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Genuine multipartite entanglement from a thermodynamic perspective
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Among the various types of quantum entanglement, the most fascinating and interesting one is genuine
entanglement undoubtedly. In this paper, the unique genuine decomposition theorem with respect to any pure
state is given and the relations between battery capacity gap and ergtropic gap are studied. By exploiting the
battery capacity of multipartite systems, we introduce a vector-valued genuine measure compared with other
existing measures and find that the one is superior to some other existing measures in confirming whether the
deterministic LOCC transformation between two multipartite pure states is prohibited. Through some proper
constructions, one can derive many GME measures. We also give the explicit expression of bipartite battery
capacity gap with respect to mixed states by the convex roof extension and investigate some monogamy relations
related to the battery capacity gap.
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I. INTRODUCTION

Entanglement as exceedingly fascinating feature in quan-
tum mechanics has provided key resources in quantum
information over the past 30 years [1–3]. For various rea-
sons, entanglement measures are needed for quantifying the
resource. Entanglement measures for bi-partite systems turn
out to be all equivalent to each other [4–7]. However, when
considering multipartite entanglement, the problem becomes
dramatically complicated. Even when considering the three-
qubit scenario, that is also the case. In order to explicitly write
down the generalized Schmidt decomposition of any three-
qubit pure state |ψ〉, one needs to use five free parameters
[8]. This boils down to a mathematical problem on a five-
dimensional manifold possibly being extremely complicated.
Among all entangled states, the most wonderful and important
ones are the genuine multipartite entangled (GME) states first
considered in the seminal papers [9,10]. We also recognize
the importance of genuine multipartite entanglement from the
fact that the presence of such entanglement is a necessary and
sufficient condition for the success of quantum teleportation
in a three-qubit system that Alice, Bob, and Charlie share a
genuinely entangled state.

In order to faithfully quantify entanglement resources ap-
pearing in teleportation protocols, Ma et al. [11] identified
two criteria: (a) the measure � satisfies the condition that, for
any biseparable state |ψ〉, �(|ψ〉) = 0, and in this case, we
say the measure � to be genuine; (b) if for any nonseparable
state |ψ〉, �(|ψ〉) > 0, and in this case, we call the measure �

to be faithful. So far, although many entanglement measures
have been proposed, unfortunately very few of them are GME.
For example, the ones appearing in the literature [12–20] fail
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to meet criterion (a) and the ones appearing in the literature
[21–25] violate criterion (b).

Very recently, quantum thermodynamics has become such
a thriving field that there is hope of bridging the gap be-
tween quantum mechanics and thermodynamics. In fact, there
are many similarities between thermodynamics and quantum
entanglement [26]. Instead of capturing entanglement of bi-
partite systems through entropy, Puliyil et al. [26] and Yang
et al. [27] used the measures defined in terms of thermody-
namic quantities called ergotropic gap and battery capacity
gap, respectively.

In this paper, we present the genuinely unique decom-
position theorem of multipartite pure states with a benefit
that we can have a better understanding of the structure of
the entangled pure state. We also compare and discuss the
relations and differences between ergotropic gap and battery
capacity gap under certain conditions. After defining a corre-
sponding entanglement of formation measure with respect to
general mixed states by the convex roof extension, an explicit
formula of bipartite battery capacity gap is shown and we
also study the monogamy relation meaning that multipartite
entanglement fails to be freely shared between subsystems.
The monogamy relation is a quite surprising phenomenon
regarded as the key resource in quantum information. Finally,
we introduce a vector-valued measure for capturing the mul-
tipartite entanglement and illustrate its superiority. We also
show the relation between real-valued measures and the pro-
posed vector-valued measure.

II. GENUINE UNIQUE DECOMPOSITION THEOREM
OF MULTIPARTITE PURE STATES

We first present the following theorem of the uniqueness
of the decomposition of general pure states into genuinely
entangled states. The conclusion of this theorem provides us
with a clearer understanding of the structure of multipartite
pure states.
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Theorem II.1. If |φ〉 is a multipartite pure state, then there
is a genuine unique decomposition of |φ〉:

|φ〉 = |φ〉�1 ⊗ |φ〉�2 ⊗ · · · ⊗ |φ〉�k ,

where � j, j = 1, · · · , k, are disjoint partition of
{�1,�2, · · · ,�n}, that is to say,

�i

⋂
� j = ∅ &

k⋃
j=1

� j = {�1, · · · ,�n}

and |φ〉� j , j = 1, · · · , k, are genuinely entangled pure states.
This decomposition is unique, up to the order of these gen-
uinely entangled pure states and phase factors.

Proof. In the following proof, we will show a proof by
contradiction.

Firstly, assume that the disjoint partition is fixed, namely,
these subsets �1,�2, · · · ,�k is fixed up to their order.
We will show, in this case, the decomposition is unique up
to the order of genuinely entangled pure states and phase
factors. Indeed, if |φ〉 = |φ〉�1 ⊗ |φ〉�2 ⊗ · · · ⊗ |φ〉�k =
|φ〉′�1

⊗ |φ〉′�2
⊗ · · · ⊗ |φ〉′�k

, in view of 〈φ|φ〉 = 1, we
have 〈φ|φ〉′�1

× 〈φ|φ〉′�2
× · · · × 〈φ|φ〉′�k

= 1. Invoking
|〈φ|φ〉′� j

| � 1, j = 1, . . . , k, it is obvious that |〈φ|φ〉′� j
| = 1,

j = 1, . . . , k, which results in |φ〉� j = eiθ j |φ〉′� j
,

j = 1, . . . , k.

