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Adaptive variational quantum eigensolvers (ADAPT-VQEs) are promising candidates for simulations of
strongly correlated systems on near-term quantum hardware. To further improve the noise resilience of these
algorithms, recent efforts have been directed towards compactifying, or layering, their Ansatz circuits. Here,
we broaden the understanding of the algorithmic layering process in three ways. First, we investigate the
noncommutation relations between the different elements that are used to build ADAPT-VQE Ansätze. In doing
so, we develop a framework for studying and developing layering algorithms, which produce shallower circuits.
Second, based on this framework, we develop a new subroutine that can reduce the number of quantum-processor
calls by optimizing the selection procedure with which a variational quantum algorithm appends Ansatz elements.
Third, we provide a thorough numerical investigation of the noise-resilience improvement available via layering
the circuits of ADAPT-VQE algorithms. We find that layering leads to an improved noise resilience with respect
to amplitude-damping and dephasing noise, which, in general, affect idling and nonidling qubits alike. With
respect to depolarizing noise, which tends to affect only actively manipulated qubits, we observe no advantage
of layering.
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I. INTRODUCTION

Quantum chemistry simulations of strongly correlated
systems are challenging for classical computers [1]. While ap-
proximate methods often lack accuracy [1–5], exact methods
become infeasible when the system sizes exceed more than
34 spin orbitals—the largest system for which a full con-
figuration interaction (FCI) calculation has been conducted
[5]. For this reason, simulations of many advanced chemical
systems, such as enzyme active sites and surface catalysts, rely
on knowledge-intense, domain-specific approximations [6].
Therefore, developing general chemistry simulation methods
for quantum computers could prove valuable.

Variational quantum eigensolvers (VQEs) [1,7–19] are
a class of quantum-classical methods intended to per-
form chemistry simulations on near-term quantum hardware
[20,21]. More specifically, VQEs calculate upper bounds to
the ground-state energy E0 of a molecular Hamiltonian H
using the Rayleigh-Ritz variational principle

E0 � E (�θ ) ≡ Tr(H�(�θ )[ρ0]). (1)

A quantum processor is used to apply a parametrized quantum
circuit to an initial state. In the presence of noise, the quantum
circuit can, in general, be represented by the parametrized
completely positive trace-preserving (CPTP) map �(�θ ), and
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the initial state can be represented by the density matrix ρ0.
We will use square brackets to enclose a state acted upon
by a CPTP map. This generates a parametrized trial state
ρ(�θ ) ≡ �(�θ )[ρ0] that is hard to represent on classical comput-
ers. The energy expectation value E (�θ ) of ρ(�θ ) gives a bound
on E0, which can be accurately sampled using polynomially
few measurements [1,8]. A classical computer then varies �θ
to minimize E (�θ ) iteratively. Provided that the Ansatz circuit
is sufficiently expressive, E (�θ ) converges to E0 and returns
the ground-state energy. Initial implementations of VQEs on
near-term hardware have been reported in [7,22–26]. Despite
these encouraging results, several refinements are needed to
alleviate trainability issues [27–33] and to make VQEs feasi-
ble for molecular simulations with larger numbers of orbitals.
Moreover, recent results indicate that the noise resilience of
VQE algorithms must be improved to enable useful simula-
tions [14,30,34].

Adaptive VQEs (ADAPT-VQEs) [10] are promising VQE
algorithms, which partially address the issues of trainability
and noise resilience. They operate by improving the Ansatz
circuits in tmax consecutive steps

�t (θt , . . . , θ1) = At (θt ) ◦ �t−1(θt−1, . . . , θ1), (2)

starting from the identity map �0 = id. Here, t = 1, . . . , tmax

indexes the step and ◦ denotes functional composition of the
CPTP maps. An Ansatz element At (θt ) is added to the Ansatz
circuit in each step. The Ansatz element At (θt ) is chosen
from an Ansatz-element pool P by computing the energy
gradient for each Ansatz element and picking the Ansatz ele-
ment with the steepest gradient. Numerical evidence suggests

2469-9926/2024/109(4)/042413(32) 042413-1 Published by the American Physical Society

https://orcid.org/0009-0001-3230-942X
https://orcid.org/0009-0006-2416-356X
https://orcid.org/0000-0002-0185-0352
https://orcid.org/0000-0003-3025-7141
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.109.042413&domain=pdf&date_stamp=2024-04-12
https://doi.org/10.1103/PhysRevA.109.042413
https://creativecommons.org/licenses/by/4.0/


CHRISTOPHER K. LONG et al. PHYSICAL REVIEW A 109, 042413 (2024)

that such ADAPT-VQEs are readily trainable and can mini-
mize the energy landscape [32]. In the original proposal of
ADAPT-VQE, the Ansatz-element pool was physically mo-
tivated, comprising single and double fermionic excitations.
Since then, different types of Ansatz-element pools have been
proposed to minimize the number of CNOT gates in the Ansatz
circuit and thus improve the noise resilience of ADAPT-VQE
[11–13,35].

ADAPT-VQEs still face issues. Compared with other VQE
algorithms, ADAPT-VQEs make more calls to quantum pro-
cessors. This is because in every iteration, finding the Ansatz
element with the steepest energy gradient requires at least
O(|P|) quantum processor calls. This makes more efficient
pool-exploration strategies desirable. Moreover, noise poses
serious restrictions on the maximum depth of useful VQE
Ansatz circuits [14]. This makes shallower Ansatz circuits
desirable. A recent algorithm called TETRIS-ADAPT-VQE
compresses VQE Ansatz circuits into compact layers of
Ansatz elements [15]. This yields shallower Ansatz circuits.
However, it has not yet been demonstrated that shallower
Ansatz circuits lead to improved noise resilience. It is, there-
fore, important to evaluate whether such shallow Ansatz
circuits boost the noise resilience of ADAPT-VQEs.

In this paper, we broaden the understanding of TETRIS-
like layering algorithms. First, we show how noncommuting
Ansatz elements can be used to define a topology on the
Ansatz-element pool. Based on this topology, we present Sub-
pool Exploration: a pool-exploration strategy to reduce the
number of quantum-processor calls when searching for Ansatz
elements with large energy gradients. We then investigate
several flavors of algorithms to layer and shorten Ansatz cir-
cuits. Benchmarking these algorithms, we find that alternative
layering strategies can yield equally shallow Ansatz circuits
as TETRIS-ADAPT-VQE. Finally, we investigate whether
shallow VQE circuits are more noise-resilient. We do this by
benchmarking both standard and layered ADAPT-VQEs in
the presence of noise. For amplitude damping and dephasing
noise, which globally affect idling and nonidling qubits alike,
we observe an increased noise resilience due to shallower
Ansatz circuits. On the other hand, we find that layering is
unable to mitigate depolarizing noise, which acts locally on
actively manipulated qubits.

The remainder of this paper is structured as follows: In
Sec. II, we introduce notation and the ADAPT-VQE algo-
rithm. In Secs. III and IV, subpool exploration and layering for
ADAPT-VQE are described and benchmarked, respectively.
We study the runtime advantage of layering in Sec. V. In
Sec. VI, we investigate the effect of noise on layered VQE
algorithms. Finally, we conclude in Sec. VII.

II. PRELIMINARIES: NOTATION AND THE ADAPT-VQE

In what follows, we consider second-quantized Hamiltoni-
ans on a finite set of N spin orbitals:

H =
N∑

p,q=1

hpqa†
paq +

N∑
p,q,r,s=1

hpqrsa
†
pa†

qaras. (3)

a†
p and ap denote fermionic creation and annihilation operators

of the pth spin-orbital, respectively. The coefficients hpq and

hpqrs can be efficiently computed classically—we use the Psi4
package [36].

