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In recent years, substantial research effort has been devoted to quantum algorithms for ground-state-energy
estimation (GSEE) in chemistry and materials. Given the many heuristic and nonheuristic methods being
developed, it is challenging to assess what combination of these methods will ultimately be used in practice.
One important metric for assessing utility is the runtime, which depends on the ground-state preparation (GSP)
for most GSEE algorithms. Towards assessing the utility of various combinations of GSEE and GSP methods,
we asked under which conditions a GSP method should be accepted over a reference method, such as the
Hartree-Fock method. We introduce a criterion for accepting or rejecting a GSP method for the purposes of
GSEE. We consider different GSP methods ranging from heuristics to algorithms with provable performance
guarantees and perform numerical simulations to benchmark their performance on different chemical systems,
starting from small molecules like the hydrogen molecule to larger systems like jellium. In the future, this
approach may be used to abandon certain variational quantum eigensolver (VQE) ansatzes and other heuristics.
Yet our findings do not provide evidence against using VQE and more expensive heuristic methods, like the
low-depth booster. This work sets a foundation from which to further explore the requirements to achieve
quantum advantage in quantum chemistry.
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I. INTRODUCTION

Quantum computation promises to unlock new computa-
tional capabilities for certain tasks such as the ground-state-
energy estimation (GSEE) for molecules and materials [1–3].
However, realizing quantum advantage for the task of GSEE
requires improvements in the quantum algorithms that will
reduce the resource requirements needed, such as the circuit
depth [4]. This has led to extensive research on the develop-
ment of algorithms with modest circuit depths [4,5].

However, the performance of GSEE algorithms also
strongly depends on the overlap of the true ground state of
the Hamiltonian and the initial state generated by a ground-
state-preparation (GSP) method [6–8]. For quantum chemistry
applications, the Hartree-Fock (HF) Slater determinant state is
widely used for GSP, since the cost (in terms of circuit depth)
of implementing it on quantum hardware is insignificant com-
pared to GSEE algorithms [9] and it provides satisfactory
results for many molecules and materials [10]. However, in
some important cases the overlap is relatively small (for ex-
ample, molecules with a bond distance out of equilibrium
[10,11]), which creates a need for methods that can provide
a larger initial overlap.

To this end, different quantum GSP algorithms have
been developed to provide a higher overlap and improve
the performance of GSEE algorithms. These include quan-
tum algorithms that prepare multideterminant states [10]
and numerous GSP algorithms with a provable performance
guarantee [5,12,13]. Adiabatic-state preparation using digital
quantum computing [14,15] is another approach to prepar-
ing ground states and in some works [16,17] has been

considered the de facto method for state preparation. More
recent heuristic approaches, such as the variational quantum
eigensolver (VQE) [18,19] can also provide an approximation
to the ground state, while using relatively little circuit depth.
Recent work on low-depth boosters has introduced a method
with provable performance guarantees on reliably convert-
ing circuit depth into ground-state overlap and goes beyond
heuristic parametrized quantum circuits [20]. They showed
that any function f that satisfies the monotonicity suppresses
the high-energy eigenstates of a Hamiltonian H and hence
boosts the low-energy states [20]. However, the choice of the
function f and the function parameters is heuristic. Finally,
classical machine-learning techniques from generative model-
ing have been applied to the task of generating approximations
to the ground state [11].

Even though we have a plethora of methods for ground-
state preparation, we are still missing a reliable way to
benchmark their performance. The notion of “good overlap,”
as usually referred to, is vague and does not explore a perfor-
mance to resource cost ratio as a benchmarking tool [8,10].
We desire benchmark tools that address the trade-off between
the resource cost and performance improvement of the GSP
and GSEE subroutines. Such a tool could be used to answer
questions like the following: Is it worth the high circuit depth
cost to use a GSP algorithm that provides almost perfect
overlap values? Or is it better to settle for a heuristic method
like VQE with smaller ground state overlap even though it
increases the runtime of the GSEE subroutine?