In what follows, suppose that there are two kind of disjoint
partitions � j and �̂l , then there exists Ai ∈ � j

⋂
�̂l with

� j �= �̂l . We divide the case into two subcases: (i) �̂l ⊂ � j

or Xj ⊂ �̂l ; (ii) �̂l � � j & � j � �̂l & � j
⋂

�̂l �= ∅. For
convenience, set B = � j and D = �̂l . In the first subcase (i),
without loss of generality, we assume B ⊂ D. We can write
|φ〉 as |φ〉 = |φ〉B ⊗ |φ〉Bc and |φ〉 = |φ〉D ⊗ |φ〉Dc . According
to |φ〉 = |φ〉B ⊗ |φ〉Bc , tracing over Bc, we deduce

ρB = TrBc (|φ〉B〈φ| ⊗ |φ〉Bc〈φ|) = |φ〉B〈φ|. (1)

However, from |φ〉 = |φ〉D ⊗ |φ〉Dc , after tracing
over Bc, we derive ρB = TrBc (|φ〉D〈φ| ⊗ |φ〉Dc〈φ|) =
TrBc

⋂
D(|φ〉D〈φ|) = ∑s

i=1 λ2
i |φi〉B〈φi|, with 〈φi|φ j〉B = 0,

for all i �= j. Since |φ〉D is genuinely entangled, it turns out
that the Schmidt number s > 1. This yields a contradiction.
In the second subcase (ii),

ρB = TrBc (|φ〉D〈φ| ⊗ |φ〉Dc〈φ|)
= TrD/(B

⋂
D)(|φ〉D〈φ|) ⊗ Tr(B

⋃
D)c (|φ〉Dc〈φ|)

=
∑

t

μt |ηt 〉B
⋂

D〈ηt | ⊗
∑

s

λs|ξ s〉B/(B
⋂

D)〈ξ s|

=
∑
t,s

μtλs|ηtξ s〉B〈ηtξ s|, (2)

where |φ〉D = ∑q
t=1 μt |ηt 〉B

⋂
D|ηt 〉B/(B

⋂
D) and |φ〉Dc =∑p

s=1 λs|ξ s〉B/(B
⋂

D)|ξ s〉(B
⋃

D)c are the Schmidt decomposi-
tions with respect to |φ〉D and |φ〉Dc , respectively. It is clear
that the above equalities (1) and (2) yield a contradiction.
Hence, we complete this proof. �

According to the unique decomposition theorem above,
if the genuine unique decomposition of a pure state |φ〉 is
expressed as

|φ〉 = |φ〉�1 ⊗ |φ〉�2 ⊗ · · · ⊗ |φ〉�k ,

then it can be seen readily that the pure state |φ〉 is k separable
and not k + 1-separable [26], and the partition is also unique.

Example II.1. Consider the pure state |φ〉ABCD =
1

2
√

2
(|0000〉 + |0110〉 + |1000〉 + |1110〉 + |0001〉 +

|0111〉 + |1001〉 + |1111〉). By a simple calculation, we
find that the pure state |φ〉 can be decomposed as the tensor
product of three genuinely entangled pure states:

|φ〉 = |φ〉A ⊗ |φ〉BC ⊗ |φ〉D,

where |φ〉A = 1√
2
(|0〉A + |1〉A), |φ〉B = 1√

2
(|0〉B + |1〉B), and

|φ〉BC = 1√
2
(|00〉 + |11〉). The theorem above ensures the

uniqueness of such decomposition.

III. THE BATTERY CAPACITY GAP
AND THE ERGOTROPIC GAP

The study of work extraction from an isolated quantum
system under a cyclic Hamiltonian process dates back to late
1970’s ([28,29]). Assume that A is a n-dimensional quan-
tum system initialized in the state ρ̂ ∈ D(Cd ) and forced to
evolve in time by external modulations of its Hamiltonian
Ĥ = ∑d−1

j=0 ε j |ε j〉〈ε j |, with |ε j〉 beingan eigenstate corre-
sponding to energy eigenvalue ε j , satisfying ε j � ε j+1, j =
0, · · · , d − 1, and the minimum energy eigenvalue ε0 = 0
and ε1 > 0. We denote by Tr(ρ̂Ĥ ) the mean internal energy
of ρ̂, and Û the element of the unitary group U(d ). The
average amount of work WÛ (ρ̂) extracted in this process can
be calculated through the following formula [28,29]:

WÛ (ρ̂) := Tr(ρ̂Ĥ ) − Tr(Û ρ̂Û †Ĥ ).

