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Experimental realization of quantum non-Markovianity through the convex mixing of Pauli
semigroups on an NMR quantum processor
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This experimental study aims to investigate the convex combinations of Pauli semigroups with arbitrary
mixing parameters to determine whether the resulting dynamical map exhibits Markovian or non-Markovian
behavior. Specifically, we consider the cases of equal as well as unequal mixing of two Pauli semigroups, and
demonstrate that the resulting map is always non-Markovian. Additionally, we study three cases of three-way
mixing of the three Pauli semigroups and determine the Markovianity or non-Markovianity of the resulting maps
by experimentally determining the decay rates. To simulate the nonunitary dynamics of a single-qubit system
with different mixing combinations of Pauli semigroups on an NMR quantum processor, we use an algorithm
involving two ancillary qubits. The experimental results align with the theoretical predictions.
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I. INTRODUCTION

The field of quantum computing is rapidly developing,
and there is a crucial need to develop reliable methods to
characterize and control quantum systems. Quantum systems
can interact with their environment in various ways, leading
to decoherence and dissipation, which could have a dele-
terious effect on the computational protocols. The study of
open quantum systems [1,2] therefore has significant impli-
cations for applications in quantum information processing,
quantum computing, and quantum communication. Recent
research has focused on the effect of decoherence on the
performance of quantum computers [3] and the use of error
correction codes to address this issue [4]. A critical aspect
of open quantum systems is characterizing their dynamical
behavior, with a particular focus on the distinction between
Markovian and non-Markovian dynamics [5–7]. The theory
of non-Markovian dynamics has become an important area of
research, with a focus on characterization, quantification, and
detection of non-Markovian behavior [8–10].

The reduced dynamics of the quantum system of interest
undergoing open evolution is described by a time-continuous
family of completely positive (CP) and trace-preserving (TP)
linear maps {�(t ) : t � 0,�(0) = 1} known as the quantum
dynamical map, acting on the bounded operators of the Hilbert
space of the system of interest [11,12]. The dynamical map is
also related to the time-local generator L(t ) [13] in the time-

*vaishali@iisermohali.ac.in
†vinayak.jagadish@helsinki.fi
‡srik@poornaprajna.org
§kavita@iisermohali.ac.in

local master equation, �̇(t ) = L(t )�(t ), with

L(t )[ρ] = − ı[H (t ), ρ]

+
∑

i

γi(t )

[
Li(t )ρLi(t )† − 1

2
{Li(t )†Li(t ), ρ}

]
,

(1)

where H (t ) is the effective Hamiltonian, Li(t ) the noise oper-
ators, and γi(t ) the decoherence rates. The divisibility of the
dynamical map is expressed as follows:

�(t f , ti ) = V (t f , t )�(t, ti ), ∀t f � t � ti � 0. (2)

The map is CP divisible if for all t , the propagator V (t f , t ) is
CP and the corresponding decay rates γi(t ) are positive at all
times. Otherwise, the map is said to be CP indivisible.

In contrast with classical non-Markovianity, quantum non-
Markovianity does not have a unique definition [5,6,14]. Two
major proposals to address quantum non-Markovianity are
based on the CP-indivisibility criterion (RHP) [15,16] and on
the distinguishability of states (BLP) [17,18]. According to
the RHP divisibility criterion [15], a quantum dynamical map
is non-Markovian if it is CP indivisible. A Markovian evolu-
tion, therefore, is CP divisible, with all the decay rates γi(t )
in the time-local master equation (1) are positive at all times.
A temporarily negative decay rate is therefore a signature of
CP indivisibility of the map and therefore non-Markovianity.
According to the BLP definition [17], a quantum dynamical
map �(t ) is said to be Markovian if it does not increase
the distinguishability of two initial states ρ1 and ρ2, i.e.,
if ‖�(t )(ρ1) − �(t )(ρ2)‖ � ‖�(0)(ρ1) − �(0)(ρ2)||, where
‖ · ‖ denotes the trace distance. In this work, we stick to the
CP-indivisibility criterion of non-Markovianity.
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Convex combinations of Pauli semigroups and time-
dependent Markovian Pauli dynamical maps were studied in
Refs. [19,20] discussing the geometrical aspects and non-
Markovianity. These results showed the nonconvexity of the
sets of CP-divisible and CP-indivisible Pauli dynamical maps.
Convex combinations of semigroups of generalized Pauli dy-
namical maps have been addressed in Ref. [21]. In Ref. [22],
it was shown that an eternally non-Markovian evolution arises
from a mixture of Markovian semigroups. Convex combina-
tions of noninvertible dynamical maps have also been studied
recently [23–26]. For the case of generalized Pauli dynamical
maps, it was shown that mixing invertible maps can never
result in noninvertible maps [23]. Subsequently, it was also
shown that noninvertibility of the generalized Pauli input
maps is necessary for getting a semigroup [24]. The fraction
of (non)invertible maps obtained by mixing noninvertible gen-
eralized Pauli maps was quantified in Ref. [25]. The measure
of the set of non-Markovian maps obtained by mixing nonin-
vertible Pauli maps was studied in Ref. [26].