In this manuscript, we represent creation and annihila-
tion operators using the Jordan-Wigner representation [1].
While other representations, such as Bravyi-Kitaev, should
also work, we make this choice to maintain compatibility with
previous work on ADAPT-VQE [10–13,17,18,32,35]. This
results in creation and annihilation operators given by

a†
p �→ Q†

pZp ap �→ QpZp, (4)

respectively. Here,

Q†
p := 1

2 (Xp − iYp), Qp := 1
2 (Xp + iYp) (5)

are the qubit creation and annihilation operators, and
Xp,Yp, Zp denote Pauli operators acting on qubit p. The
fermionic phase is represented by

Zp :=
⊗
q<p

Zq. (6)

Anti-Hermitian operators T generate Ansatz elements that
form Stone’s-encoded unitaries parametrized by one real pa-
rameter θ :

A(θ )[ρ] := exp(θT )ρ exp(−θT ). (7)

Different ADAPT-VQE algorithms choose T from differ-
ent types of operator pools. There are three common types
of operator pools. The fermionic pool PFermi [10] contains
fermionic single and double excitations generated by anti-
Hermitian operators:

T p
q := a†

paq − a†
qap, (8)

T pq
rs := a†

pa†
qaras − a†

s a†
r aqap, (9)

where p, q, r, s = 1, . . . , N . The qubit-excitation-based
(QEB) pool PQEB [11] contains single and double qubit
excitations generated by anti-Hermitian operators:

T p
q := Q†

pQq − Q†
qQp, (10)

T pq
rs := Q†

pQ†
qQrQs − Q†

s Q†
r QqQp. (11)

The qubit pool Pqubit [13] contains parametrized unitaries
generated by strings of Pauli-operators σp ∈ {Xp,Yp, Zp}:

Tpq := iσpσq, (12)

Tpqrs := iσpσqσrσs. (13)

Further definitions and discussions of all three pools are given
in Appendix E. It is worth noting that all Ansatz elements
have quantum-circuit representations composed of multiple
standard single- and two-qubit gates [35]. Since all pools
consist of operators acting on up to four qubits, all pools
contain O(N4) elements. Note that this scaling remains valid
when restricting pools to spin-conserving Ansatz elements.

ADAPT-VQEs optimize several objective functions. At it-
eration step t , the energy landscape is defined by

Et (θt , . . . , θ1) ≡ Tr[HAt (θt ) ◦ · · · ◦ A1(θ1)[ρ0]]. (14)

A global optimizer may repeatedly evaluate Et and its partial
derivatives at the end of the t th iteration to return a set of
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ALGORITHM 1. ADAPT-VQE [10].

1: Initialize state ρ0 ← ρHF, circuit �0 ← id, and pool P .
2: Initialize energy bound E0 ← ∞ and accuracy ε.
3: for t = 1, . . . , tmax do
4: Select Ansatz element: At ← arg minA∈PLt (A)
5: Set circuit: �t (θt , . . . , θ1) ← At (θt ) ◦ �t−1(θt−1, . . . , θ1)
6: Optimize circuit: (θ∗

t , . . . , θ∗
1 ) ← arg minEt (θt , . . . , θ1)

7: Update energy bound: Et ← Et (θ∗
t , . . . , θ∗

1 )
8: Update state: ρt ← �t (θ∗

t , . . . , θ∗
1 )[ρ0]

9: if Et−1 − Et < ε then
10: return energy bound Et

11: return energy bound Etmax

optimal parameters:

(θ∗
t , . . . , θ∗

1 ) = arg min
(θt ,...,θ1 )∈Rt

Et (θt , . . . , θ1). (15)

These parameters set the upper energy bound of the t th itera-
tion:

Et = Et (θ
∗
t , . . . , θ∗

1 ). (16)

A loss function Lt : P → R is used to pick an Ansatz
element from the operator pool P at each iteration t :

At = arg min
A∈P

Lt (A). (17)

Throughout this paper, we use the standard gradient loss of
ADAPT-VQEs, defined in Eq. (20). We denote the state after
t − 1 iterations with optimized parameters θ∗

t−1, . . . , θ
∗
1 by

ρt−1 = �t−1(θ∗
t−1, . . . , θ

∗
1 )[ρ0]. (18)

Further, we define the energy expectation after adding the
Ansatz element A ∈ P as

Et,A(θ ) = Tr(HA(θ )[ρt−1]). (19)

Then, the loss is defined by

Lt (A) = −
∣∣∣∣∂Et,A(θ )

∂θ

∣∣∣∣
θ=0

= −|Tr([H, T ]ρt−1)|. (20)

We consider alternative loss functions in Appendix C.
The ADAPT-VQE starts by initializing a state ρ0. Often,

ρ0 is the Hartree-Fock state ρHF. The algorithm then builds
the Ansatz circuit �t by first adding Ansatz elements At ∈ P
of minimal loss Lt , according to Eq. (17). Then, the algorithm
optimizes the Ansatz circuit parameters according to Eq. (15).
This generates a series of upper bounds,

E0 > E1 > · · · > Et , (21)

until the improvement of consecutive bounds drops below a
threshold ε such that Et−1 − Et < ε, or the maximum iteration
number tmax is reached. The final bound (Et or Etmax ) is then
returned to approximate E0. A pseudocode of the ADAPT-
VQE is given in Algorithm 1.

III. SUBPOOL EXPLORATION AND LAYERING
FOR ADAPT-VQEs

In this section, we present two subroutines to improve
ADAPT-VQEs. The first subroutine optimally layers Ansatz

Sparse Dense

Layer

FIG. 1. Layering: A sparse Ansatz circuit (left), as produced by
standard ADAPT-VQEs, can be compressed to a dense structure
(right) by layering. Boxes denote Ansatz elements. Each line rep-
resents a single qubit. Note that Ansatz circuit elements entangle two
or four qubits.

elements, as depicted in Fig. 1. We call the process of produc-
ing dense (right-hand side) Ansatz circuits instead of sparse
(left-hand side) Ansatz circuits “layering.” This subroutine
can be used to construct shallower Ansatz circuits, which
may make ADAPT-VQEs more resilient to noise. The second
subroutine is subpool exploration. It searches Ansatz-element
pools in successions of noncommuting Ansatz elements. Sub-
pool exploration is essential for layering and can reduce the
number of calls an ADAPT-VQE makes to a quantum proces-
sor. Combining both subroutines results in algorithms similar
to TETRIS-ADAPT-VQE [15]. (A detailed comparison of our
algorithms to TETRIS-ADAPT-VQE will be given after the
proof of Property 4).