We denote by We(ρ̂) the optimal average amount of
work(called ergotropy):

We(ρ̂) := max
Û

WÛ (ρ̂) = WÛ ↓ (ρ̂ ) = Tr(ρ̂Ĥ ) − Tr(ρ̂↓Ĥ ),

where Û ↓ is the optimal unitary, and denote by ρ̂↓ the passive
state with Tr(ρ̂↓Ĥ ) fulfilling minimum mean energy [30].
Likewise, we can give the definition of anti-ergotropy as the
minimum average amount of work:

Wae(ρ̂) := min
Û

WÛ (ρ̂) = WÛ ↑ (ρ̂) = Tr(ρ̂Ĥ ) − Tr(ρ̂↑Ĥ ),

where now Û ↑ is its optimal unitary, and denote by ρ̂↑ the
active state with Tr(ρ̂↓Ĥ ) fulfilling maximum mean energy.
Clearly, Wae(ρ̂) � 0, and the absolute value |Wae(ρ̂)| indicates
how much energy is needed to fully charge the quantum
battery. Let |λ↓

j 〉(|λ↑
j 〉) be the eigenstate of ρ̂ with respect

to the energy eigenvalue λ
↓
j (λ↑

j ) with λ
↓
j � λ

↓
j+1(λ↑

j � λ
↑
j+1).

We can express them explicitly as [28–31]:

Û ↓(↑) =
∑

j

|ε↑(↓)
j 〉〈λ↓(↑)

j |, ρ̂↓(↑) =
∑

j

λ
↓(↑)
j |ε↑(↓)

j 〉〈ε↑(↓)
j |.

Next, we define the battery capacity of the system as follows
[27]:

C(ρ̂) := Tr(ρ̂↑Ĥ ) − Tr(ρ̂↓Ĥ ). (3)

The battery capacity is the difference between the maximum
mean energy allowed by the system and the minimum mean
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energy, and equals the difference between the ergotropy of the
state ρ̂ and its antiergotropy :

C(ρ̂) = We(ρ̂) − Wae(ρ̂).

It can be verified readily that C(ρ̂) = C(Û ρ̂Û †) and so, C(ρ̂) is
a unitarily invariant. In fact, C(ρ̂) is determined completely by
the energy eigenvalues of the Hamiltonian Ĥ and the eigenval-
ues of the state ρ̂. Referring to Ref. [27], we show an explicit
formula expressing the relation between the battery capacity
and these eigenvalues:

C(ρ̂) =
d−1∑
j=0

ε
↑
j (λ↑

j − λ
↓
j ) =

d−1∑
j=0

λ
↑
j (ε↑

j − ε
↓
j ).

With respect to the quantum battery, such as the quantum
system thermally isolated but mechanically coupled to a work
source or load, the battery capacity C(ρ̂) is the optimal av-
erage amount of work which can be transfered during any
thermodynamic cycle where the battery evolves as a unitary
transformation.

Recently, research on ergotropy work of multipartite quan-
tum systems has aroused great interest [21,32–45]. For
composite quantum systems consisting of several local Hamil-
tonians, the entangled state can allow global work storage
exceeding the sum of its local parts. This leads to the
entanglement measure based on energy for multipartite sys-
tems. Indeed, such as for ρ̂��′ ∈ D(Cd� ⊗ Cd�′ ), the bipartite
battery capacity gap ��|�′ (ρ̂��′ ), which is the difference
between local battery capacity C l

�|�′ (ρ̂��′ ) and global battery
capacity Cg

�|�′ (ρ̂��′ ), turns out to be local operations and clas-
sical communication (LOCC) monotone, and an entanglement
measure [35,37]. We explicitly express the bipartite battery
capacity gap ��|�′ (ρ̂��′ ) as [27]:

��|�′ (ρ̂��′ ) := Cg
�|�′ (ρ̂��′ ) − C l

�|�′ (ρ̂��′ ).

Similarly, we can also define bipartite ergotropic gap
�e

�|�′ (ρ̂��′ ) as [26]:

�e
�|�′ (ρ̂��′ ) := Wg

�|�′ (ρ̂��′ ) − W l
�|�′ (ρ̂��′ ),

where W l
�|�′ (ρ̂��′ ) and Wg

�|�′ (ρ̂��′ ) are global and local er-
gotropic works extracted respectively through the application
of product unitary Û� ⊗ Û�′ and joint unitary Û��′ .

For multipartite systems different subgroups of the parties
can come together and accordingly different type of battery
capacity can be extracted from the system. For a n-party
system we can define fully separable battery capacity gap for
a pure state |φ〉�1···�n ∈ ⊗n

i=1C
di [27]:

��1|···|�n (|φ〉) := Cg
�1|···|�n

(|φ〉) − C l
�1|···|�n

(|φ〉), (4)

which is the difference between global battery capacity
Cg

�1|···|�n
(|φ〉) obtained through applying joint unitary to the

whole system and fully local battery capacity C l
�1|···|�n

(|φ〉)
obtained through local unitaries on the respective subsystems.
Similarly, we show the definition of fully separable ergotropic
gap [27]:

�e
�1|···|�n

(|φ〉) := Wg
�1|···|�n

(|φ〉) − W l
�1|···|�n

(|φ〉). (5)

For a system governed by the Hamiltonian, which is assumed
to be total interaction free global Hamiltonian throughout
the article, that is, Ĥ = ∑n

i=1 H̃�i (H̃�i = Id1 ⊗ · · · ⊗ Idi−1 ⊗
Ĥ�i ⊗ Idi+1 ⊗ · · · ⊗ Idn ), suppose the maximum spectrums of
the Hamiltonian Ĥ�s , s = 1, · · · , n, are Es, s = 1, · · · , n, re-
spectively. It is clear that the maximum spectrum E of the
global Hamiltonian Ĥ is equal to