In recent years, there has been a growing interest in the
experimental implementation of non-Markovian dynamics in
various physical systems, including quantum dots [27–29],
superconducting qubits [30], trapped ions [31,32], and NMR
systems [33,34]. NMR systems, in particular, are a use-
ful platform to investigate non-Markovian dynamics due to
their excellent ability to control and manipulate system-
environment interactions. Various studies in NMR investigate
different quantum correlations present in the system [35,36]
and their dynamics under various environments [37,38].

In this work, we aim to experimentally study the behavior
of a single-qubit system under the effect of different mixing
combinations of Pauli semigroups on an NMR quantum pro-
cessor. We demonstrate that the mixing of any two Markovian
Pauli semigroups produces a map which is CP indivisible
and therefore RHP non-Markovian. One of the decay rates
always turns out to be negative in this scenario. We also verify

our experimental results for arbitrary choices of the mixing
parameters for the dynamical semigroup realizations of the
three Pauli semigroups which are in agreement with the notion
of Pauli simplex as defined in Ref. [19]. We note that the
non-Markovian nature of the map becomes apparent when
one or more of the decay rates becomes negative. We consider
the case of a single qubit with two ancilla qubits to simulate
nonunitary dynamics and make use of the algorithm for the
circuit design as in Ref. [39].

The rest of this paper is organized as follows. Section II
briefly describes the theory of the convex combinations of
Pauli semigroups. The experimental details and results are
presented in Sec. III. We then conclude in Sec. IV.

II. CONVEX COMBINATION OF PAULI SEMIGROUPS

Consider the three Pauli dynamical semigroups,

�i(t )[ρ] = [1 − p(t )]ρ + p(t )σiρσi, i = 1, 2, 3, with

p(t ) = 1 − e−ct

2
, c > 0. (3)

Here, p(t ) is the decoherence function and σi are the Pauli
matrices.

The convex combination of the three Pauli semigroups
Eq. (3), each mixed in proportions of xi, is

�̃(t ) =
3∑

i=1

xi�i(t ),

(
xi > 0,

∑
i

xi = 1

)
. (4)

Let us call the three �i(t ) input maps and �̃(t ) the output
map. The associated time-local master equation for �̃(t ) is

L(t )[ρ] =
3∑

i=1

γi(t )(σiρσi − ρ), (5)

with the decay rates

γ1(t ) =
(

1 − x2

1 − 2(1 − x2)p(t )
+ 1 − x3

1 − 2(1 − x3)p(t )
− 1 − x1

1 − 2(1 − x1)p(t )

)
ṗ(t )

2

γ2(t ) =
(

1 − x1

1 − 2(1 − x1)p(t )
+ 1 − x3

1 − 2(1 − x3)p(t )
− 1 − x2

1 − 2(1 − x2)p(t )

)
ṗ(t )

2
(6)

γ3(t ) =
(

1 − x1

1 − 2(1 − x1)p(t )
+ 1 − x2

1 − 2(1 − x2)p(t )
− 1 − x3

1 − 2(1 − x3)p(t )

)
ṗ(t )

2
.

