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Let quantum neural networks choose their own frequencies
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Parameterized quantum circuits as machine learning models are typically well described by their represen-
tation as a partial Fourier series of the input features, with frequencies uniquely determined by the feature
map’s generator Hamiltonians. Ordinarily, these data-encoding generators are chosen in advance, fixing the
space of functions that can be represented. In this work we consider a generalization of quantum models to
include a set of trainable parameters in the generator, leading to a trainable-frequency (TF) quantum model.
We numerically demonstrate how TF models can learn generators with desirable properties for solving the task
at hand, including nonregularly spaced frequencies in their spectra and flexible spectral richness. Finally, we
showcase the real-world effectiveness of our approach, demonstrating an improved accuracy in solving the
Navier-Stokes equations using a TF model with only a single parameter added to each encoding operation.
Since TF models encompass conventional fixed-frequency models, they may offer a sensible default choice for
variational quantum machine learning.
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I. INTRODUCTION

The field of quantum machine learning (QML) remains
a promising application for quantum computers. In the
fault-tolerant era, the prospect of quantum advantage is spear-
headed by the exponential speedups in solving linear systems
of equations [1], learning distributions [2,3], and topological
data analysis [4]. Yet the arrival of large fault-tolerant quan-
tum computers is not anticipated in the next decade, reducing
the practical impact of such algorithms today.

One approach to solving relevant problems in machine
learning with today’s quantum computers is through the use
of parameterized quantum circuits (PQCs) [5,6], which have
been applied to a variety of use cases [7–13]. A PQC consists
of quantum feature maps (FMs) ÛF (�x), which encode an input
�x into the Hilbert space, and variational ansätze ÛA(�θA), which
contain trainable parameters. Previously, it was shown that
the measured output of many variational QML models can
be mathematically represented as a partial Fourier series in
the network inputs [14], leading to a range of new insights
[15–17]. Most strikingly, it follows that the set of frequencies
� appearing in the Fourier series are uniquely determined by
the eigenvalues of the generator Hamiltonian of the quantum
FM, while the series coefficients are tuned by the variational
parameters �θA.

Conventionally, a specific generator is chosen beforehand,
such that the model frequencies are fixed throughout training.
In theory this is not a problem since, by choosing a generator
that produces regularly spaced frequencies, the basis functions
of the Fourier series form an orthogonal basis set. This ensures
that asymptotically large fixed-frequency (FF) quantum mod-
els are universal function approximators [14]. Yet in reality,
finite-sized quantum computers will permit models with only
a finite number of frequencies. Thus, in practice, great impor-
tance should be placed on the choice of basis functions, for
which the orthogonal convention may not be the best.

This raises an additional complexity: what is the optimal
choice of basis functions? Indeed, for many problems, it is not
obvious what this would be without prior knowledge of the
solution. Here, we address this issue by exploring a natural
extension of quantum models in which an additional set of
trainable parameters �θF is included in the FM generator. This
simple idea has a significant impact on the effectiveness of
quantum models, allowing the generator eigenspectrum to
change over the course of training in a direction that mini-
mizes the objective loss. This in turn creates a quantum model
with trainable frequencies as visualized in Fig. 1. In a quantum
circuit learning [6] setting, we numerically demonstrate cases
in which trainable-frequency (TF) models can learn a set of
basis functions that better solves the task at hand, such as
when the solution has a spectral decomposition with nonreg-
ularly spaced frequencies.

Furthermore, we show that an improvement is realizable
for more advanced learning tasks. We train quantum mod-
els with the differentiable-quantum-circuit (DQC) algorithm
[18] to learn the solution to the two-dimensional (2D) time-
dependent Navier-Stokes differential equations, a family of
equations that has proven challenging to solve with quantum
models previously [19]. For the problem of predicting the
wake flow of fluid passing a circular cylinder, a TF quantum
model achieves lower loss and better predictive accuracy than
the equivalent FF model. Overall, our results raise the prospect
that TF quantum models could improve performance for other
near-term QML problems.

II. PREVIOUS WORKS

The idea of including trainable parameters in the feature-
map generator is present in some previous works. In a study of
FM input redundancy, Gil Vidal and Theis [20] hypothesized
that a variational input-encoding strategy may improve the
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FIG. 1. An overview of the concepts discussed in this paper. Top:
we introduce a parameterized quantum circuit in which the generator
of the data-encoding block is a function of trainable parameters �θF

alongside the standard trainable variational ansatz. Bottom left: the
output of such a model is a Fourier-like sum over different individual
modes. Bottom right: in conventional quantum models, tuning the
ansatz parameters �θA allows the coefficients of each mode to be
changed. By using a trainable-frequency feature map (TFFM), tuning
�θF leads to a quantum model in which the frequencies of each mode
can also be trained.

expressiveness of quantum models, followed by limited exper-
iments [21]. Other works also suggest that encoding unitaries
with trainable weights can reduce circuit depths of quan-
tum models, as discussed for single-qubit classifiers [22] and
quantum convolutional neural networks [23]. Nevertheless,
our work is different due to contributions demonstrating (1)
an analysis of the effect of trainable generators on the Fourier
modes of quantum models, (2) evidence of specific spectral
features in data for which TF models offer an advantage over
FF models, and (3) direct comparison between FF and TF
models for a practically relevant learning problem.