The efficiency of a GSP algorithm gives the right tools
to understand the appropriate balance of resource cost and
performance of GSP and GSEE algorithms. To evaluate the
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FIG. 1. The acceptability criteria are used to benchmark the
given GSP method over the HF reference with the goal of reducing
the total runtime of the GSEE algorithm.

performance of quantum algorithms, recent work has pro-
posed a resource efficiency metric as the ratio of the success
metric over the resource cost [21]. Instead of defining ef-
ficiency metrics, in this work we introduce a criterion to
evaluate whether to accept or reject a given GSP algorithm.
The recent work [22] explores the conditions under which
the improved performance is worth the extra resource cost
of the GSP algorithm introduced in Ref. [13] for the task
of GSEE. Here we propose a systematic way to benchmark
different GSP methods for the problem of GSEE. We use the
HF method as a reference and explore under which conditions
a GSP method will be accepted over HF. The benchmarking
criteria incorporate both the reduction of the total runtime for
GSEE and the resource cost of the GSP algorithm (see Fig. 1).
We perform numerical simulations to showcase how to use the
criteria in practice and provide a resource estimation of the
maximum allowed depth of a GSP to be acceptable over HF.

The paper is organized as follows. In Sec. II we introduce
the criteria for acceptability of GSP that do not require repe-
titions, while we incorporate repetitions of GSP in Sec. III. In
these two sections, the choice of GSP is arbirtary. In Sec. IV,
we present numerical simulations on how to use the bench-
marking criteria set in the first two sections by using VQE and
low-depth boosters as GSP methods. Also, we include a re-
source estimation of the maximum allowed GSP circuit depth
for solid-state materials. Section V contains the conclusions
and future research directions.

II. CRITERIA FOR ACCEPTABILITY
OF STATE-PREPARATION METHODS

Here we discuss the criteria under which a state-
preparation method is acceptable for the purposes of GSEE.
Any GSEE method has a runtime that depends on the fea-
tures of the GSP: the GSP circuit depth D and the overlap γ

between the prepared state and the true ground state. The run-
time also depends on the target accuracy ε. For a given energy
estimation algorithm [7], the runtime can be formulated as

T (D, γ ; ε) = (number of repetitions)

× (total circuit depth of each repetition)

= (number of repetitions)

× (GSP depth + GSEE depth)

= Õ

[
1

γ α

(
D + 1

εγ β

)]
. (1)

A recent review on the different GSP and GSEE algorithms
has been discussed in Refs. [7,23]. According to the table
given in Ref. [7], example GSEE algorithms have values
α ∈ {0, 2, 4} and β ∈ {0, 1, 2} and it depends on the stud-
ied GSEE algorithms which pairwise values of α and β are
used. The units for the GSP and GSEE circuit depths need
to match, but as it will become evident from the numerical
simulations in the next section different choices for the units
could be used, such as the circuit depth and the T-gate count.
Note that the GSP and GSEE algorithms could belong to
different quantum regimes, for example, noisy intermediate
scale quantum (NISQ) and fault-tolerant quantum computing
(FTQC) as traditionally referred to, but eventually the depth
units should match. Also, we are ignoring constant factors
and logarithmic dependence on the parameters for now to
simplify the introduction of this technique, but these should
ultimately be included to set a more accurate benchmark. In
the numerical simulations in Sec. IV we discuss cases where
this simplification is valid. Finally, some state-preparation
methods require a number of repetitions to ensure their suc-
cess (with high probability). In Sec. III, we discuss the runtime
cost that includes repetitions of the GSP algorithms.

