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High-fidelity entanglement plays an important role in quantum networks for guaranteeing the integrity of
quantum information processing. We present an error identification entanglement purification protocol (EIEPP)
for maintaining high-fidelity entanglement of stationary systems. In EIEPP, the hybrid controlled-X gate for
stationary systems and high-dimensional spatial-mode state of photons has been constructed using a stationary-
whispering gallery mode resonator-waveguides system, and it is used to construct an error number gate (ENG)
and error position gate (EPG) for noisy entangled stationary systems. Using ENG and EPG, the stationary
systems with errors are discarded according to the measurement results of high-dimensional entangled photon
states, and typically high-fidelity entangled states of stationary systems can be achieved with high yield in
both ideal and practical situations. This EIEPP has superior performance for stationary systems with amplitude
damping noise, and it is also applicable for stationary systems with other types of noise.
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I. INTRODUCTION

Entanglement is a vital resource for numerous applica-
tions in quantum information protocols and technologies, such
as quantum networks [1,2], quantum communication [3–15],
quantum repeaters [16–20], distributed quantum computation
[21,22], and so on. Nonetheless, entanglement is fragile un-
der noise and decoherence in the distribution and storage
processes, which may influence the performance of quan-
tum information protocols and technologies. Entanglement
purification [23] is a passive way for maintaining high-fidelity
entanglement, where fewer copies of the entangled state with
increased fidelity are produced by locally manipulating en-
sembles of noisy entangled states.

In the past decades, many entanglement purification
protocols (EPPs) have been proposed and demonstrated
using several methods [23–53], such as recurrence protocols,
hashing protocols, breeding protocols, and so on. Recurrence
EPPs [23–26] involve the controlled-NOT gate operations
(or similar operations) and measurements on few copies
of noisy entangled states, and these protocols are always
iteratively applied to increase the fidelity of the entangled state
probabilistically. Hashing and breeding protocols [23–25]
require operations on (asymptotically) large ensembles and
extra entanglement to gather the information of errors in
noisy ensemble by measuring parities of randomly chosen
subsets. Nevertheless, the asymptotic schemes may repeatedly
access and interpret partial information and exclude many
incompatible state configurations.

In the practical application, it is important to design en-
tanglement purification protocols with both high yields and
high error thresholds, which is a bottleneck to be overcome. In
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2021, Riera-Sàbat et al. introduced an entanglement purifica-
tion scheme named error identification protocol (EIP) [54,55]
using the high-dimensional entangled states as auxiliary. In
EIP, the number and position information of errors in an
ensemble of noisy entangled states can be transferred to the
high-dimensional entangled states, resulting in the purifica-
tion of the ensemble. This approach offers an efficient and
direct way to perform entanglement purification on systems
involving a limited number of copies. Moreover, EIP may
lead to a perfect entangled state with unit fidelity in a de-
terministic manner, if the number of errors in the ensemble
is bounded and the local operations are perfect. If there are
too many errors in the ensemble, EIP may work in a proba-
bilistic manner to avoid the cost of more entanglement than
can be gained, while the achievable fidelity of this manner
could also be typically high with an improved yield in some
cases.

Quantum stationary systems [48,56] are artificial solid
atom systems that are more stable than photonic systems, and
they are natural candidates for quantum networking applica-
tions. The negatively charged silicon-vacancy color (SiV−)
center in diamond is a fantastic stationary system [57–59]
which has attracted much attention with high brightness [60],
lifetime-limited optical linewidths [61], and narrow inhomo-
geneous distribution of optical transition frequencies [62].
The unique inversion symmetry of the SiV− center causes the
permanent electric dipole moments of the ground and excited
states to disappear, making the transition insensitive to the
electric field noise typically present in nanostructures [63].
This property makes the SiV− center a promising candidate
for solid-state qubit of a quantum network node [56], espe-
cially in cavity quantum electrodynamics (QED). Moreover,
the entanglement of SiV− centers can be created by using a
portion of the coherent photons emitted in the zero phonon
line (ZPL) [64].
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Here, we present an error identification entanglement pu-
rification protocol (EIEPP) for the SiV− center system, which
can achieve typically high fidelity and high yield in both
ideal and practical situations. Error number gate (ENG) and
error position gate (EPG) are two essential elements of this
EIEPP, and they are constructed by the hybrid controlled-X

(CX) gate of SiV− center in diamond and the four-dimensional
spatial-mode state of a photon. Using ENG and EPG, the
number and position information of errors in an ensemble of
noisy entangled SiV− center systems will be transferred to
four-dimensional photonic Bell states, and the SiV− center
systems with errors could be discarded according to the mea-
surement results of four-dimensional photon states, resulting
in high-fidelity entangled states of SiV− center systems. For
the SiV− center systems with amplitude damping noise, the
purified state in EIEPP has nearly unit fidelity with perfect
local operations. Additionally, the EIEPP for SiV− center
systems suffering from other types of noise has also been
analyzed briefly. Furthermore, the fidelity of the purified state
and the yield of EIEPP are discussed in an experimental situa-
tion, which shows that EIEPP can achieve comparable average
fidelity and high yield even with imperfect local operations.
Therefore, this EIEPP has promising applications in practical
quantum information protocols and technologies.

The paper is organized as follows. In Sec. II, we introduce
the construction and application of a hybrid CX gate for the
SiV− center system and four-dimensional spatial-mode state
of a photon. In Sec. III, we introduce the construction of ENG
and EPG and the implementation of EIEPP. In Sec. IV, we
discuss the feasibility of EIEPP in an experimental situation.
Finally, we present a conclusion in Sec. V.

II. HYBRID CONTROLLED-X GATE

A. Construction of hybrid controlled-X gate

In this section, we will construct a hybrid CX gate for the
quantum state of a SiV− center in diamond and the four-
dimensional spatial-mode state of a photon. The SiV− center
in diamond has been identified as a promising stationary qubit
for carrying information due to its unique structure, which
consists of complexes made up of two carbon vacancies with
a silicon atom between them [56–59], as shown in Fig. 1(a).
The unique structure of the SiV− center exhibits D3d inversion
symmetry [58]. Under the moderate strain, the ground state
of the SiV− center can be simplified to the two electron-spin
sublevels of the lowest orbital branch, i.e., |g〉 = |↓〉 and |e〉 =
|↑〉, and the excited state of the SiV− center can also be sim-
plified to two electron-spin levels of the lower orbital branch,
i.e., |g′〉 = |↓〉 and |e′〉 = |↑〉 [56,58], as shown in Fig. 1(b).
This simplification can be achieved by removing uncorrelated
energy levels of the SiV− center with large detunings. When
an external magnetic field is applied along the SiV− symmetry
axis, the spin-conserving optical transitions |g〉 ↔ |g′〉 and
|e〉 ↔ |e′〉 will occur independently with horizontal polariza-
tion photons (|H〉) in the frequencies ωg and ωe = ωg + �,
respectively, while the cross transitions |g〉 ↔ |e′〉 and
|e〉 ↔ |g′〉 with spin flipping are dipole forbidden [56,58].

