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The Gottesman-Kitaev-Preskill (GKP) code offers the possibility to encode higher-dimensional qudits into
individual bosonic modes with, for instance, photonic excitations. Since photons enable the reliable transmission
of quantum information over long distances and since GKP states subject to photon loss can be recovered to some
extent, the GKP code has found recent applications in theoretical investigations of quantum communication
protocols. While previous studies have primarily focused on GKP qubits, the possible practical benefits of
higher-dimensional GKP qudits are hitherto widely unexplored. In this paper, we carry out performance analyses
for three quantum repeater protocols based on GKP qudits including concatenations with a multiqudit quantum
polynomial code. We find that the potential data transmission gains for qudits are often hampered by their
decreased GKP error-correcting capabilities. However, we also identify parameter regimes in which having
access to an increased number of quantum levels per mode can enhance the theoretically achievable secret-key
rate of the quantum repeater. Some of our protocols share the attractive feature that local processing and complete
error syndrome identification are realizable without online squeezing. Provided a supply of suitable multimode
GKP states is available, this can be realized with a minimal set of passive linear optical operations, even when
the logical qudits are composed of many physical qudits.
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I. INTRODUCTION

Quantum technologies rely on the availability of pre-
cisely controllable quantum systems, e.g., qubits, which can
be realized with various physical implementations. In 2000,
Gottesman, Kitaev, and Preskill (GKP) proposed a method
to encode finite-dimensional quantum systems (qudits) into
quantum-mechanical harmonic oscillators [1]. More recent
theoretical developments include further proposals and assess-
ments of GKP state preparation with superconducting devices
[2,3]. After years of experimental progress, GKP qubits finally
have been demonstrated in superconducting microwave cavi-
ties [4–6] and in the harmonic motion of ions [7,8].

In the optical domain, on the other hand, preparing GKP
states is notoriously difficult, although there is a very recent
experimental demonstration of quantum optical states with
some distinct GKP-type features [9]. The main problem is that
reliable and strong nonlinearities are required but not readily
available. In one approach, Gaussian boson sampling [10,11],
one exploits that measurements can induce nonlinear effects.
Here, Gaussian resource states are combined via passive linear
optics and partially read out via photon-number resolving
measurements. In this way, high-quality optical GKP states
can be obtained, albeit only probabilistically. Gaussian boson
sampling requires detectors with a sufficiently high level of
photon-number resolution as well as increasingly complex
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linear circuits [10,11]. To shift the experimental burden as-
sociated with this, alternative approaches have been proposed
[12,13]. If non-Gaussian resource states or non-Gaussian op-
tical elements are available, a recursive application of short
linear circuits and homodyne measurements is sufficient for
the preparation of GKP states [14–16]. There also exist alter-
natives which do not rely on measurements at all [16,17]. A
final option is to combine photon-subtraction- and homodyne-
based elements to convert many-mode Gaussian cluster states
into non-Gaussian few-mode states which can be further pro-
cessed into GKP states [18]. Such an approach is compatible
with measurement-based, continuous-variable quantum com-
putation [16,19].

While the best method for creating optical GKP states has
not yet been identified, it is safe to assume that their physical
realization will require extremely sophisticated experimental
procedures. Once such technology is available, however, it
will be comparatively straightforward to extend it to higher-
dimensional GKP qudits and to concatenated multiqubit or
-qudit GKP codes. For example, multiple GKP qubits can be
entangled via Gaussian operations [1]. Furthermore, ordinary
beam splitters enable the generation of certain collective GKP
ancilla states such as Bell states with GKP qubits [20] or
qudits [21], as well as the collective detection of their error
syndromes [21]. To guide such future experiments, we find it
meaningful to investigate the performance of advanced multi-
qudit GKP protocols in the realm of quantum communication.

The GKP encoding enables the correction of small dis-
placement errors of the oscillator’s quadratures, in particular,
those that originate from typical Gaussian error channels such

2469-9926/2024/109(4)/042427(20) 042427-1 ©2024 American Physical Society

https://orcid.org/0000-0002-0927-8418
https://orcid.org/0000-0003-2100-5612
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.109.042427&domain=pdf&date_stamp=2024-04-29
https://doi.org/10.1103/PhysRevA.109.042427


SCHMIDT, MILLER, AND VAN LOOCK PHYSICAL REVIEW A 109, 042427 (2024)

as amplitude damping or photon loss. However, large dis-
placement errors cannot be avoided completely, especially
for realistic, finitely squeezed GKP states. This can cause
misidentification of error syndromes, which leads to discrete
logical errors on the affected GKP qudits.

In order to correct such errors, a higher-level quantum
error-correcting code (QECC) can be employed to encode
a few logical qudits into a larger number of physical GKP
qudits [3,22–27]. Hereby, the error-correction capability of
the higher-level QECC can benefit from analog information
in the single-qudit GKP syndrome measurements [22–25]. In
order to satisfy the quantum Singleton bound n − k � 2(d −
1), every QECC with code parameters �n, k, d� must trade
off the number of correctable (arbitrary) single-qudit errors
against the number of physical qudits per logical qudit, which
are given by �(d − 1)/2� and n/k, respectively [28–30]. An
optimal tradeoff is obtained by those QECCs that meet the
quantum Singleton bound with equality and are called max-
imum distance separable (MDS) codes. While, for qubits,
the only [31] nontrivial (i.e., d � 3 and k � 1) MDS code
encodes one logical qubit into five physical qubits [32], there
is a plethora of MDS codes for higher-dimensional qudits.
Such QECCs are explicitly available in the form of quantum
polynomial codes, which exist for every qudit dimension be-
ing a prime power [33–36].

Currently, experimental realizations of long-distance quan-
tum communication protocols are limited by the rapid decay
of photonic signals that are sent through optical fibers. This
process is formally described by a pure-loss bosonic channel
whose secret-key capacity scales linearly with its transmit-
tance η [37]. More precisely, it is given by − log2(1 − η) ≈
1.44 η [38]. In consequence, the secret-key rate (SKR) of
point-to-point quantum key distribution (QKD) is exponen-
tially suppressed in the length L of an optical fiber, which
typically has a transmittance of η = exp(−L/22 km).

To overcome this problem, quantum repeaters have been
proposed [39]. By introducing repeater stations, a long chan-
nel is split into multiple shorter ones. To cope with the
loss, different strategies have been conceptualized and, sub-
sequently, been classified into three so-called generations of
quantum repeaters [40]. These generations fundamentally dif-
fer in their speed of operation and in the level of technological
maturity required for their realization.

First-generation quantum repeaters are based on heralded,
probabilistic entanglement distribution [39]. Once a Bell pair
is successfully distributed between two neighboring repeater
stations, it is stored in local quantum memories where it re-
sides until a second Bell pair, which connects the two repeater
stations to a third one, is created. Whenever two parts of
different Bell pairs are present in a single repeater station,
entanglement swapping can be executed, which results in a
single Bell pair ranging over a larger distance. This process
is repeated until a long-distance Bell pair is shared between
Alice and Bob. In addition to channel loss, unavoidable oper-
ational gate and storage errors pose a challenge for quantum
repeaters. To cope with such errors, first-generation quan-
tum repeaters employ nested entanglement purification [41],
a probabilistic protocol for the distillation of multiple low-
fidelity Bell pairs into a smaller number of states with higher
fidelities, involving two-way classical communication. In the

worst case, entanglement purification has to be performed
across the total distance L of the entire quantum repeater
chain, which slows down the achievable repetition rate to c/L
or less, where c = 2.14 × 108 m/s is the speed of photons in
fiber (for both classical and quantum signaling).

To avoid this slowdown, second-generation quantum re-
peaters [42] replace entanglement purification by QECCs for
the local memories. With this modification in place, the rate
bottleneck is now posed by classical communication between
neighboring repeater stations, which are separated by a dis-
tance of L0. Only after a failed entanglement distribution
attempt has been heralded, the quantum memories can be
freed up for the next attempt. Therefore, the improved upper
bound on the repetition rate is now given by c/L0, which is
typically on the order of 1 kHz for L0 ≈ 100 km to 1 MHz
for L0 ≈ 100 m. The only possibility to speed up the classical
two-way communication is to reduce L0, i.e., to invest in
a larger number of realistically imperfect repeater stations
whose quantum information must be consistently protected by
the QECC.

Finally, third-generation quantum repeaters enable ul-
trafast quantum communication as they dispense with the
temporary storage of quantum information and classical
two-way communication altogether [43–45]. Instead, these
repeaters employ QECCs to correct both channel losses
and operational errors. The repetition rates in this case
are only limited by the speed of state preparations, local
gate operations, and measurements in the individual repeater
stations. Whereas the preparation of QECC-encoded multi-
photon states typically relies on some form of light-matter
interaction, all other components of a third-generation quan-
tum repeater can, in principle, be realized in an all-optical
fashion [46–50].

In this paper, we theoretically analyze the performance
of third-generation quantum repeaters based on optical GKP
qudits. Our investigation also includes cases where the GKP
code is concatenated with a higher-level QECC. Here, we
focus on quantum polynomial codes that previously have
been considered in combination with multimode (MM) and
Fock-encoded qudits [51–54]. For GKP-encoded states, sim-
ilar performance studies have only been carried out in the
special case of qubits [55–57]. Our paper thus closes the gap
between these two approaches to a certain extent as it offers a
treatment of the remaining case of GKP qudits. The considera-
tion of qudits, which can transmit more quantum information
per channel use than qubits, is particularly attractive in the
context of GKP and third-generation quantum repeaters, due
to the existence of hardware-efficient GKP-qudit operations
and syndrome extraction routines based on linear-optical ele-
ments alone. In this way, the only fundamental experimental
challenge that remains is to provide a supply of suitable
multimode GKP ancilla states, a problem that can be tackled
independently.

This paper is structured as follows. In Sec. II, we describe
the details of our paper: we begin with introducing the re-
peater protocols under investigation in Secs. II A and II B and
proceed with our noise model in Sec. II C. In Sec. III, we
present the secret-key rates obtainable with the different GKP
qudit repeater protocols and discuss the influence of various
experimental parameters. Finally, in Sec. IV, we summarize
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our results and conclude with a recommendation of the most
promising quantum repeater protocol based on GKP qudits as
identified in this paper.

