associated QFI at η = 0
provides information on an upper bound of the minimum de-
tection error probability with a local joint measurement [14],
which is given by Perr � 1

2 exp[− η2MH (ρ0 )
8 ]. H represents the

QFI at η = 0 and M is the number of modes. In case of the QFI
at η = 0, there is no difference between a passive signature
and no passive signature by thermal noise [15–20], where
the passive signature represents the probability of detecting
a target without sending any signal. The larger is the QFI,
the smaller is the detection error probability. There have been
a few studies between quantum target sensing and quantum
illumination [18,21–25]. It is known that the TMSV state is
a nearly optimal entangled state [26–28] for quantum illumi-
nation and it also presents the best performance in quantum
target sensing [14] even if cat states can approach the perfor-
mance of the TMSV state at a low signal mean photon number.

Here, we show that two-mode asymmetric entangled states
can take quantum advantage over the classical bound for
quantum target sensing, in particular, when fewer photons
are sent to the signal mode and more photons are sent to
the idler mode. In general, an arbitrary two-mode asymmetric
entangled state can be represented by | f1〉S|g1〉I + | f2〉S|g2〉I ,
where | f1(2)〉 and |g1(2)〉 are arbitrary single-mode states with
〈 f2| f1〉 �= 0 and 〈g2|g1〉 �= 0. In order to control the mean
photon number ratio between the signal and idler modes, in
continuous variable systems, one of the best candidates is
a coherent state rather than squeezed states. Using coherent
states, we consider an asymmetric entangled coherent state
(AECS) (|α〉S|β〉I + | − α〉S| − β〉I ) for quantum target sens-
ing. The entangled coherent state is produced by injecting an
even-cat state (|α1〉S + | − α1〉S) into a beam splitter, where
the mean photon number ratio between the signal and idler
modes is controlled by the beam-splitting ratio (t, r) under
this relation of α ≡ tα1, β ≡ rα1, and t2 + r2 = 1, as shown
in Fig. 1. We present that the AECS is not beneficial for
quantum phase sensing but for quantum target sensing.

This paper is organized as follows. We introduce QFI
for quantum parameter sensing, especially for the phase
parameters. The QFI is applied to quantum target sensing
that pays attention to target reflectivity using symmetric and
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FIG. 1. Schematic of quantum target sensing (upper panel),
where the thermal-noise environment is displayed with a thick orange
line. Generation of an asymmetric entangled coherent state with an
even-cat state and a beam splitter having t2 + r2 = 1, α = tα1 and
β = rα1 (lower panel).

asymmetric entangled states. In particular, an AECS is analyt-
ically investigated with its optimal observable, even in some
ranges of signal and idler mean photon numbers. Then, we
conclude with a summary and discussion.

II. QUANTUM FISHER INFORMATION

Fisher information (FI) represents a quantitative measure
of the small change of a parameter with a specific measure-
ment setup. The small change of a parameter is represented by
the variance, demonstrating a parameter sensitivity. Under an
optimal positive operator-valued measure, FI is maximized as
quantum Fisher information (QFI). For an unbiased estimator
where a mean value of an estimator is equal to the true value
of a parameter, the lower bound of the parameter sensitivity
is proportional to the inverse of the QFI, �2X � 1/[mH (X )],
where m is the number of trials and H is the QFI. The larger
is the QFI, the more enhanced is the parameter sensitivity.

For quantum phase sensing, the phase sensitivity is tested
in an interferometer, where a phase shifter is located on one
arm. Using a generator (i.e., a number operator) of the phase
shifter, it is obtained that the QFI of the standard quantum
state (i.e., coherent state) is upper bounded by a signal mean
photon number (NS). The associated QFI can be increased by
using a single-mode squeezed vacuum state [2,3] and path-
symmetric entangled states [29] that attain the fundamental
quantum limit of the phase sensitivity. The nonclassical states
enhance the phase sensitivity by as many as NS . The path-
symmetric entangled states include a TMSV state [5] and
NOON-type entangled states [7,8]. In a lossy interferometer,
path-symmetric entangled states are still beneficial for quan-
tum enhancement but a concrete shape of entanglement is
changed depending on a loss model [30,31]. For example,
it is the best strategy for preparing a symmetric entangled

coherent state (|α〉S|β〉I + |β〉S|α〉I ) with a smaller mean pho-
ton number difference between the signal and idler modes
under increasing loss, where more photons on both input
modes can survive even after severe loss.