The transitions between |g〉 ↔ |g′〉 and |e〉 ↔ |e′〉 can be
enhanced by fixing the SiV− center on the exterior surface

FIG. 1. (a) Atomic structure of SiV− center in diamond. (b) The
energy-level structure of SiV− center and its optical transition. |g〉
and |e〉 represent two electron-spin sublevels of the lowest orbital
branch in the ground state. |g′〉 and |e′〉 represent two electron-
spin levels of the lower orbital branch in the exited state [56].
(c) Schematic diagram of a hybrid controlled-X gate constructed
by SiV−-WGM-waveguides-HWP system. a0 − a3 (a′

0 − a′
3) are in-

put (output) ports of four waveguides coupled to WGM resonator.
HWP represents the half-wave plate with function |H〉 → −|H〉 and
|V 〉 → |V 〉.

of a whispering gallery mode (WGM) resonator [65–68] as
shown in Fig. 1(c). Here, a0 − a3 (a′

0 − a′
3) are input (output)

ports of four waveguides coupled to a WGM resonator. In
this SiV−-WGM-waveguides system, the interaction of the
input photon and SiV− center can be deduced by the quantum
Heisenberg equation of motion for the cavity-mode operator â
and the dipole operator σ̂− in the interaction picture [68–70].
That is,

dâ

dt
= − i(ωc − ωp)â − κ1 + κ2

2
â − gσ̂−

+ √
κ1â j + √

κ2â j	1,

dσ̂−
dt

= −
[

i(ωs − ωp) + γ

2

]
σ̂− − gσ̂zâ, (1)

where ωc represents the frequency of the resonator field. ωp

represents the frequency of the input photon, and ωs represents
the frequency of the dipole transition (s = g, e). σ̂− and σ̂z rep-
resent the lowering operator and the inversion operator of the
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SiV− center. γ stands for the spontaneous emission rate of the
SiV− center, and g is the coupling strength between the WGM
resonator and the SiV− center. The operators â j (â j	1) and â′

j

(â′
j	1) are the input and output field operators, respectively,

where j = 0, 1, 2, 3 and j 	 1 = ( j − 1) mod 4. They satisfy
the boundary relations â′

j = â j − √
κ1â and â′

j	1 = â j	1 −√
κ2â. κ1 and κ2 represent the coupling losses of WGM-bus

and WGM-drop waveguides, respectively, and κ1=κ2 can be
adjusted to ensure maximum coupling efficiency [65].

In the weak excitation limit with the SiV− center dominant
in the ground state (〈σz〉 = −1), the steady-state solution of
transmittance and reflectance of the SiV−-WGM-waveguides
system can be obtained [68]. The reflection coefficient [r(ωp)]
and transmission coefficient [t (ωp)] can be expressed as

t (ωp) = i(ωc − ωp)
[
i(ωs − ωp) + γ

2

] + g2

[i(ωc − ωp) + κ]
[
i(ωs − ωp) + γ

2

] + g2
,

r(ωp) = −κ
[
i(ωs − ωp) + γ

2

]
[i(ωc − ωp) + κ]

[
i(ωs − ωp) + γ

2

] + g2
. (2)

At resonance condition with ωc = ωp, the transmission and
reflection coefficients of the SiV−-WGM-waveguides system
can be written as

t (ωp) = g2

κ
[
i(ωs − ωp) + γ

2

] + g2
,

r(ωp) = −κ
[
i(ωs − ωp) + γ

2

]
κ
[
i(ωs − ωp) + γ

2

] + g2
. (3)

The input photon is in the |H〉 state with ωp ≈ ωg. For
the case ωs = ωe, the SiV− center is uncoupled to the WGM
resonator (g = 0), with the input photon resonant with the bare
WGM resonator, and the transmission and reflection coeffi-
cients are t0 = 0 and r0 = −1 with phase shift φ0 = π . On
the other hand, under the resonance condition (ωs = ωg), the
transmission and reflection coefficients can be expressed as

t = 2g2

γ κ + 2g2
, r = −γ κ

γ κ + 2g2
. (4)

When the SiV− center is strongly coupled to the resonator
(g � √

γ κ), the reflection and transmission coefficients are
r → 0 and t → 1 with no phase shift (φ = 0). Then, the
input-output rule of the input photon interacting with the
SiV−-WGM-waveguides system can be summarized as

|a j, g〉 → |a′
j, g〉, |a j, e〉 → −|a′

j	1, e〉. (5)

In Eq. (5), if the state of the SiV− center is |g〉, the photon is
input and output from the same waveguide (the subscript of
the output port is the same as the subscript of the input port),
which corresponds to the case where the spatial-mode state of
the photon remains unchanged. If the state of the SiV− center
is |e〉, the photon is input from a waveguide j and output
from the adjacent waveguide j 	 1 [69], which corresponds
to the case where the spatial-mode state of the photon will be
flipped from |a j〉 to |a′

j	1〉 with an additional π phase shift.
Here, the additional π phase shift can be eliminated by the
half-wave plates (HWPs) shown in Fig. 1(c), whose function
can be expressed as |H〉 → −|H〉 and |V 〉 → |V 〉. Hence,

the input-output rule of the input photon interacting with the
SiV−-WGM-waveguides-HWP system can be expressed as

|a j, g〉 → |a′
j, g〉, |a j, e〉 → |a′

j	1, e〉. (6)

Equation (6) is the function of the hybrid CX gate, where the
control qubit is the state of the SiV− center and the target
qudit is the spatial-mode state (i.e., four waveguides) of the
input photon. That is, if the state of the SiV− center is |g〉,
the spatial-mode state of the photon remains unchanged. If
the state of the SiV− center is |e〉, the spatial-mode state of
the photon is flipped from |aj〉 to |a′

j	1〉.

B. The application of hybrid CX gate

In this section, we will investigate the function of hybrid
CX gates for the Bell states of the SiV− center system and
four-dimensional photon system. The four Bell states of the
SiV− center system can be expressed as

|φ+〉Si1Si2 = 1√
2

(|gg〉 + |ee〉)Si1Si2 ,

|ψ+〉Si1Si2 = 1√
2

(|ge〉 + |eg〉)Si1Si2 ,

|φ−〉Si1Si2 = 1√
2

(|gg〉 − |ee〉)Si1Si2 ,

|ψ−〉Si1Si2 = 1√
2

(|ge〉 − |eg〉)Si1Si2 , (7)

where Si1 (Si2) represents the SiV− center in the
SiV−

1 -WGM1-waveguides-HWP (SiV−
2 -WGM2-waveguides-

HWP) system. The Bell state of the four-dimensional photon
system is expressed as [55]

|
mn〉 = 1

2

3∑
k=0

ei π
2 km|ak〉A|bk	n〉B, (8)

where A and B represent two photons of four-dimensional
Bell states. The subindex m is defined as the phase index,
and the subindex n is defined as the amplitude index (m, n =
0, 1, 2, 3). |ak〉A and |bk	n〉B represent the spatial modes of
photons A and B, respectively, and they correspond to the
input ports of two SiV−-WGM-waveguides-HWP systems
shown in Fig. 2. The polarization modes of photons A and
B are both in |H〉 state.