The CP divisibility and, therefore, the Markovianity of output
map �̃(t ) depends on the mixing coefficients xi. For instance,
an equal mixing of the three Pauli semigroups results in
a Markovian output. The fraction of non-Markovian (CP-
indivisible) maps obtained by mixing Pauli semigroups was
reported in Ref. [19]. As opposed to three-way mixing, any
mixing of two Pauli semigroups is always non-Markovian. To
this end, let x1 = 0. The decay rate γ1(t ) turns out to be

γ1(t )

= −
[

(1 − x2)x2[1 − p(t )]p(t )

[1 − 2p(t )][1 − 2(1 − x2)p(t )][1 − 2x2 p(t )]

]
ṗ(t ),

(7)

which remains negative for all values of x2. (Note that x3 =
1 − x2.)

III. EXPERIMENTAL ANALYSIS OF MARKOVIANITY
AND NON-MARKOVIANITY

A. NMR simulation of Pauli semigroups

A dynamical map acting on a system of d-dimensional
Hilbert space could be simulated by a d2-dimensional ancilla
if one allows the most general unitary evolution of the total
system under the assumption that the ancilla is initialized in
a pure state [40]. Therefore, to simulate maps on a qubit, a
two-qubit ancilla is sufficient. The finite time map �̃(t ) as in
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Eq. (4) being CP and TP admits an operator-sum represen-
tation, �̃(t )(ρ) = ∑

k Ek (t )ρE†
k (t ), where the operator Ek (t )

satisfies the trace-preservation condition,
∑

k E†
k (t )Ek (t ) = 1.

The nonunitary operator Ek (t ) associated with the dynami-
cal map can be decomposed into a linear combination of four
unitary operators (Pauli matrices σi in this case) and are ex-
perimentally implemented using two ancillary qubits added to
the working system. Efficient implementation of the nonuni-
tary transformation represented by �̃(t ) is achievable when
suitable unitary operations U,V , and W are found, such that
Ek = ∑

i WkiVi0Ui. By applying the overall unitary operation
(I ⊗ W )U (I ⊗ V ) to the initial state of the working system
and ancillary system, followed by the trace-out of the ancilla,
the simulation of the map is obtained. The algorithm involving
three unitaries offers the advantage in implementing the maps
involving the convex mixtures of Pauli semigroups in a more
general manner. This approach eliminates the need to design
separate circuits for each specific mixing combination. By
incorporating three unitaries into the algorithm, it becomes
possible to dynamically adjust and experiment with different
mixing parameters and Pauli operators, allowing for greater
flexibility and versatility in simulating the desired nonunitary
dynamics. The algorithm is as follows.

(1) Transforming the state of the ancilla qubits: After ini-
tializing the three-qubit system in the state |0〉s|00〉, where
|0〉s is the state of the system qubit and |00〉 that of the
ancillary qubits, a unitary operation V is performed on the
ancillary qubits. The composite state evolves to V00|0〉s|00〉 +
V10|0〉s|01〉 + V20|0〉s|10〉 + V30|0〉s|11〉. The mixing parame-
ters and the decoherence function associated with the Kraus
operators determine the values in the first column of the uni-
tary matrix V .

(2) Transforming the state of the system: The unitary op-
erations σi are applied on the system qubit depending on the
state of the ancilla qubits acting as control qubits:

U = σ0 ⊗ |00〉〈00| + σ1 ⊗ |01〉〈01|
+ σ2 ⊗ |10〉〈10| + σ3 ⊗ |11〉〈11|, (8)

where σ0 is the identity matrix. The system now evolves
to the state V00σ0|0〉s|00〉 + V10σ1|0〉s|01〉 + V20σ2|0〉s|10〉 +
V30σ3|0〉s|11〉.

(3) Finally, the unitary operation W is performed on
the ancillary system, which transforms the state into∑3

i,k=0 WkiVi0σi|0〉s|k〉, where Ek = ∑3
i=0 WkiVi0σi. The ele-

ments of matrix W are uniquely determined by the choice of
matrix elements of V . We obtain the W matrix as the identity
matrix in our cases.

(4) On measuring the final state of the working sys-
tem with the ancillary system in the state |k〉〈k|, we obtain
Ek|0〉s〈0|sE†

k . By tracing out the ancillary qubits, summing
over each state |k〉〈k|, the result is

∑
k Ek (t )|0〉s〈0|sE†

k (t ),
which corresponds to simulating the map �̃(ρ) where the
initial state of the system ρ is |0〉〈0|.