Instead of symmetric entangled states, we may also con-
sider asymmetric entangled states for quantum phase sensing.
For example, it is investigated with an AECS (|α〉S|β〉I + | −
α〉S| − β〉I ). Regardless of choosing α and β, the associated
QFI is upper bounded by NS whose inverse demonstrates
the coherent-state limit. Thus, an asymmetric entangled state
cannot beat the performance of the coherent state for phase
sensitivity, resulting in no quantum enhancement. However,
we show that the asymmetric entangled state can take a quan-
tum advantage for quantum target sensing in the next section.

III. QUANTUM TARGET SENSING

Target sensing is physically simulated with a beam splitter
whose reflectivity [η = sin(θ/2)] is to estimate. In the limit
of θ � 1, the beam-splitting operation is approximated as
exp[η(â†

s âb − â†
bâs)], where the subscript s represents a signal

mode and b represents a thermal-noise mode. In Fig. 1, a
signal mode is reflected from a target having a reflectivity (η)
and then the reflected mode including thermal noise is mea-
sured with an idler mode in a receiver. The target sensitivity is
inversely proportional to QFI at η = 0 since we are interested
in a small change at η = 0.

With no thermal noise, the QFI becomes 4NS regardless
of the coherent state, TMSV state, and other entangled states.
With thermal noise, the TMSV state takes quantum advantage
over the coherent state [14], irrespective of NS . The amount
of quantum advantage increases with sending fewer photons
to the signal mode. Since the mean photon number of the
idler mode is the same as that of the signal mode, it is the
best strategy for sending fewer signal mean photon numbers
of the TMSV state to a target. As another type of symmetric
entangled state, we consider a symmetric entangled coherent
state (SECS) (|α〉S|β〉I + |β〉S|α〉I ). Although it approaches
the coherent-state bound when β = −α and |α|2 � 1, the
SECS cannot take a quantum advantage over the coherent
state.

A. Asymmetric entangled coherent state

We consider an asymmetric entangled coherent state
(AECS) as a test function of an asymmetric entangled state.
Mathematically, the AECS is represented by a nonorthogonal
coherent-state basis that can be transformed into orthogonal
even- and odd-cat state bases,

|AECS〉 ≡ 1√
M

(|α〉S|β〉I + | − α〉S| − β〉I )

= 1√
2M

(√
Nα

o Nβ
o |oα〉S|oβ〉I +

√
Nα

e Nβ
e |eα〉S|eβ〉I

)
,

(1)

where NA
o = 2(1 − e−2|A|2 ), NA

e = 2(1 + e−2|A|2 ), M = 2(1 +
e−2(|α|2+|β|2 ) ), |oA〉 = (|A〉 − | − A〉)/

√
NA

o , and |eA〉 = (|A〉 +
| − A〉)/

√
NA

e (A = α, β). |eA〉 and |oA〉 are the even- and
odd-cat state bases, respectively. The mean photon numbers of
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the signal and idler modes are given by NS = |α|2(1−e−2(|α|2+|β|2 ) )
(1+e−2(|α|2+|β|2 ) )

and NI = |β|2(1−e−2(|α|2+|β|2 ) )
(1+e−2(|α|2+|β|2 ) )

, respectively. NS increases with an

increase in |α|, and it is the same as the relation between NI

and |β|.
Since it is a pure bipartite state, we derive the degree of

entanglement (DOE) by using the von Neumann entropy, as
shown below,

DOE = −
∑
k=o,e

Nα
k Nβ

k

4M
log2

Nα
k Nβ

k

4M
. (2)

The DOE increases by increasing α or β or both α and β.
From the QFI of Eq. (1), we figure out that the amount of
entanglement does not guarantee a quantum advantage for
quantum target sensing.