In the language of quantum kernels [8,24,25], several re-
cent works used the term “trainable feature map” to describe
the application of unitaries with trainable parameters on data
already encoded into the Hilbert space [26,27]. Such a dis-
tinction is necessary because quantum kernel models often
contain no trainable parameters at all. However, the trainable
parameters of these feature maps do not apply directly to the
generator Hamiltonian. As discussed in Sec. III, this is intrin-
sically different from our scheme as it does not lead to a model
with trainable frequencies. To not confuse the two schemes,
here, we adopt the wording “trainable-frequency feature map”
and “trainable-frequency models.”

III. METHOD

Practically, quantum computing entails the application of
sequential operations (e.g., laser pulses) to a physical sys-
tem of qubits. Yet to understand how these systems can be
theoretically manipulated, it is often useful to work at the
higher-level framework of linear algebra, from which insights

can be translated back to real hardware. This allows studying
strategies encompassing digital, analog, and digital-analog
paradigms [28]. In a more abstract formulation, a broad class
of FMs can be described mathematically as the tensor product
of an arbitrary number of subfeature maps, each represented
by the time evolution of a generator Hamiltonian applied to an
arbitrary subset of the qubits,

ÛF (�x) =
⊗

m

e− i
2 Ĝm (γm )φ(�x), (1)

where for the subfeature map m, Ĝm(γm) is the generator
Hamiltonian that depends on nontrainable parameters γm.
Furthermore, φ(�x) : Rn → Rn is an encoding function that
depends on the input features �x. Practically speaking, γm is
typically related to the index of the tensor-product space the
subfeature map is applied to and can be used to set the number
of unique frequencies the model has access to. Furthermore,
in some cases ÛF (�x) can be applied several times across the
quantum circuit, interleaved with variational ansatz ÛA(�θA)
layers, for example, in data reuploading [22,29] and serial
feature maps [14].

The measured output of a quantum model with a feature
map defined in Eq. (1) can be expressed as a Fourier-type sum
in the input dimensions

f (�x, �θA) =
∑
�ω j∈�

�c j (�θA)ei�ω j ·φ(�x), (2)

where �c j are the coefficients of the multidimensional Fourier
mode with frequencies �ω j . Crucially, the frequency spectrum
� of a model is uniquely determined by the eigenvalues of Ĝm

[14]. More specifically, let us define the final state produced
by the PQC as |ψ f 〉. If the model is a quantum kernel, where
the output derives from the distance to a reference quantum
state |ψ〉 [e.g., f (�x, �θA) = |〈ψ |ψ f 〉|2], then � is explicitly
the set of eigenvalues of the composite generator Ĝ such
that ÛF (�x) = e− i

2 Ĝφ(�x). When the generators Ĝm commute,
the composite generator is simply Ĝ = ∑

m Gm. If the model
is a quantum neural network (QNN), in which the output
is derived from the expectation value of a cost operator Ĉ
[e.g., f (�x, �θA) = 〈ψ f |Ĉ|ψ f 〉], then � contains the gaps in the
eigenspectrum of Ĝ.

The key insight here is that in such quantum models, a
specific feature-map generator is chosen in advance. This fixes
the frequency spectrum over the course of training, setting
predetermined basis functions ei�ω j ·φ(�x) from which the model
can construct a solution. For these FF models, only the coeffi-
cients �c j can be tuned by the variational ansatz during training.

In this work, we replace the FM generator with one that
includes trainable parameters Ĝm(γm, �θF ). In doing so, the
generator eigenspectrum, and thus the model frequencies, can
also be tuned over the course of training. For this reason
we refer to such feature maps as trainable-frequency feature
maps (TFFMs), which in turn create TF quantum models. The
output of a TF quantum model will be a Fourier-type sum in
which the frequencies of each mode depend explicitly on the
parametrization of the feature map. For example, for a QNN
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FIG. 2. Fitting cosine series of different frequencies using fixed-frequency (FF) and trainable-frequency (TF) QNNs. (a) Prediction after
training on data with �d = {1, 2, 3}. (b) Prediction after training on data with �d = {1, 1.2, 3}. (c) Spectra of trained models in (b) as obtained
using a discrete Fourier transform. The blue dashed lines indicate frequencies of the data.