A. Commutativity and support

Commutativity of Ansatz elements is a central notion un-
derlying our subroutines. Informally, our definitions will be
as follows. Two Ansatz elements operator-commute if they
commute for all parameter values. Two Ansatz elements
support-commute if they do not act on the same qubits.
Generalized commutativity will refer to operator or support
commutativity, or the extended definition in Appendix I. The
generalized noncommuting set of an element A is the set of
Ansatz elements that do not commute in the generalized sense
with A. More formally:

Definition 1 (Operator commutativity). Two Ansatz ele-
ments A, B ∈ P are said to “operator-commute” iff A(θ ) and
B(φ) commute for all θ and φ:

{A, B}O = 0 ⇐⇒ ∀θ, φ ∈ R : [A(θ ), B(φ)] = 0. (22)

Conversely, two Ansatz elements A, B ∈ P do not operator-
commute iff there exist parameters for which the correspond-
ing operators do not commute:

{A, B}O �= 0 ⇐⇒ ∃θ, φ ∈ R : [A(θ ), B(φ)] �= 0. (23)

Definition 2 (Operator noncommuting set). Given an
Ansatz-element pool P and an Ansatz element A ∈ P , we
define its operator noncommuting set as follows:

NO(P, A) := {B ∈ P : {A, B}O �= 0}. (24)
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(a) (b) (c)

Ry(θ) Ry(θ) •

• • • Ry(θ) •

Ry(φ) Ry(φ) Ry(φ)

FIG. 2. A diagram comparing support and operator commutativ-
ity. (a) The elements both support- and operator-commute. Note that
Ry(θ ) only has qubit support on the top qubit line. (b) The elements
operator-commute but do not support-commute. (c) The elements
neither support- nor operator-commute.

Operator commutativity is central to layering. The operator
noncommuting set is central to subpool exploration. Struc-
turally similar and more intuitive notions can be defined using
qubit support:

Definition 3 (Qubit support). Let B(H) denote the set of
superoperators on a Hilbert space H. Let HQ := ⊗

q∈Q Hq

denote the Hilbert space of a set of all qubits Q ≡ {1, . . . , N}
where Hq is the Hilbert space corresponding to the qth qubit.
Consider a superoperator A ∈ B(HQ). First, we define the
superoperator subset that acts on a qubit subset W ⊆ Q as

BW := {B ⊗ id : B ∈ B(HW )} ⊆ B(HQ). (25)

Then, we define the qubit support of a superoperator A as its
minimal qubit subset W:

Supp(A) :=
⋂

W⊆Q:A∈BW

W . (26)

The notion of support extends to parametrized Ansatz
elements:

Supp(B) :=
⋃
θ

Supp(B(θ )), (27)

where B is a parametrized Ansatz element.
Intuitively, the qubit support of an Ansatz element A is the

set of all qubits the operator A acts on nontrivially (see Fig. 2).
The concept of qubit support allows one to define support
commutativity of Ansatz elements as follows:

Definition 4 (Support commutativity). Two Ansatz ele-
ments A, B ∈ P are said to “support-commute” iff their qubit
support is disjoint,

{A, B}S = 0 ⇐⇒ Supp(A) ∩ Supp(B) = ∅. (28)

Conversely, two Ansatz elements A, B ∈ P do not support-
commute iff their supports overlap,

{A, B}S �= 0 ⇐⇒ Supp(A) ∩ Supp(B) �= ∅. (29)

Definition 5 (Support noncommuting set). Given an Ansatz-
element pool P and an Ansatz element A ∈ P , we define the
set of Ansatz elements with overlapping support as

NS(P, A) := {B ∈ P : {B, A}S �= 0}. (30)

Operator commutativity and support commutativity are
not equivalent—see Fig. 2. However, the following prop-
erties hold. Elements supported on disjoint qubit sets

A

P\NG(A,P)

NG(A,P)

P

d = 1

d = 2

FIG. 3. A diagram of the distance d from an element A ∈ P un-
der the pool metric, Definition 6. The Ansatz element A (black dot) is
surrounded by Ansatz elements of the noncommuting set NG(P, A)
of distance 1 (white circle). All other elements P \ NG(P, A) have
distance 2 (gray shaded region).

operator-commute:

∀A, B ∈ P {A, B}S = 0 ⇒ {A, B}O = 0. (31)

Conversely, operator-noncommuting Ansatz elements act on
at least one common qubit, which implies they are support-
noncommuting:

∀A, B ∈ P {A, B}O �= 0 ⇒ {A, B}S �= 0. (32)

The last relation also implies that the operator-noncommuting
set of A is contained in its support-noncommuting set,

NO(P, A) ⊆ NS(P, A). (33)

We further generalize the notions of operator and support
commutativity in Appendix I. Henceforth, we will use gen-
eralized commutativity to denote either operator or support
commutativity or any other type of commutativity specified in
Appendix I. Further, NG and {•, •}G will be used to denote the
generalized noncommuting set and the generalized commuta-
tor, respectively.

For later reference, we note that generalized noncommut-
ing sets induce a topology on P via the following discrete
metric.

Definition 6 (Pool metric). Let d : P × P → {0, 1, 2} de-
fine a discrete metric such that (i) ∀A ∈ P , set d (A, A) = 0.
(ii) ∀A, B ∈ P with A �= B and {A, B}G �= 0, set d (A, B) = 1.
(iii) ∀A, B ∈ P with A �= B and {A, B}G = 0, set d (A, B) = 2.

With this metric, the generalized noncommuting elements
NG(P, A) form a ball of distance one around each Ansatz
element A ∈ P . The metric is represented diagrammatically
in Fig. 3. This allows us to identify an element A ∈ P as a
local minimum if there is no element with lower loss within
A’s generalized noncommuting set.

Property 1 (Local minimum). Let P be an Ansatz-element
pool with the pool metric of Definition 6, and let L : P → R
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denote a loss function. Then, any element A ∈ P for which

L(A) � min
B∈NG(P,A)

L(B) (34)

is a local minimum in P with respect to L.
This property is important as we will later show that sub-

pool exploration always returns local minima.
To gain intuition about the previously defined notions,

we consider the Ansatz elements of the QEB and the Pauli
pools, Eqs. (10)–(13). The Ansatz elements of these pools
have qubit support on either two or four qubits, as is illus-
trated in Fig. 1. Commuting Ansatz elements with disjoint
support can be packed into an Ansatz-element layer, which
can be executed on the quantum processor in parallel. This
is the core idea of layering, which helps to reduce the depths
of Ansatz circuits. Moreover, as generalized noncommuting
Ansatz elements must share at least one qubit, we conclude
that the generalized noncommuting set NG(P, A) has at most
O(N3) Ansatz elements. This is a core component of subpool
exploration. Analytic expressions for the cardinalities of the
generalized noncommuting sets are given in Appendix G. In
Appendix F, we prove that two different fermionic excitations
operator-commute iff they act on disjoint or equivalent sets of
orbitals. The same is true for qubit excitations. Pauli excita-
tions operator-commute iff the generating Pauli strings differ
in an even number of places within their mutual support.

B. Subpool exploration

In this section, we introduce subpool exploration, a
strategy to explore Ansatz-element pools with fewer quantum-
processor calls. Subpool exploration differs from the standard
ADAPT-VQE as follows. Standard ADAPT-VQEs evaluate
the loss of every Ansatz element in the Ansatz-element pool
P in every iteration of ADAPT-VQE (Algorithm 1, line 4).
This leads to O(|P|) quantum-processor calls to identify the
Ansatz element of minimal loss. Instead, subpool exploration
evaluates the loss of a reduced number of Ansatz elements by
exploring a sequence of generalized noncommuting Ansatz-
element subpools. This can lead to a reduced number of
quantum-processor calls and returns an Ansatz element which
is a local minimum of the pool P . The details of subpool
exploration are as follows.

Algorithm: Let P denote a given pool and L a given
loss function. Instead of naively computing the loss of every
Ansatz element in P , our algorithm explores P iteratively by
considering subpools, Sm � P , in consecutive steps. During
this process, the algorithm successively determines the Ansatz
element with minimal loss within subpool Sm as

Am = arg min
A∈Sm

L(A). (35)

Meanwhile, the corresponding loss value is stored:

Lm+1 = L(Am). (36)

Iterations are halted when loss values stop decreasing. The
key point of subpool exploration is to update the subpools Sm

using the generalized noncommuting set generated by Am:

Sm+1 = NG(P\S�m, Am) ⊆ NG(P, Am), ∀m � 0, (37)

ALGORITHM 2. Subpool exploration.

