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Phase transitions in sampling and error correction in local Brownian circuits
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We study the emergence of anticoncentration and approximate unitary design behavior in local Brownian
circuits. The dynamics of circuit-averaged moments of the probability distribution and entropies of the output
state can be represented as imaginary-time evolution with an effective local Hamiltonian in the replica space.
This facilitates large-scale numerical simulation of the dynamics in 1 + 1 dimensions of such circuit-averaged
quantities using tensor network tools as well as identifying the various regimes of the Brownian circuit as distinct
thermodynamic phases. In particular, we identify the emergence of anticoncentration as a sharp transition in the
collision probability at ln N timescale, where N is the number of qubits. We also show evidence for a specific
classical approximation algorithm undergoing a computational hardness transition at the same timescale. In
the presence of noise, we show there is a noise-induced first-order phase transition in the linear cross entropy
benchmark when the noise rate is scaled down as 1/N . At longer times, the Brownian circuits approximate a
unitary 2-design in O(N ) time. We directly probe the feasibility of quantum error correction by such circuits
and identify a first-order transition at O(N ) timescales. The scaling behaviors for all these phase transitions
are obtained from the large-scale numerics and corroborated by analyzing the spectrum of the effective replica
Hamiltonian.
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I. INTRODUCTION

Random quantum circuits (RQCs) play a pivotal role in
both quantum dynamics theory and quantum information
theory, offering insights into fundamental aspects such as
quantum chaos, out-of-time correlation functions, and entan-
glement entropy [1–5]. Closely related to RQCs, the random
tensor network serves as a valuable tool for investigating
the anti–de Sitter/conformal field theory correspondence, a
theory aimed at understanding quantum gravity through quan-
tum entanglement [6]. Additionally, random quantum circuits
find extensive applications in quantum information theory, in-
cluding quantum advantage [7–10], quantum error correction
[11–13], etc.

Random circuits are expected to be a toy model cap-
turing the following properties of generic quantum circuits:
They output states of high complexity and generate maximal
entanglement between initially disconnected regions. An im-
portant question is characterizing the time (depth) required
for achieving the high complexity. How do we characterize
the complexity of random circuits? In this work we fo-
cus on two distinct features: anticoncentration and unitary
design.

Consider a circuit C acting on an initial simple state
(the product state of |0〉 on all qubits) with the output
state being measured in the computational basis to obtain a
distribution over measurement outcomes pC (s) = |〈s|C|0〉|2.
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Anticoncentration is the property that pC (s) is well spread
over all bit strings s. Certifying that the circuit is anticoncen-
trated is crucial in guaranteeing that the RQC simulation is
classically hard and is a promising route towards demonstrat-
ing quantum advantage [7,9,10,14,15].

At long enough depths, the RQC has a stronger notion
of complexity: It becomes an approximate unitary design. A
unitary ensemble is said to be a k-design if it approximates a
global Haar random unitary in its first k moments. In partic-
ular, ensuring that a RQC has achieved the 2-design property
is enough for the RQC to be maximally decoupling. Consider
a system A, initially maximally entangled with a reference R,
that is subjected to a circuit C, before being coupled to an
environment E . The initial encoding via C is said to have the
decoupling property if the joint density matrix on R ∪ E is
approximately factorizable ρRE ≈ ρR ⊗ ρE . This can also be
associated with the RQC dynamically generating a quantum
error correcting code [11–13].

Several avenues of research on RQCs have established that
anticoncentration and unitary design occur at parametrically
distinct timescales. Suppose we consider circuits with spatial
local connectivity in d dimensions. Past research has shown
that ensembles of RQCs with Haar random local gates achieve
anticoncentration and the unitary design in O(ln N ) [16] and
O(N1/d ) [17–19] timescales, respectively, where N denotes
the number of qubits. Note that both anticoncentration and
the 2-design property are diagnosed by nonlinear properties
of the quantum state generated by the circuits. This makes
numerically simulating these properties for local Haar random
circuits hard and limited to modest system sizes and short
times. Hence, much of the research on RQCs has depended
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on proving analytical bounds, classically simulable Clifford
circuits, and perturbations around semiclassical limits, such
as large local Hilbert space dimensions.

In this work we provide a minimal model which allows
us to do an efficient and guaranteed numerical simulation
of the quantum informational quantities probing anticoncen-
tration and the 2-design property of large random circuits
using tensor network technology. We take the approach of
directly representing the informational quantities averaged
over the circuit ensemble as a linear observable in a replicated
Hilbert space. Here replicas are simply exact copies of the
original system and the informational observables probe the
correlation between different replicas. We study a particular
ensemble of RQCs, namely, local Brownian circuits [20–24].

These Brownian qubit models can be defined on any graph
where each vertex hosts a qubit, with nearest-neighbor Brow-
nian interaction generating the unitary evolution. Remarkably,
the real-time evolution of circuit-averaged nonlinear ob-
servables of the density matrix can now be realized as
imaginary-time evolution in the replica space. The Hilbert
space for k replicas is simply the combination of a forward
contour and a backward contour for real-time evolution for
each replica; so the local Hilbert space encompasses 2k spins.
After averaging of Brownian couplings, the quantum dynam-
ics reduces to a Hermitian replica qubit Hamiltonian with the
same locality properties as the initial interaction graph. This
model not only establishes a clear mapping between various
quantum information quantities and those of a quantum spin
model, but also transforms the problem of quantum dynamics
into a thermodynamic problem.

Furthermore, imaginary-time evolution with local Hamil-
tonians is guaranteed to be efficient in one dimension using
simple matrix product state and time-evolving block decima-
tion (TEBD) algorithms [25–27]. This allows us to perform
large-scale simulations of these informational quantities in a
(1 + 1)-dimensional circuit. As an example, we can simulate
the averaged Rényi-2 entanglement properties of a Brownian
circuit on N ∼ O(100) qubits for t ∼ O(N ) depths in a few
minutes on a standard laptop.

The effective Hamiltonian approach also provides a statis-
tical mechanical description of different regimes of RQCs as
distinct phases, separated by phase transitions. These phases
can be described within a generalized Landau framework
involving multiple replicas, where the relevant symmetry is
the replica permutation symmetry [28] (when we introduce
multiple identical copies of the system, they can be permuted
among each other without changing the effective description).
Specifically, in the two-replica scenario that we focus on
in this work, the effective Hamiltonian has a Z2 symmetry
corresponding to a relative swap between the two real-time
contours, which turns out to be the relevant symmetry for
nonlinear observables of the density matrix. This effective
Hamiltonian is essentially a Z2 Ising model in the replica
space, and the phases of quantum information and their phase
transitions are associated with the various phases and critical
properties of this Ising model.

Using large-scale numerics of the Brownian circuit model,
we can directly probe the dynamical properties of the quan-
tum informational quantities and identify the saturation to
anticoncentration (at approximately ln N depth) and the

2-design property (at approximately N depth) of the RQC as
sharp transitions, confirmed by careful finite-size scaling of
the numerical data. This can be understood analytically by
investigating the spectral properties of the effective Hamil-
tonian. The anticoncentration transition can also be directly
associated with a transition in the computational hardness of
classically simulating the output distribution. To show this,
we provide evidence that a specific algorithm for simulating
the output distribution [29] undergoes a hardness transition at
approximately ln N depth.

In order to study the 2-design transition, we focus on inves-
tigating the feasibility of the Brownian circuit as a quantum
error correcting code, by directly simulating a quantity akin
to the mutual information between the reference and environ-
ment in the decoupling setup, named mutual purity [30]. The
mutual purity is a two-replica quantity and has recently been
shown to provide a bound for the error correction capabilities
of RQCs in [30]. We show that the mutual purity undergoes
a first-order transition in O(N ) time, after which the Brow-
nian circuit approximates the global Haar random unitary
for coding purposes. This coding transition is a first-order
pinning transition, driven by boundary conditions determining
the mutual purity, akin to [13]. Furthermore, the mutual purity
contributes to a bound for the failure probability for correct-
ing errors after the encoding by the RQC. By numerically
computing the mutual purity for different error models after
the 2-design transition, we can also find a first-order threshold
transition for the code distance.

As mentioned earlier, sampling of RQC outcome states
is one of the most promising routes towards demonstra-
tion of quantum advantage in near-term quantum devices
[7,9,10,14,15]. However, real quantum devices suffer from
noise. In order to benchmark the noisy quantum device, an
estimate of the fidelity of the output state is desirable. One
proposal for an efficient estimate for the fidelity is the lin-
ear cross-entropy benchmark χXEB, and a high score in this
benchmark suggests that the RQC simulation is classically
hard [14]. However, it has recently been understood that with
local noise models, there is a noise-induced phase transition
(NIPT) in the linear cross-entropy benchmarking [8,31–33].
In the weak-noise regime, χXEB provides a reliable estimate
of fidelity, and in the strong-noise regime, it fails to accurately
reflect fidelity. Furthermore, this implies that in the strong-
noise regime, classical simulation can yield a high score in the
cross-entropy benchmark [34,35], without necessarily solving
the sampling task. The noise model can be incorporated in our
Brownian circuit setup, where the noise serves as an explicit
replica-permutation symmetry-breaking field [36]. Using a
combination of numerical and analytical tools, we character-
ize the NIPT in benchmarking by identifying it as a first-order
phase transition in the effective Hamiltonian picture.

We first briefly summarize the results of the paper. The
main results of the paper are represented in Fig. 1 and Table I.

Anticoncentration. We probe anticoncentration in the (1 +
1)-dimensional Brownian circuit U by computing the collision
probability [16]. Consider the setup where a RQC of a certain
depth acts on the |0⊗N 〉 state of N qubits, following which all
the qubits are measured in the computational basis, resulting
in a bit string x ∈ {0, 1}N . The collision probability is de-
fined as the circuit-averaged probability that two independent
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FIG. 1. We consider local Brownian circuits acting on qubits
in a chain. Averaging the replica dynamics U ⊗ U ∗ ⊗ U ⊗ U ∗

leads to an imaginary-time evolution with a local Hamiltonian in
replica space, Heff. We can simulate this imaginary-time evolution in
1 + 1 dimensions efficiently with tensor networks. We study three
scenarios, i.e., anticoncentration, noisy circuit benchmarking, and
approximate unitary design (and consequently error correction), and
find distinct quantum informational phases in different time and
noise regimes, separated by phase transitions. These results are cor-
roborated using large-scale numerics and analyzing the spectrum
of Heff.

measurement outcomes with the same circuit realization
produce the same result, defined as Z = E

∑
x |〈x|U |0⊗N 〉|4,

where the averaging of approximately E is done over all
realizations of the circuit.