∑n
s=1 Es, and therefore

Cg
�1|···|�n

(|φ〉) = ∑n
s=1 Es. Hence, in view of (4), the fully

separable battery capacity gap can be expression as

��1|···|�n (|φ〉) = Cg
�1|···|�n

(|φ〉) − C l
�1|···|�n

(|φ〉)

=
n∑

i=1

(
Ei − Tr

(
ρ̂

↑
�i

Ĥ�i

)

+ Tr
(
ρ̂

↓
�i

Ĥ�i

))
. (6)

In order to calculate the fully separable battery capac-
ity gap ��1|···|�n (|φ〉) and the fully separable ergotropic gap
�e

�1|···|�n
(|φ〉), we apply the genuine decomposition of the

entangled state.
Theorem III.1. Let �i, i = 1, · · · , k, be disjoint

partition of {�1,�2, · · · ,�n}, and |φ〉�i , i = 1, · · · , k,

be genuinely entangled states, then ��1|···|�n (|φ〉) =∑k
i=1 ��i1 |···|�ici

(|φ〉�i ), where �i = {�i1 , · · · ,�ici
}.

Proof. For ∀� ∈ �i, we have ρ̂� = Tr�c (|φ〉〈φ|) =
Tr�c

⋂
�i

(|φ〉�i〈φ|). Owing to (6) and

��i1 |···|�ici
(|φ〉�i ) =

ci∑
j=1

(
Eij − Tr

(
ρ̂

↑
�i j

Ĥ�i j

)

+ Tr
(
ρ̂

↓
�i j

Ĥ�i j

))
,

one can see

��1|···|�n (|φ〉) =
k∑

i=1

��i1 |···|�ici

(|φ〉�i

)
.

�
Theorem III.2. Let �i, i = 1, · · · , k, be disjoint

partition of {�1,�2, · · · ,�n}, and |φ〉�i , i = 1, · · · , k,

be genuinely entangled states, then �e
�1|···|�n

(|φ〉) =∑k
i=1 �e

�i1 |···|�ici
(|φ〉�i ), where �i = {�i1 , · · · ,�ici

}.
Proof. The proof is similar to Theorem III.1. �
From Theorem III.1 and Theorem III.2, one find that when

n > 2, both ��1|···|�n and �e
�1|···|�n

fail to be GME measures.
Next, we give two simple examples illustrating their possibly
being independent.

Example III.1. We consider two pure states |φ〉 =√
0.5|00〉 + √

0.4|11〉 + √
0.1|22〉 and |φ〉′ = √

0.54|00〉 +√
0.34|11〉 + √

0.12|22〉. Let the global Hamiltonian be Ĥ =
Ĥ� ⊗ I + I ⊗ Ĥ�′ where Ĥ� = Ĥ�′ = |1〉〈1| + 3|2〉〈2|. The
marginals of |φ〉′ and |φ〉′ are ρ̂� = 0.5|0〉〈0| + 0.4|1〉〈1| +
0.1|2〉〈2| and ρ̂ ′

� = 0.54|0〉〈0| + 0.34|1〉〈1| + 0.12|2〉〈2|,
respectively. It can be seen easily that �e

�|�′ (|φ〉) =
�e

�|�′ (|φ〉′) = 1.4,��|�′ (|φ〉′) = 3.48 and ��|�′ (|φ〉) = 3.6.
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In this case, the ergotropic gap fails to distinguish these
two pure states. However, ��|�′ (|φ〉′) < ��|�′ (|φ〉), means
that any deterministic LOCC transformation |φ〉′ �→ |φ〉 is
prohibited.

Example III.2. Consider two pure states |φ〉 =√
0.5|00〉 + √

0.3|11〉 + √
0.2|22〉 and |φ〉′ = √

0.45|00〉 +√
0.4|11〉 + √

0.15|22〉. Let the global Hamiltonian be Ĥ =
Ĥ� ⊗ I + I ⊗ Ĥ�′ where Ĥ� = Ĥ�′ = |1〉〈1| + 3|2〉〈2|. The
marginals of |φ〉′ and |φ〉′ are ρ̂� = 0.5|0〉〈0| + 0.3|1〉〈1| +
0.2|2〉〈2| and ρ̂ ′

� = 0.45|0〉〈0| + 0.4|1〉〈1| + 0.15|2〉〈2|,
respectively. It can be verified easily that �e

�|�′ (|φ〉) =
1.8, �e

�|�′ (|φ〉′) = 1.7,��|�′ (|φ〉′) = ��|�′ (|φ〉) = 4.2. In
this case, the battery capacity gap fails to distinguish these
two pure states. However, �e

�|�′ (|φ〉) > �e
�|�′ (|φ〉′), means

that any deterministic LOCC transformation |φ〉′ �→ |φ〉 is
prohibited.

In Example III.4, �e
�|�′ provides more information, but by

contrast in Example III.3, ��|�′ provides more information.
We also remark that, in a Hamiltonian with equispaced energy
levels, the ergotropic gap and fully separable battery capacity
gap are equivalent:

Theorem III.3. Let the Hamiltonian for the ith subsystem
be Ĥ�i = ∑di−1

j=0 jεi|ε j〉〈ε j |. Then, for any pure state |φ〉,
��1|···|�n (|φ〉) = 2�e

�1|···|�n
(|φ〉).