Two hybrid CX gates are performed on the Bell states of
two SiV− centers and two photons. That is, the states of Si1
and Si2 are used as the control qubits of the first hybrid CX

gate and second hybrid CX gate, respectively, and spatial-
mode states of two photons A and B are used as the target
qudits of the first hybrid CX gate and second hybrid CX gate,
respectively. After the two hybrid CX gates performed on the
Bell states of two SiV− centers and two photons, the quantum
state of system Si1Si2AB will be transformed to

|φ+〉Si1Si2 |
00〉AB 
→ |φ+〉Si1Si2 |
 ′
00〉AB,

|φ−〉Si1Si2 |
00〉AB 
→ |φ−〉Si1Si2 |
 ′
00〉AB,

|eg〉Si1Si2 |
00〉AB 
→ |eg〉Si1Si2 |
 ′
03〉AB,

|ge〉Si1Si2 |
00〉AB 
→ |ge〉Si1Si2 |
 ′
01〉AB. (9)
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FIG. 2. Schematic diagram of hybrid CX gates for the Bell states of the SiV− center system and four-dimensional photon system. Photon
A and SiV− center system Si1 belong to Alice. Photon B and SiV− center system Si2 belong to Bob. a0 − a3 (a′

0 − a′
3) are input (output) ports

of the SiV−
1 -WGM1-waveguides-HWP system. b0 − b3 (b′

0 − b′
3) are input (output) ports of the SiV−

2 -WGM2-waveguides-HWP system.

Here,

|
 ′
mn〉 = 1

2

3∑
k=0

ei π
2 km|a′

k〉A|b′
k	n〉B. (10)

|a′
k〉A and |b′

k	n〉B represent the spatial modes of photons A and
B, which correspond to the output ports of two SiV−-WGM-
waveguides-HWP systems shown in Fig. 2.

From Eq. (9), we can find that the parity information of
Bell states of Si1Si2 can be identified by the four-dimensional
photonic Bell state. If the state of Si1Si2 is |ge〉 (odd parity),
the amplitude index of the four-dimensional photonic Bell
state is increased by one (i.e., n = 0 → n = 1). Besides, if the
state of Si1Si2 is |eg〉 (odd parity), the amplitude index of the
four-dimensional photonic Bell state is decreased by one (i.e.,
n = 0 → n = 3). For the Bell states |φ+〉Si1Si2 and |φ−〉Si1Si2
(even parity), the amplitude index of the four-dimensional
photonic Bell state remains unchanged. By measuring the
spatial-mode states of photons A and B, the variation of ampli-
tude index of the four-dimensional photonic Bell state can be
read out, which means the parity information of the quantum
state of Si1Si2 can be identified. In Sec. III, we will use this
function of hybrid CX gates to construct the EIEPP.

III. ERROR IDENTIFICATION ENTANGLEMENT
PURIFICATION PROTOCOL

In quantum information processing, SiV− center systems
in the maximally entangled Bell state will decay to the ones in
the less-entangled mixed state by the environment noise. For
example, SiV− center systems in Bell state |φ+〉 will decay to
the ones in less-entangled mixed state ρ by several particular
types of noise, such as amplitude damping noise, dephasing
noise, or bit-flip noise. Here, the less-entangled mixed state
can be described as

ρ = p0|φ+〉〈φ+| + p1|ge〉〈ge| + p2|eg〉〈eg|. (11)

The fidelity of the Bell state |φ+〉 in mixed state ρ is F = p0,
and the probabilities of the error components |ge〉 and |eg〉 in

mixed state ρ are p1 and p2, respectively, where p0 + p1 +
p2 = 1.

Here, we will introduce an EIEPP to reduce the probabili-
ties of the error components in mixed state ρ, which means
the fidelity of the Bell state |φ+〉 in mixed state ρ can be
increased. In order to implement EIEPP, the nonlocal mixed
entangled SiV− center systems are divided into several sub-
sets, and each subset contains four nonlocal mixed entangled
SiV− center systems (i.e., Si1

1Si1
2 − Si4

1Si4
2) as shown in Fig. 3,

where Si1
1 − Si4

1 belong to Alice and Si1
2 − Si4

2 belong to Bob.
The remote users first identify the number of error SiV− cen-
ter systems in each subset using ENG, and then they identify
the position of error SiV− center systems in each subset using
EPG. At last, the error components in mixed state ρ can be

FIG. 3. Schematic diagram of error identification entanglement
purification protocol. (a) Error number gate. (b) Error position gate.
Si1

1Si1
2 − Si4

1Si4
2 represent four SiV− center systems in a subset. SiV−

centers Si1
1 − Si4

1 and photons AC belong to Alice. SiV− centers
Si1

2 − Si4
2 and photons BD belong to Bob. The schematic diagrams

of ENG and EPG are shown in Fig. 4.
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FIG. 4. Schematic diagrams of (a) ENG and (b) EPG in Alice’s side. S represents an optical switch [71], and it is used to convey photon C
from the output port cy⊕1

k to the corresponding input port cy
k (y = 1, 2, 3). The schematic diagrams of ENG and EPG in Bob’s side are similar

to the ones in Alice’s side by replacing Siy
1 and photons AC to Siy

2 and photons BD.

removed according to the number and position information of
error SiV− center systems in each subset, resulting in high-
fidelity entangled states of SiV− center systems.

A. Error number gate and error position gate

In EIEPP, ENG and EPG are used to identify the number
and position of error SiV− center systems in each subset,
and they are constructed by the hybrid CX gate introduced in
Sec. II. The quantum circuits of ENG and EPG are shown in
Figs. 4(a) and 4(b), respectively.

In ENG, an auxiliary four-dimensional photonic Bell state
|
00〉AB is required, where two photons A and B belong to
the remote users Alice and Bob, respectively. The remote user
Alice (Bob) performs hybrid CX gates on photon A (B) and
four SiV− centers Si1

1 − Si4
1 (Si1

2 − Si4
2) in sequence as shown

in Fig. 4(a). Here, the superscript y (y = 1, 2, 3, 4) represents
the position of the SiV− center in the subset. The explicit
expression of ENG is given by [55]

4∏
y=1

CXSiy1→ACXSiy2→B, (12)

where the subscript Siy
1 → A (Siy

2 → B) represents that the
control qubit of the hybrid CX gate is the state of Siy

1 (Siy
2) and

the target qudit of the hybrid CX gate is the spatial-mode state

of photon A (B). Then, Alice and Bob measure the spatial-
mode states of two photons A and B, and they compare their
measurement results. If the measurement results show that
the spatial-mode states of two photons A and B are |a′

k〉A and
|b′

k	n〉B, the number of error SiV− center systems |ge〉 (or |eg〉)
in a subset can be identified by the relationship n = ne mod 4
[or n = (4 − ne) mod 4], where ne represents the number of
error SiV− center systems in a subset.