In the context of the effective Ising Hamiltonian Heff de-
scription, we demonstrate that Z equates to the transition
probability between an imaginary-time-evolved state from
the initial state and a quantum paramagnetic state (defined
in a later section). The imaginary-time evolution gradually
projects the initial state onto the ground state of Heff, which
corresponds to Z ∼ 2−N . However, in finite time t , excited-
state contributions result in 2N Z = 2 + S�e−�t , where � (S�)
denotes the energy gap (entropy) of the excitation.1 The an-
ticoncentration transition thus occurs at t = 1

�
ln S� ∼ ln N ,

representing a depth-induced computational transition. The
ln N results arise from the nature of the elementary excited
states of the Ising model and can be confirmed by direct
large-scale simulation of the imaginary-time evolution.

Computational hardness transition. We probe the compu-
tational hardness of sampling from the probability distribution
in the measurement outcome in the earlier setup, i.e., pU (x) =
|〈x|U |0⊗N 〉|2. By studying the Rényi-2 version of conditional
mutual information (CMI) of pU (x) using numerics of the
imaginary-time evolution, we probe the hardness of a specific

1In a one-dimensional chain with local couplings, the elementary
excitation manifests as a domain wall, with a finite gap independent
of the system size and an entropy proportional to the system size.

TABLE I. Transition point, nature of the transition, and asymp-
totic scaling for various information quantities for the Brownian
circuit.

classical algorithm (patching algorithm) for approximately
simulating the output distribution as introduced in [29]. We
find that the Rényi-2 CMI undergoes a phase transition at
O(ln N ) time, with the same scaling behavior as the collision
probability, signaling a computational hardness phase tran-
sition at the same depth. It must be noted that the theorem
concerning the feasibility of the patching algorithm depends
on the actual CMI and not necessarily its annealed Rényi-2
version that we study here. Hence, our results provide evi-
dence for a (classical) computational hardness transition and
not a rigorous proof for it.

Phase transition in cross-entropy benchmarking of noisy
Brownian circuits. Here we consider the following setup of
two copies of the Brownian circuit: one that is affected by
noise (denoted by the noisy channel N ) and another that
undergoes the noise-free Brownian circuit. We can now up-
date the effective Hamiltonian with explicit noise in one of
the replicas, Heff → H ′

eff. We can compute the fidelity F =
Tr[N (ρ)ρ] of the noisy simulation by doing imaginary-time
evolution with H ′

eff (with local noise models, H ′
eff remains

local). We also compute the linear cross-entropy benchmark,
defined as χXEB = 2N

∑
x p(x)q(x) − 1, where p(x) and q(x)

represent the output distribution in the noise-free and noisy
cases, respectively [14].

In H ′
eff, noise explicitly breaks the Ising symmetry and sub-

sequently pins the Ising spins. Consider a local (unital) noise
model, with λ strength for each qubit (to be explicitly defined
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later). Noise generically undermines the ferromagnetic phase
that leads to anticoncentration and leads to erosion of the
quantum advantage. This holds true for constant rate noise
λ ∼ O(1). Through the mapping to the quantum Ising model,
we discover that noise behaves as a relevant perturbation with
a scaling dimension of 1. Therefore, when the noise rate scales
inversely with respect to the size of the chain λ ∼ 1/N , we get
a noise-induced computational transition at some critical λ∗ ∼
O(1/N ). This transition essentially resembles a field-induced
first-order transition and conforms to finite-size scaling with
ν = 1

2 , which we confirm numerically. Moreover, if the rate
scales less (greater) than 1/N , the noise is deemed irrelevant
(relevant). This result is consistent with recent results on
noise-induced phase transitions in cross-entropy benchmark-
ing [8,31,32].

We also study whether this transition signals a transition in
the computational hardness in the simulation of noisy Brow-
nian circuits. By studying the Rényi-2 CMI of pN (U )(x), we
find that it does not undergo a hardness transition with depth
for large enough depths and actually exponentially decays
with time. This suggests that the (1 + 1)-dimensional noisy
random circuits are efficiently simulable in the long-time
limit, even in the presence of infinitesimal-scale noise.

Coding transitions. We encode some local information (a
reference qubit R) in the entire system A using the Brown-
ian circuit and probe the effectiveness of this encoding as a
quantum error correcting code. After encoding, the state on
A is affected by noise, which can be identified as a unitary
coupling with the environment E . Mutual purity FRE [30] is
a two-replica quantity which upper bounds the trace distance
between the initial encoded state and the error-affected en-
coded state after error correction using a recovery channel
[37,38].

From the effective Hamiltonian perspective, the mutual pu-
rity can be represented as a transition probability between two
ferromagnetic states. In particular, we find that at short times
the mutual purity decays exponentially, which can be iden-
tified with domain-wall configurations pinned between the
initial and final states, while after t ∼ O(N ) time the domain
walls get depinned, resulting in the saturation of the mutual
purity to a global Haar value, i.e., realizes an approximate
2-design. Using large-scale numerics, we are able to directly
probe this transition to a 2-design as a first-order depinning
transition. Furthermore, since the mutual purity determines
the feasibility of error correction after the application of noise,
we find a first-order threshold transition in the fraction of
qubits which are affected by noise. The critical fraction can
be identified as a lower bound for the code distance of the
Brownian circuit as a quantum error correcting code.

The paper is organized as follows. Section II presents an
introduction to the Brownian circuit model and a derivation of
the effective Hamiltonian for k = 2 replicas. In Sec. II B we
describe the symmetries of the effective Hamiltonian and pro-
vide a heuristic description of the phase diagrams. In Sec. III
we discuss the anticoncentration and computational hardness
transition. In Sec. IV we investigate the noise-induced phase
transition in benchmarking noisy Brownian circuits. In Sec. V
we study the error correcting properties of the Brownian
circuit and probe the transition to an approximate 2-design.

We conclude by discussing the implications of this work and
future directions in Sec. VI.

II. LOCAL BROWNIAN CIRCUITS

We consider a Brownian circuit on N qubits in a chain, with
the Hamiltonian

Ht =
N∑

〈i, j〉

∑
α,β

Jαβ
t,i jσ

α
i σ

β
j , (1)

where α and β label the Pauli indices of the local Pauli
matrices σi, interacting between nearest-neighbor pairs 〈i, j〉.
In addition, Jt,αβ is a normal random variable uncorrelated in
time, defined via the properties

E
[
Jαβ

t,i j

] = 0,

E
[
Jαβ

t,i jJ
α′β ′
t ′,i j

] = Jδtt ′

δt
δαα′δββ ′ , (2)

where E denotes the average according to the distribution.

A. Effective Hamiltonian description

We integrate over the random couplings to get an effective
Hamiltonian in the replica space. To this end, let us first
consider a unitary evolution of a density matrix, ρ ′ = UρU †.
Explicitly writing out the indices, it is

ρ ′
a′b′ =

∑
a,b

Ua′aρabU
†
bb′ =

∑
a,b

Ua′aU
∗
b′bρab. (3)

In the second term, we transpose U † and use the fact that
(U †)T = U ∗. Viewed as a tensor, the time evolution can be ex-
pressed by an operator U ⊗ U ∗ acting on a state

∑
ab ρab|a〉 ⊗

|b〉. This is essentially the Choi-Jamiołkowski isomorphism
(the operator-state mapping) [39,40]. Now we can extend this
to two replicas. Since most of our discussion focuses on two
replicas, we derive an effective Hamiltonian for two replicas.
Note that it is straightforward to generalize the derivation
to k replicas and to an arbitrary number of qubits on each
node [24]. Because the random couplings at different time
are uncorrelated, the central quantity is the instantaneous time
evolution (for a small time interval δt) operator for the four
contours,

U1(δt ) ⊗ U2(δt )∗ ⊗ U3(δt ) ⊗ U4(δt )∗, (4)

where Ua, a = 1, 2, 3, 4, denotes the unitary evolution oper-
ator generated by the Brownian spin Hamiltonian Ua(δt ) =
e−iδtHt,a acting on the four Hilbert spaces. It includes two
replicas, each of which contains a forward contour a = 1, 3
and a backward contour a = 2, 4. The complex conjugate is
due to the Choi-Jamiołkowski isomorphism, as demonstrated
above.

The average over the random coupling reads

E[U1(δt ) ⊗ U2(δt )∗ ⊗ U3(δt ) ⊗ U4(δt )∗]

=
∫

DJP[J] exp

⎛
⎝∑

a

(−i)aδt
∑
〈i, j〉

∑
α,β

Jαβ
t,i jτ

α
i,aτ

β
j,a

⎞
⎠, (5)
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where τα
i,1 = τα

i,3 = σα
i and τα

i,2 = τα
i,4 = (σα

i )∗, α = 1, 2, 3.
The sign factor (−i)a appears due to the conjugated unitary
on each replica. Here σα denotes the Pauli matrix, and the
complex conjugate for the a = 2, 4 contour is due to the back-
ward evolution. In addition, DJ = ∏

〈i, j〉
∏

α,β dJαβ
t,i j and P[J]

denotes the Gaussian distribution specified by (2). Integrating
over the random couplings results in an effective Hamiltonian

E[U1(δt ) ⊗ U2(δt )∗ ⊗ U3(δt ) ⊗ U4(δt )∗] = e−δtHeff , (6)

with

Heff = J

2

∑
〈i, j〉

∑
a,b

(−1)a+b(�τi,a · �τi,b)(�τ j,a · �τ j,b). (7)

This Hamiltonian describes a spin chain with four spins per
site, denoted by �τi,a, a = 1, 2, 3, 4. In the following we will
see that this Hamiltonian can describe various information
phases and phase transitions, such as a dynamical computa-
tional transition and error correcting transition. Similarly, for
a finite-time evolution, we have

U ≡ E[Ut ⊗ U ∗
t ⊗ Ut ⊗ U ∗

t ] = e−Hefft . (8)

Here we use Ut = exp(−i
∫

dtHt ) to denote the unitary gen-
erated by the Brownian circuit for a time interval t .

Numerical implementation

We simulate imaginary-time evolution in the replica
Hilbert space using the TEBD algorithm. The local Hilbert
space is C⊗4

2 , reflecting the two replicas and two time con-
tours per replica. To simulate exp(−tHeff ) we now need to
Trotterize the TEBD evolution with �t as the time step; we
take the energy scale J = 1/�t . This ensures that �tHeff is
dimensionless with the energy scale set to 1 and with the
evolved time t as non-negative integers. All calculations are
performed using the TENPY library [41].

B. Replica permutation symmetry

The Hamiltonian (7) is invariant under replica relabeling
and has the symmetry group

(S2 × S2) � Z2, (9)

where S2 × S2 is the permutation group on the two-replica
labels. The outer Z2 arises from the symmetry of shuffling
between the two time-conjugated copies after taking the com-
plex conjugation.2 Put simply, each of the S2 transformation
swaps τα

i,1 ↔ τα
i,3 or τα

i,2 ↔ τα
i,4, whereas the Z2 exchanges

τα
i,1 ↔ τα

i,2 and τα
i,3 ↔ τα

i,4 simultaneously.
It is easy to see that the Hamiltonian can be brought into a

sum of squares

Heff = J

2

∑
〈i, j〉

∑
α,β

(∑
a

(−1)aτα
i,aτ

β
j,a

)2

. (10)

2Note that since the variance of coupling is independent of α =
x, y, z, the resultant Hamiltonian also enjoys a SU(2) symmetry for
each site; however, our results do not rely on this symmetry.