Proof. Set the passive state as

ρ̂
↓
�i

=
di−1∑
j=0

λ
↓i
j |ε j〉〈ε j |

and the active state as

ρ̂
↑
�i

=
di−1∑
j=0

λ
↑i
j |ε j〉〈ε j |.

Clearly, we have λ
↓i
j = λ

↑i
di−1− j and λ

↑i
j = λ

↓i
di−1− j . From these

two equalities above, we deduce

(di − 1)εi − Trρ̂↑
�i

Ĥ =
di−1∑
j=0

λ
↑i
j ((di − 1)εi − jεi )

=
di−1∑
j=0

λ
↓i
di−1− j (di − 1 − j)εi

=
di−1∑
j=0

λ
↓i
j × jεi = Tr(ρ̂↓

�i
Ĥ ),

i = 1, · · · , n.

Adding up the above set of equations, we can easily obtain

��1|···|�n (|φ〉) = 2�e
�1|···|�n

(|φ〉).

�
Corollary III.1. Assume the Hamiltonian Ĥ�i for the ith

subsystem of a given n-qubit system is Ĥ�i = |1〉�i〈1|. Then,
��1|···|�n (|φ〉) = 2�e

�1|···|�n
(|φ〉).

IV. MONOGAMY RELATION IN A N-QUBIT SYSTEM

A very important and surprising one among numerous
phenomena with respect to multipartite entanglement, the

monogamy relation indicates that entanglement resources
cannot be freely shared between subsystems, and even is so
basic as the no-cloning theorem [21,39–43].

We first express bipartite concurrence C�|�′ (|φ〉) of a pure
bipartite state |φ〉 ∈ H� ⊗ H�′ as [38]:

C�|�′ (|φ〉) =
√

2
(
1 − Tr

(
ρ̂2

�

))
,

where ρ̂� = Tr�′ (|φ〉〈φ|). In the above expression about bi-
partite concurrence, we need to emphasize that H� and H�′

may be arbitrary finite-dimensional Hilbert spaces.
Throughout this section, we assume that Ĥ is total inter-

action free global Hamiltonian of a n-qubit system and the
Hamiltonian Ĥ�i for the ith subsystem of the given n-qubit
system is Ĥ�i = |1〉�i〈1|. And, in what follows, we assume
the Hilbert spaces H� and H�′ both are two-dimensional with
the Hamiltonian for � and �′ subsystems being Ĥ� = |1〉�〈1|
and Ĥ�′ = |1〉�′ 〈1|, respectively. It can be verified easily by
the definitions of ��|�1···�n−1 and C�|�1···�n−1 that for any n-
qubit pure state |φ〉 ∈ H� ⊗ H�1 ⊗ H�2 ⊗ · · · ⊗ H�n−1 ,

��|�1···�n−1 (|φ〉) = 2�e
�|�1···�n−1

(|φ〉)

= 2
(
1 −

√
1 − C2

�|�1···�n−1
(|φ〉)

)
(7)

and for any 2-qubit pure state |ψ〉 ∈ H� ⊗ H�′ ,

��|�′ (|ψ〉) = 2�e
�|�′ (|ψ〉)

= 2
(
1 −

√
1 − C2

�|�′ (|ψ〉)
)
. (8)

We define a corresponding entanglement of formation
measure still denoted by C�|�′ with respect to mixed states
ρ̂��′ by the following convex roof extension:

C�|�′ (ρ̂��′ ) := min
{p j ,|φ j〉}

n∑
j=1

p jC�|�i (|φ j〉),

where the minimum is taken over all pure state decompo-
sitions of ρ̂��′ := ∑n

j=1 p j |φ j〉〈φ j |. Refering to [46], there
exactly exists an optimal decomposition {pj, |φ j〉} of ρ̂��′

with C�|�′ (|φ j〉) = C�|�′ (ρ̂��′ ). Let h(x) = 2(1 − √
1 − x2),

which is an increase monotonic and convex function. In view
of (8), we can write ��|�′ (|φ〉) = h(C�|�′ (|φ〉)). For bipartite
mixed state ρ̂��′ , still denote by ��|�′ the entanglement of
formation with respect to bipartite separable battery capacity
gap ��|�′ . Using an optimal convex decomposition {qk, |ϕk〉}
for ��|�′ (ρ̂��′ ), we have:

��|�′ (ρ̂��′ ) =
∑

k

qk��|�′ (|ϕk〉)

=
∑

k

qkh(C�|�′ (|ϕk〉))

�
∑

j

p jh(C�|�′ (|φ j〉))

=
∑

j

p jh(C�|�′ (ρ̂��′ ))

= h(C�|�′ (ρ̂��′ )). (9)
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We can also obtain:

��|�′ (ρ̂��′ ) =
∑

k

qk��|�′ (|ϕk〉)

=
∑

k

qkh(C�|�′ (|ϕk〉))

� h(
∑

k

qkC�|�′ (|ϕk〉)

� h(
∑

j

p jC�|�′ (|φ j〉))

= h(C�|�′ (ρ̂��′ )), (10)

where the first and second inequality are due to convex-
ity and monotonicity of the function g, respectively. So,
we derive ��|�′ (ρ̂��′ ) = h(C�|�′ (ρ̂��′ )) and ��|�′ (ρ̂��′ ) =∑

i p jh(C�|�′ (|φ j〉)).
Theorem IV.1. For any n-qubit pure state |φ〉 ∈ H� ⊗

H�1 ⊗ H�2 ⊗ · · · ⊗ H�n−1 and all α � 1, the following
monogamy relation holds:

�α
�|�1···�n−1

(|φ〉) � �α
�|�1

(|φ〉) + · · · + �α
�|�n−1

(|φ〉).