The specific forms of the matrices V used in the experi-
ments depend on the dynamical map under consideration, and
the specific forms used in our experiments are given in the
following section.

FIG. 1. The structure of the molecule trifluoroiodoethylene with
three NMR active spin − 1/2 19F nuclei acting as three qubits, along
with the NMR spectra of the pseudopure state |000〉 which represents
the initial state of the three-qubit system. The x axis represents the
frequency scale presented in parts per million (ppm). The negative
values on the x axis represent the frequency offset from the reference
frequency (indicating upfield shifts for 19F nuclei).

B. Experimental parameters

The three NMR qubits were realized using the three 19F
spin-1/2 nuclei in the molecule trifluoroiodoethylene (Fig. 1)
dissolved in the deuterated solvent, d6-acetone. All exper-
iments were performed at ambient temperature (∼298 K)
on a Bruker AVANCE-III 400 MHz NMR spectrometer
equipped with a broadband observe (BBO) probe. The high-
temperature, high-field approximation simplifies the NMR
Hamiltonian by neglecting certain terms when the ther-
mal and Zeeman energies dominate over other interactions.
This approximation enables easier analysis and calculations
in NMR experiments. The resulting Hamiltonian, assuming
weak scalar coupling Ji j between spins i and j, is given
by [41]

H = −
3∑

i=1

ωiIiz + 2π

3∑
i< j

Ji j IizI jz, (9)

where ωi is the chemical shift of the ith spin, and Iiz represents
the z component of the spin- 1

2 operator for the ith spin.
Nuclear spins at thermal equilibrium are represented by the

density operator,

ρ = exp(−H/kBT )

Z
, (10)

where H is the Hamiltonian of the system, kB is the Boltzmann
constant, T is the temperature, and Z is the partition function.

Starting from thermal equilibrium, the system is prepared
in a pseudopure state (PPS) using the spatial averaging tech-
nique [42,43], with the density matrix corresponding to the
PPS being given by

ρ000 = (1 − ε)

8
18 + ε|000〉〈000|, (11)
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FIG. 2. (a) Schematic of the circuit used to simulate the dynami-
cal map obtained from the convex combination of two and three Pauli
dynamical maps. For both two- and three-dynamical-map mixing,
the controlled operation U is the same. σi denote the Pauli matrices,
with σ0 being the identity matrix. The unitary operation V is different
for the cases of two-way and three-way mixing. The W operation
is equivalent to the identity operation and hence not implemented
experimentally. (b) The NMR pulse sequence used to simulate the
map. The rectangular shapes represent rf pulses of differing angles
and phases (which are written on the top of each pulse). CNOT

operations between two qubits are represented by blue lines between
the corresponding qubits. Step 1 corresponds to the preparation of the
input state. Gradient pulses are represented by shaped green curves,
while the GRAPE-optimized pulse to implement Step 2 of the circuit
is represented by a large dark green curve, applied simultaneously
on all three qubits. Step 3 corresponds to measurements on all three
qubits.

where ε ∼ 10−5 is the spin polarization at room temperature
and 18 is the 8 × 8 identity operator. The identity part of
the density operator plays no role and the NMR signal arises
solely from the traceless part of the density matrix given in
Eq. (11).

T1 and T2 relaxation times in NMR describe the return to
equilibrium and loss of phase coherence of nuclear spins. T1

measures the recovery of longitudinal magnetization, while T2

measures the decay of transverse magnetization. However, the

faster decay of transverse magnetization observed in practice
is often attributed to T ∗

2 relaxation, which combines intrinsic
T2 relaxation and magnetic field variation effects. T ∗

2 for our
experimental setup yields a value of approximately 0.1869 s.
The experimentally measured scalar couplings are given by
J12 = 69.65 Hz, J13 = 47.67 Hz, and J23 = −128.32 Hz.