Using a formula of Ref. [14], the QFI of the AECS is
derived as

Hη=0 = |α|2Nβ
o Nβ

e

M(1 + NB)

[ (
Nα

e

)2

Nα
e Nβ

e + Nα
o Nβ

o
NB

1+NB

+
(
Nα

o

)2

Nα
o Nβ

o + Nα
e Nβ

e
NB

1+NB

]
. (3)

In the limit of NS � 1 � NI , the QFI approaches 4NS/(1 +
NB) that is the same as the QFI of the TMSV state. NB is
the mean photon number of thermal noise. In that regime,
we compare the performance of the AECS with the TMSV
state and coherent state, as shown in Fig. 2. We obtain that
the AECS approaches the performance of the TMSV state
when having a smaller signal mean photon number under a
high idler mean photon number, resulting in a larger quantum
advantage over the coherent state.

Assuming α is real valued, we obtain the corresponding
symmetric logarithmic derivative (SLD) as

L̂ = (−√
2)

1 + NB
[(c1 + c2)(|oβ〉I〈eβ | + |eβ〉I〈oβ |) ⊗ X̂b

+ i(c1 − c2)(|oβ〉I〈eβ | − |eβ〉I〈oβ |) ⊗ P̂b], (4)

where X̂b = (b̂ + b̂†)/
√

2, P̂b = (b̂ − b̂†)/i
√

2, c1 = α
√

Nβ
o Nβ

e

2
√

M

Nα
o√

Nα
o Nβ

o +
√

Nα
e Nβ

e
NB

1+NB

, and c2 = α
√

Nβ
o Nβ

e

2
√

M

Nα
e√

Nα
e Nβ

e +
√

Nα
o Nβ

o
NB

1+NB

.

The SLD consists of correlated measurement operators. The
eigenbasis of the SLD presents the optimal measurement
basis [32], but the measurement basis cannot be simply
constructed due to the noncommutativity of each component
observable of Eq. (4).

In the limit of NS � 1 � NI , the SLD is simplified as

L̂ ≈ −√
2c2

(1 + NB)

(|oβ〉I〈eβ | ⊗ b̂† + |eβ〉I〈oβ | ⊗ b̂
)
, (5)

and the AECS is approximated as

|AECS〉 ≈ 1√
1 + |α|2

(|0〉S|eβ〉I + α|1〉S|oβ〉I ). (6)

The corresponding optimal observable is defined as Ô ≡
L̂ (1+NB )

(−√
2c2 )

that is transformed by a reverse target interaction

FIG. 2. Quantum advantage (QA) region for an asymmetric en-
tangled coherent state. CB presents the classical bound with a
coherent state. NS (NI ) is the signal (idler) mean photon number.
Quantum Fisher information as a function of signal mean photon
number for quantum reflectivity sensing (lower panel), where the
blue solid curve represents an asymmetric entangled coherent state
(AECS) with NI = 10. NB is the mean photon number of thermal
noise.

as follows,

Ôη = |oβ〉I〈eβ | ⊗ (ηâ†
s +

√
1 − η2b̂†)

+ |eβ〉I〈oβ | ⊗ (ηâs +
√

1 − η2b̂). (7)

By applying Eq. (7) to Eq. (6) and thermal noise, we ob-
tain its mean and variance, leading to the signal-to-noise
ratio (SNR) η2NS

2(NB+1) , which approximately corresponds to the
local joint measurement bound for the TMSV state. Note
that the SNR is defined as (〈Ô〉η − 〈Ô〉η=0)2/2(

√
�2Oη +√

�2Oη=0)2 [16,33], which is an exponent of the detection er-
ror probability as Perr = 1

2 exp(−M × SNR). From the view-

point of the detection error probability Perr = 1
2 exp(− η2MH

8 ),
it is the same as the result of the QFI of Eq. (3).