1: Input: Pool P , initial subpool S0, and loss function L.
2: Initialize loss value L0 ← ∞.
3: for m = 0, . . . do
4: Select Ansatz element Am ← arg minA∈Sm

L(A).
5: Update loss value Lm+1 ← L(Am ).
6: if Lm+1 < Lm then
7: Update subpool Sm+1 = NG(P\S�m, Am ).
8: else
9: return Am,Sm.

where S�m := ∪m
l=0Sl . A pseudocode summary of subpool

exploration is given in Algorithm 2, a visual summary is dis-
played in Fig. 4, and a toy example on four qubits is included
in Fig. 5. We now discuss aspects of subpool exploration.

Efficiency: Let ms denote the index of the final iteration,
and define the set of searched Ansatz elements as

S := ∪ms
m=0Sm. (38)

As loss values of Ansatz elements that have been explored are
stored in a list, it follows that subpool exploration requires
only |S| loss function calls. On the other hand, exploring the
whole pool in ADAPT-VQE requires |P| loss-function calls.
Since S is a subset of P , subpool exploration may reduce the
number of quantum-processor calls:

S ⊆ P ⇒ |S| � |P|. (39)

To give a specific example, consider the QEB and qubit pools.
Those pools contain O(N4) Ansatz elements. On the other
hand, generalized noncommuting sets have O(N3) Ansatz ele-
ments. Thus, by choosing an appropriate initial subpool, we
can ensure that |Sm| = O(N3) for all subpools. Especially
if the number of searched subpools is ms = O(1), subpool
exploration can return Ansatz elements of low loss while ex-
ploring only O(N3) Ansatz elements.

We note that this pool-exploration strategy ignores certain
Ansatz elements. In particular, it may miss the optimal Ansatz
element with minimal loss. Nevertheless, as explained in the
following paragraphs, it will always return Ansatz elements
which are locally optimal. This ensures that the globally opti-
mal Ansatz element can always be added to the Ansatz circuit
later in the algorithm.

Optimality: As the set of explored Ansatz elements S is a
subset of P , the Ansatz element returned by subpool explo-
ration,

A∗
S := arg min

A∈S
L(A), (40)

may be suboptimal to the Ansatz element returned by explor-
ing the whole pool,

A∗
P := arg min

A∈P
L(A). (41)

That is,

S ⊂ P ⇒ arg min
A∈P

L(A) � arg min
A∈S

L(A). (42)
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7. If L(A2) ≥ L(A1):
Halt the subpool ex-
ploration and return
A∗

S = A1.

6. Evaluate loss of all
elements in S2 and re-
turn element A2 with
minimal loss in S2.

5. If L(A1) < L(A0):
Create subpool S2 of
all elements in P that
do not generalized com-
mute with A1 and the
loss has not already
been calculated for.

4. Evaluate loss of all
elements in S1 and re-
turn element A1 with
minimal loss in S1.

3. Create subpool S1

of all elements in P
that do not generalized
commute with A0 and
the loss has not already
been calculated for.

2. Evaluate loss of all
elements in S0 and re-
turn element A0 with
minimal loss in S0.

1. Initialize a subpool.

P

S0

A0

S1

A1

S2

A2

A∗
S

FIG. 4. Visualization of our strategy for subpool exploration.
The pool P is successively explored in subpools Sm, with Ansatz
elements Am of minimal loss generating future subpools through their
generalized noncommuting set.

Yet, there are a couple of useful properties that pertain to
the output A∗

S of subpool exploration. At first, the outputs of
subpool exploration are local minima.

Property 2 (Local optimality). Any Ansatz element A∗
S re-

turned by subpool exploration is a local minimum.
The proof of this property is immediate. Moreover, as

subpool exploration constructs subpools from generalized
noncommuting sets, the only Ansatz elements B ∈ P with
L(B) < L(A∗

S ) must necessarily generalized commute with
A∗
S ∈ P .

Property 3 (Better Ansatz elements generalized commute).
Let P denote a pool and L denote a loss function. Let A∗

S ∈ P

denote the final output of subpool exploration. Then,

∀B ∈ P with L(B) < L(A∗
S ) ⇒ {A∗

S , B}G = 0 (43)

⇒ {A∗
S , B}O = 0. (44)

Proof. We prove this property by contradiction. Assume
that there is an Ansatz element L(B) < L(A∗

S ) such that
{A∗

S , B}G �= 0. This implies that B is in the generalized non-
commuting set NG(P, A∗

S ) and exploring the corresponding
subpool would have produced L(B) < L(A∗

S ) leading to the
exploration of NG(P, B). This, in turn, can only return an
Ansatz element with a loss L(B) or smaller. This would contra-
dict A∗

S having been the final output of the algorithm. Finally,
we use Eq. (31) to show Eq. (44). �

Property 3 is useful as it ensures that subpool exploration
can find better Ansatz elements, which first were missed,
in subsequent iterations. To see this, suppose a first run of
subpool exploration returns a local minimum A ∈ P . Further,
suppose there is another local minimum B ∈ P such that
L(B) < L(A). Property 3 ensures that A and B generalized
commute. Hence, by running subpool exploration repeatedly
on the remaining pool, we are certain to discover the bet-
ter local minimum eventually. Ultimately, this will allow for
restoring the global minimum.

Initial subpool: So far, we have not specified any strategy
for choosing the initial set S0. This can be done, for example,
by taking the subpool of a single random Ansatz element A0 ∈
P . Alternatively, one can compose S0 of random Ansatz ele-
ments enforcing an appropriate pool size, e.g., |S0| = O(N3)
for QEB and qubit pools.

We will refer to the ADAPT-VQE with subpool exploration
as the Explore-ADAPT-VQE. This algorithm is realized by
replacing line 4 in Algorithm 1 with subpool exploration,
Algorithm 2, with L → Lt .

C. Layering

Below, we describe two methods for arranging generalized
noncommuting Ansatz elements into Ansatz-element layers.
Figure 6 diagrammatically represents both methods.

Definition 7 (Ansatz-element layer). Let A be a subset of
P . We say that A is an Ansatz-element layer iff

{A, B}G = 0 ∀A, B ∈ A such that A �= B. (45)

We denote the operator corresponding to the action of
the mutually generalized-commuting Ansatz elements of an
Ansatz-element layer A with

Ao(�θ ) =
∏
A∈A

A(θA). (46)

Here, �θ is the parameter vector for the layer:

�θ ≡ {θA : A ∈ A}. (47)

We note that for support commutativity, the product can be
replaced by the tensor product.

Since Ansatz-element layers depend on parameter vectors,
the update rule is

�t (�ϑt ) = Ao(�θt ) ◦ �t−1(�ϑt−1), �ϑt = (�θt , �ϑt−1). (48)
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FIG. 5. A toy example of subpool exploration. (a) The Ansatz element pool P comprises of six two-qubit operators acting on four
qubits. Each Ansatz element is labeled 1,. . .,6. (b) Graphs visualize Ansatz elements as vertices. A vertex pair is connected by an edge if
the corresponding Ansatz elements do not support-commute. The dynamics of subpool exploration are visualized as follows. Left: The initial
pool is S0 := {3}, and A0 := 3 is found to be the Ansatz element of minimal loss. Center: Next, we search the noncommuting set of A0 := 3
given by S1 := {1, 2, 4, 5}. Within S1 we determine the loss of all elements. Assume the element of minimal loss is found to be element
A1 := 1. Right: Next, we search the noncommuting set of A1 := 1 given by {3, 4, 5, 6}. We have already evaluated the losses of {3, 4, 5}, so we
set the subpool to S2 := {6} and determine its minimum loss. Assuming the loss of A2 = 6 is larger than the loss of A1 = 1, we return A∗

S = 1
as the local minimum. In this toy example, the whole pool is searched, and the local minimum is the global minimum.