the output of the model can be written as

f (�x, �θA, �θF ) =
∑
�ω j∈�

�c j (�θA, Ĉ)ei�ω j (�θF )·φ(�x). (3)

Moreover, as �θF is optimized with respect to minimizing
a loss function L, the introduction of trainable frequencies
�ω j (�θF ) ideally allows the selection of spectral modes that bet-
ter fit the specific learning task. For gradient-based optimizers,
the derivative of parameters in the generator ∂L

∂�θF
can be calcu-

lated as laid out in Appendix A, which for the generators used
in our experiments simplifies to the parameter-shift rule (PSR)
[17,30].

We note that the idea here is fundamentally different from
simply viewing a combination of feature maps and variational
ansätze (e.g., serial feature maps) as a higher level abstraction
containing one unitary ÛF̃ (�x, �θ ) = ÛF (�x)ÛA(�θ ). The key con-
cept in TF models is that a parametrization is introduced that
acts directly on the generator Hamiltonian in the exponent of
Eq. (1). This is what allows a trainable eigenvalue distribution,
leading to quantum models with trainable frequencies.

Furthermore, in this work the FF models we consider are
those in which the model frequencies are regularly spaced
(i.e., integers or integer-valued multiples of a base frequency),
such that the basis functions form an orthogonal set. This
has become the conventional choice in the literature [12,31–
36], owing to the theoretical grounding that such models are
universal function approximators in the asymptotic limit [14].
However, it should be made clear that a FF model could mimic
any TF model if the nontrainable unitaries in the FM were
constructed with values corresponding to the final trained
values of �θF . The crux, however, is that having knowledge
of such values without going through the training process is
highly unlikely and might occur only where considerable a
priori knowledge of the solution is available.

IV. PROOF OF PRINCIPLE RESULTS

The potential advantage of TF quantum models stems
their ability to be trained such that their frequency spec-
tra contain nonuniform gaps, producing nonorthogonal basis
functions. We demonstrate this effect by first consider-
ing a fixed-frequency feature map (FFFM) in which, for

simplicity, we restrict Ĝm to single-qubit operators. Over-
all, we choose a generator Hamiltonian Ĝ = ∑N

m=1 γmŶ m/2,
where N is the number of qubits, Ŷ m is the Pauli matrix
applied to the tensor-product space of qubit m, γm = 1, and
φ(�x) = x is a one-dimensional Fourier encoding function.
This is the commonly used angle-encoding FM [37], which
we use to train a QNN to fit data produced by a cosine series,

y(x) = 1

|�d |
∑

ωd ∈�D

cos(ωd x). (4)

Here, the data function contains a set of frequencies �d , from
which nd data points are generated equally spaced in the
domain D = [−4π, 4π ]. The value of nd is determined by the
Nyquist sampling rate such that nd = �2|D| max(�d )�.

Figure 2 demonstrates where FF models succeed and fail.
In these experiments, a small QNN with N = 3 qubits and
L = 4 variational ansatz layers is used. More details of the
quantum models and training hyperparameters for all experi-
ments can be found in Appendix B.

The FF QNN defined above is first trained on data with
frequencies �d = {1, 2, 3}. After training, the prediction of
the model is recorded as shown in Fig. 2(a). Here, we see
that the underlying function can be perfectly learned. To un-
derstand why, we note that the set of degenerate eigenvalues
of Ĝ are λ = {− 3

2 ,− 1
2 , 1

2 , 3
2 } and thus the unique gaps are

� = {1, 2, 3}. In this case, the natural frequencies of the
model � are equal to the frequencies of the data �d , making
learning trivial. Furthermore, we find that similar excellent
fits are possible for data containing frequencies that differ
from the natural model frequencies by a constant factor (e.g.,
�d = {1.5, 3, 4.5}), provided the quantum model is given the
trivial classical resource of parameters that can globally scale
the input x.

By contrast, Fig. 2(b) illustrates how a FF QNN fails to fit
data with frequencies �d = {1, 1.2, 3}. This occurs because
no global scaling of the data can enable the fixed generator
eigenspectrum to contain gaps with unequal spacing. In such
a setting, no additional training would lead to accurate fitting
of the data. Furthermore, no practical number of extra ansatz
layers would enable the FF model to fit the data (see Sec. VI
for further discussion), which we verified up to L = 128.
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FIG. 3. Prediction MSE of simple, tower, and exponential
FFFMs compared to a TFFM when training on multiple datasets with
equally spaced frequencies �ωd ∈ [1, 3]. For each box, the triangle
and orange line denote the mean and median, respectively.