Proof. For convenience, we introduce a function

g(x) = 2(1 − √
1 − x), x ∈ [0, 1].

It follows by the definition of the bipartite separable battery
capacity gap that

��|�1···�n−1 (|φ〉) = g
(
C2

�|�1···�n−1
(|φ〉)

)
.

After a straightforward calculation, we derive

dgα (x)

dx
= α2α−1(1 − √

1 − x)α−1

√
1 − x

.

It turns out to be increasing function iff α � 1. Therefore,
for all α � 1, gα (x) is convex. Noting that gα (0) = 0,

for all α � 1, one can easily see that gα (x + y) �
gα (x) + gα (y). So, gα (x1 + x2 + · · · + xn) � gα (x1) +
gα (x2) + · · · + gα (xn). We now let Cα

�|� j
(|φ〉��1···�n−1 )

stand for Cα
�|� j

(Tr�1···� j−1� j+1···�n−1 (|φ〉��1···�n−1 )). Invoking

C2
�|�1···�n−1

(|φ〉) � C2
�|�1

(|φ〉) + · · · + C2
�|�n−1

(|φ〉) [47] and
the monotonicity of the function g, we get

gα
(
C2

�|�1···�n−1
(|φ〉)

)
� gα

(
C2

�|�1
(|φ〉) + · · · + C2

�|�n−1
(|φ〉)

)
� gα

(
C2

�|�1
(|φ〉)

) + · · · + gα
(
C2

�|�n−1
(|φ〉)

)
. (11)

Since

��|� j (|φ〉) = g
(
C2

�|� j
(|φ〉)

)
and

��|�1···�n−1 (|φ〉) = g
(
C2

�|�1···�n−1
(|φ〉)

)
,

one can see that

�α
�|�1···�n−1

(|φ〉)

� gα
(
C2

�|�1
(|φ〉)

) + · · · + gα
(
C2

�|�n−1
(|φ〉)

)
= �α

�|�1
(|φ〉) + · · · + �α

�|�n−1
(|φ〉). (12)

The proof is completed. �
Corollary IV.1. For any n-qubit pure state |φ〉 ∈ H�1 ⊗

H�2 ⊗ · · · ⊗ H�n , the following relation holds:

��1|···|�n (|φ〉) �
∑
i< j

��i|� j (|φ〉). (13)

Proof. By a direct calculation, we can easily obtain

��i|�C
i
(|φ〉) = 2

(
Ei − Tr

(
ρ̂

↑
�i

Ĥ�i

) + Tr
(
ρ̂

↓
�i

Ĥ�i

))
.

From Eq. (6), it follows that

��1|···|�n (|φ〉) = 1

2

∑
i

��i|�C
i
(|φ〉).

Therefore, in view of Theorem IV.1, one sees

��i|�C
i
(|φ〉) �

∑
j

��i|� j (|φ〉).

Obviously, �� j |�i (|φ〉) = ��i|� j (|φ〉). Hence, by these in-
equalities above, we have

��1|···|�n (|φ〉) �
∑
i< j

��i|� j (|φ〉).

�
We readily have a similar version of the theorem with

respect to the ergotropic gap �e.
Theorem IV.2. For any n-qubit pure state |φ〉 ∈

H� ⊗ H�1 ⊗ H�2 ⊗ · · · ⊗ H�n−1 , and all α � 1, the
following monogamy relation holds: (�e

�|�1···�n−1
(|φ〉))α �

(�e
�|�1

(|φ〉))α + · · · + (�e
�|�n−1

(|φ〉))α.

Corollary IV.2. For any n-qubit pure state |φ〉 ∈ H�1 ⊗
H�2 ⊗ · · · ⊗ H�n , the following relation holds:

�e
�1|···|�n

(|φ〉) �
∑
i< j

�e
�i|� j

(|φ〉). (14)

Regarding entanglement as a resource originating from
some kind of special connection between these subsystems,
the last corollary seems to be saying that the overall con-
nection of the system is greater than the sum of all possible
connections between any two subsystems. Next, we show a
simple example illustrating that the inequality (13) is tight by
finding a state such that the bound is saturated.

Example IV.1. In this example, we consider the following
simple three-qubit pure state:

|φ〉 = 1√
2
|000〉 + 1√

2
|110〉.

Let the global Hamiltonian be Ĥ = ĤA ⊗ I2 ⊗ I2 + I2 ⊗ ĤB ⊗
I2 + I2 ⊗ I2 ⊗ ĤC where ĤA = ĤB = ĤC = |1〉〈1|. One can
see easily that

�A|B|C (|φ〉) = 2, �A|B(|φ〉) = 2,

�A|C (|φ〉) = 0, �B|C (|φ〉) = 0.