As before, the algorithm is initialized with �0 = id and �ϑ =
(). To make the dependence on the Ansatz circuit explicit, we
denote the energy landscape as

E�(�ϑ ) := tr[H�(�ϑ )[ρ0]]. (49)

The energy landscape of the t th iteration is denoted as

Et (�ϑt ) ≡ E�t (�ϑt ), (50)

and its optimal parameters are

�ϑ∗
t = arg min

�ϑ
Et (�ϑ ). (51)

Optimize after appending each
element if dynamic layering
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A2(θ2)

A3(θ3)

FIG. 6. Visualization of layer construction and successive pool
reduction. Gray areas indicate the removal of generalized noncom-
muting sets corresponding to Ansatz elements An added to the layer
A. Parameters can either be optimized once the whole layer is
fixed (static layering) or after adding each Ansatz element (dynamic
layering).

Further, the gradient loss [cf. Eq. (20)] is

L�(�ϑ )(A) ≡ −|tr[[H, TA]�(�ϑ )[ρ0]]|, (52)

where the definitions in Eqs. (20) and (52) satisfy the follow-
ing relation:

Lt (A) = L
�t−1(�ϑ∗

t−1 )(A). (53)

With this notation in place, we proceed to describe two meth-
ods to construct Ansatz-element layers.

1. Static layering

Our algorithm starts by initializing an empty Ansatz-
element layer and the remaining pool P ′ to be the entire
pool P . Further, the loss is set such that L ← L�t−1 for the
t th layer. The algorithm proceeds to fill the Ansatz-element
layer by successively running subpool exploration to pick an
Ansatz element An in n = 0, . . . , nmax iterations. This natu-
rally induces an ordering on the layer. At every step of the
iteration, the corresponding generalized noncommuting set
NG(P ′, An) is removed from the remaining pool P ′. If the loss
of the selected Ansatz element An is smaller than a predefined
threshold L(A) < 
, it is added to the Ansatz-element layer A.
The layer is completed once the pool is exhausted (P ′ = ∅)
or the maximal iteration count nmax is reached. A pseudocode
summary of static layering is given in Algorithm 3.

In Static-ADAPT-VQE, static layering is used to grow an
Ansatz circuit iteratively. In each iteration, the layer is ap-
pended to the Ansatz circuit, and the Ansatz-circuit parameters
are reoptimized. Iterations halt once the decrease in energy
falls below ε, the energy accuracy per Ansatz element. A
summary of Static-ADAPT-VQE is given in Algorithm 4.

We establish the close relationship between static layering
and TETRIS-ADAPT-VQE in the following property.

Property 4 Assume that all Ansatz elements A, B ∈ P
have distinct loss L(A) �= L(B). Using support commutativity
and provided that 
 = 0 and nmax are sufficiently large to

042413-7



CHRISTOPHER K. LONG et al. PHYSICAL REVIEW A 109, 042413 (2024)

ALGORITHM 4. Static-ADAPT-VQE.

1: Initialize state ρ0 ← ρHF, Ansatz circuit �0 ← id, pool P .
2: Initialize energy bound E0 ← ∞ and accuracy ε.
3: Initialize maximal loss 
 and iteration count nmax.
4: for t = 1, . . . , tmax do
5: Get layer: At ← BuildStaticLayer(P, L�t−1 , 
, nmax)
6: Set Ansatz circuit: �t (�ϑt ) ← Ao

t (�θt ) ◦ �t−1(�ϑt−1)
7: Optimize Ansatz circuit: �ϑ∗

t ← arg min Et (�ϑt )
8: Set Ansatz circuit: �t ← �t (�ϑt∗)
9: Update energy bound: Et ← Et (θ∗

t , . . . , θ∗
1 )

10: if Et−1 − Et < ε|At | then
11: return energy bound Et

12: return energy bound Etmax

ensure that the whole layer is filled, Static-ADAPT-VQE and
TETRIS-ADAPT-VQE will produce identical Ansatz-element
layers.

Proof. This property is proven by induction. Assume
that the previous iterations of ADAPT-VQE have yielded a
specific Ansatz circuit �t−1(�ϑ∗). The next layer of Ansatz
elements At can be constructed either by Static-ADAPT-VQE
or TETRIS-ADAPT-VQE. For both algorithms, the equiva-
lence of �t−1(�ϑ∗) implies that the loss function, Eq. (53), of
any Ansatz element is identical throughout the construction
of the layer At . First, by setting the maximal loss 
 = 0, we
ensure that Static-ADAPT-VQE only accepts Ansatz elements
with a nonzero gradient. For TETRIS-ADAPT-VQE, this is
always the case by design. Next, we note that if an Ansatz
element is placed on a qubit by Static-ADAPT-VQE, then by
Property 3 there exists no Ansatz element that acts actively
on this qubit and generates a lower loss. Moreover, there
exists no Ansatz element with identical loss that acts non-
trivially on this qubit, as we assume that all Ansatz elements
have a distinct loss. Similarly, TETRIS-ADAPT-VQE places
Ansatz elements from lowest to highest loss and ensures no
two Ansatz elements have mutual support. Thus, if an Ansatz
element is placed on a qubit by TETRIS-ADAPT-VQE, there
exists no Ansatz element with a lower loss that acts nontriv-
ially on this qubit. Again, there also exists no Ansatz element
with identical loss supported by this qubit, as we assume
that all Ansatz elements have a distinct loss. Combining these
arguments, both Static- and TETRIS-ADAPT-VQE will fill
the Ansatz-element layer At with equivalent Ansatz elements.
The Ansatz elements may be chosen in a different order. By

ALGORITHM 3. Build static layer.

1: Input: Pool P , loss L, max. loss 
, max. iteration nmax

2: Initialize remaining pool P ′ ← P
3: Initialize Ansatz layer A ← ∅
4: for n = 0, . . . , nmax do
5: Set A ← SubpoolExploration(P ′, L)
6: if L(A) < 
 then
7: Update layer A ← A ∪ {A}.
8: Reduce pool P ′ ← P ′ \ NG(P ′, A)
9: if P ′ = ∅ then break

10: return A

induction, the equivalence of �t−1 and At implies the equiva-
lence of the Ansatz circuit �t . �

Static versus TETRIS: We now compare Static- and
TETRIS-ADAPT-VQE. First, provided Static-ADAPT-VQE
uses support commutativity, completes full Ansatz-element
layer (by setting nmax = N), and uses a maximal loss of 
 = 0,
Property 4 implies that Static-ADAPT-VQE and TETRIS-
ADAPT-VQE will produce identical Ansatz circuits layer by
layer. Second, it is worth noting that TETRIS-ADAPT-VQE
will construct each Ansatz-element layer from the Ansatz ele-
ment with the maximal to the lowest loss. On the other hand,
Static-ADAPT-VQE will construct each Ansatz-element layer
in random order. Thus, Static- and TETRIS-ADAPT-VQE
have identical Ansatz circuits only if an Ansatz-element layer
is completed. Finally, if Static-ADAPT-VQE does not use
support commutativity, or is not allowed to complete a full
layer (by setting nmax < N), or does not operate at a maxi-
mally allowed loss 
 < 0, there is no reason for TETRIS- and
Static-ADAPT-VQE to produce equivalent Ansatz circuits.