To establish the concept of an acceptable state preparation,
we must assume that the ground-state-energy-estimation al-
gorithm has a reference or default method to compare with.
A reference initial state for the task of GSEE could be simply
a product state of the measurement basis, or the solution to
a mean-field-level method, such as the Hartree-Fock ground
state. The circuit depth for preparing a reference state can
usually be neglected in cases such as the second quantization,
thus we label the depth and overlap as D0 = 0 and γ0. In this
work, we focus on the HF method as a reference exactly due
to the zero depth cost. Other methods, such as adiabatic-state
preparation [1,24], which have nonzero depth cost, could be
used as reference in future work. The runtime of GSEE using
the HF-reference-state preparation is

T0(D0, γ0; ε) = Õ

(
1

εγ
α+β

0

)
. (2)

The condition for a state-preparation method to be acceptable
over the reference is that the total runtime of the GSEE with
the GSP (T ) is smaller than the total runtime of the GSEE
with HF (T0), i.e., T < T0. This puts constraints on the state-
preparation parameters:

1

γ α

(
D + 1

εγ β

)
<

1

εγ
α+β

0

. (3)

Observe that if D = 0, then the acceptability criteria reduce
to the condition γ > γ0. We can rewrite the general condition
(3) as

D <
1

εγ β

[(
γ

γ0

)α+β

− 1

]
. (4)

This shows that if ε is decreased then a state preparation with
larger D will be accepted. In other words, for less demanding
GSEE algorithms with a worse target accuracy ε, a more
costly GSP algorithm could be accepted over the HF. Finally,
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TABLE I. Comparison of quantum algorithms for ground-state-
energy estimation along with the scaling parameters α and β that are
relevant to the efficiency calculation.

Algorithm GSEE depth Repetitions α + β

Õ(ε−1γ −β ) Õ(γ −α )

LT20 [13] Õ(ε−1γ −1) Õ(1) 1
DLT22 [7] Õ(ε−1) Õ(γ −2) 2
QPE [26,27] Õ(ε−1γ −2 ) Õ(γ −2) 4

we could write the above inequality as the following:

D + 1/εγ β

1/εγ β
<

(
γ

γ0

)α+β

. (5)

Therefore, the acceptability criterion in the more strict case
when α + β = 1 could be expressed in words as

total depth

GSEE depth
<

GSP overlap

HF overlap
(6)

or
total depth

GSEE depth
<

Nreps from HF

N0,reps from GSP
, (7)

where Nreps is the number of repetitions due to the GSP over-
lap value, i.e., Nreps = 1/γ and N0,reps = 1/γ0.

Next, we discuss the simple case when the GSP query
depth is much smaller than the GSEE query depth. Then, we
have

GSP depth

GSEE depth
� 1, (8)

Dγ β � 1

ε
. (9)

For typical values of ε � 10−3 [4,25], the condition be-
comes Dγ β � 103. Since β ∈ {0, 1, 2} [7] and γ � 1, the

more strict condition is D � 1

ε
.

Then, the acceptability criterion for any α ∈ {0, 2, 4} and
β ∈ {0, 1, 2} [7] is simplified to

1 <

(
γ

γ0

)α+β

, (10)

which simply states that the acceptance of the GSP over HF is
determined by the respective overlap values ratio.

Next, we compare the acceptability criteria for two dif-
ferent GSEE algorithms presented in the table of GSEE
performance [7], the quantum phase estimation semiclassical
algorithm (here referred to as QPE) [26,27], and the GSEE
algorithm developed in Ref. [13] (here referred as LT20) for
a given GSP algorithm whose depth depends on the lower
bound of the spectral gap � and the overlap γ0. We choose the
QPE and LT20 algorithms since α + β takes the maximum (4)
and the minimum (1) value, respectively, as shown in Table I.
For a more detailed discussion on these GSEE algorithms, we
refer the reader to the aforementioned references. For QPE we
have α = β = 2 and

εγ 2 + �γ0

�γ0
<

(
γ

γ0

)4

, (11)

while for LT20 we have α = 0, β = 1, and

εγ + �γ0

�γ0
<

(
γ

γ0

)
. (12)

Since γ � 1, we have

εγ 2 + �γ0

�γ0
� εγ + �γ0

�γ0
<

(
γ

γ0

)
<

(
γ

γ0

)4

. (13)

This suggests that the acceptability criterion for LT20 is more
strict than that for QPE. LT20 has a smaller GSEE query depth
compared to QPE, so it is harder to accept a GSP algorithm
with nonzero depth over HF. Therefore, the better the GSEE
algorithms becomes in terms of query depth reduction, the
more strict the criterion for the acceptance of a GSP method
over HF is. In other words, as the query depth of the GSEE
becomes smaller, the GSP depth becomes more relevant than
the GSP overlap.