II. SETTING

GKP codes encode a D-dimensional qudit within the Fock
space F of a quantum-mechanical harmonic oscillator [1]. We
denote the annihilation operator of the oscillator by â and its
quadrature operators by p̂ = i√

2
(â† − â) and q̂ = 1√

2
(â† + â).

For simplicity, we focus in this paper on the square GKP
code, which is defined as the D-dimensional subspace of F
that is invariant under the action of SX = exp(−i

√
2πDp̂)

and SZ = exp(i
√

2πDq̂). By repeated nondestructive mea-
surements of the stabilizer operators SX and SZ , followed
by appropriate displacement operations (or, at least, through
tracking of the corresponding generalized Pauli frame), one
can enforce the state of the oscillator to (effectively) remain
in the GKP code space. Since the logical Pauli operators of
the square GKP code are given by X = exp(−i

√
2π
D p̂) and

Z = exp(i
√

2π
D q̂), it is thereby possible (in the idealizing limit

of perfect GKP states) to correct arbitrary displacement errors
that are smaller than

√
π/2D in magnitude. To implement

two-qudit gates between GKP qudits, one can utilize com-
mon two-mode Gaussian gates. For example, on the level
of GKP qudits, the bosonic CSUM gate, exp(−iq̂1 p̂2), acts
as a two-qudit controlled-X gate, CX = ∑D−1

k=0 |k〉〈k|1 ⊗ X k
2 .

A similarly defined CZ gate is implemented by means of a
CPHASE gate, exp(iq̂1q̂2).

A. Repeater protocols

Since GKP qudits can be encoded into photons, which are
the ideal carriers of “flying” quantum information propagating
at maximal speed, they have been envisioned in the context
of quantum communication [56–58]. In this paper, we ana-
lyze and compare the performance of three third-generation
quantum repeater protocols introduced in the following sub-
sections. For each protocol, the term “qudit” may either refer
to a bare (physical) GKP qudit or to an ensemble of mul-
tiple GKP qudits encoding a single (logical) qudit using a
higher-level QECC, in particular, in combination with Knill’s
error-correction-by-teleportation procedure [21,59]. Even in
the absence of a higher-level QECC, our protocols should
be regarded as instances of error-corrected (third-generation)
quantum repeaters, as the availability of GKP syndrome infor-
mation facilitates the correction of displacement errors.

1. Two-way teleportation protocol with classical postamplification

The first of the three quantum repeater chains under
investigation is portrayed in Fig. 1(a). For this protocol, ev-
ery repeater station prepares a pair of qudits in a (logical)
Bell state. One of the qudits is sent in the direction of the
next repeater station, while the other one is sent backward.
In the middle between two neighboring repeater stations,
the forward- and backward-propagating qudits are joined in
a (logical) Bell measurement, which is implementable on
the physical level with (transversal) beam splitters and two
homodyne detectors per physical Bell measurement [21].

During the transmission from the repeater stations to the cen-
tral Bell measurement apparatus, the states of the qudits are
altered due to the finite transmittance of the optical fiber chan-
nel. For the general case of many physical qudits representing
one logical qudit, the optical loss channels act individually
and independently upon the different modes of the physical
multimode state that propagates through each fiber segment.
To facilitate a direct comparison with the other protocols, we
denote the channel transmittance by

√
η = exp(−L0/2Latt ),

as the relevant length of the fiber is given by L0/2 here.
Throughout this paper, L0 denotes the distance between two
adjacent repeater stations, and Latt = 22 km is the attenuation
length of a typical fiber at the telecommunication wavelength
of 1550 nm. In order to compensate for the loss-induced state
change (with damped quadrature amplitudes), the classical
measurement signal of the Bell measurements needs to be
correspondingly amplified by a factor of

√
η

−1 before decod-
ing the GKP syndrome. Overall, this protocol produces an
imperfect Bell pair ranging from one end of the repeater chain
to the other. Note that classical communication is only needed
for postprocessing and, therefore, it does not slow down the
repetition rates of this protocol. Further note that for the case
of a logical qudit composed of many physical qudits, classical
postamplification is performed individually for each physical
Bell measurement to obtain the syndrome of the higher-level
QECC [21].

2. One-way teleportation protocol with optical preamplification

As a modification of the protocol from Sec. II A 1, we also
consider a quantum repeater chain where the Bell measure-
ments are executed within the repeater stations [see Fig. 1(b)].
Here, only one qudit per Bell pair is transmitted through the
fiber channel. This time, the transmittance is given by η =
exp(−L0/Latt ) because the traveling distance of the photons
now covers a full repeater segment, i.e., twice the distance
as in the previous scenario. To cope with the fiber losses, an
optical preamplification channel A(η−1) is individually and
independently applied to each (physical) GKP mode before
it is sent through the fiber; this step replaces the classical
postamplification of the measurement signal from Sec. II A 1.

3. One-way half-teleportation protocol
with optical preamplification

The utilization of a Bell measurement (protocols described
in Secs. II A 1 and II A 2) provides GKP syndrome informa-
tion for both quadratures. This facilitates the correction of
displacement errors on the level of the (physical and logical)
GKP qudits. For the final repeater chain under consideration,
on the other hand, every repeater station is responsible for
preparing and measuring only a single logical GKP qudit [see
Fig. 1(c)]. This protocol has two core components. First, a
lower-level GKP error correction converts naturally occurring
Gaussian displacement errors into Pauli errors on the physical
qudits as we will explain in Sec. II C 3. Second, a higher-level
QECC is utilized to cope with the resulting Pauli errors. At
the start of the repeater chain, Alice prepares two higher-level
logical qudits in the state |+〉 = ∑

k |k〉/√D and entangles
them with a logical CZ gate. Since we restrict ourselves to
quantum polynomial codes, the CZ gate admits
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FIG. 1. Unit cells of the quantum repeater protocols considered in this paper. The transmittance η = exp(−L0/Latt ) of the bosonic pure-loss
channel L(η) is exponentially suppressed in the distance L0 between adjacent repeater stations (dashed blue boxes). Here, the qudits can be
either individual GKP qudits or logical qudits that are composed of multiple GKP qudits by means of a higher-level �n, 1, d�D QECC. (a) In
the two-way teleportation protocol, every repeater station prepares two qudits in the maximally entangled state |�〉 = 1√

D

∑D−1
k=0 |k, k〉. One

of the two qudits is sent forward and the other one backward. After propagating a distance of L0/2, at which each physical mode has been
subject to a loss channel L(

√
η), a Bell measurement (BM) is performed. (b) Also in the one-way teleportation protocol, two qudits are

prepared in state |�〉. In contrast to (a), only one of the qudits is sent to an adjacent repeater station. To compensate for loss, a quantum-limited
amplification channel A(η−1) with gain η−1 is applied to each of the physical GKP modes. After propagating a distance of L0, a BM combines
the forward-moving qudit with the stationary qudit of the subsequent repeater station. (c) The one-way half-teleportation protocol is a GKP
adaptation of a previously studied discrete-variable protocol [54]. Here, we add measurements to convert displacement errors into Pauli
errors. Overlined ancilla states represent codewords of the higher-level �n, 1, d�D QECC, while ancilla states without overscore stand for GKP
codewords. The CX gates correspond to transversal CSUM gates and the CZ gates correspond to semitransversal CPHASE gates. Measurements
of q and p denote the measurement of the position and momentum quadrature, respectively. Loss and amplifier channels are again to be
understood to act individually and independently on the physical GKP modes.

a semitransversal implementation with favorable error-
spreading properties (see Appendix A for details). Alice
stores one of the logical qudits and to the second one
she applies a quantum-limited amplifier with gain η−1 to
each of the physical GKP modes before she sends them
through a lossy fiber of transmittance η to the first repeater
station, where the incoming logical qudit is entangled with
a new logical qudit in state |+〉. A subsequent destructive
(physical) quditwise p measurement effectively transfers
the encoded quantum information onto the next qudit and
simultaneously delivers syndrome information involving X
stabilizers. These steps are then repeated at every repeater
station. Besides yielding higher-level X syndromes, the p
measurements are also responsible for providing lower-level
GKP syndrome information p mod

√
2π/D. The physical

CZ gates propagate Gaussian p errors on one mode into q
errors on the next one. To prevent these q errors from merging
with q errors that occur at the subsequent transmission,
we introduce an additional ancilla-based GKP syndrome

measurement in every repeater station (see Appendix C2 for
details). To complete the protocol, all measurement results
are communicated to Bob who applies a suitable correction
operator depending on the measurement outcomes [53].
Assuming N is even and in the absence of errors, this protocol
is equivalent to N/2 teleportation subroutines spread over
N + 1 different laboratories. For this reason, we refer to this
protocol as half teleportation.

B. Some comments on potential realizations of qudit repeaters

To compensate for fiber loss, it is crucial to amplify the sig-
nal. For the two protocols in Secs. II A 1 and II A 2, one may
opt between optical preamplification and classical postam-
plification. For the half-teleportation protocol in Sec. II A 3,
on the other hand, optical preamplification is the only op-
tion. This is because the GKP qudits need to be correctly
scaled, i.e., they need to be in the GKP code space up to a
displacement, before the CZ gate is applied. Since classical
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postamplification can be carried out conveniently in software,
lacking this option may be considered as a disadvantage of the
half-teleportation protocol.

While we analyze their performance for GKP qudits,
these protocols can be straightforwardly adapted to other
qudit encodings, such as MM qudits, which have been ex-
perimentally demonstrated in the context of (repeaterless)
higher-dimensional quantum key distribution in the form of
orbital angular momentum [60] and time-bin qudits [61]. Two
of the three repeater protocols under consideration rely on Bell
measurements. For GKP qudits, a deterministic Bell measure-
ment can easily be implemented with static linear optics by
employing a balanced beam splitter and continuous-variable
homodyne measurements [21]. Experimental implementa-
tions of Bell measurements for MM-encoded qudits, on
the other hand, are disproportionately more involved. More-
over, deterministic CX gates for MM qudits require strong
nonlinearities that are typically mediated through auxiliary
matter qudits, which reduces the achievable repetition rates
to the order of MHz. This is in stark contrast to all-optical
implementations that can reach GHz repetition rates. An at-
tempt to circumvent this shortcoming of MM qudits is based
on probabilistic linear optical Bell measurements, enabling
an all-optical error-correction step at every repeater station
[46–50]. Such probabilistic Bell measurements cannot exceed
50% for MM qubits in the simplest setting without additional
resources such as photonic ancilla states [62–64]. For a de-
terministic Bell measurement, nonlinear optics is required.
Furthermore, probabilistic unambiguous state discrimination
measurement of the corresponding two-qudit Bell states, mak-
ing only use of linear optics and photon counting without
ancilla photons, is impossible for MM qudits with D > 2
[65,66]. Therefore, overall, the GKP concept and the GKP-
based QR protocols presented in this paper represent a way
to combine an increased communication capacity based on
photonic qudit encoding with an enhanced loss (and error)
robustness based on photonic qudit quantum error correction.