Therefore,

�A|B|C (|φ〉) = �A|B(|ρ̂AB〉) + �A|C (|ρ̂AC〉) + �B|C (|ρ̂BC〉).
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V. THE VECTOR-VALUED MEASURE FUNCTION
OF MULTIPARTITE ENTANGLEMENT

So far, all entanglement measures are real-valued [12–25].
Based on the LOCC monotonicity of �X |X c [27], we introduce
a vector-valued measure.

For any multipartite entangled pure state |φ〉, we define the
vector-valued measure:

−→
� (|φ〉) := (

�X1|X c
1
(|φ〉), · · · ,�XN |X c

N
(|φ〉)

)
,

where {(X1, · · · , XN )} is the collection of all nonempty proper
subsets of the set {�1, · · · ,�n} ordered by some means. Here,
in order to avoiding repetition, we assume that arbitrary two
sets Xi and Xj belonging to the collection satisfies that Xi �= Xj

and Xi �= XC
j whenever i �= j.

In this section, the Hamiltonian Ĥ�i = ∑di−1
j=0 εi

j |εi
j〉〈εi

j |,
with |εi

j〉 being eigenstate corresponding to energy eigenvalue
εi

j , satisfying εi
j � εi

j+1, j = 0, · · · , di − 1, and the mini-
mum energy eigenvalue εi

0 = 0 and εi
1 > 0. This ensures that

if �X |X c (|φ〉) = 0, then the state |φ〉 must be biseparable with
respect to the partition {X, X c}.

Let RN be partially ordered by the convex cone RN
+, where

RN
+ = {(x1, · · · , xN ) ∈ RN |xi � 0, i = 1, · · · , N}, that is, let-

ting x = (x1, · · · , xN ), y = (y1, · · · , yN ), we say x � y iff
x − y ∈ RN

+, which is equivalent to xi � yi, i = 1, · · · , N. We

call a vector-valued measure of multipartite entanglement
−→
�

to be genuine if, for any biseparable entangled pure state |φ〉,
there exists a zero entry of the vector

−→
� (|φ〉), faithful if, for

any genuinely entangled pure state |φ〉, none of the entries of
the vector

−→
� (|φ〉) are equal to zero, and LOCC monotony if,

for any deterministic LOCC transformation |φ〉′ �→ |φ〉, one
must have

−→
� (|φ〉′) � −→

� (|φ〉). In this sense, the vector-valued
measure

−→
� is genuine, faithful, and LOCC monotone.

Example V.1. Consider |φ〉 = 1√
2
|000〉 + 1

2 |101〉 + 1
2 |110〉

and |φ〉′ = 1
2 |000〉 + 1√

2
|101〉 + 1

2 |110〉. Let the global

Hamiltonian be Ĥ = ĤA ⊗ I2 ⊗ I2 + I2 ⊗ ĤB ⊗ I2 +
I2 ⊗ I2 ⊗ ĤC where ĤA = ĤB = ĤC = |1〉〈1|. It can be
seen readily that �G

avg(|φ〉) = �G
avg(|φ〉′), �G

min(|φ〉) =
�G

min(|φ〉′), �G
V (|φ〉) = �G

V (|φ〉′), �G
F (|φ〉) = �G

F (|φ〉′) [26].
In this case, these four measures above, take same value for
both these states and hence they remain silent to compare
their entanglement. In fact, only studying entanglement based
on these measure, will result in a loss of a lot of information.
If we choose to apply the vector-valued measure to measure
the entanglement, one gets, respectively,

−→
� (|φ〉) = (�A|BC (|φ〉), �B|CA(|φ〉),

�C|AB(|φ〉)) = (2, 1, 1),
−→
� (|φ〉′) = (�A|BC (|φ〉′), �B|CA(|φ〉′),

�C|AB(|φ〉′)) = (1, 1, 2). (15)

Observing that
−→
� (|φ〉) − −→

� (|φ〉′) /∈ R3
+ and

−→
� (|φ〉)′ −−→

� (|φ〉) /∈ R3
+, hence, both deterministic transformations

|φ〉′ → |φ〉 and |φ〉 → |φ〉′ are prohibited under any LOCC.
Unlike bipartite systems, entanglement in multipartite sys-
tems should consider the specific structure of the entan-

glement. Hence, vector-valued measures perhaps are better
candidates.

Example V.2. Consider the GHZ state and W state,
respectively,

|GHZ〉 = 1√
2
|000〉 + 1√

2
|111〉,

|W〉 = 1√
3
|100〉 + 1√

3
|010〉 + 1√

3
|001〉. (16)

One can easily see that, respectively,

−→
� (|GHZ〉) = (�A|BC (|GHZ〉),�B|CA(|GHZ〉),

�C|AB(|GHZ〉)) = (2, 2, 2),
−→
� (|W〉) = (�A|BC (|W〉),�B|CA(|W〉),

�C|AB(|W〉)) = (
4
3 , 4

3 , 4
3

)
. (17)

Based on the two equations above, one can see
−→
� (|GHZ〉) �−→

� (|W〉), which means that the vector-valued measure
−→
� is a

proper measure distinguish these two states [48].
For any n-dimensional vector �v = (v1, v2, · · · , vN ), set,

respectively:

∏
�v =

n∏
i=1

vi,

f (�v) = f (v1, v2, · · · , vN ),

where f is a function. The function f is said to be
A1. genuine if it satisfies the condition that f (�v) must be

equal to zero whenever
∏ �v = 0.