Therefore, the eigenvalues are no less than zero. Two ground
states are |id〉〉⊗N and |swap〉〉⊗N , where

|id〉〉 = 1
2 (|0000〉 + |0011〉 + |1100〉 + |1111〉),

|swap〉〉 = 1
2 (|0000〉 + |1001〉 + |0110〉 + |1111〉). (11)

Here we use |0〉 and |1〉 to denote ± eigenstates of the σz Pauli
operator. The name of the state indicates that |id〉〉 is a product
of an Einstein-Podolsky-Rosen (EPR) state of the first and
second spins and an EPR state of the third and fourth spins,
and |swap〉〉 is a product of an EPR state of the first and fourth
spins and an EPR state of the second and third spins. Using
the properties of EPR pairs, namely, τ1|id〉〉 = τ2|id〉〉, τ3|id〉〉 =
τ4|id〉〉, τ1|swap〉〉 = τ4|swap〉〉, and τ2|swap〉〉 = τ3|swap〉〉, we
can see that every square in the Hamiltonian vanishes, so these
two states are ground states with zero energy.

The permutation symmetry is spontaneously broken by the
ground state, and when the low-energy physics is concerned,
our model is essentially equivalent to an Ising model. Note
that we can organize the permutation transformation such that
one of them permutes the second and fourth spins (we denote
this by Sr

2 : τα
i,2 ↔ τα

i,4), while the other permutes both the first
and third spins as well as the second and fourth spins. Then
Sr

2 can transform one ground state to the other and only Sr
2 is

spontaneously broken.
Our model (6) transforms the real-time evolution along

the four contours into an imaginary-time evolution that pro-
gressively projects onto the ground-state subspace of the
Hamiltonian described in Eq. (7). This imaginary-time evo-
lution allows us to capture the dynamics of several important
quantum information quantities. One such quantity is the
collision probability, which measures the degree of anticon-
centration and corresponds in the replica model to the overlap
between the time-evolved state and a final state (to be spec-
ified later). The magnitude of this overlap is determined by
the excitation gap present in the Hamiltonian (7). In one-
dimensional systems, the elementary excitation takes the form
of domain walls, which possess a finite-energy gap and exhibit
logarithmic entropy. As a result, the process of anticoncen-
tration requires a timescale proportional to ln N , where N
represents the system size.

C. Effective Hamiltonian with local noise

Since we would also like to investigate the effect of quan-
tum noise, we now consider imperfect time evolution due to
the presence of quantum errors. The unitary-time-evolution
operators are replaced by a quantum channel. A local depolar-
ization channel is given by

ρ → (1 − λ)ρ + λ

3

∑
α=1,2,3

σα
i ρσα

i , (12)

where 0 � λ < 3
4 for complete positivity. Using the operator-

state mapping, this can be mapped to

N depol
i (λ) = (1 − λ)I⊗2 + λ

3

∑
α=1,2,3

σα
i ⊗ (

σα
i

)∗
, (13)

where I denotes the identity operator.
The noise can induce a transition of random circuit sam-

pling [8,31]. An observable of such a transition is the
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cross-entropy benchmarking (XEB), which we will describe
in detail later. For now, let us just mention that XEB contains
two distributions: one from a noiseless quantum circuit and
the other from a noisy quantum circuit. Therefore, we are
again concerned with only two replicas. Without loss of gen-
erality, we assume the noisy replica is described by the first
two contours a = 1, 2 and the noiseless replica is described
by the last two contours a = 3, 4. We upgrade the quantum
channel to

N depol
i (λ) → N depol

i (λ) ⊗ I ⊗ I. (14)

The identity operators for the last two Hilbert spaces is clear
since the second replica is noiseless. Thus, the noise occurs for
the first replica with the first and second copies of the Hilbert
space.

It is not hard to see that the channel can be equivalently
described by a perturbation described by the effective Hamil-
tonian

Hdepol(λ) = 3

4δt
ln

(
1

1 − 4
3λ

) ∑
i

(
1 − 1

3

∑
α

τα
i,1τ

α
i,2

)
.

(15)

Here we assume the noise occurs at each site with the same
strength. Since 0 � λ < 3

4 for the depolarizing channel, the
prefactor is positive.

Essentially, the perturbation explicitly breaks the permu-
tation symmetry. The state |id〉〉⊗N is still an eigenstate of
these two perturbations with eigenvalue zero, whereas the
state |swap〉〉⊗N obtains a finite positive energy, i.e.,

〈〈swap|⊗N Hdepol(λ)|swap〉〉⊗N = 3N

4δt
ln

(
1

1 − 4
3λ

)
. (16)

Therefore, the presence of noise effectively lifts the degen-
eracy between the two ground states and biases the system
towards the state |id〉〉⊗N . In the regime of low-energy physics,
the noise can be treated as an external field that explicitly
breaks the Ising symmetry and favors a particular state. For
notation simplicity, we denote the local Zeeman energy by ε.
For the depolarization channel, the effective Zeeman energy is
ε = 3

4δt ln( 1
1− 4

3 λ
). When λ is small, we can deduce that ε ≈ λ

δt .

Note that λ is dimensionless and δt is the unit of energy.
In the symmetry-breaking phase, the external field acts as

a relevant perturbation with a scaling dimension of 1. Con-
sequently, a first-order transition occurs at an infinitesimally
small noise strength, which is independent of the system
size. However, if the noise strength is appropriately scaled
down by a factor of 1/N , which compensates for its rele-
vant scaling dimension, the transition can take place at a
finite size-dependent noise strength given by ε ∼ 1/N . This
noise-induced transition also manifests as a first-order phase
transition. The first-order transition exhibits a finite-size scal-
ing and is distinguished from a second-order transition [42].
We will confirm it via a systematic finite-size scaling.

III. ANTICONCENTRATION AND COMPUTATIONAL
HARDNESS OF SAMPLING BROWNIAN CIRCUITS

A. Anticoncentration

It is well known that random circuits generate output
states that are anticoncentrated, which roughly means that the
probability distribution of the classical bit strings generated
by measuring the output state of a random circuit in the
computational basis is well spread out and not concentrated
on a few bit strings. Naturally, this also implies that classical
sampling of these bit strings will be hard. Two key ingredients
underpin random circuit sampling. First, anticoncentration
asserts that the distribution deviates only slightly from a
uniform distribution. This property is typically required in
hardness proofs. However, anticoncentration can be easily
attained by applying a Hadamard gate to all qubits. Therefore,
we need the second ingredient, randomness, to eradicate any
discernible structure in the circuit. Given that randomness
is inherent in our model, we are intrigued by whether the
distribution exhibits anticoncentration and, if so, at what time
(depth) it occurs. This indicates a transition in computational
complexity, wherein the system shifts from a region that is
easily achievable by classical means to a region that becomes
challenging for classical algorithms.

When the random circuits are generated by a particular
ensemble of local quantum gates, a key diagnostic of the
complexity of the ensemble is the time it takes to anticon-
centrate the output states. Concretely, we can compute the
collision probability, which is defined as the probability that
the measurement outcomes of two independent copies of the
random circuit agree with each other, i.e.,

∑
s pU (s)2, where

pU (s) = |〈s|U |0〉|2, for a given bit string s. We are interested
in the ensemble-averaged collision probability which can be
readily expressed as the transition amplitude in the replicated
dynamics,

Z = EJ

∑
s

pU (s)2 =
∑

s

〈〈s⊗4|U |0⊗4〉〉, (17)

where U = E[Ut ⊗ U ∗
t ⊗ Ut ⊗ U ∗

t ] can be represented by an
imaginary-time evolution with a replica Hamiltonian defined
in Eq. (7). We identify the circuit to have reached anticon-
centration if Z ≈ c2−N and to not have anticoncentration if
Z � eNc

2−N for some O(1) constant c.
In Fig. 2 we study the averaged collision probability in

a one-dimensional Brownian circuit by the tensor network
simulations. We find that the Brownian circuit anticoncen-
trates at ln N depth, which is consistent with the fact that
local Haar random circuits anticoncentrate in (ln N ) depth
in one dimension [16]. Furthermore, in Fig. 2(b) we show data
collapse that is consistent with the approximate form for the
collision probability

2N Z = 2 + c1e−c2(t−τ ∗ ln N ) (18)

for O(1) constants c1 and c2. This expression can be justified
by the effective Hamiltonian picture as follows.

Because U = e−Ht , with H given by Eq. (7), it effectively
projects the initial state |0⊗4〉〉 to the ground state 2NU |0⊗4〉〉 ≈
|id〉〉⊗N + |swap〉〉⊗N + excitations. The leading contribution
of excitations is given by a single domain wall (since we have
used the open boundary condition, a single domain wall is
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FIG. 2. Anticoncentration in the Brownian circuit: (a) Z ∼ 2−N in t/ ln N = τ ∗ ≈ 1.5 time and (b) data collapse, which is consistent with
Eq. (18).

allowed), |DWk〉〉 ≈ |swap〉〉⊗k ⊗ |id〉〉⊗(N−k), k = 1, . . . , N −
1. Therefore, the multiplicity of such an excitation is propor-
tional to N . The excitation energy �, on the other hand, is a
constant independent of N and it contributes to an exponential
function e−�t . Therefore, according to this picture, the predic-
tion for the collision probability reads

2N Z ≈ 2 + Ne−�t = 2 + e−�[t−(1/�) ln N], (19)

where we note that
∑

s 〈〈 s|id 〉〉 = ∑
s 〈〈s|swap〉〉 = ∑

s〈〈s|DWk〉〉 = 1. This result is consistent with the data collapse.
In particular, it is clear that the transition time ln N is due to
the entropy of the domain-wall excitation.

B. Hardness of classical simulation of sampling

As a consequence of anticoncentration and random-
ness, classical simulation of the output probabilities of the
Brownian circuits after ln N depth is expected to be hard. In
this section we provide evidence for a transition in (classical)
computational hardness, with respect to a particular algorithm
for approximate classical simulation, at t ∼ ln N depth.

We study the computational hardness of the patching al-
gorithm introduced in [29,43]. Heuristically, the algorithm
attempts to sample from the marginal probability distribution
of spatially separated patches and then combine the results to-
gether. This succeeds in poly(N ) time if the output distribution
of the state generated by the circuit has decaying long-range
correlations. Without going into the details of the algorithm
itself, we study the condition on the long-range correlations
for which the algorithm is expected to successfully sample
from the output distribution.

Consider a tripartition of N qubits into A ∪ B ∪ C such
that dist(A,C) � l . For the output probability distribu-
tion pU (s) = |〈s|U |0〉|2, we consider the conditional mutual

information between the regions A and C conditioned on B,
as in I (A : C|B)p = S(AB)p + S(BC)p − S(B)p − S(ABC)p,
where S(A) refers to the entropy of the marginal distribution
of p on the region A. The output distribution is defined to have
the f (l ) Markov property if I (A : C|B)p � f (l ). We quote the
main theorem about the condition for a successful patching
algorithm from [29].