C. Noise model

GKP codes are designed to correct displacement errors.
As we review next, this allows us to model photon loss and
imperfect GKP state preparation with incoherent Gaussian
displacement channels. For our error analyses, it will suffice
to keep track of their variances.

1. Transmission loss, coupling, and measurement inefficiencies

The bosonic pure-loss channel L(η) is commonly used to
model fiber loss and coupling inefficiencies in quantum com-
munication protocols [67,68]. This loss channel arises when
an optical mode is coupled via a beam splitter of transmittance
η to an environmental mode initialized in the vacuum state
which is traced out after the interaction, i.e.,

L(η) : ρ 	−→ Trenv
(
U (η)

BS (ρ ⊗ |vac〉〈vac|)U (η)†
BS

)
, (1)

where U (η)
BS = exp[arccos(

√
η)(â1â†

2 + â†
1â2)]. When L(η) is

applied to a GKP state, its quadratures are damped, which
shrinks the GKP lattice. To rescale the lattice, one has to
amplify the signal. Depending on whether this amplification

is carried out optically before L(η), optically after L(η), or
classically after the measurement of a quadrature operator, the
effective error channel on the GKP subspace is altered.

For the one-way protocols in Secs. II A 2 and II A 3, we
consider the usage of an optical amplification channel A(η−1).
Such an amplification channel with gain η−1 can be obtained
by coupling an optical mode using a two-mode squeezing
(TMS) operation to an ancillary mode in the vacuum state
which is traced out after the interaction, i.e.,

A(η−1) : ρ 	−→ Tranc
(
U (η−1 )

TMS (ρ ⊗ |vac〉〈vac|)U (η−1 )†
TMS

)
, (2)

where U (η−1 )
TMS = exp[arcosh(

√
η

−1)(â1â2 − â†
1â†

2)]. If A(η−1)
is applied after L(η), the result is a Gaussian displace-
ment channel with variance σ 2 = (1 − η)/η [55]. If A(η−1)
is applied before L(η), however, the variance is improved
to σ 2 = 1 − η as this avoids amplifying noise that occurs
during transmission [58]. In our analyses of the one-way
protocols, we will therefore consider the latter strategy. Fur-
thermore, we will assume a total transmittance of ηtot =
ηcηdet exp(−L0/Latt ), where Latt = 22 km is the attenuation
length, and ηc and ηdet denote the efficiencies for cou-
pling into the fiber and homodyne measurement, respectively.
Homodyne measurements work reliably and efficiencies of
99% have already been demonstrated in an experiment for
broadband light [69], which is relevant for obtaining a high
repetition rate. For this reason, we will assume ηcηdet = 0.99
unless stated otherwise.

For the two-way teleportation-based protocol in Sec. II A 1,
it is possible and beneficial to replace A(

√
η

−1) with a classi-
cal amplification of the measured signal. Effectively, this turns
the loss into a Gaussian error channel with variance σ 2 =
1/

√
ηtot − 1 [57], where ηtot = η2

cη
2
det exp(−L0/Latt ) takes

into account that, in a two-way protocol, two signals are
coupled into the fiber.

Finally note that, in principle, one could alternatively make
use of noiseless linear amplification (NLA) [70]. However,
this would add further complications as NLA—by nature of
the no-cloning theorem [71]—is an inherently probabilistic
process.

2. Approximate GKP states

The second, important noise contribution arises during the
preparation of GKP states. In position basis, the state vector
of an ideal square GKP qudit takes the form

| j〉 =
∑
k∈Z

∣∣∣∣∣q̂ =
√

2π

D
( j + Dk)

〉
, (3)

where j ∈ {0, . . . , D − 1} labels a computational basis state.
These ideal states are unphysical as they are neither normal-
izable nor superpositions of finite-width peaks. To describe
normalizable, physical instances of GKP states, we in-
stead consider approximate GKP states for which multiple
realizations that are essentially equivalent have been pro-
posed [1,72,73]1. Normalizability can be restored using an

1The state given in Eq. (4) is not symmetric under exchange of
position and momentum. However, this state can be squeezed by a
factor of

√
1 + κ2�2 to obtain the parametrization given in Eq. (5).
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overall slowly decaying Gaussian envelope, and the delta
peaks can be approximated with (a still infinite number of)
highly squeezed Gaussian peaks. This results in approximate
GKP states of the form

| j̃〉 ∝
∑
k∈Z

exp

(
−πκ2

D
( j + Dk)2

)

×
∫ ∞

−∞
dq exp

⎛
⎜⎝−

(
q −

√
2π
D ( j + Dk)

)2

2�2

⎞
⎟⎠|q̂ = q〉,

(4)

where � and κ are squeezing parameters corresponding to
the peaks’ width in position and momentum representation,
respectively. Alternatively, | j̃〉 can be interpreted as an ideal
GKP state | j〉 to which coherent Gaussian displacements have
been applied, i.e.,

| j̃〉 ∝
∫
R2

du dv exp

(
−1

2

(
u2

γ 2
+ v2

δ2

)

+ i

(−up̂ + vq̂√
2

))
| j〉, (5)

where the squeezing parameters γ and δ are in one-to-one
correspondence to � and κ (see Theorem 1 in Ref. [73]). In
this paper, we only consider the symmetric case of γ = δ. As
a further simplification, we assume incoherent Gaussian dis-
placements with variance σ 2

sq = δ2

2 , which can be understood
as a twirling-approximation (see Appendix A in Ref. [23]).
Numerical simulations confirm that such an approximation
does not overestimate the approximate GKP state’s fidelity
[74]. Following Refs. [23,72,75], we define the squeezing
parameter (given in dB),

sGKP = −10 log10

(
σ 2

sq

σ 2
vac

)
, (6)

where σ 2
vac = 1/2 denotes the quadrature variance of the vac-

uum state.
By means of a higher-level QECC, it is possible to con-

catenate multiple approximate GKP qudits, each of which is
modeled by an ideal GKP state followed by Gaussian squeez-
ing errors, into a single logical qudit. The corresponding
unitary encoding circuit may redistribute the error probabili-
ties between the modes, which in principle leads to correlated
errors [53]. The resulting error probabilities have a compli-
cated dependence on the selected encoding circuit, thus, they
cannot be easily captured in full generality in our analytical
model. Therefore, we leave such details for future work. For
the purpose of the present investigation, we are satisfied with
a noise model where unphysical, ideal GKP states are first
encoded using a higher-level QECC and, afterward, physi-
cality is restored by applying Gaussian squeezing channels
individually and independently distributed to each qudit, as
motivated above.

3. Converting Gaussian noise into Pauli errors

The purpose of the GKP error-correction step shown in
Fig. 1 is to discretize the continuous displacement errors that

build up on the GKP qudits. In general, a single-qudit Pauli
error channel is completely described by its joint error prob-
ability distribution of X and Z errors [53]. We denote such a
distribution by

P (X, Z ) =

⎛
⎜⎜⎝

P(X 0, Z0) . . . P(X 0, ZD−1)
...

. . .
...

P(X D−1, Z0) . . . P(X D−1, ZD−1)

⎞
⎟⎟⎠. (7)

In the special case of a square-lattice GKP qudit, we denote by
Psq(X, Z ) the Pauli error channel that results from a Gaussian
noise channel with zero mean and a covariance matrix �sq =
σ 2I (with respect to q and p). For Psq(X, Z ), we find that X
and Z errors are independent because the same is true for the
two Gaussian random variables describing q and p shifts. In
other words, the matrix Psq(X, Z ) = Psq(X ) ⊗ Psq(Z ) factors
into the outer product of the error probability vectors that store
the marginal distributions of X and Z errors. By symmetry of
the square lattice, we have Psq(X ) = Psq(Z ). The probability
to suffer k ∈ {0, . . . , D − 1} shifts can be expressed as

Psq(X k, σ 2) =
∑
j∈Z

∫ √
2π
D ( jD+k+ 1

2 )

√
2π
D ( jD+k− 1

2 )

1√
2πσ 2

exp

(
− q2

2σ 2

)
dq

=
∑
j∈Z

1

2

(
erf

(√
2π

D

jD + k + 1
2

σ

)

− erf

(√
2π

D

jD + k − 1
2

σ

))
, (8)

where erf(x) = 2√
π

∫ x
0 exp(−q2)dq is the error function. For

our purposes, it is sufficient to keep only the three terms
with | j| � 1.

4. Error sources that can be neglected

To simplify the presentation of our results, we neglect er-
rors in two-qudit gates. For the two protocols from Secs. II A 1
and II A 2, all two-qudit gates can be implemented via simple
and reliable 50 : 50 beam splitters whose errors are dominated
by other noise processes. To execute the half-teleportation
protocol from Sec. II A 3, on the other hand, one would
need to implement CZ gates by applying Gaussian operations
which have higher errors. Nevertheless, we can neglect these
errors because—as it will turn out in Sec. III B—even under
the optimistic assumption of perfect CZ gates (which benefits
the half-teleportation protocol), this protocol performs worse
than the protocols from Secs. II A 1 and II A 2. Our final con-
clusion about which protocol is most promising, thus, remains
unaffected.