The rf required for creating the PPS state was designed
using the gradient ascent pulse engineering (GRAPE) [44]
technique, along with pulsed magnetic field gradients [45].
The GRAPE pulses obtained are for the collective operation
of U and V at each time point. To clarify, for each time
point, a specific unitary matrix is obtained by the product
of U and V . The GRAPE pulse length varies according
to different unitaries simulated at different time points. For
instance, at t = 0.1 s, the GRAPE pulse length is approxi-
mately 700 µs, and at t = 1.5 s, it is approximately 2500 µs.
The system was evolved from the PPS to the other states
via state-to-state transfer unitaries, and all states were cre-
ated with high fidelities � 0.99. The standard methods for
quantum state reconstruction for NMR quantum information
processing typically involve performing full state tomogra-
phy [46,47] which is computationally expensive, although
some alternatives involving maximum likelihood estimation
have been proposed and used [48]. For this work, we used
a least squares constrained convex optimization method to
reconstruct the density matrix of the desired state [49,50].
Fidelities of the experimentally reconstructed states (as com-
pared to the theoretically expected state) were computed using
the measure [51,52]

F (χexpt, χtheo) = |Tr[χexptχ
†
theo]|√

Tr[χ†
exptχexpt]Tr[χ†

theoχtheo]
, (12)

where χtheo and χexpt denote the theoretical and experimental
density matrices, respectively. We experimentally prepared
the PPS with a fidelity of 0.9979 ± 0.0001. The PPS fidelity
without convex optimization, calculated using the linear in-
version method, is 0.9933 ± 0.0005.

1. Mixing of two Pauli semigroups

We experimentally demonstrate mixing of two Pauli semi-
groups for two cases each with the decoherence parameter
p(t ) = [1 − exp (−2t )]/2. To this end, we consider convex
mixing as

�̃(t )(ρ) = a�3(t )(ρ) + (1 − a)�2(t )(ρ). (13)

The two cases considered are (1) equal mixing with the mix-
ing parameter a = 0.5 and (2) unequal mixing with the mixing
parameter a = 0.25.

For the simulation of mixing two Pauli semigroups, the
algorithm described above leads to the following matrix:

V =

⎛
⎜⎜⎜⎜⎝

√
1 − p(t )

√
p(t ) 0 0

0 0 1 0√
p(t )(1 − a) −√

(1 − a)[1 − p(t )] 0
√

a√
ap(t ) −√

a[1 − p(t )] 0 −√
1 − a

⎞
⎟⎟⎟⎟⎠. (14)
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To implement the unitary for the convex combination of
the case of mixing two and three Pauli semigroups exper-
imentally, we utilized the quantum circuit shown in Fig. 2.
For mixing of both two and three semigroups, the controlled
operation U is the same, as in Eq. (8). The unitary operation
V is different for the two-way and three-way mixing. The W
operation is equivalent to the identity operation for both cases
and is hence not implemented experimentally. For the im-
plementation of the NMR pulse sequence, GRAPE-optimized
pulses are used. The unitaries U and V are designed so as to
be implemented by use of a single pulse for each time point in
all the cases. The experimental procedure involves three steps:

(1) Initialization: The system is prepared in the state
|000〉〈000| with the help of optimized pulses and magnetic
field gradients.

(2) Simulation of the nonunitary dynamics: The implemen-
tation of U and V with GRAPE optimized pulses.

(3) Measurement: The acquisition and tomography pulses
are applied.

The rectangular shapes in Fig. 2 depict the rf pulses used
to prepare the initial pseudopure state required for Step 1
of the algorithm. Each rectangle is associated with specific
phases, which are indicated above them. The magnetic field
direction is assumed to align with the z axis. The rf pulses
are applied along the x or y axis at specific angles, allowing
precise control over qubit rotations and transformations. With
the knowledge of the desired phases and angles of the rf
pulses, we can perform operations like single-qubit rotations
and two-qubit gates. For example, the first qubit is rotated
by an angle of θ1 = 5π

12 radians around the y axis, while

the second qubit is rotated by an angle of θ2 = π
3 radians.

CNOT operations between two qubits are represented by blue
lines between the corresponding qubits. The complete pulse
sequence corresponding to the CNOT gate can be found in
Ref. [35]. Before the CNOT gate operation, an x pulse with an
angle of π

4 is applied. This pulse rotates the state of the qubit
around the x axis. Following the CNOT gate, a y pulse with an
angle of −π

4 is applied, which rotates the state around the y
axis. The angles and pulses of the rf pulses or gate operations
are carefully chosen to achieve the desired output state or
perform the targeted operation. The specific choice of angles
or gates depend on our goal which in this case is to prepare the
PPS. After the initialization, a GRAPE pulse corresponding
to Step 2 of the algorithm is applied. This pulse applies the
unitary operations V and U , depending on the specific case
being considered.