Theorem. The patching algorithm succeeds in poly(N ) time
to sample from a probability distribution arbitrarily close in
total variation distance to the exact output distribution pU (s)
of a quantum circuit on N qubits, if pU (s) has e−(l ) Markov
property, for a suitable choice of the length-scale parameter l .

In the local Brownian circuits introduced earlier, we
can directly compute an annealed averaged version of the
Rényi-2 version of the conditional mutual information of the
output distribution pU (x), i.e., I (2)(A : C|B)p = S(2)

ann(AB)p +
S(2)

ann(BC)p − S(2)
ann(B)p − S(2)

ann(ABC)p, as a function of time t .
Here the annealed entropy is defined as S(2)

ann(p) = − lnEp2.
In Figs. 3(a) and 3(b) we study the annealed Rényi-2

CMI for an equal tripartition of the qubit chain, i.e., |A| =
|B| = |C| = N/3, and find that there is a transition at ln N
depth. In particular, at long times, I (2)(A : C|B)p asymptotes
to ln 2, indicating long-range correlations in the output prob-
ability distribution. At short times, the data are consistent
with I (2)(A : C|B)p ∼ O(e−N ). There is furthermore a sharp
transition at t ∼ τ ∗ ln N at τ ∗ ≈ 1.2. The data collapse as
a function of t − τ ∗ ln N is shown in the inset in Fig. 3(b),
indicating the same statistical mechanical interpretation as the
collision probability.

We note, however, that the transition in the annealed Rényi-
2 version of the CMI does not necessarily imply a transition
for the actual n → 1 limit of the exact averaged CMI. With
this caveat, our results provide evidence for the transition in
computational hardness, at the same depths as the onset of
anticoncentration.
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FIG. 3. Phase transition in the annealed Rényi-2 CMI of pU (s). We consider an equal tripartition of the spin chain such that |A| = |B| =
|C| = N/3, with B separating regions A and C, and we plot Rényi-2 CMI I (2)(A : C|B). As N is increased, for t < τ ∗ ln N (τ ∗ ≈ 1.2), the CMI
decays with N proportionally to e−N . For larger times t > τ ∗ ln N the CMI does not decay with N and asymptotes to ln 2.

IV. NOISY BROWNIAN CIRCUITS

Random circuit sampling is widely implemented in ex-
periments to show quantum advantage. However, sufficiently
large noise can diminish the quantum advantage. It was re-
ported recently that there is a noise-induced phase transition
in an appropriate quantum-classical benchmark for random
circuit sampling [8,31–33]. For weak noise, the cross-entropy
benchmarking provides a reliable estimate of fidelity, whereas
for strong noise, it fails to accurately reflect fidelity.

A. Cross-entropy benchmarking

In the random circuit sampling, we start from a product
state ρ0 = |0〉⊗N 〈0|⊗N (the initial state does not really matter
and we choose this just for simplicity) and evolve the state
using the Brownian spin Hamiltonian. For brevity, we denote
the unitary generated by the Brownian spin model by U . In an
ideal case, i.e., there is no noise, the final state is

ρ = Uρ0U
†. (20)

A measurement is performed on the computational basis and
this will generate a probability distribution

p(s) = 〈s|ρ|s〉, (21)

where s denotes the bit string.
In a real experiment, the implementation of the Brownian

spin Hamiltonian is not ideal because errors can occur. In this
case, the time evolution of the system is in general not unitary
and should be described by a quantum channel,

ρerr = N (ρ0). (22)

Here N denotes the noise channel. The probability distribu-
tion for a bit string s is now given by

q(s) = 〈s|ρerr|s〉. (23)

We are interested in the linear cross-entropy benchmark-
ing, defined as

χXEB = 2N
∑

s

p(s)q(s) − 1, (24)

where p(s) is an ideal distribution (which in practice can be
estimated by classical simulations) and q(s) is the probability
distribution sampled from real experiments. Since the circuit
involves Brownian variables, we consider the average over
these random variables, E(χXEB).

B. XEB in the replica model

Using the operator-state mapping, we obtain∑
s

q(s)p(s) =
∑

s

〈〈s|N ⊗ U ⊗ U ∗|0〉〉, (25)

where U is the unitary generated by the Brownian spin model
and N denotes the channel generated by both the Brownian
spin model and the errors. For simplicity, we define E[N ⊗
U ⊗ U ∗] = Uerr. The initial and final states are the same as in
the collision probability. Actually, the collision probability is
closely related to the noiseless XEB.

Consider imperfect time evolution due to the presence
of quantum errors. To this end, after integrating over the
Brownian variable, we arrived at the imaginary-time evolution
given by ∑

s

〈〈s|Uerr|0〉〉 =
∑

s

〈〈s|e−[H+H ′(λ)]t |0〉〉, (26)

where H ′(λ) is the perturbation caused by the noise. The
example of dephasing and depolarizing channels are given by
Eq. (15). The average XEB then reads

E[χXEB] = 2N
∑

s

〈〈s|e−[H+H ′(λ)]t |0〉〉 − 1. (27)
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On the other hand, the average fidelity is given by

E[F ] = 2N 〈〈swap|⊗NE[N ⊗ U ⊗ U ∗]|0〉〉 (28)

= 2N 〈〈swap|⊗N e−[H+H ′(λ)]t |0〉〉. (29)

Comparing it with the XEB, we can see that the difference
comes from the final state.

As discussed before, the noise lifts the degeneracy and
behaves as an external field. We denote the local Zeeman
energy by ε. The Zeeman field is a relevant perturbation
even in the symmetry-breaking phase. We will show that the
competition between one of the lifted ground states and the
excited state leads to a first-order transition at a finite noise
rate εN ∼ const. We will also perform a finite-size-scaling
analysis to verify such a first-order transition in the following.

We consider the evolution of XEB as a function of time.
In the long-time limit, we expect the time-evolved state is
a superposition of the ground state with a few low-lying
excitations. The time-evolved state can be approximately
written as

2NUerr|0⊗4〉〉 ≈ |id〉〉⊗N + e−Nεt |swap〉〉⊗N

+ e−�t
∑

k

e−kεt |DWk〉〉+
∑

k

e−(2�+ε)t |SFk〉〉,

(30)

where � is the local energy cost of a domain wall and the ε

are the local energy cost and the Zeeman energy of a local spin
flip. We have included both domain-wall excitations and local
spin flips, |SFk〉〉 = |id〉〉⊗k−1 ⊗ |swap〉〉 ⊗ |id〉〉⊗N−k . Note that
the domain-wall excitation can lead to an extensive energy
cost, but we need to include it because the external field scales
as ε ∼ 1/N . Therefore, the average XEB at late time is

E[χXEB] = e−Nεt + e−�t
N−1∑
k=1

e−kεt + Ne−(2�+ε)t . (31)

On the other hand, the average fidelity is

E[F ] = e−Nεt . (32)

Actually, the fidelity is lower bounded by 2−N . This is
because |id〉〉⊗N and |swap〉〉⊗N are orthogonal only at the
thermodynamic limit N → ∞. For a finite N , their overlap
is 〈〈id|⊗N )(|swap〉〉⊗N = 2−N .

It is clear that for the XEB to well estimate the fidelity, we
require e−Nεt � e−�t . Consider the ratio between them

E[F ]

E[χXEB]
≈ 1

1 + e−�t+Nεt
. (33)

To the leading order in N , there is a noise-induced phase
transition at εc = �

N , separating a weak noise phase, where
the XEB well estimates the fidelity, and a strong noise phase,
where they do not match. This is consistent with the scaling
dimension analysis.

C. Noise-induced transition

In the short-time region, all kinds of excitations contribu-
tion to the XEB, and its evolution is nonuniversal. A crude

FIG. 4. In the presence of noise, there is a depth-driven crossover
at t∗ ∼ O(1); for t < t∗ the linear XEB χ ∼ eN and for t > t∗, χ ∼
e−Nεt . We consider a constant noise strength of λ = 0.01.

estimate of the XEB is given as

E[χXEB] ≈ (1 + e−(2�+ε)t )N − 1. (34)

This estimate comes from the superposition of all possible
spin flips at each site.3 Here � is the effective local energy
cost of a spin flip. The XEB is exponential in the system
size of approximately exp(Ne−(2�+ε)t ), but this behavior de-
cays exponentially fast. Then the XEB will transition to the
late-time behavior. In the long-time limit, since we are at the
weak-noise phase, we expect the XEB matches fidelity. To
verify this, we plot the time evolution of XEB (solid curves)
and fidelity (dashed curves) in Fig. 4 for a fixed noise rate. At
the long-time limit, their evolution follows closely. The fact
that the deviation is larger for a bigger N is because we have
fixed ε. It is also clear that the XEB curves exhibit a crossover
from a short-time nonuniversal region to a long-time universal
region.

In order to show the noise-induced phase transition in our
replica model, we plot the time evolution of the XEB for
different noise rates in Fig. 5(a). It is clear that when the noise
rate is less than λ∗ ≈ 0.84/N , the XEB tracks the fidelity very
well. Here the fidelity is shown by a dashed curve. Note also
that the fidelity has a lower bound given by 2−N .

Next, to connect this to the statistical mechanical model
and implement a finite-size-scaling analysis, we consider scal-
ing t ∼ N to feature an equal space-time scaling. The ratio
between the fidelity and XEB is plotted in Fig. 5(b) for
different system sizes. The crossing indicates a transition at
λ∗N ≈ 0.84. The inset shows data collapse for different sizes
as a function of (λ − λ∗)N2, which shows 1/ν = 2.

To understand this exponent, we briefly review the finite-
size scaling at first-order phase transitions. The finite-size
scaling near a first-order phase transition was studied in

3For a more accurate estimate, we need to rescale N by a factor
c3 < 1. This is because spin flips do not interact with each other only
when they are dilute enough.
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FIG. 5. Noise-driven transition for scaled noise λ ∼ c/N . (a) Plot of χ for N = 40 and different values of λN . We find that for λN �
λ∗N ≈ 0.84, χ approximates the fidelity F after an initial fast decay. For λN > λ∗N , however, χ behaves differently from F , which results in
a sharp phase transition as shown in (b) of the order parameter F/χ , evaluated at a time t > t∗ = O(1) of initial decay. The scaling collapse is
shown in the inset.