III. SECRET-KEY RATES OF QUANTUM REPEATERS

The central figure of merit that we employ to compare
the performance of different repeater protocols is the SKR
per channel use. More precisely, we use log2(D) − H (Pfinal),
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which is a lower bound on the two-way capacity [38], where

H (Pfinal) = −
D−1∑
j,k=0

Pfinal(X
j, Zk ) log2(Pfinal(X

j, Zk )) (9)

denotes the Shannon entropy of the error probability distri-
bution Pfinal on the final Bell pair distributed among Alice
and Bob. Note that this bound can be achieved by a qudit
generalization (using D + 1 bases, assuming D to be prime)
of the six-state protocol [76] in the asymptotic limit, where
almost every round the same basis is used [77]. Moreover, if
X and Z errors are independent, the same rate is obtainable
with a generalization of the BB84 protocol [78] (two bases,
arbitrary D).2

A. Repeater performance with GKP error correction only

For near-term applications, it is certainly more convenient
to operate a quantum repeater with bare GKP qudits and not
with multiple GKP qudits in a QECC. To guide such initial ex-
periments, we begin our discussion with this important special
case. For the two protocols considered with bare GKP qudits,
which are described in Secs. II A 1 and II A 2, lower-level
error correction is performed via a teleportation step on the
logical level of the GKP code, which leads to independent X
and Z errors. As mentioned above, the SKR per channel use
is thus given by log2(D) − H (Pfinal ) not only for the general-
ized six-state protocol (D prime) but also for the generalized
BB84 protocol (D arbitrary). The precise value of H (Pfinal)
has a complicated dependence on the repeater spacing L0, on
the total repeater length L, on the squeezing parameter sGKP

that characterizes approximate GKP states, and on the qudit
dimension D. However, we can numerically assess H (Pfinal);
see Appendix B for details.

In Fig. 2, we show the optimal choice (color coded) of
qudit dimension D for different values of L and sGKP, where
L0 = 500 m is fixed. Using inset lines, we also display the
corresponding (maximal) value of the SKR per channel use.
As expected, the key rate vanishes if the GKP approximation
is too bad (small sGKP) or too much loss accumulates (large
L). Since increasing the squeezing poses a core experimental
challenge, the smallest value of sGKP at which a nonzero SKR
can be achieved is of particular interest. Below sGKP = 10 dB,
neither protocol is suitable for generating secret keys. For
both protocols and for every fixed value of L, we observe
that GKP qubits (D = 2) represent the leading contender for
near-term quantum repeaters based on the GKP code. To some
degree, this result is surprising because in the ideal case, the
SKR per channel use is given by log2(D), and increasing
the qudit dimension would be beneficial. In the presence of
noise, however, higher-dimensional GKP qudits have a se-
vere disadvantage of decreased error-correction capabilities:
a D-dimensional GKP qudit can only correct displacement
errors that are smaller than

√
π/2D in magnitude. Only in

2The secret-key fraction is given by I (A, B) − I (A, E ) =
log2(D) − H (q01) − I (A, E ), where expressions of H (q01) and
the mutual information I (A, E ) between Alice and Eve are provided
in Eqs. (5) and (7) of Ref. [77].

FIG. 2. Optimal dimension D of bare GKP qudits utilized in a
quantum repeater line with coupling and measurement efficiencies
ηcηdet = 99% and an intermediate repeater spacing of L0 = 500 m,
where the (a) one-way or (b) two-way teleportation protocol is used.
For each choice of total repeater length L and squeezing parameter
sGKP, the qudit dimension is adjusted such that the SKR per channel
use, log2(D) − H (Pfinal ), is optimized (inset lines). In the parameter
regions of D = 1, it is not possible to generate secret keys.

the regime of very small errors, i.e., where the qubit GKP
protocol has almost reached its maximum performance of
log2(D) − H (Pfinal) = log2(2) − 0 = 1.0, it is beneficial to
employ qutrits (D = 3) instead of qubits. To see such benefits
at all, we need at least sGKP � 18 dB. For repeater lines of
modest lengths of a few dozen kilometers, however, larger
squeezing levels of 20–25 dB are required to compensate for
additional loss. At some value of L, loss errors become so se-
vere that only an unrealistically disproportional improvement
of sGKP could compensate them. For the one-way protocol
in Fig. 2(a), qutrits cease to be the optimal option for re-
peaters longer than a few hundred kilometers, whereas the
two-way protocol in Fig. 2(b) can still benefit from qutrits
even for repeaters exceeding L = 10 000 km. For the latter,
however, a squeezing level above 30 dB is required, which will
only be available in the long term (if at all). The reason for
the better performance of the two-way protocol is the lower
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required amplification factor
√

η
−1 in the usage of the classi-

cal postamplification, as discussed in Sec. II C 1.
Finally note that, in our error analysis, we distinguish the

cases of even and odd qudit dimensions. Only if D is even,
we can leverage a beneficial linear-optics protocol for the
generation of GKP Bell pairs (see Appendix B). For very
short repeater chains, we indeed observe that GKP qudits
with D even outperform those with D odd. For larger values
of L, however, loss errors begin to dominate and parameter
regions emerge where the optimal SKR is obtained by odd-
dimensional GKP qudits.

B. Repeater performance with both GKP
and higher-level error correction

In comparison to the experimental challenge of creating
high-quality GKP qudits in the first place, concatenating mul-
tiples of them into a single logical qudit by means of a
higher-level QECC is relatively straightforward. In the follow-
ing, we study the performance of third-generation quantum
repeaters that make use of �D, 1, D+1

2 �D quantum polynomial
codes (D � 3 prime), as reviewed in Appendix A. Since the
distance of a quantum polynomial code is given by d = D+1

2 ,
which is optimal in terms of the Singleton bound, any col-
lection of errors that affect no more than � d−1

2 � = �D−1
4 �

qudits can be corrected. Thus, it makes sense for us to limit
the discussion to prime qudit dimensions where D − 1 is a
multiple of 4. For error patterns that affect more than D−1

4
qudits, we assume (as a worst-case approximation) the occur-
rence of a uniformly random logical error. This maximizes the
Shannon entropy H (Pfinal ) and lower bounds the achievable
SKR, log2(D) − H (Pfinal ); see Appendix C for details.

In Fig. 3, we plot the (lower bound on the) SKR per logical
channel use as a function of L, where L0 = 100 m is fixed. For
each of the three repeater protocols introduced in Sec. II A,
we show the SKR for D = 5 (black), D = 13 (red), D = 17
(green), and D = 29 (cyan). For any fixed value of D, we
again (as in Fig. 2) observe that the two-way teleportation
protocol (dash-dotted curve) from Sec. II A 1 performs best.
It is followed by the one-way teleportation protocol (dashed
curve) from Sec. II A 2. The least-efficient protocol is the one-
way half-teleportation protocol (solid curve) from Sec. II A 3.
We attribute the poor performance of the latter protocol to
the fact that it employs only half as many (compared to the
other protocols) logical measurements, which facilitate the
correction of errors.

Recall from Sec. III A that for bare GKP repeaters,
the decreased error-correcting capabilities render higher-
dimensional qudits unfeasible for near-term applications.
Since the code distance d = D+1

2 grows with D, one could
expect that concatenating bare GKP qudits with quantum
polynomial codes would turn the tide. We see that this is not
the case: for an optimistic but conceivable value of sGKP =
20 dB, we see in Fig. 3(a) that only the smallest code with D =
5 achieves a nonzero SKR for repeater lengths L > 70 km. To
assess the performance of larger codes, we need to assume
exorbitant squeezing levels, e.g., sGKP = 30 dB as in Fig. 3(b).
In this scenario, the �5, 1, 3�5 code operates near its maximum
performance of log2(5) ≈ 2.3 for all considered values of L.
Depending on the distance L, the largest value of log2(D) −

FIG. 3. Lower bound on the SKR per logical channel use,
log2(D) − H (Pfinal ), as a function of the total length L for a quantum
repeater line with coupling and measurement efficiencies ηcηdet =
99%, an intermediate repeater spacing of L0 = 100 m, and squeezing
levels of (a) sGKP = 20 dB or (b) sGKP = 30 dB. Here, the GKP code
is concatenated with a �D, 1, D+1

2 �D quantum polynomial code. The
highlighted area shows the achievable SKR per physical channel use
of a bare GKP repeater as in Fig. 2(b).

H (Pfinal ) is obtained by a different code: until L ≈ 100 km, the
�29, 1, 15�29 code achieves a value beyond the optimal perfor-
mance of log2(17) ≈ 4.1 of the �17, 1, 9�17 code. The latter
starts to lose performance after a few thousand kilometers,
where it falls behind the �13, 1, 7�13 code. For comparison, we
also show in Fig. 3 the performance of the two-way repeater
protocol with bare GKP qudits (shaded region), where we
select the value of D that optimizes the SKR, as in Fig. 2(b).
For sGKP = 20 dB in Fig. 3(a), bare GKP ququarts (D = 4) are
optimal until L ≈ 200 km. For longer repeaters, too much loss
accumulates, and lower-dimensional GKP codes with higher
error-correcting capabilities become beneficial: in a small
range of L, bare qutrits are the optimal choice, but already for
L � 300 km, qubits perform best. As before, this advantage of
even dimensions over odd ones is due to improved Bell state
availability [21]. For sGKP = 30 dB in Fig. 3(b), losses are less
of an issue and eight-dimensional GKP qudits are optimal
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until L ≈ 20 km. For 30 � L � 200 km, D = 6 is optimal. For
1000 � L � 50 000 km, a bare GKP repeater should operate
with D = 4.

It is important to stress that, from a practical perspec-
tive and for the considered parameters, it is not useful to
employ higher-level QECCs if the application is QKD. For
example, if sGKP = 30 dB and L = 1000 km, the two-way
teleportation protocol with a logical �17, 1, 9�17 code achieves
the largest rate of about four secret bits per logical channel
use. To accomplish this, however, 17 GKP qudits (entangled
in a QECC), i.e., 17 GKP-encoded and entangled optical
modes, need to be transmitted. With an even lower experi-
mental effort, one could simply transmit in parallel 17 bare
GKP ququarts, i.e., 17 GKP-encoded but unentangled op-
tical modes, each of which establishes almost two secret
bits. In other words, here the best bare protocol is more
efficient than the best higher-level encoded one by a factor
of about 8.5.