In EPG, another auxiliary four-dimensional photonic Bell
state |
00〉CD is required, where two photons C and D belong
to the remote users Alice and Bob, respectively. The remote
user Alice (Bob) performs hybrid CX gates on photon C (D)
and four SiV− centers Si1

1 − Si4
1 (Si1

2 − Si4
2) in sequence as

shown in Fig. 4(b). Here, the hybrid CX gate for Siy
1 (Siy

2) will
be performed y times. That is, the hybrid CX gate for photon
C (D) and SiV− center Si1

1 (Si1
2) is performed once. Then, the

hybrid CX gate for photon C (D) and SiV− center Si2
1 (Si2

2) is
performed twice. Subsequently, the hybrid CX gate for photon
C (D) and SiV− center Si3

1 (Si3
2) is performed three times.

Finally, the hybrid CX gate for photon C (D) and SiV− center
Si4

1 (Si4
2) is performed four times. The explicit expression of

the EPG is given by [55]

4∏
y=1

(
CXSiy1→C

)y(
CXSiy2→D

)y
. (13)
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TABLE I. The relationship of n, ne, configuration, additional
operations, and fidelity of purified state for the case p2 = 0.

n ne Configuration Additional operation F ′

0 0 or 4 4 × |φ+〉 or 4 × |ge〉 / F 4

F4+(1−F )4

1 1 1 × |ge〉 EPG 1
2 2 2 × |ge〉 Grouping 1
3 3 3 × |ge〉 EPG 1

Then, Alice and Bob measure the spatial-mode states of two
photons C and D, and they compare their measurement results.
If the measurement results show that the spatial-mode states
of two photons C and D are |c′

k〉C and |d ′
k	n′ 〉D, the position

ye of error SiV− center system |ge〉 (or |eg〉) in a subset can
be identified by the relationship n′ = (

∑ye=ne
ye=1 ye) mod 4 (or

n′ = [4 − (
∑ye=ne

ye=1 ye)] mod 4).

B. Error identification entanglement purification protocol

Here, we introduce the way to purify the less-entangled
mixed state ρ using ENG and EPG (i.e., the detailed procedure
of EIEPP). For the sake of simplification, we first introduce
the detailed procedures of EIEPP for the cases p2 = 0 and
p1 = 0 in Eq. (11). Subsequently, we discuss the EIEPP pro-
cedures for the cases p2 = p1 and p2 �= p1 �= 0 in Eq. (11).

1. p2=0

In this case, the quantum state of the SiV− center system
in Eq. (11) can be expressed as

ρ1 = F |φ+〉〈φ+| + (1 − F )|ge〉〈ge|, (14)

which is local unitary (LU) equivalent to the result of sending
a Bell state through an amplitude damping channel [54,55,72].
Alice and Bob perform the ENG operation on four SiV− cen-
ter systems Si1

1Si1
2 − Si4

1Si4
2 in a subset using four-dimensional

photonic Bell state |
00〉AB. Then, Alice and Bob measure the
spatial-mode states of two photons A and B, and they can
read out the number (ne) of error SiV− center systems (i.e.,
|ge〉〈ge|) in this subset using the relationship n = ne mod 4.
Subsequently, Alice and Bob have to perform different op-
erations for the four conditions obtained by the amplitude
index n of this ENG operation. The relationships of n, ne,
configuration, additional operations, and fidelity of purified
state are shown in Table I.

a. n = 0. In this condition, the number of error SiV−

center systems in this subset could be ne = 0 (or ne = 4),
which corresponds to the configuration where four SiV− cen-
ter systems Si1

1Si1
2 − Si4

1Si4
2 are in state |φ+〉 (or |ge〉). The

probability of the case ne = 4 is much smaller than the one
of ne = 0. For example, the probability of ne = 4 is only
0.16% when F = 0.8, which is much smaller than the one
of ne = 0 with 40.96%. Therefore, the result n = 0 of this
ENG is deemed to be the successful condition of EIEPP,
and the EPG operation is not required in this condition. The
fidelity of the purified state of this condition is shown in
Table I.

b. n = 1. In this condition, the number of error SiV− center
systems in this subset is ne = 1, which corresponds to the

configuration where one SiV− center system in this subset
is in state |ge〉. Alice and Bob need to perform an EPG op-
eration on four SiV− center systems Si1

1Si1
2 − Si4

1Si4
2 in the

subset using four-dimensional photonic Bell state |
00〉CD.
Then, Alice and Bob measure the spatial-mode states of two
photons C and D, and they can read out the amplitude index
n′ of this EPG operation. The relationship between n′ and
the position (ye) of the error SiV− center system can be
expressed as

n′ 0 1 2 3

ye 4 1 2 3.

The procedure of EPG operation can be simplified for
this condition. That is, the hybrid CX gates are performed on
photon C (D) and SiV− center Siy

1 (Siy
2) for y times when

y = 1, 2, 3, i.e., the four-dimensional photonic Bell state does
not interact with Si4

1Si4
2. With this simplified EPG procedure,

the four-dimensional photonic Bell state only interacts with
three pairs of SiV− centers, and the relationship between n′
and ye is the same as the aforementioned EPG procedure. With
the EPG operation, the error SiV− center system Siye

1 Siye
2 can

be read out by the amplitude index n′, and the fidelity of the
purified state is F ′ = 1 in this condition.

c. n = 2. In this condition, the number of error SiV− center
systems in this subset is ne = 2, which corresponds to the
configuration that two SiV− center systems in this subset are
in state |ge〉. There are six possible scenarios for the positions
of two error SiV− center systems, and the four SiV− center
systems in this subset are randomly divided into two groups
(named G1 and G2), with each group containing two pairs
of SiV− center. Then, Alice and Bob perform the ENG op-
eration on group G1 with a new four-dimensional photonic
Bell state |
00〉A′B′ . With the measurement result of pho-
tonic Bell state |
00〉A′B′ , three configurations can be obtained
with the amplitude index n1 of the ENG. The relationships
of n1 and three configurations with their probabilities are
expressed as

n1 Configuration Probability

0 Two error SiV− center systems in G2 1/6
2 Two error SiV− center systems in G1 1/6
1 One error SiV− center system in each group 2/3.