Ref. [42]. We briefly repeat the argument here. In a clas-
sical Ising model in a d-dimensional cube with size Ld ,
the probability distribution of the magnetization PL(s) in the
ferromagnetic phase can be well approximated by a double
Gaussian distribution

PL(s) ∝ e−(s−M )2Ld /χ + e−(s+M )2Ld /χ , (35)

where χ denotes the susceptibility and M is the average
magnetization. To incorporate the external field, note that the
probability distribution can be expressed as PL(s) ∝ e− f Ld

,
where f is the free-energy density. From the Ising transition,
the free energy is given by

f = f0 + r

2
s2 + u

4
s4 − sH (36)

= f ′
0 + u

4
(s2 − M2)2 − sH, (37)

where H denotes the external field, M = √− r
u is the average

magnetization when r < 0, and f0 and f ′
0 are unimportant

constants. If we approximate the magnetization around ±M,
then the double Gaussian distribution reads

PL(s) ∝ e−[(s−M )2−sχH ]Ld /χ + e−[(s+M )2−sχH ]Ld /χ , (38)

where χ = −r. It is clear that the distribution will be shifted
and the one near s = M will be amplified. This probability
distribution can serve as a starting point for finite-size-scaling
analysis. The external field is equipped with scaling di-
mension L−d , implying ν = 1/d . Now in our analysis, the
Hamiltonian (7) corresponds to a one-dimensional quantum
system or a two-dimensional classical Ising model, which
leads to ν = 1

2 , consistent with our scaling data collapse in
Fig. 5(b).

D. Hardness of sampling from noisy Brownian circuits

As we have described, the linear cross-entropy benchmark
can be described in the two-replica formalism, where the
noise acts on only one of the replicas. In this section we
briefly comment on the hardness of classical simulation of
noisy Brownian circuits, by analyzing the annealed Rényi-2
conditional mutual information of the output distribution p(s)
of the noisy circuit, as in Sec. III B. In this formulation the
noise acts on both replicas. In Fig. 6 we plot the annealed
Rényi-2 CMI as a function of time for two instances of weak
and strong scaled local depolarization channels with strength
λ = μ/N , with μ = 0.1, 2.0, respectively. The plots show that
the CMI does not asymptote to ln 2 as the noise-free case and
ultimately decays as e−μt without any signature of crossing.
This suggests that in the long-time limit, even in the presence
of scaled noise, the output distribution remains efficiently
estimable using the patching algorithm [29].

These numerical results provide evidence that the noise-
induced phase transition in the linear cross-entropy bench-
mark does not signal a phase transition in the hardness of
classical simulability of the output distribution of the noisy
random circuits. In fact, in the presence of noise, (1 + 1)-
dimensional random circuits remain efficiently simulable, i.e.,
can be efficiently classically sampled from, by the patching
algorithm. These results must be taken with the same caveats
of annealed versus quenched averages of the CMI that we
already provided in Sec. III B.

V. QUANTUM ERROR CORRECTING CODES
FROM BROWNIAN CIRCUITS

Random circuits scramble local information into global
correlations of a state in a way that is inaccessible to

042414-10



PHASE TRANSITIONS IN SAMPLING AND ERROR … PHYSICAL REVIEW A 109, 042414 (2024)

FIG. 6. Dynamics of the annealed Rényi-2 CMI of the classical output distribution of the noisy Brownian circuit for noise levels (a)
λ = 0.1/N and (b) λ = 2.0/N .

local probes. As a result of this, the encoded information
can be protected from local noise, thereby leading to the
notion of random circuits generating quantum error correcting
codes [11–13].

A. Decoupling by random circuits

The intuition as to why random circuits are able to dynam-
ically generate a quantum error correcting code comes from
the decoupling principle. Consider the setup in Fig. 7, where
initial quantum information is initialized in the entangled state
between reference R (code subspace) and part of the system
A1 ⊂ A such that the dimensions match |R| = |A1|. Now A
is subjected to an encoding through the random circuit Uenc.
Suppose a part of the system A4 ⊂ A is subjected to a noise
channel N . By Stinespring dilation, the noise channel can be
identified as a unitary coupling with an environment E , as
shown in Fig. 7. If Uenc forms an approximate 2-design, the

FIG. 7. Unitary encoding Uenc of reference R into system A.
Any noise in A after the encoding can be represented by a unitary
operation Uerr coupling the part of A where the error acted (A4 in the
figure), with an environment E .

circuit is able to decouple effectively [44], i.e., the environ-
ment E has bounded access to the information encoded in R.

Concretely, let us consider local qubit degrees of freedom
such that the Hilbert space dimension of any set A is dA = 2|A|.
Consider the isometric encoding V : HR → HA generated by
the circuit Uenc, which transforms the basis vectors as

|φi〉A ≡ V |i〉R = Uenc|i〉A1
|0〉A2

. (39)

Any density matrix ρR of R is encoded as V ρRV †. Suppose
the encoded state is now subjected to noise, resulting in
the density matrix ρerr = N (V ρRV †). A convenient probe is
the noise-affected encoding of a maximally entangled state
between the code subspace R and A1. By introducing an
auxiliary environment E the effect of the noise channel can
be represented by a unitary on the combined system and
environment A ∪ E ,

|� ′〉 = 1√
dR

dR∑
i=1

|i〉RUerr(|φi〉A|e0〉E ). (40)

Here dR refers to the Hilbert space dimension for R; if the local
degrees of freedom are q-dimensional qudits, then dR = q|R|.

By the decoupling theorem, for Uenc that are approximate
2-designs and have small enough error, we have a factorized
reduced density matrix on R ∪ E , ρ� ′

RE ≈ ρ� ′
R ⊗ ρ� ′

E . The time
required by random circuits with locality to approximately
form a 2-design is upper bounded by O(N1/d ) in d dimensions
[17,18]. A probe of the extent of decoupling is the mutual
information [37] I� ′ (R : E ) = S(ρ ′

R) + S(ρ ′
E ) − S(ρ ′

RE).
A central theorem in quantum error correction is the exis-

tence of an optimal recovery channel R that undoes the effect
of noise R(ρerr ) = ρR if perfect decoupling has occurred, i.e.,
I� ′ (R : E ) = 0 [37]. This can be generalized to approximate
error correction in the presence of approximate decoupling
[38,45]. In particular, the trace distance between the recovered
state by a near-optimal recovery channel R and any encoded
state can be bounded by the mutual information computed
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for � ′,

‖R(ρerr ) − ρR‖1 � [I� ′ (R : E )]1/4. (41)

B. Approximate error correction in Brownian circuits

Recently, Ref. [30] derived a bound similar to Eq. (41),
with the right-hand side replaced by an entropic quantity
different from the mutual information. Mutual information is
difficult to analytically study because of the associated replica
limit in the definition of the von Neumann entropy. That work
instead introduced the mutual purity of the noise-affected state
in Eq. (40), which is defined as

F� ′ (R : E ) = Tr
(
ρ ′2

RE − ρ ′2
R ⊗ ρ ′2

E

)
. (42)

Reference [30] showed that for the same approximate re-
covery channel as in [38], the trace distance between the
recovered state and the encoded state can be bounded by the
mutual purity

‖R(ρerr ) − ρR‖1 � d5/2
R d1/2

E [F� ′ (R : E )]1/4. (43)

We provide a description of the recovery channel and a sketch
of the proof of this bound in Appendix 1. This bound can
be computed using just a two-replica computation for local
Brownian circuits in 1 + 1 dimensions with the imaginary
TEBD protocol that we have introduced earlier.

C. Numerical results in one dimension

Using the replicated Hilbert space formalism, we can rep-
resent the mutual purity for the (1 + 1)-dimensional local
Brownian circuit by the expression

F� ′
RE = 〈〈ψerr|Uenc|ψin〉〉 = 〈〈ψerr|e−tHeff |ψin〉〉, (44)

where Uenc = E[Uenc ⊗ U †
enc ⊗ Uenc ⊗ U †

enc], and appropri-
ately defined states |ψin〉〉 and |ψerr〉〉 in the replicated Hilbert
space, given by

|ψin〉〉 = (|swap〉〉 − 1
2 |id〉〉)⊗A1 ⊗ |0〉〉⊗A2 , (45)

|ψerr〉〉 = 2N
dE −1∑
m,n=0

EmE∗
n EnE∗

m|id〉〉⊗A. (46)

Note that both |ψin〉〉 and |ψerr〉〉 are not normalized.
The operators Em are nonunitary operators implementing

the error on the systems A,

Uerr|ψ〉A|e0〉E =
∑

m

Em
A |ψ〉A|em〉E . (47)

The derivation is provided in Appendix 2. The replica order of
the initial state |ψin〉〉 reveals that the state breaks the replica
symmetry to swap in the region A1 (reflecting the encoded
qubit) and preserves the replica symmetry in A2. As for the
final state |ψerr〉〉, the replica order is id in the region where the
error does not act and swap in the region where error acts.

To diagnose the error correcting properties of the Brownian
circuit, we need to look at specific noise models. In this
section we focus on local depolarization channels acting on
a few qubits, say, a fraction p of them. The depolarization

channel of strength λ acts on the density matrix as

Ni(ρ) = (1 − λ)ρ + λ

3

⎛
⎝ ∑

α=x,y,z

σi,αρσi,α

⎞
⎠. (48)

In Fig. 8(a) we present the plot of the mutual purity of
the (1 + 1)-dimensional Brownian circuit as a function of
time, where a single qubit in R is encoded in the system A
of size N . The noise model is chosen to be the depolariza-
tion channel of λ = 0.75 (erasure noise) acting on a fraction
p = 0.25 of qubits. It is clear from the plot that the mutual
purity initially decays exponentially, until it saturates to the
global Haar value, which is O(2−N ). The time taken for the
saturation scales as t ∝ N . In Appendix 3 we derive the
explicit result for mutual purity with globally Haar random en-
coding FHaar = O(2−N ). This numerical result demonstrates
that the Brownian circuit approximates a 2-design in O(N )
times, and we show in Fig. 8(b) that the 2-design transition
occurs after time τ ∗N , where τ ∗ ∼ 0.77. The scaling collapse
of the transition reveals that F/FHaar ∼ f (t − τ ∗N ).

Furthermore, we can study the mutual purity and the right-
hand side (RHS) of the quantum error correction bound (43)
for different values of p. In Fig. 8(d) we plot the saturation
value of the RHS of Eq. (43) (after the Brownian circuit has
run for t = N steps) for different values of p and system
sizes N , for a single-qubit encoding, and for a depolarization
channel of strength λ = 0.75. We find that the RHS of the
error correction bound undergoes a transition at p∗ ≈ 0.17,
which provides a lower bound to the threshold of this quan-
tum error correction code. Note the quantum error correction
bound in Eq. (43) guarantees that for p < p∗ the Brownian
circuit generates a quantum error correction code whose er-
rors are correctable using the recovery channel outlined in
Appendix 1.

We do not expect this threshold to be tight, as the error
correction bound with the mutual purity is expected to be
looser than the bound from mutual information. However, the
numerical results strongly indicate that both the quantum error
correction transition with t , the depth in the Brownian circuit
(the time when the circuit approximates a 2-design), and the
threshold transition correspond to a first-order domain-wall
pinning transition.