A2. faithful if it satisfies the condition that f (�v) must be
greater than zero whenever

∏ �v �= 0.
A3. L monotone if it satisfies the condition that the in-

equality f (�u) � f (�v) must holds whenever �u � �v.
Here, we need to pay attention to the domain of f . For

instance, in the case of three-qubit, the triangle inequalities of
the biseparable battery capacity gaps must be satisfied [26]:

�X |Y Z (|φ〉) � �Y |ZX (|φ〉) + �Z|XY (|φ〉),

where X,Y, Z ∈ {A, B,C}. If a function f satisfies these three
properties above, we can construct GME measure function �

in the following way:

�(|φ〉) = f (
−→
� (|φ〉)) = f

(
�X1|X c

1
(|φ〉), · · · ,�XN |X c

N
(|φ〉)

)
.

Theorem V.1. If f is a function, defined in the range of
−→
� ,

and satisfies the above three conditions A1, A2, and A3, then
the measure � is genuine, faithful, and LOCC monotone.

Proof. For any pure state |φ〉, if
∏ −→

� (|φ〉) = 0, then by

the definition of
−→
� , there exists a proper subset X of the

set {�1, · · · ,�n} such that �X |X c (|φ〉)) = 0. This means that
the state |φ〉 is biseparable. If condition A1 is satisfied, then
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�(|φ〉) = f (
−→
� (|φ〉)) = 0 for any bi-separable pure state |φ〉.

Therefore, the measure � is genuine.
If

∏ −→
� (|φ〉) �= 0, then the state |φ〉 is genuinely en-

tangled state. Assume that condition A2 is satisfied, then
f (

−→
� (|φ〉)) > 0 for any genuinely entangled state |φ〉. So, the

measure � is faithful.
If there is a deterministic LOCC transformation |φ〉′ �→

|φ〉, one always have
−→
� (|φ〉′) � −→

� (|φ〉). Assume that con-
dition A3 is satisfied, then f (

−→
� (|φ〉′)) � f (

−→
� (|φ〉)). So, the

measure � is LOCC monotone. �
If � and � are two GME measures constructed by the

above method which both are genuine, faithful, and LOCC
monotone, then the product � · � is also GME measure sat-
isfying these properties. In Ref. [27], Yang et al., inspired
by [26], introduced four GME measures: the minimum of
the biseparable battery capacity gap, the average biseparable
capacity gap, the battery capacity fill and the battery capacity
volume. All these measurements can be seen as constructed in
this way. In 2023, Ge et al. [49] gave a unified proof indicating
Puliyil’s version of ergotropic fill was LOCC monotone. In
fact, ergotropic fill is a GME measure. The ergotropic fill
actually can likewise be viewed as constructed in the manner
of the theorem V.3 [26]. It turns out that the vector-valued
measure is superior to any real-valued measure constructed
in the manner of Theorem V.3 in confirming whether the
deterministic LOCC transformation between two multipartite
pure states be prohibited. In this section, we only consider the
vector-valued measure based on the bipartite battery capacity
gap. Similarly, we can also construct a vector-valued measure
based on concurrence or other bipartite measures.

Example V.3. Assume that SN is the symmetric group on
N elements. For the vector �v = (v1, v2, · · · , vN ) and σ ∈ SN ,
we set,

σ (�v) := (vσ (1), vσ (2), · · · , vσ (N ) ).

Clearly, the measure set as

�(|φ〉) = 〈�v, σ (�v)〉 ×
∏ −→

� (|φ〉)

is a GME measure. For example, letting σ ∈ SN be a cycle:

σ = (1 2 3) =
(

1 2 3
2 3 1

)
, (18)

one obtains

�(|φ〉) = �A|BC (|φ〉)�B|CA(|φ〉)�C|AB(|φ〉)

× (�A|BC (|φ〉)�B|CA(|φ〉)

+ �B|CA(|φ〉)�C|AB(|φ〉)

+ �C|AB(|φ〉))�A|BC (|φ〉)). (19)

In this way, many smooth GME measures can be obtained, and
it is important to compare them with existing GME measures.
We will pursue these efforts in the future.

VI. CONCLUSIONS

In this paper, we present the genuine unique decomposition
theorem of multipartite pure states. The conclusion of this the-
orem provides us with a clearer understanding of the structure
of multipartite pure states. We also compare and analyze the
relations between ergotropic gap and battery capacity gap. It
turns out to be that these two measures may be independent,
and hence may obtain more information by considering both
these measures. By the convex roof extension, we explicitly
express the formula of the entanglement of formation associ-
ated with the measure ��|�′ with respect to general bipartite
mixed states. Then, we find that the entanglement of formation
measure fulfils the monogamy relation and the new relations
reported in Corollary IV.2 and Corollary IV.4, which means
the overall connection of the system is greater than the sum of
all possible connections between any two subsystems. Finally,
we introduce the vector-valued measure for capturing the
multipartite entanglement, illustrate its superiority and show
the relation between existing real-valued measures and the
proposed vector-valued measure.

As for the future, in the light of Theorem V.3, finding good
functions employed to construct genuine measurements worth
considering, and deeper relations between ergotropic gap and
battery capacity gap are also needed.
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