Conversely, a QNN containing a TFFM with the simple
parametrization Ĝθ = ∑N

m=1 θmŶ m/2 does significantly better
in fitting the data. This is precisely possible because training
of the generator parameters converges on the values �θF =
{0.89, 1.05, 1.04}, leading to an eigenvalue spectrum which
contains gaps �θ = {. . . , 0.95, 1.050, 1.200, 3.000, . . . }, as
shown in Fig. 2(c). In this experiment and all others using TF
models, the TFFM parameters are initialized as the unit vector
�θF = 1.

A further advantage of TF models is their flexible spectral
richness. For FF models using the previously defined Ĝ, one
can pick values γm = 1, γm = m, and γm = 2(m−1) to produce
generators in which the number of unique spectral gaps |�|
scales as O(N ), O(N2), and O(2N ), respectively. Typically,
a practitioner may need to try all of these so-called simple,
tower [18], and exponential [13] FMs, yet a TFFM can be
trained to effectively represent any of these. To test this, we
again sample from Eq. (4) to construct seven datasets that
contain between one and seven frequencies equally spaced in
the range ωd ∈ [1, 3].

Figure 3 shows the mean-square error (MSE) achieved by
each QNN across these datasets. In the best case, the TF and
FF models perform equally well since each fixed generator
produces a specific number of frequencies for which it is
well suited. However, we find that a TF model outperforms
FF models in the average and worst-case scenarios. Despite
the data having orthogonal basis functions, the FF models
have either too few frequencies (e.g., simple FM for data with
|�d | > 3) or too many (e.g., exponential FM for data with
|�d | < 7) to perform well across all datasets. Thus, we find
that even when the optimal basis functions are orthogonal, TF
models can be useful when there is no knowledge of the ideal
number of spectral modes of the solution.

V. APPLICATION TO FLUID DYNAMICS

In this section we demonstrate the impact of TF mod-
els on solving problems of practical interest. Specifically,
we focus on the DQC algorithm [18], in which a quantum
model is trained to find a solution to a partial differential

equation (PDE). The PDE to be solved is the incompressible
2D time-dependent Navier-Stokes equations (NSEs), defined
as

ζx(x, y, t ) = ∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− 1

Re

(
∂2u

∂x2
+ ∂2u

∂y2

)
+ ∂ p

∂x

= 0, (5)

ζy(x, y, t ) = ∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
− 1

Re

(
∂2v

∂x2
+ ∂2v

∂y2

)
+ ∂ p

∂y

= 0, (6)

where u and v are the velocity components in the x and y di-
rections, respectively, p is the pressure, and Re is the Reynolds
number, which represents the ratio of inertial forces to viscous
forces in the fluid.

The goal of this experiment is to train a quantum model
to solve the downstream wake flow of fluid moving past a
circular cylinder. This is one of the canonical systems of study
in physics-informed neural networks, the classical analog of
DQCs, due to the vortex shedding patterns and other complex
dynamics exhibited even in the laminar regime [38–40]. A
high-resolution dataset for Re = 100 is obtained from [38]
for the region x = 1 to x = 8 downstream from a cylinder at
x = 0, solved using the NEKTAR high-order-polynomial finite-
element method (FEM) [41,42].

The quantum model is trained by minimizing a loss L =
LPDE + Ldata. The equation loss LPDE is given by

LPDE = 1

M

M∑
i=1

ζx(xi, yi, ti )
2 + ζy(xi, yi, ti )

2, (7)

where xi, yi, and ti are the coordinates of a collocation point
i in a total batch of M collocation points. Importantly, here,
the terms ζx and ζy are evaluated with observables ũ, ṽ, and
p̃ predicted by the quantum model. Meanwhile, Ldata is a
supervised loss term,

Ldata = 1

M

M∑
i=1

[u(xi, yi, ti ) − ũ(xi, yi, ti )]
2 + [v(xi, yi, ti )

− ṽ(xi, yi, ti )]
2 + [p(xi, yi, ti ) − p̃(xi, yi, ti )]

2, (8)

where the reference values u, v, and p are given by the dataset.
Notably, the dataset used in training contains only 1% of the
total points in the reference solution. This means that the
remainder of the flow must be predicted by learning a solution
that directly solves the NSEs.

Given the increased problem complexity compared to
Sec. IV, here, we employ a more advanced quantum architec-
ture. The overall quantum model consists of two QNNs. The
output of the first QNN is the predicted pressure p̃. Mean-
while, the output of the second QNN is the predicted stream
function ψ̃ , a quantity from which the predicted velocities ũ
and ṽ can be obtained via the relations

ũ = ∂ψ̃

∂y
, ṽ = −∂ψ̃

∂x
.