D. Coding transitions

As discussed in the preceding section, the mutual purity
is given by the amplitude F� ′

RE = 〈〈ψerr|Uenc|ψin〉〉. It is con-
venient to view the space-time layout of the Brownian circuit
as a two-dimensional statistical model. In our setting, this is
nothing but the mapping from a d-dimensional quantum sys-
tem to a (d + 1)-dimensional classical system. It is important
to note that in the wave function |ψin〉〉, the encoded |A1| qubit
is mapped to a projection to |swap〉〉, i.e.,

〈〈id|(|swap〉〉 − 1
2 |id〉〉) = 0, (49)

whereas the wave function of the rest |A2| qubits behaves as
a free-boundary condition, i.e., 〈〈id|0000〉〉 = 〈〈swap|0000〉〉 =
1
2 .

On the other hand, |ψerr〉〉 can effectively change the
boundary condition on the top layer. In particular, for the
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FIG. 8. The 2-design transition in the Brownian circuit. (a) We encode one qubit on the left end and have erasures (depolarization channel
of strength λ = 0.75) act on a fraction p of qubits on the left of the chain. (b) Mutual purity for the setup in (a) with p = 0.25, plotted as
a function of time. (c) Here F saturates to FHaar ≈ O(2−N ) after t ∼ O(N ) time. We scale the time linearly with N and find that there is a
transition at t = τ ∗N , with τ ∗ ≈ 0.77. The scaling collapse of this transition is shown in the inset. (d) Plot of the right-hand side of the error
correction bound of Eq. (43) for different values p, with the saturated mutual purity after t ∼ N time of encoding by the Brownian circuit.
There is a transition pc ≈ 0.17 below which the error is correctable and can thus be identified as a lower bound to the true error threshold
of the code. The scaling collapse of this transition is shown in the inset. (e) Transition in the mutual purity can be related to a first-order
pinning transition between two domain-wall configurations separating domains of two ordered states consistent with the boundary conditions
set by the definition of mutual purity. As described in the text, the trace structure in the definition of mutual purity forces the boundary state
to certain ordered states. In the initial-time boundary, the state is swap ordered in the part where the reference qubit is encoded (red) and has
the free-boundary condition elsewhere (no ordered state). The timelike boundaries on the left and right are also free by the open-boundary
condition. In the final state, the swap (red) part refers to the erasure errors and the id (blue) part refers to the partial trace in the definition of
mutual purity.
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FIG. 9. Mutual purity with erasures of a fraction p = 0.25 of qubits on random locations. The data presented are averaged over 80 and 20
random instances of the erasure locations for N = 20, 24, 28 and N = 32 chains.

single-qubit depolarization channel at site i, the wave function
becomes a superposition of two spins

|ψerr,i〉〉 = (
1 − 4

3λ
)2|id〉〉 + 4

3λ
(
1 − 2

3λ
)|swap〉〉. (50)

Note that when λ = 3
4 , the wave function is given by |swap〉〉

only. Therefore, the statistical mechanical picture is that in
the symmetry-breaking phase of the Ising model, the bound-
ary condition caused by the noise channel |ψerr〉〉 will induce
different domains in the bulk, namely, these are domains de-
noted by either id or swap (equivalently, the two Ising values)
as shown schematically in Fig. 8(e). The mutual purity is
only nonzero when the encoded qubit is located in the swap
domain.

To better understand the coding transition, we perform a
finite-scaling analysis of mutual purity as a function of depth
and discuss different cases in the following.

Noisy region overlaps the encoding qubit. As shown in
Fig. 8(a), the reference qubit is encoded on the leftmost edge
and the noise occurs in a contiguous region that is also on the
left edge. In this case, there are many domain-wall configura-
tions that can contribute to the mutual purity. To simplify the
discussion, we focus on two different domain walls: One ends
on the bottom layer and the other ends on the right edge. A
schematic plot of these two domain walls is shown in Fig. 8(e).
It is clear that their contributions are

F ∼ e−�t + e−�′(1−p)L (51)

= e−�′(1−p)L(1 + e−�t+�′(1−p)L ), (52)

where � and �′ denote the tension of the two kinds of domain
walls, respectively, and L is the length of the chain. In the
short-time region, the first kind of domain wall dominates,
while in the long-time region, the second kind of domain wall

dominates and it becomes time independent. There is an ex-
change of dominating domain configurations, as demonstrated
in Fig. 8(e). The transition time is roughly �′(1−p)

�
L ∝ N . This

explains the behavior in Figs. 8(b) and 8(c). Replacing the
contribution from the second kind of domain wall by FHaar, we
can obtain F/FHaar = 1 + e−(�t+lnFHaar ), which is consistent
with the data collapse performed in Fig. 8(c).

Random noisy region. In this case, the noise occurs in
random positions, as shown in Fig. 9. The picture of exchange
of two kinds of domain-wall configuration is still correct. The
inset of Fig. 9 shows consistent data collapse.

Noisy region does not overlap the encoding qubit. The
encoding qubit and the noisy region are shown in Fig. 10. In
the calculation, we set λ = 3

4 . The boundary condition creates
a domain wall at the boundary between the noisy qubits and
the noiseless qubits. Due to the causality, the backpropagation
of the domain wall is constrained in an emergent light cone.
Thus, the mutual purity is zero (up to an exponentially small
number of N) when the encoding qubit is still outside the
backpropagating light cone of the domain wall. Moreover,
unlike in the previous case where the first kind of domain
wall that ends on the bottom can lead to a finite mutual
purity, here, only the second kind of domain wall that ends
on the right boundary can have a significant contribution to the
mutual purity. This is only possible when the backpropagating
light cone hits the right boundary. Therefore, this indicates
a dynamical transition at a timescale that is proportional to
the system size. In Fig. 10 the crossing of mutual parity in
different sizes indicates such a transition.

We also performed the data collapse in the inset of Fig. 10.
Different from the previous two cases, the scaling is given by
(t − τ ∗N )/

√
N . To understand this, note that the id domain

backpropagates to the light cone as shown in Fig. 10(c). In the
symmetry-breaking phase, the domain wall can fluctuate away
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FIG. 10. (a) Single-qubit reference encoded on the right end of chain and erasures of a fraction p = 0.25 of qubits on the left of chain.
Only (c) a specific domain-wall configuration contributes to the mutual purity dynamics as plotted in (b).

from the light cone.4 The average position is
√

N away from
the domain wall [46]. Furthermore, the fluctuation of the do-
main wall is captured by a universal function of α = δL/

√
N

[46], where δL denotes the distance away from the light cone.
More concretely, the magnetization profile is a function of α

at the distance that is of the order
√

N (outside this distance,
the magnetization is given by either one of the two spin
polarizations). We expect that this function also captures the
mutual purity as the latter also probes the swap spin at the
right boundary. Now, since the light cone reaches the right
boundary at a time of order N , the mutual purity is then a
universal function of (t − N

v
)/

√
N , where v is the light speed.

This explains the data collapse.
In summary, depending on whether the noise occurs in the

encoding qubit, we discover distinct coding transitions in mu-
tual purity. If the noisy region covers the encoding qubit, there
are two kinds of domain-wall configurations contributing to
the mutual purity. They are schematically shown in Fig. 8(e).
The exchange of dominance between the two kinds of domain
walls underlies the physics of the coding transition in this
situation. On the other hand, if the noisy region does not cover
the encoding qubit, the mutual purity is only nonzero when
the noise backpropagates to the encoding qubit. In this case,
the transition is induced by the fluctuating domain walls and
captured by a different scaling N−1/2, as shown in the data
collapse.

We note that there have been many recent works on charac-
terizing the dynamically generated quantum error correcting

4Note that in the symmetry-breaking phase, there are still two
phases for domain walls, the pinning and depinning phases, separated
by a pinning transition. For our case, since the coupling at the top
layer is the same as the coupling in the bulk, the depinning transition
is the same as the symmetry-breaking transition. This means the
domain wall is depinned and can fluctuate.

codes arising from hybrid RQCs with measurements and dis-
sipation, where similar statistical mechanical mappings have
been used [47–49]. However, in this work we are studying the
purely unitary case and also focus on a particular two-replica
quantity named the mutual purity, which bounds the error cor-
rection properties of the circuit, without requiring the replica
limit. In studying the coding transitions, we have considered
the purely unitary encoding using a RQC and explored its
coding properties. An interesting direction of work is studying
the effects of dissipation in the encoding process itself, which
has recently been studied in [49,50].

An important question is examining the nature of cod-
ing phase transitions. As explored in [48], the transition
in mutual information in hybrid circuit encoding (unitaries
with measurements) satisfies the critical properties of a di-
rected polymer in a random environment. In RQC encodings
with boundary dissipation, the transition in quenched quan-
tities also has the criticality of pinning-depinning transitions
in directed polymers [49]. In that regard, the results of
the transition in mutual purity in our work instead satisfy
Ising-like transitions, corresponding to annealed mutual-
information-like quantities. However, remarkably, such an
annealed two-replica quantity, namely, the mutual informa-
tion, actually bounds the error correction and the approximate
recovery inequality in Eq. (43) and is thus a physically rele-
vant informational quantity whose transitions can be identified
with Ising-like criticality.

VI. CONCLUSION

In this paper we have used the effective replica Hamilto-
nian mapping for local Brownian circuits to probe timescales
of complexity growth in random quantum circuits, namely,
anticoncentration and approximate unitary-design generation.
The effective replica model serves two purposes. First, we
can perform large-scale numerics to simulate several quantum
informational quantities for long times, using tensor network
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tools. This makes local Brownian circuits efficient numer-
ical tools to study unitary quantum many-body dynamics.
Second, the model transforms the question of timescales in
the real-time dynamics into questions of energy scales in a
corresponding thermodynamic problem, which allows us to
make analytical progress.

We have shown that local Brownian circuits in 1 + 1 di-
mensions anticoncentrate in ln N time, consistent with earlier
results in local Haar random circuits [16]. Furthermore, we
have analyzed the success condition of an approximate clas-
sical algorithm [29] to sample from the output distribution
of Brownian circuits and have identified that there is evi-
dence of a sharp transition in the computational hardness
of simulation at the same timescale. The anticoncentration
transition arises from the transition in dominance of different
low-energy states of the effective Hamiltonian in the collision
probability. In particular, the collision probability (a probe of
anticoncentration) gets a contribution from eigenstates of the
effective Hamiltonian with domain walls and the timescale
where this becomes relevant can be related to the logarithm
of the number of such domain-wall states (which in one di-
mension is approximately N).

In the presence of noise, we showed that there is a
noise-induced phase transition in the linear cross-entropy
benchmark χXEB, as has been recently demonstrated for re-
lated noisy random circuit models in [8,31]. This can be
seen as a consequence of explicit replica symmetry breaking
in the effective Hamiltonian model in the presence of noise
acting on a single replica of the system. By relating the χXEB

to specific transition amplitudes in the corresponding replica
model, we identify the noise-induced transition in the cross-
entropy benchmarking as the transition in the dominance
of certain domain-wall states in the presence of an explicit
bulk symmetry-breaking field. The critical properties of the
transition can be related to those of external field-induced
first-order transitions in the classical Ising model in two
dimensions [42].