1. Optimal choice of the repeater spacing

In our discussion of Fig. 3, we have pointed out that no
practical benefit is to be expected when switching from bare
GKP qudits to a higher-level QECC if the repeater spacing
is fixed to L0 = 100 m. This raises the question of how the
choice of L0 influences this conclusion. Since implementa-
tion cost scales with the total number N = L/L0 of repeater
stations, here we focus on SKR/N as a figure of merit. In
a commercial setting, SKR/N is roughly proportional to the
return on investment. In Fig. 4, we plot SKR/N as a func-
tion of L0 for a quantum repeater line of fixed length L =
2000 km. The colors and line styles have the same meaning
as in Fig. 3. This time, we assume a more optimistic value of
ηcηdet = 99.9%, which benefits higher-level QECCs. Despite
this optimistic assumption, we still find that (for QKD) bare
GKP qudits outperform those encoded into quantum polyno-
mial codes. For example, for sGKP = 20 dB in Fig. 4(a), the
�5, 1, 3�5 code performs best among the quantum polynomial
codes and reaches the optimal value of SKR/N at a repeater
spacing of L0 ≈ 0.55 km. For this optimal repeater configura-
tion, the �5, 1, 3�5 code can generate approximately 1.8 secret
bits by transmitting five GKP ququints (D = 5). In the same
setting, one can generate almost 5.0 secret bits by transmitting
five bare GKP qubits (not shown). The same behavior is
observed for sGKP = 30 dB in Fig. 4(b), where the �5, 1, 3�5

code now achieves approximately 2.0 secret bits per logical
channel use at the optimal operating point of L0 ≈ 1.1 km.
In the same setting, transmitting five bare GKP qutrits would
generate more than 5.6 secret bits.

From Fig. 4, we can also infer the maximal repeater
spacing at which the secret-key rate drops to zero. For the con-
sidered parameters, the best higher-level encoded protocol,
i.e., the two-way protocol from Sec. II A 1 with the �5, 1, 3�5

code and sGKP = 30 dB, is operational for all values of L0 <

1.5 km; however, L0 ≈ 1.1 km is most effective. For the one-
way protocols from Secs. II A 2 and II A 3, the �5, 1, 3�5 code
already fails for L0 ≈ 0.7 km. As expected, we find that better
repeaters (larger sGKP, smaller D) allow for a larger repeater
spacing.

FIG. 4. Lower bound on the SKR per logical channel use,
log2(D) − H (Pfinal ), normalized by the number N of repeater seg-
ments (N − 1 repeater stations) as a function of the repeater spacing
L0 for a repeater line of total length L = NL0 = 2000 km, coupling
and measurement efficiencies ηcηdet = 99.9%, and squeezing levels
of (a) sGKP = 20 dB or (b) sGKP = 30 dB. Here, the GKP code is
concatenated with a �D, 1, D+1

2 �D quantum polynomial code.

2. Identifying and overcoming noise bottlenecks

Before one takes a great effort of building a quantum
repeater based on GKP qudits, it is important to ensure that
the experimental building blocks work sufficiently well. There
are multiple components for which improvements might be
beneficial or even necessary. Thus, it is important to identify
and remove the noise bottleneck, which would otherwise di-
minish the performance. Since we have already discussed the
impact of fiber loss, here we focus on input noise that arises
from approximate GKP state preparation, coupling losses, and
measurement errors. As explained in Sec. II C, these error
processes can be modeled by Gaussian noise. Errors propagate
through the circuit and eventually accumulate on individual
measurement results in the repeater stations, which for the
two-way postamplification protocol from Sec. II A 1 can be
described by a Gaussian channel with variance

σ 2
eff = 3σ 2

sq + 1 − ηcηdet

ηcηdet
exp

(
L0

2Latt

)
. (10)
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FIG. 5. (a) Variance σ 2
eff of Gaussian noise effectively affecting

each physical GKP qudit as a function of the squeezing level sGKP,
the coupling efficiency ηc, and the measurement efficiency ηdet.
(b) Lower bound on the SKR per logical channel use, log2(D) −
H (Pfinal ), as a function of σ 2

eff for a quantum repeater line with a
total transmission distance of L = 5000 km and a repeater spacing
of L0 = 500 m, where the two-way protocol in combination with a
�D, 1, D+1

2 �D quantum polynomial code is utilized.

Indeed, there are three sources from which GKP state prepara-
tion errors can propagate to the measurements, which leads to
the first term in Eq. (10). The second term in Eq. (10) accounts
for coupling losses: since the variance (incorporating both
coupling and fiber channel losses) of a length-L0 link in the
two-way protocol is given by [ηcηdet exp(−L0/2Latt )]−1 − 1,
the noise difference between a link with coupling errors and
without is given by((

ηcηdet exp
(− L0

2Latt

))−1 − 1
) − ((

exp
(− L0

2Latt

))−1 − 1
)

= 1 − ηcηdet

ηcηdet
exp

(
L0

2Latt

)
. (11)

In Fig. 5(a), we plot σ 2
eff as a function of sGKP and ηcηdet for

L0 = 0.5 km. Note that this plot would change only slightly
for other values of L0 � 1 km. Recall that σ 2

sq and sGKP can
be converted into each other via Eq. (6). Here, we assume

a repeater spacing of L0 = 500 m; however, the situation re-
mains almost unchanged if L0 takes any other value between
1 m and 1 km. The contour lines in Fig. 5 can be used to
infer whether one should work on improving sGKP or ηcηdet:
since moving along a contour line does not improve perfor-
mance, a series of improvements should instead correspond
to a path orthogonal to the contour lines. For example, for
sGKP = 6 dB and ηcηdet = 0.99, we have σ 2

eff ≈ 0.4, which
can be reduced to σ 2

eff ≈ 0.2 if the GKP approximation is
improved to sGKP = 9 dB; increasing ηcηdet, on the other hand,
would not help at all. Conversely, if coupling losses dominate,
e.g., sGKP = 30 dB and ηcηdet = 0.92, the variance σ 2

eff ≈ 0.1
can be reduced by a factor of 2 if coupling efficiencies are
improved to ηcηdet = 0.97; increasing sGKP, however, would
show no significant effect here.

To study how the combination of all error mechanisms in
Eq. (10) affects the performance of error-corrected quantum
repeaters with GKP qudits, we depict in Fig. 5(b) the influence
of σ 2

eff on the SKR obtained with the two-way protocol from
Sec. II A 1 for an error-corrected quantum repeater line with
L = 5000 km, L0 = 500 m, and a �D, 1, D+1

2 �D code. Here,
each physical GKP qudit in every repeater station is affected
by a Gaussian channel with variance σ 2

eff. As before, we find
that a larger value of D allows both for a larger SKR per
logical channel use in the low-noise regime and for a smaller
noise level to be tolerated before the SKR drops to zero. We
also observe that the parameter range of σ 2

eff where the SKR
drops from its optimal value to zero is alarmingly small. This
effect is most pronounced for the �5, 1, 3�5 code, which has
almost optimal performance until σ 2

eff ≈ 0.01 but already for
σ 2

eff ≈ 0.02 its SKR is equal to zero. This showcases that mod-
erate improvements can have a huge impact if they address a
noise bottleneck.

3. Leveraging lower-level syndrome information to improve
higher-level error correction

So far, we have independently treated the error-correction
procedures of lower-level GKP qudits and the higher-level
QECC. More precisely, we assumed that, in the first step,
displacement errors on the physical GKP qudits are removed.
This may or may not result in a logical GKP qudit error. Then,
in a second step, the higher-level �n, 1, d�D code deals with
potential errors on the GKP qudits: the correction succeeds
if the number of errors with unknown locations is not larger
than d−1

2 . In this final subsection, we investigate the more
general case, where the locations of some of the errors are
known. The modified error-correction routine succeeds when-
ever tk + 2tu < d , where tk and tu denote the number of errors
with known and unknown locations, respectively. To obtain
some information about error location, one can exploit the
continuous, “analog” results of the homodyne measurements
in the repeater stations [22,24]. If a displacement error of
the form exp(iε p̂) occurs, the homodyne measurement of q̂
reveals the value of ε modulo

√
2π/D, which we call analog

GKP syndrome. In particular, every displacement error with
|ε| <

√
π/2D can be corrected. The probability of successful

error correction is large if ε is small. When an error of magni-
tude ε ≈ √

π/2D occurs, however, the situation is less clear.
Borrowing ideas from Ref. [79], we introduce a discarding
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parameter γ ∈ [0, 1], and treat any instances of ε which are
closer than

√
π/2D(1 − γ ) from the boundary of two bins as

an erasure error with a known location in the n-qudit register.
In the case γ = 1, we do not discard any qudits, which cor-
responds to the strategy considered so far. The other extreme,
γ = 0, corresponds to the absurd approach where all qudits
are always discarded.

The advantage of this modification is that, for every qudit
that is not discarded, the probabilities for errors (with un-
known locations) are improved from Eq. (8) to

P(γ )
sq (X k, σ 2) ∝

∑
j∈Z

∫ √
2π
D ( jD+k+ γ

2 )

√
2π
D ( jD+k− γ

2 )

exp
(− q2

2σ 2

)
√

2πσ 2
dq, (12)

where the proportionality constant follows from∑D−1
k=0 P(γ )

sq (X k, σ 2) = 1. This improvement comes at the
expense that we have to introduce an erasure error with
probability

pdiscard = 1 −
D−1∑
k=0

∑
j∈Z

∫ √
2π
D ( jD+k+ γ

2 )

√
2π
D ( jD+k− γ

2 )

exp
(− q2

2σ 2

)
√

2πσ 2
dq; (13)

however, we can still exploit our knowledge about the location
of this error.

Denote the probability that a single GKP qudit is free of
errors by p0 = P(γ )

sq (X 0, σ 2). Then, the condition tk + 2tu <

d and basic combinatorics lead to the probability of a failed
error-correction attempt

pfail(γ ) = 1 −
d−1∑
tk=0

(
n

tk

)
ptk

discard(1 − pdiscard)n−tk

×
tu,max∑
tu=0

(
n − tk

tu

)
pn−tk−tu

0 (1 − p0)tu , (14)

where tu,max = �(d − tk − 1)/2� is the maximal number of
correctable errors with unknown locations, assuming that tk
erasures with known locations occurred, and n is the number
of physical GKP qudits.