Computing the velocities this way ensures that the mass
continuity equation is automatically satisfied, which would
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FIG. 4. Circuit diagram of the TF QNN architecture used in ex-
periments solving the Navier-Stokes equations. The TFFM (dashed
box) contains the generator parameters θF that allow training of
the underlying model frequencies. The TFFM is followed by L = 8
ansatz layers, data reuploading, and then a final ansatz layer before
the qubits are measured. Here, we study both digital and digital-
analog versions of such layered abstraction.

otherwise require a third term in the loss function. Further-
more, the derivatives of p̃ and the derivatives of ũ and ṽ

required in Eq. (7) can be computed from derivative quantum
circuits of the first and second QNNs, respectively, as defined
in the DQC algorithm [18].

The architecture of each QNN, consisting of N = 6 qubits,
is shown in Fig. 4. First, a single ansatz layer ÛA(�θA) is
applied, followed by a TFFM which encodes each dimen-
sion (x, y, t ) in parallel blocks. Each dimension of the TF
encoding once again uses the simple parametrization Ĝθ =∑N

m=1 θmŶ m/2, while the FF model uses the same generator
without trainable parameters Ĝ = ∑N

m=1 Ŷ m/2. After the FM,
a sequence of L = 8 ansatz layers is then applied. Subse-
quently a data-reuploading feature map is applied, which is
a copy of the TFFM block, including sharing the parameters.
Finally, the QNN architecture ends with a single ansatz layer.
Overall, each QNN has a circuit depth of 52 and 180 trainable
ansatz parameters.

Figure 5 gives a visualization of the results of this experi-
ment, where the pressure field at a specific time is compared
for different methods. Here, the quantum models are trained

for 5000 iterations; more details can be found in Appendix B.
The left panel shows the reference solution for the pressure
p at time t = 3.5. Here, the 10 × 5 grid of cells with red
borders corresponds to the points that are given to the quan-
tum models at each time step to construct Ldata, overall 1%
of the total 100 × 50 grid. The middle panel illustrates the
prediction of the TF QNN. While the model does not achieve
perfect agreement with the reference solution, it captures
important qualitative features, including the formation of a
large negative-pressure bubble on the left and two additional
separated bubbles on the right. By contrast, the FF QNN
solution correctly predicts only the global background, unable
to resolve the distinct different regions of pressure that form as
fluid passes to the right. This demonstrates just how impactful
TFFMs can be on the expressiveness of quantum models,
even with limited width and depth. Further still, we show
in Appendix C how deeper TF models can match the FEM
solution, whereas FF models cannot.

To quantify this benefit, the mean absolute error relative
to the median (MAERM) 1

N
∑N

i=1 | ŷi−yi

ỹ | is calculated for
each time step and observable, where the sum spans the N
spatial grid points. The results, presented in Table I, numeri-
cally demonstrate the improved performance of the TF model
across all observables and time steps. Particularly notable is
the large improved accuracy of the vertical velocity v.

Finally, it is worth considering how the inclusion of ad-
ditional trainable parameters in the feature map of the TF
model affects the cost of training compared to FF models
which have otherwise the same architecture. When training
using a gradient-based optimizer such as Adam, regardless of
the feature map chosen, each training iteration requires the
calculation of ∂L/∂θi for all trainable parameters θi in the cir-
cuit. If one were to calculate these gradients on real quantum
hardware, one would need to use the PSR. For the quantum
architecture used in this section, all parameterized unitaries
decompose into single-qubit Pauli rotations, such that only
two circuit evaluations are required to compute the gradient

of each parameter in �θA and �θF . Thus, the factor Cf = |�θF |+|�θA|
|�θA|

describes the additional circuit evaluations required to train
the TF model due to the additional parameters appearing in

FIG. 5. Pressure field at t = 3.5 of the wake flow of fluid passing a circular cylinder at x = 0. Left: reference solution obtained with the
finite-element method (FEM) in [38]. Cells with red borders indicate the training data accessible to the quantum models (see text). Middle:
prediction of TF QNN using generators Ĝθ . Right: prediction of FF QNN using generators Ĝ. The quantum circuits are based on a sliced
digital-analog approach [28] suitable for platforms such as neutral atom quantum computers.
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TABLE I. MAERM error predicting u, v, and p averaged over 10 runs. The minimum, maximum, and mean are with respect to the 11 time
points between t = 0 and t = 5.5. For each observable, the lowest error per row is highlighted in bold.

u v p

FF TF FF TF FF TF

Min 16.8 ± 0.3 12.8 ± 1.9 90.3 ± 2.6 27.4 ± 3.3 62.9 ± 1.9 51.0 ± 6.0
Max 18.3 ± 0.4 14.2 ± 3.0 122.0 ± 2.4 34.3 ± 4.6 78.3 ± 1.8 62.8 ± 10.3
Mean 17.5 ± 0.3 13.2 ± 2.0 103.2 ± 1.4 30.4 ± 2.7 73.2 ± 1.9 57.0 ± 3.7

the corresponding feature map. For the models used in this
section, the cost factor is Cf = 12+180

180 = 1.07. This repre-
sents only a 7% increase in the number of quantum circuits
evaluated, a modest cost for the improvement in performance
observed.