Finally, the acceptability criteria allow us to explore the
maximum values of the GSP depth that enable the given GSP
method to be acceptable over the HF state. Given a specific
GSEE algorithm and the value of γ0, and assuming that the
GSP provides a specific value of γ , i.e., γ = 1, we find the
corresponding maximum acceptable depth of a GSP method.
To this end, Eq. (5) can be written as

D <
γ − γ0

γ0
DGSEE, (14)

for more demanding GSEE algorithms with α + β = 1 and
depth DGSEE. The above equation can be expressed as

GSP depth <
performance gain

HF performance
GSEE depth. (15)

III. CRITERIA FOR ACCEPTABILITY OF
STATE-PREPARATION METHODS WITH REPETITIONS

In this section, we discuss the criteria under which a GSP
method that requires repetitions to reach an overlap γ is
acceptable for a given GSEE algorithm. The runtime Eq. (1)
discussed in the previous section becomes

T (D, γ ; ε) = (number of repetitions of GSEE)

× [(number of repetitions of GSP)

× (circuit depth of GSP)

+ (circuit depth of GSEE)]

= Õ

[
1

γ α

(
1

Psucc
× D + 1

εγ β

)]
. (16)

As explained earlier, the runtime for the GSEE using the
HF-reference-state preparation T0 is given by Eq. (2). Then,
the condition, i.e., T < T0, for a state-preparation method
being acceptable over the reference becomes

D/Psucc + 1/εγ β

1/εγ β
<

(
γ

γ0

)α+β

, (17)

which can be expressed as

total query depth

GSEE query depth
<

Nreps from HF

Nreps from GSP
.
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FIG. 2. Fidelity as a function of bond distance of the H2 molecule
for the HF method and the SPA algorithm as GSP methods, re-
spectively. The value of α and β is set to be α + β = 1, which
corresponds to a GSEE method that has a more strict acceptability
criterion.

IV. NUMERICAL SIMULATIONS

In this section, we apply the acceptability criteria and
benchmark different GSP methods over the HF state for dif-
ferent Hamiltonians of molecules and solid-state materials,
starting from small molecules (H2 molecule) and moving on
to larger molecules (N2 molecule). These systems have also
been used in other recent works [10,11,18,20,28,29]. Finally,
we perform a resource estimation of the maximal acceptable
circuit depth of GSP for different solid-state materials over
HF state based on the recent work [25].

A. Molecules

We explore the acceptability criteria for a small molecule
(H2) with four spin-orbitals or qubits in an adapted basis
[30]. We compare the HF method to the separable pair ap-
proximation (SPA) approach introduced in the recent work of
Kottmann and Aspuru-Guzik [18] as the GSP method. For the
numerical simulations on H2 and N2 molecules with the SPA
algorithm, we followed the notebook [18] from Tequila [31]
and the molecular data [30].

According to the work of Kottmann and Aspuru-Guzik
[18], the circuit depth of SPA for the H2 molecule equals
3. Since the depth is DGSP = 3 � 103 for typical values of
chemical accuracy ε = 10−3, we are in the simple case dis-
cussed in Sec. II where the criteria are simplified to the overlap
values ratio [Eq. (10)]. We assume a more demanding GSEE
algorithm with α + β = 1 and the criterion is given by

1 <
γ

γ0
. (18)

In Fig. 2, we plot the fidelity of the two different GSP meth-
ods. For all bond distances presented in Fig. 2, the criterion is
satisfied. Specifically, at bond distance d = 0.5 the ratio γ

γ0
is

1.005, leading up to the value of 1.5 for d = 2.6. This suggests
that initially the SPA method is comparable to the HF method,
and as we increase the bond distance (Å), the SPA method is

acceptable over the HF method. For a less demanding GSEE
algorithm (i.e., with α + β possessing different values than 1),
the criteria would be satisfied and the SPA method would be
acceptable over the HF method.