For n1 = 0 (or n1 = 2), two error SiV− center systems are
both in the group G2 (or G1), so Alice and Bob can discard
the group with two error SiV− center systems and keep the
group with no error SiV− center system. For n1 = 1, there
is one error SiV− center system in each group, so Alice and
Bob have to perform EPG operations on the SiV− center
systems of two groups, G1 and G2, with four-dimensional
photonic Bell states |
00〉CD and |
00〉C′D′ , respectively. In
EPG operation, the hybrid CX gates only need to be performed
on the SiV− centers in position 1 of each group. After the sim-
plified EPG operation, if the measurement result of photonic
Bell state |
00〉CD (or |
00〉C′D′) shows the amplitude index
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is n′ = 0 (or n′
1 = 0), it means the error SiV− center system

is in the position ye = 2 of group G1 (or G2). If the mea-
surement result of photonic Bell state |
00〉CD (or |
00〉C′D′ )
shows the amplitude index is n′ = 1 (or n′

1 = 1), it means the
error SiV− center system is in the position ye = 1 of group
G1 (or G2).

In order to reduce the resource consumption, the four-
dimensional photonic Bell states (i.e., |
00〉CD and |
00〉C′D′ )
can be replaced by two-dimensional photonic Bell states
(e.g., |
 ′

00〉IJ ) in the procedures of EPG operations for two
groups. The two-dimensional photonic Bell state is defined
as |
 ′

mn〉IJ = 1√
2

∑1
k=0 eiπkm|lk〉I |tk	n〉J (IJ = CD,C′D′ and

m, n = 0, 1), where |lk〉I and |tk	n〉J represent the spatial
modes of photons I and J , respectively. After the hybrid CX

gates in EPG operation are performed on the SiV− centers in
position 1 of each group, the position of error SiV− center sys-
tem in each group can also be identified by the measurement
results of two-dimensional photonic Bell states. With these
ENG and EPG operations, the fidelity of the purified state of
this condition is F ′ = 1.

d. n = 3. In this condition, the number of error SiV− center
systems in this subset is ne = 3, which corresponds to the
configuration that three SiV− center systems in this subset
are in state |ge〉. Alice and Bob need to perform EPG op-
eration on four SiV− center systems Si1

1Si1
2 − Si4

1Si4
2 in the

subset using four-dimensional photonic Bell state |
00〉CD.
Then, Alice and Bob measure the spatial-mode states of
two photons, C and D, and they can read out the amplitude
index n′ of this EPG operation. The positions of three er-
ror SiV− center systems (y1

e , y2
e , y3

e ) satisfy the relationship
n′ = (y1

e + y2
e + y3

e ) mod 4. Here, the relationship between n′
and positions of three error SiV− center systems can be
expressed as

n′ 0 1 2 3

y1
e , y2

e , y3
e 1,3,4 2,3,4 1,2,3 1,2,4.

As a result, the positions of error SiV− center systems can be
identified by the EPG operation, and the fidelity of the purified
state in this condition is F ′ = 1.

In summary, for amplitude damping noise, the number of
error SiV− center systems in the subset can be identified by
the measurement results of the spatial-mode states of photons
A and B in ENG. Subsequently, Alice and Bob have to perform
different operations according to the amplitude index n of the
ENG operation as shown in Table I. For the conditions n =
1, 2, 3, the position of error SiV− center systems in the subset
can be identified by ENG and EPG operations, so the purified
state is |φ+〉 with fidelity F ′ = 1. For the condition n = 0, the
purified state is ρ2 = F 4

F 4+(1−F )4 |φ+〉〈φ+| + (1−F )4

F 4+(1−F )4 |ge〉〈ge|
with fidelity F ′ = F 4

F 4+(1−F )4 (F ′ > F for F > 1/2). When
F = 0.8, the fidelity of mixed state ρ2 is F ′ = 0.996, which
is approximate to F ′ = 1. If the EPG operation is used in the
condition n = 0, the purified state of SiV− center systems in
the subset will be |φ+〉 with fidelity F ′ = 1, but it will cause
a resource consumption problem associated with auxiliary
entanglement.

TABLE II. The relationship of n, ne, configuration, additional
operations, and fidelity of purified state for the case p1 = 0.

n ne Configuration Additional operation F ′

0 0 or 4 4×|φ+〉 or 4×|eg〉 / F 4

F 4+(1−F )4

1 3 3×|eg〉 EPG 1
2 2 2×|eg〉 Grouping 1
3 1 1×|eg〉 EPG 1

2. p1 = 0

In this case, the quantum state of the SiV− center system
in Eq. (11) can be expressed as

ρ3 = F |φ+〉〈φ+| + (1 − F )|eg〉〈eg|. (15)

The detailed procedure of EIEPP for this case is similar to
the one for the case p2 = 0 in Sec. III B 1. Alice and Bob
perform the ENG operation on four SiV− center systems
Si1

1Si1
2 − Si4

1Si4
2 in a subset using four-dimensional photonic

Bell state |
00〉AB as the auxiliary, and they measure the
spatial-mode states of two photons A and B and read out the
number (ne) of error SiV− center systems (i.e., |eg〉〈eg|) in
this subset using the relationship n = (4 − ne) mod 4. Subse-
quently, Alice and Bob have to perform different operations
for the four conditions obtained by the amplitude index n of
this ENG operation. The relationships of n, ne, configuration,
additional operations, and fidelity of purified state are shown
in Table II.

For the conditions n = 2 (i.e., ne = 2) and n = 0 (i.e.,
ne = 0 or ne = 4), the additional operations are the same as
the ones for the case p2 = 0 in Sec. III B 1. For the condi-
tion n = 1 (i.e., ne = 3), the positions of error SiV− center
systems in the subset can be identified by the EPG using the
relationship n′ = [4 − (

∑ye=ne
ye=1 ye)] mod 4. For the condition

n = 3 (i.e., ne = 1), Alice and Bob perform the EPG operation
on the SiV− center systems in the subset and discard the
SiV− center system Siye

1 Siye
2 , where the position of the error

SiV− center system is n′ = (4 − ye) mod 4. After these addi-
tional operations, the fidelity of the purified state is F ′ = 1
for the conditions n = 1, 2, 3. For the condition n = 0, the
purified state of the SiV− center system in this subset is
mixed state ρ4 = F 4

F 4+(1−F )4 |φ+〉〈φ+| + (1−F )4

F 4+(1−F )4 |eg〉〈eg| with

fidelity F ′ = F 4

F 4+(1−F )4 (F ′ > F for F > 1/2).