VI. DISCUSSION

In this work we explore an extension of variational QML
models to include trainable parameters in the data-encoding
Hamiltonian, compatible with a wide range of models, in-
cluding those based on digital and digital-analog paradigms.
As introduced in Sec. III, when viewed through the lens
of a Fourier representation, the effect of such parameters is
fundamentally different from those in the variational ansatz,
as they enable the frequencies of the quantum model to be
trained. Furthermore, in Sec. IV we showed how this leads to
quantum models with specific spectral properties inaccessible
to the conventional approach of tuning only the coefficients
of fixed orthogonal basis functions. Finally, in Sec. V we
demonstrated the benefit of TF models for practical learning
problems, leading to a learned solution of the Navier-Stokes
equations closer to the ground truth than FF models.

We note that, in theory, a FF model could also achieve
parity with TF models if it had independent control of the co-
efficients of each basis function. Given data with a minimum
frequency gap �d,min and spanning a range rd = |�d,max −
�d,min|, a quantum model with rd

�d,min
fixed frequencies could

span all modes of the data. In this case, such a model could
even represent data with nonregularly spaced frequencies
(e.g., �d = {1, 1.2, 3} by setting the coefficients �c j = 0 for
�ω j = {1.1, 1.3, 1.4, . . . , 2.9}). However, such a model would
be exponentially costly to train since independent control of
the coefficients of the model frequencies would generally
require O(2N ) ansatz parameters. It is for this reason that we
present TF models as having a practical advantage within the
context of scalable approaches to quantum machine learning.

Looking forward, an interesting open question remains
around the performance of other parametrizations of the
generator. A notable instance of this would be Ĝ =∑N

m=1 NN(θF )Ŷ m/2, where the parametrization is set by
a classical neural network. Interestingly, this has already
been implemented in a different context in so-called hy-
brid quantum-classical networks [43–46], including studies
of DQCs [19]. The use of hybrid networks is typically mo-
tivated by the desire to relieve the computational burden from
today’s small-scale quantum models. Our work offers the
insight that such architectures are actually using a classical
neural network to set the frequencies of the quantum model.
Promisingly, there is already early evidence to suggest that

this scheme may lead to improved performance for classifica-
tion [47].

Compellingly, for many different parametrizations of
TFFMs, a generator with regularly spaced eigenvalues is ac-
cessible within the parameter space. This is particularly true
for the parametrizations studied in this work, which can be
trivially realized as an orthogonal model when �θF = 1. This
implies that, at worst, many classes of TF models can fall
back to the behavior of standard FF models. We find this,
along with our results, a strong reason to explore in the future
whether TF models could be an effective choice as a new
default for variational quantum models.

APPENDIX A: COMPUTING DERIVATIVES OF
TRAINABLE PARAMETERS IN THE GENERATOR

Training a variational quantum circuit often involves per-
forming gradient-based optimization against the trainable
parameters of the ansatz. In this section we make clear how, in
the case of TF models, the trainable parameters in the genera-
tor can also be optimized in the same way. For gradient-based
optimization, one needs to compute ∂L

∂�θ for a suitably defined
loss function L which captures the adherence of the solution
f (x) to the conditions set by the training problem.

Let us first define the state produced by a TF quantum
model as ∣∣ f�θF ,�θA

(x)
〉 = ÛA(�θA)ÛF (x, �θF )|0〉. (A1)

The output of the quantum models used in the main text,
given as the expectation value of a cost operator Ĉ,

f (x, �θF , �θA) = 〈
f�θF ,�θA

(x)
∣∣Ĉ∣∣ f�θF ,�θA

(x)
〉
, (A2)

can then act as a surrogate for the target function f .
For a supervised-learning (SVL) loss contribution we can

define

LSVL = 1

M

M∑
i

L( f (xi, �θF , �θA), yi ), (A3)

where L is a suitable distance function. In a DQC setting, with
each (partial, differential) equation embedded in a functional
F [∂X f (x), f (x), x] to be estimated on a set of M collocation
points {xi}, one can define a physics-informed loss function as

LDQC = 1

M

M∑
i

L(F [∂X f (xi ), f (xi ), xi], 0). (A4)

When optimizing the loss against a certain variational
parameter θ , if θ ∈ �θA is an ansatz parameter, then ∂L