Finally, we probed the generation of approximate unitary
design by Brownian circuits. By directly probing the quantum
error correcting properties of the Brownian circuit, namely,
a two-replica quantity called mutual purity [30], we found
that the (1 + 1)-dimensional Brownian circuits become good
quantum error correcting codes in O(N ) time. This transition
can be identified as first-order transitions between certain
space-time domain-wall configurations, which are related to
first-order boundary-driven pinning transitions in classical
Ising models.

There can be several avenues of future research based on
this work. Here we have demonstrated (1 + 1)-dimensional
Brownian circuits as a useful numerically accessible tool for
studying the dynamics of quantum information. A natural
question is whether the same numerical feasibility extends to
higher dimensions. Here we speculated on the dynamics and
transitions in informational quantities in higher-dimensional
Brownian circuits d > 1 (here d is the spatial dimension of
the Brownian circuit, N is total number of qubits, and we also
used the volume Ld ∼ N , with L the length scale).

Collision probability. It is still true that in higher di-
mensions, the collision probability at long enough time is

dominated by two grounds states and elementary excitations.
Distinct from the situation in one dimension, now the lowest
excitation is given by local spin flips with an energy that is
independent of system sizes. Nevertheless, the entropy of such
a local excitation is proportional to the system size N . There-
fore, we expect that the Brownian circuit anticoncentrates on
a ln N timescale, similar to that in one dimension [16].

Computational transition in the patching algorithm. The
patching algorithm is closely related to the symmetry break-
ing of the underlying two-replica spin model [29]. In higher
dimensions d > 1, the discrete symmetry can be broken in
a finite depth. This contrasts with the one-dimensional case,
where even the discrete symmetry can only be broken in a
logarithmic depth. This means that the patching algorithm will
fail when the depth of the Brownian circuit exceeds a critical
depth that is independent of system sizes.

Noisy cross-entropy benchmarking. A noise ε behaves as
an external field and will lift the degeneracy between |id〉〉 and
|swap〉〉, i.e., |swap〉〉 will be suppressed by a factor of e−Nεt .
On the other hand, as discussed in the collision probability,
the elementary excitation is given by local spin flips. With
an external field, there is an additional cost, adding up to a
factor of approximately e−z�t−εt , where z is the coordination
number. Therefore, we expect that when the noise rate scales
as 1/N = 1/Ld , there will be a first-order phase transition with
critical exponent given by 1/ν = d + 1.

Coding transition. The dynamical transition for the Brown-
ian circuit to achieve an approximate unitary 2-design is given
by the transition of dominance between two kinds of domain
walls. It should be the same in higher dimensions. Therefore,
the transition occurs on a timescale of approximately L =
N1/d [18]. Next consider the different regions of noise and the
encoding qubit. We expect that the mutual purity transition
is similarly given by transitions of domain walls when the
noisy region overlaps the encoding qubit. On the other hand,
when the noisy region does not overlap the encoding qubit, we
expect that the fluctuation of domain wall dictates the coding
transition.

Even in 1 + 1 dimensions, this work paves the way for
exploration of quantum information dynamics in symmetric
Brownian circuits, by studying directly the spectrum of the
effective Hamiltonian in the presence of other circuit symme-
tries. Another direction of interest is incorporating the effects
of mid-circuit measurements in the entanglement dynamics in
Brownian circuit [28,51].

In this work we have focused on only two-replica quan-
tities, such as collision probabilities and mutual purities. In
principle, any integer k replica quantities can be represented in
the effective Hamiltonian picture, with qk local Hilbert space
dimension (q being the dimension of the original degrees
of freedom), which makes numerical methods intractable at
large sizes for large k. An outstanding question is to develop
controlled numerical methods or analytical techniques to take
the k → 1 replica limit.
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APPENDIX: QUANTUM ERROR CORRECTING
CODES GENERATED BY BROWNIAN CIRCUITS

1. Error correction bound with mutual purity

In this Appendix we briefly recap the derivation of the error
correction bound (43) in the main text, which was derived in
[30]. We assume the setup described in Fig. 7. Consider first
the encoding of the maximally entangled state between the
reference R and system A,

|�〉RA = 1√
dR

dR∑
i=1

|i〉R|φi〉A, (A1)

before any application of error. After the error channel acts on
A, we get the noise-affected state on RAE ,

|� ′〉RAE = 1√
dR

dR∑
i=1

|i〉RUerr(|φi〉A|e0〉E ).

The error recovery procedure R [30,38] works by first
measuring A using an ideal projective measurement that
probes the effect of error in |� ′〉RAE , followed by a unitary
update of the state to restore it to |�〉RA. We first introduce
an orthonormal basis of states in A, |φi j〉A. The projective
measurement is given by the projection operators,

� j =
dR∑

i=1

|φi j〉A〈φi j |A. (A2)

Depending on the measurement outcome, a corrective unitary
Uj,A is applied on system A. In order to study the effective-
ness of the recovery channel, we want to study the trace
distance between the recovered state and the encoded state,
‖R(|� ′〉〈� ′|), |�〉〈�|‖1. In order to bound this, we introduce
a fictitious state ˜|�〉RAE , which aids in the analysis.

Consider ρ̃RE = ρ ′
R ⊗ ρ ′

E , where the reduced density ma-
trices ρ ′ are obtained from the state |� ′〉RAE . We now take the
fictitious state ˜|�〉RAE , which is a purification of ρ̃RE such that
the trace distance between ˜|�〉RAE and |� ′〉RAE is minimal.
This uniquely defines

˜|�〉RAE = 1√
dR

dR∑
i=1

dE∑
j=1

√
α j |i〉R|φi j〉A|e j〉E . (A3)

Imagine we apply the recovery channel R on ˜|�〉RAE in-
stead. After the measurement, say the outcome j is obtained.
The measured fictitious state is now

˜|�〉 j
RAE = 1√

dR

dR∑
i=1

|i〉R|φi j〉A|e j〉E . (A4)

We can now choose Uj acting on A such that Uj,A|φi j〉A =
|φi〉A and we get

Uj,A ˜|�〉 j
RAE = |�〉RA|e j〉E . (A5)

From the above relation we find that

‖R(|� ′〉〈� ′|), |�〉〈�|‖1

= ‖R(|� ′〉〈� ′|),R( ˜|�〉 ˜〈�|)‖1

� ‖|� ′〉〈� ′|, ˜|�〉 ˜〈�|‖1, (A6)

where the last inequality follows from the monotonicity prop-
erty of the trace distance. In [30], the last expression is
bounded by the mutual purity defined in Eq. (A13).5 We quote
the result in Eq. (43).

2. Replica computation of mutual purity

We first represent the reduced density matrix of the noise-
affected state defined in Eq. (40),

ρ ′
RE = TrA|� ′〉〈� ′|

= 1

dR

dR∑
i, j=1

|i〉〈 j|R ⊗ TrA{Uerr[Uenc(|i〉〈 j|A1

⊗ |0〉〈0|A2
)U †

enc ⊗ |e0〉〈e0|]U †
err}. (A7)

The effect of the Uerr on the system and the environment can
be represented by Kraus operators acting on the system itself,

Uerr|ψ〉A|e0〉E =
∑

m

Em
A |ψ〉A|em〉E ,

Em
A : HA → HA,

∑
m

Em†
A Em

A = 1A. (A8)

The squared density matrix ρ ′⊗2
RE can be represented by a state

vector in the replicated Hilbert space H ⊗ H∗ ⊗ H ⊗ H∗ and
the replicated unitaries Uenc = Uenc ⊗ U ∗

enc ⊗ Uenc ⊗ U ∗
enc and

Uerr = Uerr ⊗ U ∗
err ⊗ Uerr ⊗ U ∗

err as

∣∣ρ ′⊗2
RE

〉〉 = 1

d2
R

dR∑
i, j,i′, j′=1

|i ji′ j′〉〉R

dA∑
s,k=1

〈〈sskk|AUerr

⊗ Uenc|i ji′ j′〉〉A1 |0⊗4|A2|〉〉A2

∣∣e⊗4
0

〉〉
E . (A9)

While this representation looks cumbersome, it makes further
computations straightforward. The mutual purity is given by
F� ′

RE = Trρ ′2
RE − Trρ ′2

R Trρ ′2
E . Let us compute each term.

It is convenient to express Eq. (A9) pictorially, with rank-4
tensors for each subsystem, representing H ⊗ H∗ ⊗ H ⊗ H∗,

By unitarity of Uerr and Uenc we have

5See Appendix B in [30].
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Using this result, we find

(A10)

In general, dR = 2|A2|, where the local Hilbert space dimen-
sion is 2. We introduce notation for the following states in the
replicated Hilbert space on A:

|ψin〉〉 = (|swap〉〉 − 1
2 |id〉〉)⊗A1 ⊗ |0000〉〉⊗A2 , (A11)

|ψerr〉〉 = 2N
dE −1∑
m,n=0

EmE∗
n EnE∗

m|id〉〉⊗A. (A12)

Note that |ψerr〉〉 is an unnormalized state and the expression
for |ψerr〉〉 includes the case for no error acting on the subsys-
tem A3 ⊂ A by choosing Em = 1A3 ⊗ Em,A4 . Combining all the
expressions, the mutual purity is given by

F� ′
RE = 〈〈ψerr|Uenc|ψin〉〉. (A13)

The noise model for probing the extent of error correction
enters the computation of mutual purity only in the defini-
tion of |ψerr〉〉. Consider the local depolarization channel of
strength λ on a subset A4 ⊂ A such that number of qubits
undergoing noise is |A4| = p|A|. The Kraus operators for the
depolarization channel are

E0 = √
1 − λ1, Ex,y,z =

√
λ

3
σx,y,z. (A14)

The local depolarization channel acting on each qubit can be
purified using an environmental degree of freedom with four
levels 0, x, y, and z. The corresponding denv = 4p|A|.

3. Maximal complexity encoding by Haar random circuits

We can compute the mutual purity for any noise model for
an encoding unitary Uenc which is a global Haar random uni-
tary. Any unitary 2-designs will exhibit this value of mutual

purity. By examining the time required for the Brownian cir-
cuit to achieve this value of mutual purity, we can diagnose the
time required for the Brownian circuit to realize a 2-design.