In Fig. 6, we show how the logical failure rate (red) de-
pends on the discarding parameter γ for a �13, 1, 7� code.
For each physical GKP qudit, we assume that all noise com-
bined (stemming, e.g., from GKP approximation, coupling,
or transmission) corresponds to a fairly small but finite vari-
ance σ 2 = 0.01 of the overall Gaussian noise channel. For
γ = 1, i.e., without discarding (black), the failure rate has a
remarkably low value of pfail ≈ 5 × 10−11, which is due to
the low level of noise and the high error-correcting distance of
d = 7. We observe a local minimum at γopt ≈ 0.82, where the
failure rate is improved by more than an order of magnitude
to pfail(γopt) ≈ 3 × 10−12. If γ is decreased below γopt, we
begin to introduce more erasures than the QECC can deal
with, and the failure rate increases. On the other hand, if γ

is increased above γopt, then the error rates P(γ )
sq (X k, σ 2) start

to deteriorate. This causes an increasing amount of errors with
unknown locations and leads to the rise in pfail.

A curious effect in Fig. 6 is that the performance in
the seldom-discarding regime (γ > 0.96) is worse than in
the never-discarding case (γ = 1). We attribute this to the

FIG. 6. Failure probability pfail for decoding the result of a
logical measurement for a �13, 1, 7�13 code as a function of the dis-
carding parameter γ . Each physical GKP qudit is subject to Gaussian
noise with variance σ 2 = 0.01.

fact that, for 0.96 < γ < 1.0, those cases dominate where
only a single erasure error is introduced, i.e., tk = 1 and
the number of correctable errors with unknown locations is
decreased to tu,max = 2. At the same time, the error proba-
bilities P(γ )

sq (X k, σ 2) are only slightly improved because they
continuously depend on γ . Thus, the performance is worse
than for the naive approach with γ = 1, i.e., tk = 0 and
tu,max = 3.

IV. CONCLUSION AND OUTLOOK

In this paper, we have analyzed the performance of
third-generation quantum repeaters that operate with higher-
dimensional GKP qudits. We have focused on the GKP square
lattice and also considered concatenations with quantum poly-
nomial codes.

A priori, GKP qudits and quantum polynomial codes seem
to be a perfect match in the context of quantum repeaters.
For one, GKP codes can be encoded into photons and are
known for their good performance against photon loss, which
is crucial for repeaters. Second, quantum polynomial codes
are optimal in the sense that they achieve the Singleton bound;
however, they require higher-dimensional qudits—a feature
that the GKP encoding has to offer. A more technical fact,
which is a deal breaker for standard approaches of quantum
computation measuring stabilizers by measuring attached an-
cilla qubits, is that the stabilizer group of quantum polynomial
codes is generated by operators whose support extends over
almost all physical qudits. This makes it practically impos-
sible to nondestructively measure the stabilizer operators—a
crucial subroutine of fault-tolerant quantum computation. For
quantum repeaters, destructively measuring all qudits individ-
ually suffices to extract the necessary stabilizer information,
i.e., high-weight stabilizer operators are not an issue for
quantum repeaters. For these reasons, one could have ex-
pected that quantum repeaters with GKP qudits concatenated
with a quantum polynomial code would perform well in
tandem.
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A posteriori, however, our paper revealed that the de-
creased lower-level error-correcting capabilities of higher-
dimensional GKP qudits severely limit their potential benefits.
While this finding might disappoint to a certain extent, it can
be regarded as good news for experimentalists. Indeed, the
most promising GKP repeater protocol identified in this paper
is also the one which is the easiest to implement. The missing
component that is currently holding back an experimental re-
alization of such repeaters is efficient sources of high-quality
GKP states [9]. Once such source is available; however, there
will be no need for quantum memories or classical two-way
communication. Therefore, the achievable repetition rates will
only be limited by fast optical elements for the local process-
ing of GKP qudits.

Our recommendation for a first experimental target is
a repeater protocol (Sec. II A 1) that makes use of bare
(i.e., without higher-level code) two-dimensional GKP qubits.
Admittedly, these qubits will require challenging squeezing
levels beyond 10 dB. However, the identified protocol has
the advantage of readily available syndrome measurements
based on balanced beam splitters and homodyne measure-
ments alone. Furthermore, this protocol is compatible with
rescaling the GKP lattice in classical software, whereas other
protocols would require optical amplifiers to compensate for
the loss. In the medium-to-long term, when squeezing lev-
els above 20 dB will be available, we found that bare GKP
qutrits can potentially outperform GKP qubits for meaningful
repeater lengths. Only in the very long term, if squeezing
levels around 30 dB can possibly be reached, we expect
some benefit from concatenating multiple GKP qudits us-
ing quantum polynomial codes, however only for tasks like
entanglement distribution where utmost fidelities are im-
portant. For the application of quantum key distribution,
on the other hand, our analysis showed that it is typically
more cost effective to operate bare GKP qudit repeaters
instead.

With regard to potential experimental realizations, a useful
feature of bare qudits is that GKP Bell pairs, which enable
teleportation-based syndrome detection and error correction,
can be directly created by applying a balanced beam splitter
upon two suitable, individual single-mode GKP or grid states
[20,21]. In the case of GKP qudits that are concatenated
with a higher-level code, the complete syndrome information
can still be obtained in a single linear-optics step; nei-
ther online squeezing operations nor additional GKP ancilla
states for higher-level syndrome extraction are required. This
only works, however, if suitable higher-level Bell pairs are
available [21].

An interesting open research direction is to study the
performance of multimode GKP codes that do not arise as
a concatenation of physical GKP states and a higher-level
stabilizer code [21,80–83]. For such an analysis, theoretical
insights about multimode Gaussian channels might become
important [84]. Moreover, one could analyze how bosonic
encodings other than GKP perform in a quantum repeater
setting, e.g., cat codes [85,86], spherical codes [87], etc.
[88,89]. Finally, it would be interesting to explore how
third-generation quantum repeaters with GKP qudits compare
to first- or second-generation repeaters.
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APPENDIX A: QUANTUM POLYNOMIAL CODES

In this Appendix, we review two variations of the quantum
polynomial code. We start with a version by Cleve, Gottes-
man, and Lo (CGL) in Appendix A1, which is the one used
throughout this paper. For the interested reader, we also re-
view an alternative construction by Aharonov and Ben-Or
(ABO) in Appendix A2 to which, however, our error analysis
does not immediately apply. We conclude in Appendix A3
with a discussion of why, in the case of GKP qudit repeaters,
the Cleve-Gottesman-Lo construction is more promising than
the Aharonov–Ben-Or construction.

1. Leading-term construction

In Ref. [33], CGL make use of a family of �n, 1, d�D

QECCs, where D has to be an odd prime and n = 2d − 1�D,
which they call quantum polynomial codes. In this paper, we
concentrate on the case n = D as this maximizes the distance,
d = D+1

2 . For every element a ∈ FD = {0, . . . , D − 1}, a log-
ical basis state is defined as

|ā〉CGL = 1√
Dd−1

∑
λ0,...,λd−2∈FD

λd−1=a

| fλ(0), . . . , fλ(n − 1)〉, (A1)

where for every vector λ = (λ0, . . . , λd−1) ∈ (FD)d the poly-
nomial

fλ(T ) = λ0 + λ1T + λ2T 2 + . . . + λd−1T d−1 (A2)

has been defined. Since the logical information is encoded
into the leading coefficient λd−1 = a of the polynomials
in the superposition of Eq. (A1), we refer to this varia-
tion of the quantum polynomial code as the leading-term
construction.

While we have already reviewed stabilizer group and logi-
cal operators of this code in Appendix A of Ref. [53], here we
elaborate on the implementation of the logical CZ gate. Since
this code is a CSS code with the property that for every X sta-
bilizer there is a Z stabilizer with the same support (including
multiplicities, which matter in the qudit case), it follows from
the conjugation rules CZ (X ⊗ I )CZ = X ⊗ Z and CZ (Z ⊗
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I )CZ = Z ⊗ I that CZ⊗n preserves the stabilizer group under
conjugation. Hence, CZ⊗n is a logical gate. However, CZ⊗n

acts as CZ
−1

on the logical level because the exponent vector
i = (i1, . . . , iD) = (0, 1, 2d−1, . . . , (D − 1)d−1) of X̄ = X i1 ⊗
. . . ⊗ X iD =: X i differs from the one of Z̄ = Z−i by its sign. In
other words, in order to apply CZ on the logical level, one does
not have to apply a CZ gate on every pair of physical qubits
(which would be called a transversal implementation of the
CZ gate) but a CZ−1 gate (which is called a semitransversal
implementation in Ref. [34]). In this case, semitransversality
does not lead to any disadvantage; however, the situation is
different for the construction reviewed next.

2. Constant-term construction

In contrast to Eq. (A1), where the logical digit a ∈ FD is
encoded into the leading term of a collection of polynomials,
ABO use an alternative construction in Ref. [34]. They encode
the logical information into the coefficient λ0 = f (0) of the
constant term of the polynomials, i.e., they define the logical
basis states

|ā〉ABO = 1√
Dd−1

∑
λ1,...,λd−1∈FD

λ0=a

| fλ(1), . . . , fλ(n)〉, (A3)

for every a ∈ FD. This results in an �2d − 1, 1, d�D code
for every n = 2d − 1 < D. Note that the same construction
has been used in Eq. (8.8) of Ref. [36]. In Eq. (4.5) of
Ref. [34] it is shown that, for this code, the logical CZ gate can
be semitransversally applied via CZc1 ⊗ . . . ⊗ CZcn , where
c1, . . . , cn ∈ FD are defined as the interpolation coefficients
with the property that

g(0) =
n∑

k=1

ckg(k) (A4)

holds true for all polynomials g with deg(g) � n − 1. While
these interpolation coefficients have been defined only ab-
stractly in Ref. [34], it is of course important to know
them if one wants to implement the logical CZ gate
for this code. Hence, we compute them in the following
proposition.