∂θ
can

be computed as standard with the PSR and generalized
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FIG. 6. A single layer of the different types of hardware-efficient ansätze used in this work. All parameters θ are separate and independent.

parameter-shift rules (GPSR) [17,18]. If, instead, θ ∈ �θF , we
can account for the inclusion of the feature x using the linear-
ity of differentiation

∂LSVL

∂θ
= 1

M

M∑
i

dL

df

∂ f (xi )

∂θ
, (A5)

∂LDQC

∂θ
= 1

M

M∑
i

∂L

∂θ
(F [∂X f (xi ), f (xi ), xi], 0). (A6)

Note that in Eq. (A6) we leave the right-hand side (RHS) as
its implicit form because it depends not only upon the actual
choice of the distance L, as in Eq. (A5), but also upon the
terms involved in the functional F . In order to give further
guidance on the explicit treatment of this latter case, we can
split the discussion according to the various terms involved in
the functional F under the likely assumption that the problem
variables X are independent of the variational parameter θ :

(1) Terms that depend solely on xi have null ∂·
∂θ

and can be
neglected.

(2) Terms containing the function f itself can be addressed
via the chain rule already elicited in Eq. (A5).

(3) Finally, terms depending on ∂X f (xi ) can be similarly
decomposed as

d2L

df dX

∂2 f (xi )

∂θ∂X
= dL

d (∂X f )

∂

∂X

∂ f (xi )

∂θ
, (A7)

where the latter descends from the independence highlighted
above and the first term on the RHS can be simply attained
from the (known) analytical form of L and F .

Thus, following the chain rule, in all cases we obtain a
dependence upon the term ∂ f (xi )/∂θ .

In terms of computing ∂ f (xi )/∂θ , we again omit the case
where θ ∈ �θA because it is known from the literature [6,17].
For the specific case of θ ∈ �θF instead, let us first combine
the unitary ansatz and the cost operator as Û †

A (�θA)ĈÛA(�θA) ≡
ĈA(�θA) for brevity. Rewriting Eq. (A2), using the generic
FM provided in Eq. (1) with a trainable generator Ĝm(�γ , �θF )
and isolating the only term dependent on the θm̃ of interest,

we get

ÛF (�x, �γ , �θF ) = e−iĜ1(�γ ,θ1 )φ1(�x) ⊗ · · · ⊗ e−iĜm̃ (�γ ,θm̃ )φm̃ (�x)

⊗ · · · ⊗ e−iĜM (�γ ,θM )φM (�x) (A8)

≡ ÛFL ⊗ e−iĜm̃ (�γ ,θm̃ )φm̃ (�x) ⊗ ÛFR. (A9)

Further simplifying the notation using ÛFR|0〉 ≡ | fFR〉 and
Û †

FLĈAÛFL ≡ ĈAF produces

f (x, θF , θA)

= 〈 fFR|eiĜm̃ (�γ ,θm̃ )φm̃ (�x)ĈAF e−iĜm̃ (�γ ,θm̃ )φm̃ (�x)| fFR〉. (A10)

With the model expressed in terms of the dependence on
the single FM parameter θm̃, we can now address computing
∂ f /∂θm̃:

∂ f

∂θm̃
= 〈 fFR|eiĜm̃φm̃

[
φm̃

∂Ĝm̃

∂θm̃
, ĈAF

]
e−iĜm̃φm̃ | fFR〉, (A11)

where, for simplicity, we have omitted the parameter depen-
dences of φm̃(�x) and the Ĝm̃(�γ , θm̃) generator and we have
introduced the commutator notation [·, ·].

Observing Eq. (A11), we are thus left with obtaining the
partial derivative ∂Ĝm̃/∂θm̃, and to that extent, we distinguish
three cases. (1) If Ĝm̃(�γ , θm̃) = γ θm̃σ̂ α , i.e., a single Pauli
operator for a chosen α axis, then we can obtain the tar-
get derivative using the standard PSR. (2) When a similar
dependence on the (non)trainable parameters holds but we
generalize beyond involutory and idempotent primitives, i.e.,
Ĝm̃(�γ , θm̃) = γ θm̃Ĝm̃, we can instead rely on a single appli-
cation of the GPSR to obtain ∂Ĝm̃/∂θm̃. (3) Finally, in the
most generic case considered in this work, the spectral gaps
of Ĝm̃ might depend nontrivially upon θm̃. In this last case,
one should recompute such gaps for each new trained θm̃ in
order to apply GPSR. Note, however, that one could always
decompose Ĝm̃(�γ , θm̃) = ∑I

i P̂i(�γ , θm̃), i.e., a sum of Pauli
strings P̂. With this decomposition approach, ignoring any
structure in Ĝm̃, at most 2I circuit evaluations would suffice
to retrieve ∂Ĝm̃/∂θm̃ [48].
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FIG. 7. Pressure field at t = 4.0 of the wake flow of fluid passing a circular cylinder at x = 0. Left: reference solution obtained by FEM.
Middle: prediction of the overparameterized TF QNN model with L = 64. Right: prediction of the equivalent FF QNN.