2. Mixing of three Pauli semigroups

We next consider the case of the convex combination of
three Pauli semigroups. We experimentally demonstrate this
for three cases, each with the decoherence parameter p(t ) =
[1 − exp (−3t )]/2:

(1) equal mixing with mixing parameters x1 = x2 = x3 =
0.33,

(2) unequal mixing with mixing parameters x1 = x3 =
0.3, x2 = 0.4, and

(3) unequal mixing with mixing parameters x1 =
0.2, x2 = x3 = 0.4.

The V matrix in this case is evaluated to be

V =

⎛
⎜⎜⎜⎜⎜⎝

√
1 − p(t )

√
p(t ) 0 0√

x1 p(t ) −√
x1[1 − p(t )]

√
1 − x1 0

√
x2 p(t ) −√

x2[1 − p(t )] −
√

x1x2
1−x1

√
x3

1−x1√
x3 p(t ) −√

x3[1 − p(t )] −
√

x1x3
1−x1

− x2√
x2(1−x1 )

⎞
⎟⎟⎟⎟⎟⎠. (15)

The decay rate of the decoherence parameter p(t ) is dependent
on the chosen constant c. Therefore, determining the optimal
time interval required to study the behavior of the system
is directly linked to the selection of c. Shorter time periods
are preferable to minimize decoherence during experimental
duration. The appropriate choice of c is crucial to effectively
study the impact of the resulting dynamical map on the sys-
tem, while minimizing noise interference.

The final three-qubit density matrix was reconstructed us-
ing the least squares constrained convex optimization method.
The average fidelity of the experimental matrices obtained is
0.98 ± 0.01. The experimental output matrix for the single-
qubit system is obtained after tracing over the ancilla qubits.
We plot bar graphs (Fig. 3) to visually compare the real and
imaginary parts of the theoretical and experimental density
matrices for the specific example of the second case of mixing
two semigroups at t = 0.1 ms. The fidelity of the experimental
state, in this case, is 0.99. The decoherence parameter p(t ) is
computed at every time point from the output matrix and the
experimental data is fitted to obtain the experimental parame-

ter pe(t ) and its time evolution ṗe(t ). The experimental decay
rates are subsequently computed with the help of Eq. (6).

Figures 4 and 5 depict a comparison of the theoretical
and experimental results for the two-way mixing case, for
equal and unequal mixing, respectively. For each case, the
decoherence parameter p(t ) is plotted in the top panel. The
blue dots represent the experimental data with error bars,
the blue curves represent the experimental fits, and the red
dashed curves represent the theoretical parameters. The decay
rates obtained from the experimental data γ1(t ) are negative
for both case (1) and case (2), indicating that the resultant
dynamical map, when two Pauli semigroups maps are mixed,
is non-Markovian, which is consistent with Theorem 1 in
Ref. [19].

Figures 6–8 present a comparison of the theoretical and
experimental results for the case of three-way mixing. For
each case, the decoherence parameter p(t ) is plotted in the
top panel. The blue dots represent the experimental data with
error bars, the blue curves represent the experimental fits, and
the red dashed curves represent the theoretical parameters. To
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FIG. 3. Bar plots illustrating the real (Re) and imaginary (Im)
components of the theoretical (Th.) and experimental (Expt.) density
matrices for the specific case of unequal mixing of two Pauli semi-
groups at t = 0.1 ms.

determine whether the resultant dynamical map is Markovian
or non-Markovian, the decay rates are analyzed. The decay
rates γ1(t ), γ2(t ), γ3(t ) were all positive for case (1) and case
(2) as shown in plots (b), (c), and (d) respectively, indicating
that the resultant dynamical maps are Markovian. However,
for case (3), the negative decay rate of γ1(t ) suggests that the
resultant dynamical map is non-Markovian, which is consis-
tent with the theoretical results.

FIG. 4. Convex combination of two Pauli semigroups for the
case of equal mixing. (a) Comparison of the theoretical and exper-
imental decoherence parameters p(t ). (b) Comparison of theoretical
and experimental decay rates γ1(t ), γ2(t ), γ3(t ) with mixing param-
eter a = 0.5. The red dashed and blue curves represent the theoretical
and the fit to the experimental parameters, respectively. Experimental
data points with error bars are represented by blue dots. The decay
rate γ1(t ) is negative throughout, indicating non-Markovianity.