Next, we explore the larger molecule N2 considering 6
active electrons in 12 spin-orbitals or qubits in an adapted
basis [30] at a bond distance of d = 2.0. Initially, we bench-
mark the SPA method over the HF method. Since DGSP =
3 [18], we could apply the criterion of Eq. (18), which
gives

1 <
γ

γ0
= 0.85

0.72
= 1.18. (19)

Therefore, the SPA is acceptable over the HF method. In
this case, the prefactors in the acceptability criteria could be
disregarded since the SPA resource cost is much smaller than
that of the GSEE.

Next, for the same molecule (N2 at bond distance d = 2.0),
we benchmark a more costly heuristic algorithm: the low-
depth booster from the recent work of Want et al. [20]. Details
on the simulations on the low-depth-booster algorithm can
be found in Ref. [20]. Following the aforementioned work
[20], we change the unit of depth from the circuit depth to
the accumulations of the controlled time evolution exp(2iπH )
operations, where H is the Hamiltonian of the system. Also,
we have DGSP = 103 with γ ≈ 1, while DGSEE = 2 × 104

and γ0 = 0.72. The success probability of the low-depth-
booster GSP algorithm applied with the linear combination
of unitaries (LCU) method is Psucc ≈ 0.5 [20]. Therefore, the
criterion of Eq. (17) becomes

D/(Psucc )+1/εγ β

1/εγ β <
(

γ

γ0

)α+β

⇒
2.2
2 <

(
1

0.72

)α+β ⇒ 1.1 < (1.39)α+β,

which is satisfied for any values of α and β of the GSEE
algorithms. In this case, since both the low-depth booster and
the GSEE are implemented with the LCU method, we could
follow the simplification of neglecting the prefactors in the
acceptability criteria.

B. Solid-state materials

Here, based on the resource estimation on the T-gate count
for the problem of GSEE given in the recent work [25] and
implemented with the LCU method, we explore the maximal
acceptable depth of the GSP methods for different solid-state
materials.

Recent work [25] estimates the T gates needed for quantum
simulation of three-dimensional (3D) spinful jellium (or the
homogeneous electron gas). It focuses on the T count since
applying a T gate requires a lot of logical qubits and takes
much longer than any other operation in a quantum circuit
[32]. The 3D spinful jellium is in the dual basis at a Wigner-
Seitz radius of 10 Bohr radii assuming the system is at half
filling. For 54 spin-orbitals and a target chemical accuracy
of �E = 0.0016 Hartree, the depth is equal to 1.8 × 107 T
count.

As explained in Ref. [25], the jellium is a good proxy
for different solid-state materials, such as diamond, graphite,
silicon, metallic lithium, and crystalline lithium hydride. For
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FIG. 3. Maximum acceptable depth Dmax of the GSP algorithm
with γ = 1 and DGSEE = 1.8 × 107 for solid-state materials as a
function of the HF overlap γ0.

these materials, the HF overlap could range from smaller
to larger values as presented in Fig. 3. Assuming that the
GSP method gives γ ≈ 1, we have a resource estimation
of the maximum depth allowed for the GSP method to be
acceptable over that of the HF method (see Fig. 3) given by
Eq. (14).

V. DISCUSSION

We introduced a method to assess when to accept or reject
a ground-state-preparation (GSP) method over the Hartree-
Fock (HF) reference for the task of ground-state-energy
estimation (GSEE) by introducing acceptability criteria. The
criteria are defined through the total runtime of the GSEE
algorithm that incorporates both the number of repetitions
needed and the total circuit depth of each repetition—i.e.,
the GSP and the GSEE depth. If the inequality introduced in
Eq. (5) is satisfied, then the GSP method is acceptable over
the HF method—i.e., provides a speedup in the total runtime
of the GSEE algorithm. The criteria explore the trade-off of
both the resource cost and the performance of GSP and GSEE
subroutines.