2. Dynamic layering

In static layering, Ansatz-circuit parameters are optimized
after appending a whole layer with several Ansatz elements. In
dynamic layering, on the other hand, Ansatz-circuit parame-
ters are reoptimized every time an Ansatz element is appended
to a layer. The motivation for doing so is to simplify the
optimization process. The price is having to run the global
optimization more times. We now describe how to perform
dynamic layering.

The starting point is a given Ansatz circuit �, a set of
optimal parameters �ϑ∗ [Eq. (51)] and their corresponding
energy bound E ≡ E�(�ϑ∗). The remaining pool P ′ is initiated
to be the entire pool P . Starting from an empty layer A′ and
a temporary Ansatz circuit �′ = �, a layer is constructed
dynamically by iteratively adding Ansatz elements A to A′
and �′ while simultaneously reoptimizing the Ansatz-circuit
parameters �ϑ∗. Based on the loss L′ induced by the currently
optimal Ansatz circuit �′(�ϑ∗), subpool exploration is used to
select Ansatz elements A. Simultaneously, the pool of remain-
ing Ansatz elements P ′ is shrunk by the successive removal
of the generalized noncommuting sets NG(P ′, A). Finally,
Ansatz elements are only added to the layer A if their loss is
below a threshold 
 and the updated energy bound E ′ exceeds
a gain threshold of ε. A pseudocode summary is given in
Algorithm 5.

Dynamic-ADAPT-VQE iteratively builds dynamic layers
At and appends those to the Ansatz circuit �t−1. The proce-
dure is repeated until an empty layer is returned; that is, no
Ansatz element is found that reduces the energy by more than
ε. Alternatively, the algorithm halts when the (user-specified)
maximal iteration count tmax is reached. A pseudocode sum-
mary is given in Algorithm 6.

IV. BENCHMARKING NOISELESS PERFORMANCE

In this section, we benchmark various aspects of subpool
exploration and layering in noiseless settings. To this end, we
use numerical state-vector simulations to study a wide variety
of molecules summarized in Table I. While BeH2 and H2O

042413-8



LAYERING AND SUBPOOL EXPLORATION FOR … PHYSICAL REVIEW A 109, 042413 (2024)

ALGORITHM 5. Build dynamic layer.

1: Input: Ansatz �, bound E , opt. params �ϑ∗

2: Get: Pool P , accuracy ε, max. loss 
, nmax

3: Initialize pool P ′ ← P , layer A′ ← ∅, Ansatz circuit �′ ← �

4: for n = 0, . . . , nmax do
5: Update loss L′ ← L�′ (�ϑ∗ )

6: Set A ← SubpoolExploration(P ′, L′)
7: if L′(A) < 
 then
8: Minimize (θ∗, �ϑ∗) ← arg min(θ,�ϑ )EA◦�′ (θ, �ϑ )
9: Set bound E ′ ← EA◦�′ (θ∗, �ϑ∗)

10: if E − E ′ � ε then
11: Update layer A ← A ∪ {A}
12: Update Ansatz circuit �′ ← A ◦ �′

13: Update opt. params �ϑ∗ ← (θ∗, �ϑ∗)
14: Reduce pool P ′ ← P ′ \ NG(P ′, A)
15: if P ′ = ∅ then break
16: return Layer A′, optimal params �ϑ∗, bound E .

are among the larger molecules to be benchmarked, H4 and
H6 are prototypical examples of strongly correlated systems
[10,13,32]. Our simulations demonstrate the utility of subpool
exploration in reducing quantum-processor calls. Further, we
show that when compared to standard ADAPT-VQE, both
Static- and Dynamic-ADAPT-VQE reduce the Ansatz circuit
depths to similar extents. All simulations use the QEB pool
because it gives a higher resilience to noise than the fermionic
pool and performs similarly to the qubit pool [14]. More-
over, unless stated otherwise, we use support commutativity
to ensure that Static-ADAPT-VQE produces Ansatz circuits
equivalent to TETRIS-ADAPT-VQE.

A. Efficiency of subpool exploration

We begin by illustrating the ability of subpool exploration
to reduce the number of loss function calls when searching
for a suitable Ansatz element A to append to an Ansatz circuit.
To this end, we present Explore-ADAPT-VQE (ADAPT-VQE
with subpool exploration) using the QEB pool, Eq. (10), and
operator commutativity. We set the initial subpool, S0, such
that it consists of a single Ansatz element selected uniformly
at random from the pool. To provide evidence of a reduction
in the number of loss-function calls, we track the number of
subpools searched, ms, to find a local minimum. The results
are depicted in Fig. 7. There is a tendency to terminate subpool

ALGORITHM 6. Dynamic-ADAPT-VQE.

1: Initialize state ρ0 ← ρHF, Ansatz circuit �0 ← id, pool P .
2: Initialize accuracy ε and maximal loss 
.
3: Initialize iteration counts tmax, nmax.
4: Initialize energy bound E0 ← ∞.
5: Initialize optimal params ϑ∗

0 as empty vector.
6: for t = 1, . . . , tmax do
7: At , �ϑ∗

t , Et ← BuildDynamicLayer(L�t−1 , �ϑ∗
t−1, Et−1)

8: if At = ∅ then
9: return energy bound Et

10: Set Ansatz circuit: �t ← Ao
t ◦ �t−1

11: return energy bound Etmax

exploration after visiting two or three subpools. This should
be compared with the maximum possible QEB-pool values
of ms: N − 2 = 6, 10, 10, 12, 12 for H4, LiH, H6, BeH2, and
H2O, respectively. Thus, Fig. 7 shows that subpool explo-
ration reduces the number of loss-function calls in the cases
tested.

B. Reducing Ansatz-circuit depth

Next, we compare the ability of Static-(TETRIS)- and
Dynamic-ADAPT-VQE to reduce the depth of the Ansatz
circuits as compared to standard and Explore-ADAPT-VQE.
The data are depicted in Fig. 8. Here, we depict the energy
error,

�t = Et − EFCI, (54)

given as the distance of the VQE predictions Et from the
FCI ground-state energy EFCI as a function of (left) the
Ansatz-circuit depths and (right) the number of Ansatz-circuit
parameters. The left column shows that layered ADAPT-
VQEs achieve lower energy errors with shallower Ansatz
circuits. Meanwhile, the right column demonstrates that all
ADAPT-VQEs achieve similar energy accuracy with respect
to the number of Ansatz-circuit parameters.

C. Reducing runtime

In this section, we provide numerical evidence that subpool
exploration and layering reduce the runtime of ADAPT-VQE.
A mathematical analysis of asymptotic runtimes will follow in
Sec. V. To provide evidence of a runtime reduction in numer-
ical simulations, we show that layered ADAPT-VQEs require
fewer expectation value evaluations (and thus shots and quan-
tum processor runtime) to reach a given accuracy. Our numeri-
cal results are depicted in Figs. 9 and 10 for expectation-value
evaluations related to calculating losses and parameter opti-
mizations, respectively. We now discuss our results.