3. p1 = p2

In this case, the quantum state of the SiV− center system
in Eq. (11) can be expressed as

ρ5 = F |φ+〉〈φ+| + 1 − F

2
(|ge〉〈ge| + |eg〉〈eg|), (16)

which means the maximally entangled Bell state |φ+〉 could
be decayed to the error components |ge〉 and |eg〉 with the
same probability 1−F

2 . The quantum state in Eq. (16) can be
achieved by sending a Bell state through a quantum channel
with dephasing noise or bit-flip noise [54,55]. Alice and Bob
perform the ENG operation on four SiV− center systems
Si1

1Si1
2 − Si4

1Si4
2 in a subset using four-dimensional photonic

Bell state |
00〉AB as the auxiliary, and they measure the
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TABLE III. The relationship of n, ne, configuration, probability, and fidelity of purified state for the case p1 = p2.

n ne Configuration Probability F ′

0 0 4×|φ+〉 F 4 + 8
(

1−F
2

)4 + 12F 2
(

1−F
2

)2 F4+6F2
(

1−F
2

)2

F 4+8
(

1−F
2

)4
+12F2

(
1−F

2

)2

2 1×|ge〉 + 1×|eg〉
4 4×|ge〉 or 4×|eg〉 or 2×|ge〉 + 2×|eg〉

1 1 1×|ge〉 4F 3
(

1−F
2

) + 16F
(

1−F
2

)3 F 3
(

1−F
2

)
+ 2

3 F
(

1−F
2

)3

F 3
(

1−F
2

)
+4F

(
1−F

2

)3

3 3×|eg〉 or 2×|ge〉 + 1×|eg〉
2 2 2×|ge〉 or 2×|eg〉 12F 2

(
1−F

2

)2 + 8F
(

1−F
2

)4
1

4 3×|ge〉 + 1×|eg〉 or 1×|ge〉 + 3×|eg〉
3 1 1×|eg〉 4F 3

(
1−F

2

) + 16F
(

1−F
2

)3 F 3
(

1−F
2

)
+ 2

3 F
(

1−F
2

)3

F 3
(

1−F
2

)
+4F

(
1−F

2

)3

3 3×|ge〉 or 2×|eg〉 + 1×|ge〉

spatial-mode states of two photons A and B. As there are two
error components in mixed state ρ5, it is difficult to directly
read out the number of error SiV− center systems in |ge〉 (or
|eg〉) using the amplitude index n of the four-dimensional pho-
tonic Bell state in this ENG. Therefore, Alice and Bob need to
perform different operations for the four conditions obtained
by the amplitude index n of this ENG. The relationships of n,
ne, configuration, probability, and fidelity of purified state are
shown in Table III.

If the amplitude index of ENG is n = 0, Alice and Bob
will end the protocol without additional operations, and the
fidelity of the purified state satisfies F ′ > F when F > 0.34.
If the amplitude index of ENG is n = 1 (or n = 3), Alice and
Bob perform the EPG operation on the SiV− center systems
in the subset, and they discard the SiV− center system Siy

1Siy
2

in the subset according to the relationship n′ = y mod 4 [or
n′ = (4 − y) mod 4] with the amplitude index n′ of this EPG,
where the fidelity of the purified state satisfies F ′ > F for
F > 0.5.

If the amplitude index of ENG is n = 2, Alice and Bob
equally divide the four SiV− center systems in the subset into
two groups. Then, they perform ENG operations on SiV−

center systems of the two groups. If the amplitude indexes
of the four-dimensional photonic Bell states in the two ENG
operations are both n1 = 1 (or n1 = 3), it means there is one
error SiV− center system in |ge〉 (or |eg〉) in each group,
and they can use EPG operations to identify the positions
of the error SiV− center systems. If the amplitude index of
ENG for a group is n1 = 0, Alice and Bob can discard the
SiV− center systems in the other group. They perform EPG
operation on the reserved group, and they will reserve this
group when n′ = 0 and discard this group for the other cases.
If the amplitude index of ENG for a group is n1 = 2, Alice
and Bob can discard the SiV− center systems in this group.
They perform the EPG operation on the other reserved group,
and they will reserve this group when n′ = 0 and discard this
group for the other cases.

According to the above analysis, if the result of the first
ENG operation is n = 2, the fidelity of the purified state can
achieve F ′ = 1. If n = 0, the fidelity of the purified state satis-
fies F ′ > F for F > 0.34. If n = 1 (n = 3), the fidelity of the

purified state satisfies F ′ > F for F > 0.5. For n = 0, 1, 3, F ′
can be further increased by dividing the subset into two groups
and performing ENG and EPG operations on SiV− center
systems in two groups, which is similar to n = 2. All the error
SiV− center systems in the subset can be fully identified by
using enough ENG and EPG operations [54,55]. However, it
will cause a resource consumption problem associated with
auxiliary entanglement, which makes full identification of all
the error components in Eq. (16) challenging.

4. p1 �= p2 �= 0

In this case, the quantum state of the SiV− center system
can be expressed as Eq. (11), which corresponds to the condi-
tion where the maximally entangled Bell state |φ+〉 could be
decayed to the error components |ge〉 and |eg〉 with unequal
probabilities. The detailed procedure of EIEPP for this case is
similar to the one in Sec. III B 3. Alice and Bob perform the
ENG operation on four SiV− center systems Si1

1Si1
2 − Si4

1Si4
2

in a subset, and they perform different operations for the four
conditions according to the amplitude index n of this ENG.
That is, when n = 0 and n = 2, the additional operations are
the same as the ones for the case p1 = p2 in Sec. III B 3. When
n = 1 and n = 3, Alice and Bob perform the EPG operation
on the SiV− center systems in the subset, and they will dis-
card the SiV− center systems on the basis of the amplitude
index n′ and the comparison of p1 and p2. The relationships
of n, the comparison of p1 and p2, n′, and the position y
of the discarded SiV− center system in the subset can be
expressed as

n Comparison n′(y)

1 p1 > p2 n′ = y mod 4
p1 < p2 n′ = [4 − (y1 + y2 + y3)] mod 4

3 p1 > p2 n′ = (y1 + y2 + y3) mod 4
p1 < p2 n′ = (4 − y) mod 4.

Here, we give two examples (ρ6 and ρ7) to illustrate the
fidelity of the purified state in this case. The initial mixed state
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ρ6 is expressed as

ρ6 = F |φ+〉〈φ+| + 2(1 − F )

3
|ge〉〈ge| + 1 − F

3
|eg〉〈eg|,

(17)

and the fidelity of the purified state after EIEPP can be ex-
pressed as

n F ′

0
F4+3F2

(
1−F

3

)2
+3F 2

[
2
3 (1−F )

]2

F 4+
(

1−F
3

)2{
6F 2+

(
1−F

3

)2}
+
[

2
3 (1−F )

]2{
6F 2+6

(
1−F

3

)2
+
[

2
3 (1−F )

]2}
1

F 3
[

2
3 (1−F )

]
+ 1

3 F
(

1−F
3

)3
+ 1

3 F
[

2
3 (1−F )

]2(
1−F

3

)
F3

[
2
3 (1−F )

]
+F

(
1−F

3

)3
+3F

[
2
3 (1−F )

]2(
1−F

3

)
2 1

3
F 3

(
1−F

3

)
+F

[
2
3 (1−F )

]3
+F

[
2
3 (1−F )

](
1−F

3

)2

F 3
(

1−F
3

)
+F

[
2
3 (1−F )

]3
+3F

[
2
3 (1−F )

](
1−F

3

)2 .

If n = 0 (n = 1), the fidelity of the purified state satisfies
F ′ > F for F > 0.32 (F > 0.41). If n = 3, the fidelity of the
purified state satisfies F ′ > F for 1 > F > 0.