For a global Haar random unitary, we have

UHaar ⊗ U ∗
Haar ⊗ UHaar ⊗ U ∗

Haar

= 1

d2 − 1

(
|id〉〉〈〈id| + |swap〉〉〈〈swap|

− 1

d
(|id〉〉〈〈swap| + |swap〉〉〈〈id|)

)
. (A15)

Using this identity for Uenc in Eq. (A13), we get the terms in
the expression for mutual purity,

E
[
Trρ2

RE

] =
(

1√
dR

)4 1

d2
A − 1

(
fid(λ)dR

+ fswap(λ)d2
R − 1

dA

[
fid(λ)d2

R + fswap(λ)dR
])

,

E
[
Trρ2

E

] =
(

1√
dR

)4 1

d2
A − 1

(
fid(λ)d2

R

+ fswap(λ)dR − 1

dA

[
fid(λ)dR + fswap(λ)d2

R

])
,

where we have introduced the notation

fid(λ) = 〈〈ψerr|id〉〉, fswap(λ) = 〈〈ψerr|swap〉〉.
Combining the results, we get

FHaar
RE = 1

d2
A − 1

(
1 − 1

d2
R

)(
fswap − 1

dA
fid

)
. (A16)

For the depolarization channel of strength λ acting on a frac-
tion p of the qubits, we get the expression

FHaar
RE = dA

d2
A − 1

(
1 − 1

d2
R

)
[1 − g(λ)p|A|], (A17)

g(λ) = (1 − λ)2 + λ2

3
. (A18)

If one qubit is encoded in N qubits, i.e., dR = 2 and dA = 2N ,
we have, for N � 1,

FHaar
RE = 2−N+23[1 − g(λ)pN ]. (A19)

[1] A. Nahum, S. Vijay, and J. Haah, Phys. Rev. X 8, 021014
(2018).

[2] C. W. von Keyserlingk, T. Rakovszky, F. Pollmann, and S. L.
Sondhi, Phys. Rev. X 8, 021013 (2018).

[3] T. Zhou and A. Nahum, Phys. Rev. B 99, 174205 (2019).
[4] V. Khemani, A. Vishwanath, and D. A. Huse, Phys. Rev. X 8,

031057 (2018).
[5] T. Rakovszky, F. Pollmann, and C. W. von Keyserlingk, Phys.

Rev. X 8, 031058 (2018).
[6] P. Hayden, S. Nezami, X.-L. Qi, N. Thomas, M. Walter, and

Z. Yang, J. High Energy Phys. 11 (2016) 009.
[7] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R.

Barends, R. Biswas, S. Boixo, F. G. Brandao, D. A. Buell et al.,
Nature (London) 574, 505 (2019).

[8] A. Morvan, B. Villalonga, X. Mi, S. Mandrà, A. Bengtsson,
P. Klimov, Z. Chen, S. Hong, C. Erickson, I. Drozdov et al.,
arXiv:2304.11119.

[9] Y. Wu, W.-S. Bao, S. Cao, F. Chen, M.-C. Chen, X. Chen, T.-H.
Chung, H. Deng, Y. Du, D. Fan et al., Phys. Rev. Lett. 127,
180501 (2021).

[10] Q. Zhu, S. Cao, F. Chen, M.-C. Chen, X. Chen, T.-H. Chung,
H. Deng, Y. Du, D. Fan, M. Gong et al., Sci. Bull. 67, 240
(2022).

[11] W. Brown and O. Fawzi, in 2013 IEEE International Sympo-
sium on Information Theory, Istanbul, 2013 (IEEE, Piscataway,
2013), pp. 346–350.

[12] W. Brown and O. Fawzi, Commun. Math. Phys. 340, 867
(2015).

042414-18

https://doi.org/10.1103/PhysRevX.8.021014
https://doi.org/10.1103/PhysRevX.8.021013
https://doi.org/10.1103/PhysRevB.99.174205
https://doi.org/10.1103/PhysRevX.8.031057
https://doi.org/10.1103/PhysRevX.8.031058
https://doi.org/10.1007/JHEP11(2016)009
https://doi.org/10.1038/s41586-019-1666-5
https://arxiv.org/abs/2304.11119
https://doi.org/10.1103/PhysRevLett.127.180501
https://doi.org/10.1016/j.scib.2021.10.017
https://doi.org/10.1007/s00220-015-2470-1


PHASE TRANSITIONS IN SAMPLING AND ERROR … PHYSICAL REVIEW A 109, 042414 (2024)

[13] M. J. Gullans, S. Krastanov, D. A. Huse, L. Jiang, and S. T.
Flammia, Phys. Rev. X 11, 031066 (2021).

[14] S. Boixo, S. V. Isakov, V. N. Smelyanskiy, R. Babbush, N. Ding,
Z. Jiang, M. J. Bremner, J. M. Martinis, and H. Neven, Nat.
Phys. 14, 595 (2018).

[15] D. Hangleiter and J. Eisert, Rev. Mod. Phys. 95, 035001 (2023).
[16] A. M. Dalzell, N. Hunter-Jones, and F. G. S. L. Brandão, PRX

Quantum 3, 010333 (2022).
[17] F. G. S. L. Brandão, A. W. Harrow, and M. Horodecki,

Commun. Math. Phys. 346, 397 (2016).
[18] A. W. Harrow and S. Mehraban, Commun. Math. Phys. 401,

1531 (2023).
[19] N. Hunter-Jones, arXiv:1905.12053.
[20] N. Lashkari, D. Stanford, M. Hastings, T. Osborne, and P.

Hayden, J. High Energy Phys. 04 (2013) 022.
[21] E. Onorati, O. Buerschaper, M. Kliesch, W. Brown, A. H.

Werner, and J. Eisert, Commun. Math. Phys. 355, 905 (2017).
[22] G. S. Bentsen, S. Sahu, and B. Swingle, Phys. Rev. B 104,

094304 (2021).
[23] S. Sahu, S.-K. Jian, G. Bentsen, and B. Swingle, Phys. Rev. B

106, 224305 (2022).
[24] S.-K. Jian, G. Bentsen, and B. Swingle, J. High Energy Phys.

08 (2023) 190.
[25] G. Vidal, Phys. Rev. Lett. 91, 147902 (2003).
[26] S. R. White and A. E. Feiguin, Phys. Rev. Lett. 93, 076401

(2004).
[27] A. J. Daley, C. Kollath, U. Schollwöck, and G. Vidal, J. Stat.

Mech. (2004) P04005.
[28] S.-K. Jian and B. Swingle, J. High Energy Phys. 11 (2023) 221.
[29] J. C. Napp, R. L. L. Placa, A. M. Dalzell, F. G. Brandão, and

A. W. Harrow, Phys. Rev. X 12, 021021 (2022).
[30] V. Balasubramanian, A. Kar, C. Li, O. Parrikar, and H.

Rajgadia, J. High Energy Phys. 08 (2023) 071.
[31] B. Ware, A. Deshpande, D. Hangleiter, P. Niroula,

B. Fefferman, A. V. Gorshkov, and M. J. Gullans,
arXiv:2305.04954.

[32] A. M. Dalzell, N. Hunter-Jones, and F. G. S. L. Brandão,
Commun. Math. Phys. 405, 78 (2024).

[33] D. Aharonov, X. Gao, Z. Landau, Y. Liu, and U. Vazirani,
in Proceedings of the 55th Annual ACM Symposium on The-
ory of Computing, Orlando, 2023 (ACM, New York, 2023),
pp. 945–957.

[34] B. Barak, C.-N. Chou, and X. Gao, Spoofing linear cross-
entropy benchmarking in shallow quantum circuits, in 12th
Innovations in Theoretical Computer Science Conference
(ITCS 2021), Leibniz International Proceedings in Informatics
(LIPIcs), Vol. 185 (Schloss Dagstuhl Leibniz-Zentrum für In-
formatik, 2021), pp. 30:1–30:20.

[35] X. Gao, M. Kalinowski, C.-N. Chou, M. D. Lukin, B. Barak,
and S. Choi, PRX Quantum 5, 010334 (2024).

[36] S.-K. Jian, C. Liu, X. Chen, B. Swingle, and P. Zhang,
arXiv:2106.09635.

[37] B. Schumacher and M. A. Nielsen, Phys. Rev. A 54, 2629
(1996).

[38] B. Schumacher and M. D. Westmoreland, arXiv:quant-
ph/0112106.

[39] M.-D. Choi, Linear Algebra Appl. 10, 285 (1975).
[40] A. Jamiołkowski, Rep. Math. Phys. 3, 275 (1972).
[41] J. Hauschild and F. Pollmann, SciPost Phys. Lect. Notes 5, 1

(2018); Code available from https://github.com/tenpy/tenpy.
[42] K. Binder and D. Landau, Phys. Rev. B 30, 1477 (1984).
[43] F. G. S. L. Brandao and M. J. Kastoryano, arXiv:1609.07877.
[44] A. Abeyesinghe, I. Devetak, P. Hayden, and A. Winter, Proc. R.

Soc. A 465, 2537 (2009).
[45] C. Bény and O. Oreshkov, Phys. Rev. Lett. 104, 120501

(2010).
[46] D. Abraham, Phys. Rev. Lett. 44, 1165 (1980).
[47] Y. Li and M. P. A. Fisher, Phys. Rev. B 103, 104306

(2021).
[48] Y. Li, S. Vijay, and M. P. A. Fisher, PRX Quantum 4, 010331

(2023).
[49] I. Lovas, U. Agrawal, and S. Vijay, arXiv:2304.02664.
[50] Z. Li, S. Sang, and T. H. Hsieh, Phys. Rev. B 107, 014307

(2023).
[51] S.-K. Jian, C. Liu, X. Chen, B. Swingle, and P. Zhang, Phys.

Rev. Lett. 127, 140601 (2021).

042414-19

https://doi.org/10.1103/PhysRevX.11.031066
https://doi.org/10.1038/s41567-018-0124-x
https://doi.org/10.1103/RevModPhys.95.035001
https://doi.org/10.1103/PRXQuantum.3.010333
https://doi.org/10.1007/s00220-016-2706-8
https://doi.org/10.1007/s00220-023-04675-z
https://arxiv.org/abs/1905.12053
https://doi.org/10.1007/JHEP04(2013)022
https://doi.org/10.1007/s00220-017-2950-6
https://doi.org/10.1103/PhysRevB.104.094304
https://doi.org/10.1103/PhysRevB.106.224305
https://doi.org/10.1007/JHEP08(2023)190
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/PhysRevLett.93.076401
https://doi.org/10.1088/1742-5468/2004/04/P04005
https://doi.org/10.1007/JHEP11(2023)221
https://doi.org/10.1103/PhysRevX.12.021021
https://doi.org/10.1007/JHEP08(2023)071
https://arxiv.org/abs/2305.04954
https://doi.org/10.1007/s00220-024-04958-z
https://doi.org/10.1103/PRXQuantum.5.010334
https://arxiv.org/abs/2106.09635
https://doi.org/10.1103/PhysRevA.54.2629
https://arxiv.org/abs/quant-ph/0112106
https://doi.org/10.1016/0024-3795(75)90075-0
https://doi.org/10.1016/0034-4877(72)90011-0
https://github.com/tenpy/tenpy
https://doi.org/10.1103/PhysRevB.30.1477
https://arxiv.org/abs/1609.07877
https://doi.org/10.1098/rspa.2009.0202
https://doi.org/10.1103/PhysRevLett.104.120501
https://doi.org/10.1103/PhysRevLett.44.1165
https://doi.org/10.1103/PhysRevB.103.104306
https://doi.org/10.1103/prxquantum.4.010331
https://arxiv.org/abs/2304.02664
https://doi.org/10.1103/PhysRevB.107.014307
https://doi.org/10.1103/PhysRevLett.127.140601