To convert data accessible in numerical simulations (such
as loss function and optimizer calls) into runtime data (such as
expectation values and shots), we proceed as follows. For our
numerical data, we evaluate runtime in terms of the number
of expectation value evaluations rather than processor calls or
shots. This is justified as the number of shots (or processor
calls) is directly proportional to the number of expectation
values in our simulations [1,8]. Next, we evaluate the run-
time requirements associated with loss-function evaluations
by tracking the number of times a loss function is called. The
evaluation of the loss function over a subpool S is recorded
as |S| + 1 expectation-value evaluations, assuming the use of
a finite-difference rule. Thus we produce the data presented
in Fig. 9. Finally, we evaluate the runtime requirements of
the optimizer by tracking the number of energy expectation
values or gradients it requests. The gradient of P variables is
then recorded as P + 1 energy expectation value evaluations,
assuming the use of a finite-difference rule. This gives the data
in Fig. 10.

In Fig. 9, we show that layered ADAPT-VQEs require
fewer loss-related expectation-value evaluations to reach a
given energy accuracy. We attribute this advantage to sub-
pools gradually shrinking during layer construction. They thus
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TABLE I. Table of molecular conformations and the corresponding number of STO-3G spin-orbitals N used in numerical simulations.

require fewer loss function evaluations per Ansatz element
added to the Ansatz-element circuit. We further notice that
Explore-ADAPT-VQE does not reduce the loss-related expec-
tation values required for standard ADAPT-VQE. We attribute
this result to our examples’ small pool sizes, with only 8–14
qubits. As qubit sizes increase, we expect a more noticeable
advantage for Explore-ADAPT-VQE, as discussed in Sec. V.

In Fig. 10 (left), we show that Static-ADAPT-VQE reduces
the number of optimizer calls needed to reach a given accu-
racy. As expected, the left column shows that Static-ADAPT-
VQE calls the optimizer O(N ) times less than any other algo-
rithm. This is expected, as standard, Explore-, and Dynamic-
ADAPT-VQE calls the optimizer each time a new Ansatz
element is added to the Ansatz-element circuit. Meanwhile,
Static-ADAPT-VQE calls the optimizer only after adding a
whole layer of O(N ) Ansatz elements to the Ansatz-element
circuit. In Fig. 10 (right), we analyze how the reduced number
of optimizer calls translates to the number of optimizer-related
expectation values required to reach a given accuracy. The
data were obtained using a BFGS optimizer with a gradient
norm tolerance of 10−12 Ha and a relative step tolerance of
zero. Compared to the optimizer calls on the left of the figure,
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FIG. 7. Histograms of the relative frequencies of the number of
subpools searched for identifying a suitable Ansatz element ms with
Explore-ADAPT-VQE. The mean and uncertainty in the mean are
indicated by solid and dashed lines, respectively.

we notice two trends. Dynamic-ADAPT-VQE, while being on
par with standard and Explore-ADAPT-VQE for optimizer
calls, tends to use a higher number of expectation value
evaluations. Similarly, Static-ADAPT-VQE, while having a
clear advantage over standard and Explore-ADAPT-VQE for
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FIG. 9. Energy accuracy against the number of loss function
calls. Using the QEB pool and support commutation, we compare
standard-, Explore-, Static-(TETRIS)-, and Dynamic-ADAPT-VQE.
Each row shows data for a specific molecule, with the number of or-
bitals increasing up the page. Energy accuracies better than chemical
accuracy are shaded in cream.

optimizer calls, tends to have a reduced advantage (and
for LiH, even a disadvantage) when it comes to optimizer-
related expectation value evaluations. These observations
hint towards an increased optimization difficulty for layered
ADAPT-VQEs. These observations may be highly optimizer-
dependent and should be further investigated in the future.

D. Additional benchmarks

We close this section by referring the reader to additional
benchmarking data presented in the Appendixes.

In Appendix B, we compare support to operator commu-
tativity for the qubit pool. In Appendix C, we compare the
steepest-gradient loss to the largest-energy-reduction loss. We
also compare the QEB pool to the qubit pool in Appendix C.
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FIG. 10. Energy accuracy against the number of times the Ansatz
is optimized (left column), and the number of expectation values
calculated during optimizer calls (right column). Using the QEB pool
and support commutation, we compare standard-, Explore-, Static-
(TETRIS)-, and Dynamic-ADAPT-VQE. Each row shows data for
a specific molecule, with the number of orbitals increasing up the
page. Energy accuracies better than chemical accuracy are shaded in
cream.

V. RUNTIME ANALYSIS

In this section, we analyze the asymptotic runtimes of
standard, Explore-, Dynamic-, and Static-ADAPT-VQE. We
find that under reasonable assumptions, Static-ADAPT-VQE
can run up to O(N2) faster than standard ADAPT-VQE. In
what follows, we quantify asymptotic runtimes using O(x),
�(x), or 
(x) to state that a quantity scales at most, at least, or
exactly with x, respectively. For definitions, see Appendix A.
We begin our runtime analysis by listing some observations,
assumptions, and approximations.

(a) Each algorithm operates on N qubits to find the ground
state of a Hamiltonian H.

(b) Ansatz circuits are improved by successively adding
Ansatz elements with a single parameter to the Ansatz circuit.
This results in iterations p = 1, . . . , P, where the pth Ansatz
circuit has p parameters.
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(c) In each iteration p, the algorithm spends runtime on
evaluating NL(p) loss functions.

(d) In each iteration p, the algorithm spends runtime on
optimizing p circuit parameters.

(e) Using the finite-difference method, we approximate
each of the NL(p) loss functions in (c) by using two
energy-expectation values. This results in evaluating at most
2NL(p) energy expectation values on the quantum computer
in the pth iteration.

(f) We assume that the optimizer in (d) performs a heuristic
optimization of Ansatz circuits with p parameters in polyno-
mial time. Thus, in the pth iteration, a quantum computer must
conduct NO(p) = 
(pα ) evaluations of the energy landscape
and NO(p) = 
(pα ) evaluations of energy expectation values.

(g) For each energy expectation value in (e) and (f), we
assume that a constant number of shots NS (H ) is needed to
reach a given accuracy. Note that NS (H ) may depend on N
through the Hamiltonian, but it does not depend on p. This is
a standard assumption in VQE [1,8].

(h) For each shot in (g), one must execute an Ansatz circuit
with p Ansatz elements. Here, we assume that the runtime
C(p) of an Ansatz circuit with p Ansatz elements is propor-
tional to its depth d (p), i.e., C(p) = 
(d (p)).

Combining (e),(g),(h) and (f),(g),(h), we can estimate the
runtime each algorithm spends on evaluating losses and per-
forming the optimization, respectively:

RL =
P∑

p=1

2NL(p)NS (H )C(p) = NS (H )
P∑

p=1

NL(p)
(d (p)),

(55a)

RO =
P∑

p=1

NO(p)NS (H )C(p) = NS (H )
P∑

p=1


(pα )
(d (p)).

(55b)

Below we further analyze these runtime estimates for stan-
dard, Explore-, Dynamic-, and Static-ADAPT-VQE.