The mixed state ρ7 is expressed as

ρ7 = F |φ+〉〈φ+| + 1 − F

3
|ge〉〈ge| + 2(1 − F )

3
|eg〉〈eg|,

(18)

and the fidelity of the purified state after EIEPP can be ex-
pressed as

n F ′

0
F4+3F2

(
1−F

3

)2
+3F 2

[
2
3 (1−F )

]2

F 4+
(

1−F
3

)2{
6F 2+

(
1−F

3

)2}
+
[

2
3 (1−F )

]2{
6F 2+6

(
1−F

3

)2
+
[

2
3 (1−F )

]2}
1

F 3
(

1−F
3

)
+F

[
2
3 (1−F )

]3
+F

[
2
3 (1−F )

](
1−F

3

)2

F 3
(

1−F
3

)
+F

[
2
3 (1−F )

]3
+3F

[
2
3 (1−F )

](
1−F

3

)2

2 1

3
F 3

[
2
3 (1−F )

]
+ 1

3 F
(

1−F
3

)3
+ 1

3 F
[

2
3 (1−F )

]2(
1−F

3

)
F3

[
2
3 (1−F )

]
+F

(
1−F

3

)3
+3F

[
2
3 (1−F )

]2(
1−F

3

) .

If n = 0 (n = 3), the fidelity of the purified state satisfies
F ′ > F for F > 0.32 (F > 0.41). If n = 1, the fidelity of the
purified state satisfies F ′ > F for 1 > F > 0.

IV. DISCUSSION

In EIEPP, the hybrid CX gate for the SiV− center and
the four-dimensional photon state is the basic unit of ENG
and EPG. In the ideal condition with strong coupling strength
(g � √

γ κ), the reflection and transmission coefficients of
the SiV−-WGM-waveguides system are r → 0 and t → 1.
In experiment, the experimental parameters of imperfect lo-
cal operations could affect the fidelity and efficiency of the

hybrid CX gate. For example, the fidelity of hybrid CX gates
for p2 = 0 (in Sec. III B 1) can be defined as Fz = |〈ϕ0|ϕ f 〉|2
(z = ge, 00), where |ϕ0〉 represents the ideal final state and
|ϕ f 〉 represents the experimental final state. Fge (F00) rep-
resents the fidelity of hybrid CX gates for |ge〉 (|φ+〉) and
|
0n〉AB. The efficiency of hybrid CX gates is defined as the
probability of a pair of photons (e.g., AB) to be detected
after they pass through the SiV−-WGM-waveguides systems.
In the resonance condition (ωc = ωp = ωg), the experimental
final state of hybrid CX gates can be obtained as

|ge〉|
0n〉AB → |ge〉 ⊗ (t |
0n⊕1〉AB − r|
0n〉AB),

|φ+〉|
0n〉AB → 1
2 [|φ+〉|
0n〉AB(r2 + t2 + 1)

+ |φ−〉|
0n〉AB(r2 + t2 − 1)

− rt |φ+〉|
0n⊕1〉AB − rt |φ+〉|
0n⊕3〉AB

− rt |φ−〉|
0n⊕1〉AB − rt |φ−〉|
0n⊕3〉AB],

(19)

where t and r represent transmission and reflection coeffi-
cients in Eq. (4). Hence, the fidelity and efficiency of hybrid
CX gates can be expressed as

Fge = t2

r2 + t2
,

F00 = (r2 + t2 + 1)2

(r2 + t2 + 1)2 + (r2 + t2 − 1)2 + 4r2t2
,

Ege = r2 + t2,

E00 = (r2 + t2 + 1)2 + (r2 + t2 − 1)2 + 4r2t2, (20)

where Ege (E00) represents the efficiency of hybrid CX gates
for |ge〉 (|φ+〉) and |
0n〉AB. The fidelity and efficiency of
hybrid CX gates as the function of g/(κγ )1/2 are shown in
Fig. 5. The dips in Figs. 5(a) and 5(b) show the minimum
values of fidelity and efficiency with −r = t . In the strong
coupling regime with g � (κγ )1/2 and −r � t , the fidelity
and efficiency of hybrid CX gates are high, which are close
to the ideal condition. For example, when g/(κγ )1/2 > 4.1
[59], the fidelities of hybrid CX gates are Fge > 99.999% and
F00 > 99.998%, and the efficiencies are Ege > 99.384% and
E00 > 99.387% when g/(κγ )1/2 > 12.7. In the weak cou-
pling regime with −r > t , the fidelity and efficiency of the
hybrid CX gates for |φ+〉 and |
0n〉AB are also increased com-
pared with the values in the dips, as the wrong output ports
of photons will also achieve the correct output quantum state
in certain cases. In addition, in the SiV−-WGM-waveguides
system, the decoherence of the SiV− center could also de-
crease the fidelity of the hybrid CX gate with [1 + e−tT /Te ]/2
[73,74]. However, the scattering time tT is in the microsecond
range, and the electron spin coherence time Te exceeds 10 ms
at 100 mK [75], which will cause little influence in the fidelity
of the hybrid CX gate.

The experimental influence of the hybrid CX gate
will affect the fidelity of the purified state of the SiV−

center system in EIEPP. The average fidelity of the
purified state in the ideal condition can be defined by
〈F ′〉ideal

4 = ∑n=3
n=0 P(n)F ′(n). F ′(n) stands for the fidelity

F ′ when the amplitude index of the first ENG is n. P(n)
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FIG. 5. The (a) fidelity and (b) efficiency of the hybrid CX

gates for |ge〉 (|φ+〉) and |
0n〉AB as the function of the parameter
g/(κγ )1/2.

represents the probability of obtaining the amplitude
index n in the first ENG, where P(n) = Cn

4 F 4−n(1 − F )n

for n = 1, 2, 3 and P(0) = F 4 + (1 − F )4. In practical
application, the nonunit fidelity of the hybrid CX gate will
affect the average fidelity of the purified state in EIEPP. For
p2 = 0 in Sec. III B 1, the average fidelity of the purified state
in the experimental condition can be expressed as

〈F ′〉4 = F 4F 4
00 + F 3(1 − F )

9∑
w=6

Fw
00F 10−w

ge

+ 6F 2(1 − F )2F 2
00F 2

ge

+ 4F (1 − F )3F00F 3
ge, (21)

where the EIEPP is terminated at n � 2 to reduce the resource
consumption. In Fig. 6(a), the fidelity 〈F ′〉4 is calculated as
the function of g/(κγ )1/2 for F = 0.9. It is obvious that 〈F ′〉4

is greater in the strong coupling regime. For example, when
F = 0.9 (F = 0.8) and g/(κγ )1/2 > 4.1 [59], 〈F ′〉4 > 99.1%
(〈F ′〉4 > 98.9%).