Proposition. An explicit expression of the interpolation
coefficients is given by ck = (−1)k+1

(n
k

)
mod D for every

k ∈ {1, . . . , n}.
Proof. We also define c0 = −1 = (−1)1

(n
0

)
and denote the

coefficients of the arbitrary polynomial by μi, i.e., g(x) =∑n−1
i=0 μixi. Then, Eq. (A4), which defines the interpolation

coefficients, is equivalent to

n−1∑
i=0

μi

n∑
k=0

ckki = 0. (A5)

With our choice of ck , Eq. (A5) is fulfilled because of

n∑
k=0

(−1)k

(
n

k

)
ki = 0, (A6)

which is a special case (with a j = δi, j and i < n) of Eq. (5.42)
from Ref. [90]. �

3. Some semitransversal gates are better than others

The reason why we have carried out our repeater analysis
for the quantum polynomial code from Appendix A1 is that
its semitransversal CZ gate propagates errors more favorably
than the code from Appendix A2. Indeed, to implement the
gate CZc for any c ∈ FD on a GKP qudit, one has to apply the
gate CPHASEc on the physical level. If a Gaussian p error with
variance σ 2 was present on one of the optical modes, it will
induce q error of variance c2 × σ 2 on the other optical mode.
For the leading-term construction this is fine because c = −1
in this case. For the constant-term construction, however,
errors would unfavorably amplify because the interpolation
coefficients ck = (−1)k+1

(n
k

)
mod D can take values that grow

linearly in D.

APPENDIX B: ERROR ANALYSIS OF BARE
GKP REPEATERS

We begin our error analysis by reviewing how
Gaussian displacement errors of the form exp(εq̂i )
and exp(ε p̂i ), where ε ∈ R is the error magnitude,
propagate across CSUM and CPHASE gates. The CSUM

gate exp(−iq̂1 p̂2) acts as CX 1,2 = ∑D−1
k=0 |k〉〈k|1 ⊗ X k

2
on GKP qudits, while the CPHASE gate, exp(iq̂1q̂2),
implements CZ1,2 = ∑D−1

k=0 |k〉〈k|1 ⊗ Zk
2 [1]. Hereby,

X = ∑D−1
k=0 |k + 1 mod D〉〈k| and Z = ∑D−1

k=0 (e2π i/D)k|k〉〈k|
denote the unitary generalizations of the qubit Pauli X and Z
gates to the case of D-dimensional qudits. It is well known
that single-qudit Pauli errors are propagated across CX and
CZ gates via

CZ1,2X1 = X1Z2 CZ1,2,

CX 1,2X1 = X1X2 CX 1,2,

and CX 1,2Z2 = Z†
1 Z2 CX 1,2 (B1)

(see, e.g., Refs. [1,53]). The error propagation rules of
Eq. (B1) have their bosonic analogs: applying the Baker-
Campbell-Hausdorff formula yields

exp (iq̂1q̂2) exp (i p̂1) = exp (i( p̂1 − q̂2)) exp (iq̂1q̂2),

exp (−iq̂1 p̂2) exp (i p̂1) = exp (i( p̂1 + p̂2)) exp (−iq̂1 p̂2),

and exp (−iq̂1 p̂2) exp (iq̂2) = exp (i(q̂2 − q̂1)) exp (−iq̂1 p̂2).

(B2)

In the two repeater protocols from Secs. II A 1 and II A 2,
every repeater station is responsible for performing a Bell
measurement. This is achieved by a beam splitter, followed
by two homodyne measurements. For both of these homodyne
measurements, the results are postprocessed (binned) into a
measurement outcome of the GKP qudit. Errors on the GKP
qudit lead to errors on the measurement outcomes. The latter
can be described by a Pauli error channel Psq(X, σ 2), as in
Eq. (8), where the variance σ 2 comprises all Gaussian noise
contributions that have propagated to the measurement device.
As discussed in Sec. II C, we take the following error sources
into account.
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(1) Loss that arises when GKP qudits are coupled
into an optical fiber. The resulting coupling efficiency is
denoted by ηc.

(2) Loss that arises during transmission. If the traveling
distance is L0, the associated transmittance is given by η =
exp(−L0/Latt ), where Latt is the attenuation distance.

(3) Effective loss that models the inefficiency of the ho-
modyne measurement. The resulting detector efficiency is
denoted by ηdet.

(4) Unavoidable approximation errors of square GKP qu-
dits. These are modeled by a Gaussian channel of variance σ 2

sq.
Since beam splitters only require passive linear optical ele-

ments, we assume they work perfectly. In addition, we ignore
errors stemming from Gaussian elements, i.e., from CSUM and
CPHASE gates.

For the two-way teleportation protocol from Sec. II A 1,
transmission and coupling losses lead to a Gaussian error
channel with variance 1

ηcηdet
√

η
− 1 (see Sec. II C 1). Further-

more, there are three GKP state preparations in the causal light
cone of any given measurement. All in all, this amounts to a
final variance of σ 2

2-way = 3σ 2
sq + 1

ηcηdet
√

η
− 1.

For the one-way teleportation protocol from Sec. II A 2,
the only difference is that the Gaussian error channel arising
from losses now has a variance of 1 − ηcηdetη (see Sec. II C 1).
Therefore, the final variance is given by σ 2

1-way = 3σ 2
sq + 1 −

ηcηdetη.
If D is even, it is possible to directly generate a two-qudit

GKP Bell pair by applying a balanced beam splitter to two
grid states [20,21]. Unlike general Gaussian transformations,
this linear optical transformation does not amplify the noise.
In consequence, the above variances are improved to σ 2

2-way =
2σ 2

sq + 1
ηcηdet

√
η

− 1 and σ 2
1-way = 2σ 2

sq + 1 − ηcηdetη.
On the physical level, every Bell measurement is composed

of two homodyne measurements. Errors on the measure-
ment of one quadrature effectively propagate into X errors
on Bob’s qudits, while those of the other quadrature lead
to Z errors. By symmetry, the final probability distributions
for X and Z errors coincide, and it suffices to compute it
in one case. Ignoring finite-size effects3 and potential corre-
lations between the error probabilities of different repeater
stations, we estimate the final X error distribution Pfinal(X ) =
P∗N

sq (X, σ 2) on Bob’s qudit as the N-fold discrete convolu-
tion of Psq(X, σ 2), where N denotes the number of repeater
stations. We expect that this estimate captures the general
behavior of the performance of GKP qudit repeaters. In
principle, computing this convolution can be sped up by di-
agonalizing the corresponding error-probability matrix [53].
For our purposes, however, a direct implementation is suf-
ficient. Then, we compute the outer product Pfinal(X, Z ) =
Pfinal(X ) ⊗ Pfinal(Z ). The secret-key rate of the repeater line,
finally, is given by log2(D) − H[Pfinal(X, Z )] = log2(D) − 2
H (Pfinal(X )).

3In principle, the measurements near the ends of the repeater line
have smaller error probabilities. Ignoring this slightly underestimates
performance, however, the difference is vanishingly small for a large
number of repeater stations.

APPENDIX C: ERROR ANALYSIS OF GKP REPEATERS
WITH HIGHER-LEVEL CODES

In this Appendix, we lift our error analysis from Ap-
pendix B to the logical level. First, we discuss in Appendix C1
the two repeater protocols from Secs. II A 1 and II A 2. In
Appendix C2, we discuss the optimal placement of the
lower-level GKP measurements for the third protocol from
Sec. II A 3 and analyze its performance.

1. Logical performance of GKP qudits concatenated
with quantum polynomial codes

In Appendix B, we showed that the error probability dis-
tribution for measurements in repeater stations is given by
Psq(X, σ 2), where σ 2

2-way = 3σ 2
sq + 1

ηcηdet
√

η
− 1 and σ 2

1-way =
3σ 2

sq + 1 − ηcηdetη for the two-way and one-way teleportation
protocol, respectively. When the protocol is lifted to its logical
version, we still find the same error distribution for each of the
measurements of the physical GKP qudits (of which there are
D). This is because of the semitransversality of the CZ gate
for this code (see Appendix A1 for details).

Here, we consider a simple decoder that only corrects
errors occurring on a number of qudits not more than
half the distance d = D+1

2 . Thus, the probability that a
correctable error pattern occurs at a repeater station is
given by

pcor =
d−1

2∑
k=0

(
D

k

)
pD−k

0 (1 − p0)k, (C1)

where p0 = Psq(X 0, σ 2), as in Eq. (8). If the decoding attempt
fails, we replace the measured state with a state such that
the entropy of the overall density matrix is maximized (as a
worst-case approximation). In other words, with probability
1 − pcor, we insert a logical error, uniformly at random from
the set {1, . . . , D − 1}. Therefore, the error probability distri-
bution on measurement outcomes in any repeater station is
given by

Prep(X k ) =
{

pcor if k = 0

1
D−1 (1 − pcor) otherwise.

(C2)

If the probability of errors is so large that pcor < 1
D−1 (1 −

pcor), we replace Eq. (C2) by the uniform distribution. As
in Appendix B, we ignore correlations between error distri-
butions on different repeater stations, and estimate the final
error distribution of the encoded repeater line as Pfinal(X, Z ) =
P∗N

rep (X ) ⊗ P∗N
rep (Z ).

2. Error analysis of the half-teleportation protocol for various
placements of GKP syndrome measurements

In this Appendix, we discuss how introducing additional
ancilla-based measurements of lower-level GKP stabiliz-
ers can improve the performance of the one-way half-
teleportation protocol with optical preamplification from
Sec. II A 3. Such measurements are pictured in Fig. 1(c) of
the main text. As discussed in Sec. II C 1, every transmis-
sion from one repeater station to the next is associated with
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FIG. 7. Propagation of Gaussian errors for the half-teleportation protocol without additional GKP stabilizer measurements. Because of
periodic boundary conditions, we have σ 2

in,p = σ 2
out,p = σ 2

sq and σ 2
in,q = σ 2

out,q = 2σ 2
sq + 1 − η. Therefore, the variance of q errors reaching the

p measurements is given by σ 2
sq + σ 2

in,q + 1 − η = 3σ 2
sq + 2(1 − η).

a Gaussian error channel with variance σ 2
loss = 1 − ηcηdetη,

where η = exp(−L0/Latt ). In every repeater station, all in-
coming GKP qudits are measured in the p quadrature. Before
this, however, each GKP qudit is coupled via a physical
CPHASE† gate to a qudit in the next logical block. Since
the CPHASE† gate spreads p errors into q errors, but q er-
rors are not propagated to the next mode, every error source
only has a limited range. A p error that arises during one
transmission does not directly affect p measurements on the
qudit it occurred to; however, it propagates into a q error
on the subsequent GKP qudit, which alters the p measure-
ment outcome of that qudit. Furthermore, a p error during
GKP state preparation backpropagates through the CPHASE†

gate and causes a q error on the readout of the preceding
GKP qudit.