FIG. 5. Convex combination of two Pauli dynamical maps for
the case of inequal mixing. (a) Comparison of the theoretical and
experimental decoherence parameters p(t ). (b) Comparison of theo-
retical and experimental decay rates γ1(t ), γ2(t ), γ3(t ) with mixing
parameter a = 0.25. The red dashed and blue curves represent the
theoretical and the fit to the experimental parameters, respectively.
Experimental data points with error bars are represented by blue
dots. The decay rate γ1(t ) is negative throughout, indicating non-
Markovianity.

Figures 4–8 provide clear evidence of the agreement
between the theoretical and experimental results. The ex-
perimental results clearly corroborate the Markovian or
non-Markovian nature of the dynamical map in cases of both
two- and three-way mixing, which is consistent with Theorem
1 and the Pauli simplex in Ref. [19]. The outcomes presented
here, which successfully demonstrate the effects of combining
different Pauli semigroups with arbitrary mixing parameters,
provide valuable insights for the study of memory effects in
open quantum systems. Moreover, these results are significant

FIG. 6. Convex combination of three Pauli dynamical maps for
the case of equal mixing. (a) Comparison of the theoretical and
experimental decoherence parameters p(t ). (b) Comparison of the-
oretical and experimental decay rates γ1(t ), γ2(t ), γ3(t ) with mixing
parameters x1 = x2 = x3 = 0.33. The red dashed and blue curves
represent the theoretical and the fit to the experimental parameters,
respectively. Experimental data points with error bars are represented
by blue dots. All the decay rates are positive, indicating that the
resulting map is Markovian.
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FIG. 7. Convex combination of three Pauli dynamical maps for
the case of inequal mixing. (a) Comparison of the theoretical and
experimental decoherence parameters p(t ). (b) Comparison of theo-
retical and experimental decay rates γ1(t ), γ2(t ), γ3(t ) with mixing
parameters x1 = x3 = 0.3, x2 = 0.4, respectively. The red dashed
and blue curves represent the theoretical and the fit to the experi-
mental parameters, respectively. Experimental data points with error
bars are represented by blue dots. All the decay rates are positive,
indicating that the resulting map is Markovian.

for the development of quantum error correction and fault-
tolerant quantum computing.

IV. CONCLUSIONS

In our experimental study, we have successfully demon-
strated the combination of two and three Pauli semigroups,
with different mixing parameters. The main objective was
to investigate the Markovianity and non-Markovianity of the
resulting dynamical maps. By analyzing the decay rates as-
sociated with these dynamical maps, we were able to assess
the characteristics of the quantum maps under investigation.
We compared our experimental analysis with the theoretical
predictions. The comparative analysis allowed us to validate
the accuracy of our experimental findings and establish the
reliability of our approach. The good agreement between the
experimental results and theoretical expectations highlights
the efficacy of our methodology in capturing the underly-
ing dynamics of the system-environment interactions. This
research represents a significant step forward in advancing
our understanding of quantum correlations and the interplay

FIG. 8. Convex combination of three Pauli dynamical maps for
the case of inequal mixing. (a) Comparison of the theoretical and
experimental decoherence parameters p(t ). (b)–(d) Comparison of
theoretical and experimental decay rates γ1(t ), γ2(t ), γ3(t ) with
mixing parameters x1 = 0.2 and x2 = x3 = 0.4, respectively. The red
dashed and blue curves represent the theoretical and the fit to the
experimental parameters, respectively. Experimental data points with
error bars are represented by blue dots. The negativity of the decay
rate γ1(t ) indicates non-Markovianity of the resulting map.

between the system and its surrounding environment. Over-
all, our experimental investigation contributes to the growing
body of knowledge in the field of quantum dynamics, paving
the way for further studies on the characterization and ma-
nipulation of quantum information in realistic environments.
NMR, with its precise control, long coherence times, and ac-
curate measurements, serves as a good platform for simulating
the dynamics of open quantum systems and understanding the
correlations between quantum systems and their environment.
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