FIG. 6. (a) Average fidelity 〈F ′〉 and (b) yield Y′ as the func-
tion of the parameter g/(κγ )1/2 with initial fidelity F = 0.9.
(c) Yields under ideal and experimental conditions as the func-
tion of initial fidelity F, where the experimental parameters satisfy
g/(κγ )1/2 = 12.7.
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Another important metric for the entanglement purification
protocol is yield. In the ideal condition, the yield of EIEPP in
Sec. III is defined as [54,55]

Y = −2 + ∑n=3
n=0 P(n)[4 − n − R(n)]

4
, (22)

where the consumed auxiliary entanglement is also taken into
account. Here, −2 represents the four-dimensional photonic
Bell state with 2 ebits, while 4 represents four SiV− center
Bell states in a subset with 4 ebits. R(n) is the auxiliary en-
tanglement resource needed to identify the positions of error
SiV− center systems. For different amplitude index n of the
first ENG, R(n) will be different. For example, for the case
p2 = 0 in Sec. III B 1, the relationship of n and R(n) can be
expressed as

n 0 1 2 3

R(n) 0 2 10/3 2.

The yield of EIEPP for p2 = 0 in Sec. III B 1 can be ex-
pressed as

Y4 = [4F 4 + 4(1 − F )4 + 12F 3(1 − F )

− 2 − 8F 3(1 − F )]/4, (23)

where the EIEPP is terminated at n � 2 in the ideal condition.
Due to experimental influence, the efficiency of the hybrid CX

gates will affect the yield of EIEPP, and the yield of EIEPP
(terminated at n � 2) for p2 = 0 can be expressed as

Y ′
4 =

[
4F 4E4

00 + 4(1 − F )4E4
ge + 3F 3(1 − F )

9∑
w=6

Ew
00E10−w

ge

−2 − 8F 3(1 − F )

]/
4. (24)

In Fig. 6(b), the yield Y ′
4 of EIEPP is calculated as the function

of g/(κγ )1/2 for F = 0.9. In Fig. 6(c), the yield Y4 of EIEPP
is calculated as the function of initial fidelity F . It can be
found that the yield of EIEPP is greater in the strong coupling
regime. For example, when F > 0.9, Y4 > 22.91% is achieved
in the ideal condition. Considering the experimental influence,
when g/(κγ )1/2 > 12.7, Y ′

4 > 20% is achieved for F > 0.9.
In the EIEPP introduced in Sec. III, the nonlocal mixed en-

tangled SiV− center systems are divided into several subsets,
and each subset contains four nonlocal mixed entangled SiV−

center systems. The number (L) of nonlocal mixed entangled
SiV− center systems in a subset can be adjusted, and the yield
of EIEPP will be increased with the increase of L. For exam-
ple, for p2 = 0 in Sec. III B 1, if L = 1, the yield of EIEPP is
Y1 = F − 2 in the ideal condition, which is a negative value.
The negative yield signifies that the entanglement resource
gained in EIEPP is less than the one consumed. If L = 3,
the yield of EIEPP in the ideal condition can be expressed

as [54,55]

Y3 = 3F 3 + 6F 2(1 − F ) − 2 − 6F 2(1 − F )

3
, (25)

where the EIEPP is terminated at n � 2. The yield of EIEPP
(terminated at n � 2) in the experimental condition can be
expressed as

Y ′
3 =

[
3F 3E3

00 + 2F 2(1 − F )
7∑

w′=5

Ew′
00 E9−w′

ge

− 2 − 6F 2(1 − F )

]/
3. (26)

In Fig. 6(c), the yields Y3 and Y ′
3 of EIEPP are calculated as

the function of F , where the experimental parameters satisfy
g/(κγ )1/2 = 12.7. From Fig. 6(c), it is obvious that Y3 and Y ′

3
have positive values, and Y4 (Y ′

4) is larger than Y3 (Y ′
3).

If the number of nonlocal mixed entangled SiV− center
systems in a subset is increased from L = 3 to L = 4, the
fidelity of the purified state will be decreased. For p2 = 0 in
Sec. III B 1, if L = 3, the purified state will have unit fidelity
in the ideal condition, and the average fidelity of the purified
state in the experimental condition can be expressed as

〈F ′〉3 = F 3F 3
00 + F 2(1 − F )

7∑
w′=5

Fw′
00 F 9−w′

ge

+ 3F (1 − F )2F00F 2
ge + (1 − F )3F 3

ge, (27)

where the EIEPP is terminated at n � 2. In Fig. 6(a), the
fidelity 〈F ′〉3 is calculated as the function of g/(κγ )1/2 for
F = 0.9. When F = 0.9 (F = 0.8) and g/(κγ )1/2 > 4.1,
〈F ′〉3 > 99.3% (〈F ′〉3 > 99.2%). It is obvious that 〈F ′〉3 is
a little higher than 〈F ′〉4, and the difference between these
two average fidelities will be unconspicuous with the increase
of coupling strength. However, the yield of EIEPP will be
largely increased when the number L is increased from L = 3
to L = 4 as shown in Figs. 6(b) and 6(c).

According to the analysis, we can see that the EIEPP has
high fidelity and high yield in the strong coupling regime
of the SiV−-WGM-waveguides-HWP system in Fig. 1(c),
while the ultrastrong coupling strength of cavity QED is still
a challenge in experiment. Fortunately, several researches
have discussed the possibility of achieving high-fidelity
quantum operations under the weak coupling regime of
cavity QED [48,76–79], which provide an interesting insight
to improve the performance of this EIEPP in the weak
coupling regime of the SiV−-WGM-waveguides-HWP
system. Moreover, this EIEPP can also be used to improve the
entanglement of other types of quantum stationary systems
with similar energy-level structure in Fig. 1(b), such as
quantum dot [48], nitrogen vacancy center in diamond [80],
and so on.

V. CONCLUSION

In summary, we have introduced an EIEPP for entan-
gled SiV− center systems suffering from several particular
types of noise. First, we construct the hybrid CX gate for the
SiV− center system and the four-dimensional photon system,
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which is the basic unit of ENG and EPG. Then, we construct
the ENG and EPG and adopt them to identify the number
and position of error SiV− center systems in an ensemble,
resulting in high-fidelity entangled states of SiV− center sys-
tems. This EIEPP has superior performance for SiV− center
systems with amplitude damping noise, and it is also ap-
plicable for SiV− center systems suffering from other types
of noise. At last, the fidelity of the purified state and the
yield of EIEPP are calculated with experimental parameters
of imperfect local operations. If the SiV− center systems
suffer from other noises (e.g., phase-flip noise), the EIEPP
is also applicable as any mixed quantum state can be trans-
formed to the distillable state of EIEPP by suitable maps (e.g.,
depolarization map) and quantum Fourier transformations

[55]. In a word, this EIEPP demonstrates the feasibility of
maintaining high-fidelity entanglement of a stationary system
with high-dimensional entanglement, thus it has expanded
the application prospects of a stationary system and high-
dimensional entanglement in quantum information protocols
and technologies.
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