In the plain version (without lower-level GKP stabi-
lizer measurements), errors on physical readouts (in the
repeater stations) follow an error distribution Psq(Z, 2σ 2

loss +
3σ 2

sq), where the variance takes noise from two transmis-
sions and three GKP state preparations into account. By
introducing a lower-level GKP stabilizer measurement in
every repeater station, we can correct displacement errors
after a single transmission. In this way, we effectively
avoid combining the two transmission loss channels. In-
stead, all Gaussian errors in one quadrature are replaced
by the discrete Pauli error channel from Eq. (8). Such dis-
crete qudit Pauli errors will propagate to the measurements
in the usual way [53]. Depending on where in the repeater
station we place the ancilla-based GKP stabilizer measure-
ment, the final error distribution will vary. We discuss four
options.

(i) No additional GKP stabilizer measurements are per-
formed (see Fig. 7 for the error analysis).

(ii) After every CZ gate, the (physical) target qudit
is subjected to a GKP stabilizer measurement of SX =
exp(−i

√
2πDp̂). This is achieved by preparing an ancillary

GKP qudit in state |0〉, applying a CSUM gate from the ancilla
to the repeater qudit, and a p measurement of the ancilla GKP
qudit (see Fig. 8 for the error analysis).

(iii) Before every CZ gate, the control qudit is subjected to
a GKP stabilizer measurement of SZ = exp(i

√
2πDq̂). This is

achieved by preparing a GKP ancilla in state |+〉, applying a
CSUM gate from the repeater qudit to the ancilla, followed by a
q measurement of the ancilla (see Fig. 9 for the error analysis).

(iv) We alternate between options (ii) and (iii); see Fig. 10
for the error analysis.

In option (i), the error analysis from Appendix C1 with
σ 2 = 2σ 2

loss + 3σ 2
sq applies (see Fig. 7). Both in option (ii) and

(iii), which we refer to as symmetric placements of the GKP
stabilizer measurements, it turns out that every p measurement
is subject to two discrete Pauli error channels as in Eq. (8), one
having variance 2σ 2

sq + σ 2
loss and the other one 4σ 2

sq + σ 2
loss.

Thus, the error analysis from Appendix C1 applies after we
insert

psym
0 =

D−1∑
k=0

Psq
(
X k, 2σ 2

sq + σ 2
loss

)
× Psq

(
X D−k, 4σ 2

sq + σ 2
loss

)
(C3)

into Eq. (C1). Finally, in option (iv) both GKP stabilizer
and logical measurements are subject to Gaussian errors with

FIG. 8. Propagation of Gaussian errors for the half-teleportation protocol with additional GKP stabilizer measurements after every CZ gate.
Because of periodic boundary conditions, we have σ 2

in,p = σ 2
out,p = 2σ 2

sq and σ 2
in,q = σ 2

out,q = σ 2
sq. Therefore, the variance of q errors reaching

the p measurements is given by σ 2
sq + σ 2

in,q + 1 − η = 2σ 2
sq + 1 − η. In addition to these continuous displacement errors, a discrete Pauli error

channel Psq(Z, σ 2
GKP) leads to lower-level logical errors on every X measurement, where σ 2

GKP = 2σ 2
sq + σ 2

in,p + 1 − η = 4σ 2
sq + 1 − η is the

variance of q errors reaching the lower-level GKP stabilizer measurement.
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FIG. 9. Propagation of Gaussian errors for the half-teleportation protocol with additional GKP stabilizer measurements before every CZ
gate. Because of periodic boundary conditions, we have σ 2

in,p = σ 2
out,p = σ 2

sq and σ 2
in,q = σ 2

out,q = 2σ 2
sq. Therefore, the variance of q errors

reaching the p measurements is given by 2σ 2
sq + σ 2

in,q + 1 − η = 4σ 2
sq + 1 − η. In addition to these continuous displacement errors, a discrete

Pauli error channel Psq(Z, σ 2
GKP) leads to lower-level logical errors on every X measurement, where σ 2

GKP = σ 2
sq + σ 2

in,p + 1 − η = 2σ 2
sq + 1 − η

is the variance of p errors reaching the lower-level GKP stabilizer measurement. Originally, the lower-level GKP stabilizer measurement results
in a discrete Pauli error channel Psq(X, σ 2

GKP), which is then propagated to a Pauli error channel Psq(Z, σ 2
GKP) in the next segment due to the

CZ gate.

variance 3σ 2
sq + σ 2

loss. This time, we thus have to insert

palt
0 =

D−1∑
k=0

Psq
(
X k, 3σ 2

sq + σ 2
loss

)
Psq

(
X D−k, 3σ 2

sq + σ 2
loss

)
(C4)

into Eq. (C1).
In Fig. 11, we show how the placement of GKP sta-

bilizer measurements influences the performance of the
half-teleportation protocol, using the exact same setting as in
Fig. 4 of the main text. Overall, the situation is very similar
to that in Fig. 4: for sGKP = 20 dB in Fig. 11(a), only the
�5, 1, 3�5 code (black) offers a nonzero SKR, whereas for
sGKP = 30 dB in Fig. 11(b) also the �13, 1, 7�13 code (red) and
the �17, 1, 9�17 code (green) have the potential to distribute
secret keys. We see in Fig. 11 that an alternating place-
ment of GKP stabilizer measurements (solid curves) leads to
the highest values of SKR/N . For both option (ii) and (iii),
the symmetric placements (dotted curves) are governed by
Eq. (C3), and therefore lead to the same performance. We see
that not performing any additional GKP stabilizer measure-
ments (dash-dotted curve) leads to the lowest performance,
which is easily explained by the large variance 2σ 2

loss + 3σ 2
sq.

The other options break the term 2σ 2
loss and, therefore, perform

better. For the symmetric placement, the bottleneck is posed
by the term 4σ 2

sq in Eq. (C3), which is worse than 3σ 2
sq in

Eq. (C4) for the alternating placement. This explains why the
latter performs best. For a large squeezing value of sGKP =
30 dB, the difference between 3σ 2

sq and 4σ 2
sq is negligible,

which causes a nearly perfect overlapping of the dotted and
solid curves in Fig. 11(b).

Since the alternating placement of GKP stabilizer mea-
surements has the best performance, we have assumed this
option for the one-way half-teleportation protocol throughout
the main text of this paper.

APPENDIX D: COST COMPARISON
WITH KNOWN SCHEMES

In this Appendix, we compare the costs of a quantum
repeater employing a concatenation of GKP qudits with a
polynomial code with another scheme where we consider MM
qudits concatenated with the same qudit code (QPYC) as in our
approach [51]. First we consider the cost function

C = 2n log2(D)

L0R
,

where n is the overall number of used qudits and R denotes
the achieved secret-key rate as given in Ref. [52, Eq. 27].
The factor log2(D) describes that abstract qudits of dimension
D require more resources. As we are discussing schemes
based on different photonic encodings, it is also interesting to
consider the number of required optical modes leading to the

FIG. 10. Propagation of Gaussian errors for the half-teleportation protocol with additional GKP stabilizer measurements at alternating
placements. Because of periodic boundary conditions, we have σ 2

in,p = σ 2
out,p = σ 2

sq and σ 2
in,q = σ 2

out,q = 2σ 2
sq. Therefore, it turns out that the

variance of q errors reaching all p measurements is given by σ 2
sq + σ 2

in,q + 1 − η = 3σ 2
sq + 1 − η. In addition to these continuous displacement

errors, a discrete Pauli error channel Psq(Z, σ 2
GKP) leads to lower-level logical errors on every X measurement, where σ 2

GKP = 2σ 2
sq + σ 2

in,p +
1 − η = 3σ 2

sq + 1 − η is the variance of errors reaching and altering lower-level GKP stabilizer measurements.

042427-16



ERROR-CORRECTED QUANTUM REPEATERS WITH … PHYSICAL REVIEW A 109, 042427 (2024)

FIG. 11. Lower bound on the SKR per logical channel use,
log2(D) − H (P ), normalized by the number N of repeater stations
for the one-way half-teleportation protocol and various placements
of lower-lever GKP stabilizer measurements. We plot SKR/N as
a function of the repeater spacing L0 for a repeater line of total
length L = NL0 = 2000 km, coupling efficiencies ηcηdet = 99.9%,
and squeezing levels of (a) sGKP = 20 dB or (b) sGKP = 30 dB.

cost

C′ = 2nm

L0R
,

where m is the number of required optical modes per qudit
[see Eq. (24) in Ref. [51]]. Since our schemes also consider
QPYC as the high-level code it is of large interest to compare it
with the MM approach. As it can be seen in Fig. 12, depending
on the considered cost function MM is either better than GKP
or vice versa. When considering function C our schemes are
worse than the MM scheme even for large squeezing values as
30 dB, but the cost of the MM scheme is almost the same as
the two-way teleportation protocol. However, with respect to
cost function C′ all three GKP schemes outperform the MM
one at 30 dB and at 20 dB also the two-way teleportation
scheme outperforms the MM one. The cost function consid-
ering the number of used modes benefits the GKP encoding,
as in the GKP encoding by increasing the qudit dimension D
one squeezes more information into the same physical Hilbert

FIG. 12. Comparison of repeater costs between our proposed
schemes and proposed schemes employing multimode encodings
concatenated with polynomial codes for different cost functions. In
(a) we consider a cost function where we consider the qudit dimen-
sion to contribute to the cost, while in (b) we consider the number of
used modes instead of the qudit dimension.

space, while in the case of the MM encoding by increasing
D we also introduce new modes such that the dimension
of the physical Hilbert space is also increased. One might
also consider quantum Reed-Solomon codes as discussed in
Ref. [52]. These codes have been shown to reduce the overall
cost in combination with the MM encoding, as they allow for
the encoding of multiple logical qudits while still attaining the
quantum Singleton bound. We think that a similar effect will
also occur in a combination with a GKP encoding which is
beyond the scope of this paper.

However, this comparison of costs between different plat-
forms should be taken with a grain of salt. Ultimately, the
real-world cost is given by SKR per spent dollar which
might be proportional to these cost functions, but different
platforms might have different proportionality constants. Fur-
thermore, in this model there is no actual cost assigned to
the state quality as, e.g., the cost of squeezing as it is hard
to quantify.
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