APPENDIX B: QUANTUM MODELS AND TRAINING
HYPERPARAMETERS

For all quantum models used in this work, the variational
ansatz is a variant of the hardware-efficient ansatz (HEA) [49],
with entangling unitaries connecting the qubits in a ring topol-
ogy as shown in Fig. 6. Here, we study both digital and sliced
digital-analog quantum computing (sDAQC) [28] versions
of the HEA, as shown in Figs. 6(a) and 6(b), respectively.
In the sDAQC approach, the entangling operations are the
fixed-duration Hamiltonian evolution of the form exp(in̂k n̂lπ )
between neighboring pairs of qubits (k, l ). After all FMs
and ansatz layers are applied, a final state |ψ〉 is produced.
The output [e.g., the predicted value of y(x) or ψ (x, y, t )
or p(x, y, t )] of all models is obtained via the expectation
value 〈ψ | Ĉ |ψ〉, where the cost operator Ĉ = ∑N

m=1 Ẑm is an
equally weighted total magnetization across the N qubits. This
combination of constant-depth ansatz and one-local observ-
ables is known to avoid cost-function-induced barren plateaus
[50].

All models in this work were trained using the Adam
optimizer.

In Fig. 2(a) the model was trained with hyperparame-
ters: qubits N = 4, L = 4 layers of the ansatz in Fig. 6(a),
training iterations Ni = 2000, batch size bs = 1, learning rate
η = 10−3.

In Fig. 2(b), both models were trained with N = 4, L =
4 layers of the ansatz in Fig. 6(a), Ni = 6000, bs = 2, and
η = 10−3.

In Fig. 3 all models were trained with N = 4, L = 8
layers of the ansatz in Fig. 6(a), Ni = 4000, bs = 2, and
η = 10−3.

In Fig. 5 and Table I, all models were trained per QNN
with N = 6, L = 10 layers of the sDAQC ansatz in Fig. 6(b),
Ni = 5000, bs = 600, and η = 10−2.

In Appendix C, Fig. 7, and Table II, all models were trained
per QNN with N = 4, L = 64 layers of the ansatz in Fig. 6(a),
Ni = 5000, bs = 600, and η = 10−2.

APPENDIX C: NAVIER-STOKES RESULTS IN THE
OVERPARAMETERIZED REGIME

In this section we repeat the experiments in Sec. V using
an overparameterized model, such that the number of train-
able parameters is larger than the dimension of the Hilbert
space [51]. Furthermore, here, we use a serial TFFM in which
each dimension (x, y, t ) is encoded serially in separate blocks,
separated by an ansatz layer which acts to change the encod-
ing basis to avoid loss of information. This is theoretically
preferential to the parallel encoding strategy since it pro-
duces a quantum model with more unique frequencies. The
TFFM uses the simple parametrization Ĝθ = ∑N

m=1 θmŶ m/2
for each dimension, while the FF model uses the same gen-
erator without trainable parameters Ĝ = ∑N

m=1 Ŷ m/2. After
the FM, the model has L = 64 ansatz layers bisected by a
data-reuploading FM. In total, each QNN has 804 trainable
ansatz parameters.

Figure 7 presents a visualization of the experiment’s re-
sults, evaluating the pressure field at a specific time. In
this deeper regime, the TF QNN achieves excellent agree-
ment with the reference solution, successfully capturing more
features such as the presence of two interconnected negative-
pressure bubbles on the left. In contrast, despite its increased

TABLE II. MAERM error predicting u, v, and p averaged over 10 runs. The minimum, maximum, and mean are with respect to the 11
time points between t = 0 and t = 5.5. For each observable, the lowest error per row is highlighted in bold.

u v p

FF TF FF TF FF TF

Min 7.2 ± 0.5 5.3 ± 0.6 23.1 ± 0.8 16.8 ± 0.9 39.2 ± 1.9 31.2 ± 3.9
Max 8.5 ± 0.6 8.1 ± 1.3 30.0 ± 0.7 22.3 ± 1.8 54.2 ± 4.1 47.4 ± 5.7
Mean 7.7 ± 0.3 6.2 ± 0.4 26.0 ± 0.5 18.9 ± 0.7 45.2 ± 3.3 36.8 ± 2.2
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depth, the FF QNN solution is only approximately accurate
and fails to correctly identify the separation between the

pressure bubbles in the middle and right panels. The numeri-
cal performance of the models is given in Table II.
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