We explored under which conditions the acceptability
criteria could be simplified and also established them for
GSP methods that require repetitions to reach an overlap γ .
Comparing the acceptability criteria for two different GSEE
algorithms with a GSP, we found that the better the GSEE al-
gorithms become in terms of query depth reduction, the more
strict the criteria to accept a GSP over the HF method must
be. This could be due to the fact that the number of repetitions
introduced by the GSP overlap becomes less significant as
the GSEE query depth becomes smaller. The ability to trade
circuit depth with runtime is also suggested in recent works
[4,5]. In agreement, the resource estimation performed in this
work suggests that a GSP method with a circuit depth larger
than that of the GSEE could be accepted for total runtime
reduction.

Next, we showed that the separable-pair-approximation
(SPA) method is acceptable over the HF method for the

hydrogen molecule for different bond lengths, which suggests
that even for a simple molecule there exists GSP that could
offer an improved performance to the GSEE algorithm over
using the HF method. We also evaluated the more expensive
low-depth-booster GSP algorithm for the nitrogen molecule,
which is widely used for benchmarking quantum chem-
istry simulations, in particular, when the bond is stretched
[10,18,20]. These results suggest that more expensive GSP
methods could reduce the total runtime, thus being acceptable
over the HF reference. In accordance, the resource estimation
of the maximum allowed depth of a GSP does not provide ev-
idence against the use of VQEs and more expensive heuristic
methods. Further numerical and theoretical work is needed to
draw a more definitive conclusion.

The proposed acceptability criteria are a first attempt to ex-
plore the trade-off between the resource cost and performance
of the GSP algorithm used and those of the GSEE algorithm.
The resource cost is evaluated in terms of the circuit depth,
while the GSP and GSEE performances are evaluated in terms
of the overlap γ given by GSP and the overall runtime needed
for both algorithms. The proposed criteria drop the big-O no-
tation, which means that the prefactors of the studied GSP and
GSEE algorithms are neglected. It will be the subject of future
work to update the criteria to incorporate the prefactors of the
GSP and GSEE algorithms. For certain cases though, like the
ones studied in Sec. IV, the prefactors could be neglected, for
example, when the GSP depth is much smaller than that of the
GSEE or when both the GSP and GSEE are implemented with
the same method, i.e., linear combination of unitaries. Then,
the prefactors do not play a role in the ratio that defines the
acceptability criteria.

For nonheuristic GSP algorithms, the γ value might be
estimated a priori, but this is challenging to do with heuristic
methods. In principle, one might be able to establish bounds
for the performance of the low-depth-booster algorithm [13].
Moreover, after a careful numerical analysis and resource
estimation on a studied system, the results could potentially be
extrapolated to systems with similar properties as discussed in
Ref. [33] or to an increased system size. Extrapolation seems
to be one of the most trustworthy approaches to assessing
the efficiency of heuristic methods [8], but of course, due to
the nature of heuristic methods, one should carefully evaluate
such an analysis.

This work sets a foundation to further explore resource
efficiency metrics for GSP and GSEE algorithms. As al-
ready mentioned, the criteria could be adjusted to incorporate
logarithmic dependencies on the parameters or the recent
GSEE algorithm with an exponential improvement in the
circuit depth [4]. It would also be interesting to apply the
criteria introduced here to molecules and materials of in-
dustrial relevance [34] and further use them for resource
estimations. Our follow-up work performs a careful nu-
merical analysis and resource estimation to benchmark two
GSP algorithms with the same system under study [33].
Finally, other GSP methods could play the role of the
reference method instead of the HF method. It is challeng-
ing to assess what combination of methods will ultimately
be used in practice, and further research will help evalu-
ate the utility of various combinations of GSEE and GSP
methods.
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