B. Approximated form in the other range of NS, NI

In Fig. 2, except for the limit of NS � 1 � NI , we find
that there is no quantum advantage. A large signal mean
photon number does not guarantee a quantum advantage over
the coherent-state bound, which is understood by its approxi-
mated form of Eq. (1).

First, for NI � 1 � NS , the AECS is approximated as

|AECS〉 ≈ 1√
1 + |β|2

(|eα〉S|0〉I + β|oα〉S|1〉I ). (8)

Since the idler mean photon number (NI ) is much smaller than
one, the associated QFI is approximated as 8NSNI/NB with
its optimal observable Ô = (|1〉I〈0| + |0〉I〈1|) ⊗ X̂b, which is

042429-3



LEE, KIM, KIM, AND KIM PHYSICAL REVIEW A 109, 042429 (2024)

worse than the coherent-state bound, 4NS/(1 + 2NB). Under
NI � 1, increasing the signal mean photon number provides
a negative performance in target sensing since we lose more
photons in the signal mode.

Second, for 1 � NS, NI , the AECS is approximated as

|AECS〉 ≈ 1√
2
(|oα〉S|oβ〉I + |eα〉S|eβ〉I ). (9)

It is the same as the maximal two-qubit entangled state
such that the associated QFI approaches 4NS/(1 + 2NB) with
its optimal observable Ô = (|oβ〉I〈eβ | + |eβ〉I〈oβ |) ⊗ X̂b, cor-
responding to the coherent-state bound. When both mean
photon numbers of the signal and the idler modes increase,
increasing the idler mean photon number compensates the
negative effect produced by increasing the signal mean photon
number, but its performance cannot overcome the coherent-
state bound.

Third, for NS, NI � 1, the AECS is approximated as

|AECS〉 ≈ 1√
1 + |αβ|2 (|0〉S|0〉I + αβ|1〉S|1〉I ). (10)

Surprisingly, it is the same as an approximated form of the
TMSV state so that Eq. (10) provides a quantum advantage
over the classical bound, where the optimal observable is
given by Ô = |0〉I〈1| ⊗ b̂ + |1〉I〈0| ⊗ b̂†. However, it contra-
dicts the result of Fig. 2, due to each coherent state being
approximated as |α〉 ≈ |0〉 + α|1〉, where the coherent state
is a classical state but its approximated form represents a
nonclassical state. We emphasize that the approximation in the
range is not valid for the interpretation of the result of Fig. 2,
due to oversimplification.

C. Relative phase effect of the AECS

We may ask what occurs if we change the relative phase
of the AECS. Putting a minus sign between the two parts in
the input state of Eq. (1), we obtain a transformed AECS as
follows,

|AECS(−)〉 ≡ 1√
M(−)

(|α〉S|β〉I − | − α〉S| − β〉I )

= 1√
2M(−)

(√
Nα

o Nβ
e |oα〉S|eβ〉I

+
√

Nα
e Nβ

o |eα〉S|oβ〉I

)
, (11)

where the normalization constant changes the sign as M(−) =
2(1 − e−2(|α|2+|β|2 ) ). There is an exchange between the even-
and odd-cat state bases in the idler mode (|eβ〉I and |oβ〉I ),
along with the exchange of β components (Nβ

e and Nβ
o ). The

mean photon number of the signal mode is given by N (−)
S =

|α|2(1+e−2(|α|2+|β|2 ) )
(1−e−2(|α|2+|β|2 ) )

.

The associated QFI is derived with an exchange of β com-
ponents in the idler mode,

H (−)
η=0 = |α|2Nβ

o Nβ
e

M(1 + NB)

[
(Nα

e )2

Nα
e Nβ

o + Nα
o Nβ

e
NB

1+NB

+ (Nα
o )2

Nα
o Nβ

e + Nα
e Nβ

o
NB

1+NB

]
. (12)

There is no change in the results of Figs. 1 and 2. Except for
NS, NI � 1, there exists only a basis exchange in the approxi-
mated forms for other ranges of NS and NI . For NS � 1 � NI ,
the transformed AECS is approximated as

|AECS(−)〉 ≈ (|0〉S|oβ〉I + α|1〉S|eβ〉I )√
1 + |α|2

, (13)

where the idler-mode basis has exchanged compared to
Eq. (6). For NI � 1 � NS , it is approximated as

|AECS(−)〉 ≈ (|oα〉S|0〉I + β|eα〉S|1〉I )√
1 + |β|2 , (14)

where the signal-mode basis has exchanged compared to
Eq. (8). For 1 � NS, NI , it is approximated as

|AECS(−)〉 ≈ (|oα〉S|eβ〉I + |eα〉S|oβ〉I )√
2

, (15)

where the idler-mode basis has exchanged compared to
Eq. (9). For each case, the corresponding optimal observable
is also derived from the corresponding SLD. We skip this
process because it does not change the results of this section.

For NS, NI � 1, it is approximated as

|AECS(−)〉 ≈ (α|1〉S|0〉I + β|0〉S|1〉I )√
|α|2 + |β|2 , (16)

which provides a different interpretation of Eq. (10) that con-
tradicts the result in Fig. 2. Assuming α = β, the transformed
AECS of Eq. (16) is a maximal single-photon entangled state
that approaches the coherent-state bound. That does not ex-
plain the result of Fig. 2, due to oversimplification of the
coherent state, either.

IV. SUMMARY AND DISCUSSION

We present an asymmetric entangled state that can ap-
proach the local joint measurement bound of a TMSV state for
quantum target sensing, when the signal mean photon number
(NS) is much smaller than one and the idler mean photon num-
ber (NI ) is much larger than one. Using an AECS, specifically,
we showed a quantum advantage by its QFI according to the
range of signal and idler mean photon numbers. It was also
confirmed by its SNR with an optimal observable in the limit
of NS � 1 � NI . The result is maintained even with a change
of the relative phase of the AECS.

It is natural to contemplate how to construct the optimal
observable that approaches the local joint measurement bound
for the TMSV state. Previously, it was briefly mentioned
in Ref. [14] that this requires the Jaynes-Cummings model.
Here, we provide a concrete example. Looking into the ob-
servable Ô = |oβ〉I〈eβ | ⊗ b̂† + |eβ〉I〈oβ | ⊗ b̂ that is related to
Eq. (7), the receiver should consist of a two-level system in
the idler mode and a cavity system in the reflected mode,
where the two-level system interacts with the cavity field.
If the two-level system consists of an even-cat state (excited
state) and an odd-cat state (ground state), then the operator
b̂† or b̂ is applied to the cavity field by interacting with the
two-level system. However, due to the noncommutativity of
the each component of the observable, it is not possible to find
the eigenbasis of the observable Ô in the idler and reflected
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modes. This issue also occurred in the local joint measurement
bound for the TMSV state, where the optimal observable
X̂SX̂I − P̂SP̂I cannot be exactly implemented [17] but it can
be closely implemented with a phase conjugate or optical
parametric amplifier receiver [33] at a low signal mean photon
number. Thus, in the near future, we are interested in finding
a receiver close to the local joint measurement bound for the
AECS.

It is intriguing that the fewer number of photons in a
signal mode of the AECS (or TMSV state) can enhance the
quantum advantage over a coherent state. Here, the quantum
advantage is represented by (QFI of the AECS)/(QFI of the
coherent state). Actually, increasing the number of photons in

the signal mode increases the amount of the QFI of the AECS
but decreases the quantum advantage over the coherent state.
It is understood that a smaller signal mean photon number
provides a larger quantum entanglement effect in quantum
target sensing. We expect that this idea could be applied
to any asymmetric interferometric configurations in quantum
sensing.
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