In standard ADAPT-VQE, we reevaluate the loss of each
Ansatz element in every iteration. Thus, NL(p) = |P|. More-
over, the circuit depth d (p) is upper bounded by d (p) =
O(p). In the best-case scenario, ADAPT-VQE may arrange
Ansatz elements into layers accidentally (an effect more likely
for large N). This can compress the circuit depths down to
d = �(p/N ). We summarize this range of possible circuit
depths using the compact expression d (p) = 
(pN−γ ), with
γ ∈ [0, 1]. In numerical simulations, we typically observe that
γ ≈ 0, i.e., the depth of an Ansatz circuit is proportional to the
number of Ansatz elements. These expressions for NL(p) and
d (p) allow us to estimate the runtime of standard ADAPT-
VQE algorithms:

RA
L = |P|NS (H )
(P2N−γ ), (56a)

RA
O = NS (H )
(P2+αA N−γ ). (56b)

Explore-ADAPT-VQE results in circuits of the same depths
as ADAPT-VQE, i.e., d = 
(pN−γ ). However, the use of
subpool exploration in Explore-ADAPT-VQE may reduce the
number of loss-function evaluations NL(p). As discussed in
Sec. III B (paragraph on Efficiency), in the best-case scenario,
the number of loss function evaluations per iteration is lower

bounded by NL(p) = �(|P|/N ). In the worst-case scenario,
subpool exploration may explore the whole pool of Ansatz
elements, such that NL(p) = O(|P|). Based on these relations,
we can estimate the runtime of Explore-ADAPT-VQE:

RE
L =

{
|P|NS (H )�(P2N−(1+γ ) ),

|P|NS (H )O(P2N−γ ),
(57a)

RE
O = NS (H )
(P2+αE N−γ ). (57b)

Dynamic-ADAPT-VQE has the same scaling of the num-
ber of loss function evaluations per iteration, NL(p), as
Explore-ADAPT-VQE. Thus, NL(p) = �(|P|/N ) in the best
case and NL(p) = O(|P|) in the worst case. The circuit
depth of Dynamic-ADAPT-VQE scales as d (p) = 
(p/N ).
One can observe a clear benefit from layering. The upper
bound, d (p) = O(p), in standard and Explore-ADAPT-VQE
becomes d (p) = O(p/N ) in Dynamic-ADAPT-VQE. Using
these relations for NL(p) and d (p), we can estimate the run-
time of Dynamic-ADAPT-VQE:

RD
L =

{|P|NS (H )�(P2N−2),

|P|NS (H )O(P2N−1),
(58a)

RD
O = NS (H )
(P2+αD N−1). (58b)

The analysis of Static-ADAPT-VQE’s runtime is more
straightforward with respect to the layer count t than to the
parameter count p. Therefore, we revisit and modify our pre-
vious observations, assumptions, and approximations.

(a) Static-ADAPT-VQE operates on N qubits to find the
ground state of a Hamiltonian H .

(b) Static-ADAPT-VQE builds Ansatz circuits in layers
indexed by t = 1, . . . , tmax. The t th layer contains ntot(t ) =

(N ) Ansatz elements. Since each Ansatz element depends
on a single parameter, a layer contains ntot(t ) = 
(N ) circuit
parameters. Summing the parameters in each layer gives the
total number of parameters in the circuit: P = ∑tmax

t=1 ntot(t ).
(c) For each layer t , Static-ADAPT-VQE spends runtime

on evaluating the loss of NL(t ) = |P| Ansatz elements.
(d) For each layer t , Static-ADAPT-VQE spends runtime

on optimizing p(t ) = ∑t
t ′=1 ntot(t ′) = 
(N )t circuit parame-

ters.
(e) Using the finite-difference method, we approximate

each of the NL(t ) loss functions in (c) by using two energy ex-
pectation values. This results in evaluating at most 2NL(t ) =
2|P| energy expectation values on the quantum computer in
the t th iteration.

(f) Again, we assume that the optimizer in (d) performs a
heuristic optimization of Ansatz circuits with p(t ) parameters
in polynomial time. Thus, in the t th layer a quantum computer
must conduct NO(t ) = 
(p(t )αS ) evaluations of the energy
landscape and NO(t ) = 
(p(t )αS ) evaluations of energy ex-
pectation values. Using p(t ) = 
(N )t from (d), this implies
that NO(t ) = 
(NαS tαS ).

(g) As before, for each energy expectation value in (e)
and (f), we assume that a constant number of shots NS (H )
is needed to reach a given accuracy. Note that NS (H ) may
depend on N through the Hamiltonian, but it does not depend
on p.
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TABLE II. The ratio of the runtimes of the listed algorithms to
the runtime of standard ADAPT-VQE. N is the qubit number, and P
is the number of parameters in the final Ansatz circuit. See text for
further explanation.

Algorithm RL/RADAPT
L RO/RADAPT

O

Explore �(N−1), O(1) 
(1)
Dynamic �(N−2+γ ), O(N−1+γ ) 
(N−1+γ )
Static 
(N−2+γ ) 
(N−2+γ )

(h) For each shot in (g), one must execute an Ansatz circuit
with p(t ) Ansatz elements. Again, we assume that the runtime
C(t ) of an Ansatz circuit with p(t ) Ansatz elements is pro-
portional to its depth d (p(t )), i.e., C(t ) = 
(d (p(t ))). Due
to layering, the circuit depth of Static-ADAPT-VQE scales
as d (p) = 
(p/N ). (This scaling is identical for Dynamic-
ADAPT-VQE.) This results in C(t ) = 
(p(t )/N ). Further,
using p(t ) = 
(N )t from (d), we find that each shot in (g)
requires a circuit runtime of C(t ) = 
(t ).

Combining the updated (e),(g),(h) and (f),(g),(h),
we find the loss- and optimization-related runtimes of
Static-ADAPT-VQE, respectively:

RS
L =

tmax∑
t=1

2NL(t )NS (H )C(t ) = |P|NS (H )

(
t2
max

)
, (59a)

RS
O =

tmax∑
t=1

NO(t )NS (H )C(t ) = NS (H )

(
NαS tαS+2

max

)
. (59b)

Since P = 
(N )tmax implies tmax = P
(N−1), we can sim-
plify these runtime estimates:

RS
L = |P|NS (H )
(P2N−2), (60a)

RS
O = NS (H )
(P2+αS N−2). (60b)

We summarize this section by listing the ratios of
asymptotic runtimes for Explore-, Dynamic-, and Static-
ADAPT-VQE divided by the asymptotic runtime of standard
ADAPT-VQE in Table II. Here, we assume equal polynomial
scaling (αA = αE = αD = αS) of the optimization runtime for
standard, Explore, Dynamic-, and Static-ADAPT-VQE. As
expected from our numerical runtime analysis in Sec. IV C,
for typical ADAPT-VQE circuit depth (where γ = 0), Static-
ADAPT-VQE can provide the largest runtime reduction. This
reduction is quadratic in the number of qubits: 
(N−2).
Further improvements to bounding the number of losses
in Explore- and Dynamic-ADAPT-VQE are discussed in
Appendix H.

VI. NOISE

In this section, we explore the benefits of reducing
ADAPT-VQEs’ Ansatz-circuit depths with respect to noise.
Our main finding is that the use of layering to reduce Ansatz-
circuit depths mitigates global amplitude-damping and global
dephasing noise, where idling and nonidling qubits are af-
fected alike. However, reduced Ansatz-circuit depths do not
mitigate the effect of local depolarizing noise, which exclu-
sively affects qubits operated on by noisy (two-qubit, CNOT)

gates. The explanation for this, we show, is that the Ansatz-
circuit depth is a good predictor for the effect of global
amplitude-damping and dephasing noise. On the other hand,
we show that the errors induced by local depolarizing noise
are approximately proportional, not to the depth, but to the
number of (CNOT) gates. For this reason, a shallower Ansatz
circuit with the same number of noisy two-qubit gates will
not reduce the sensitivity to depolarizing noise.

A. Noise models

Our noise models focus on superconducting architectures,
and we tune our analysis towards the IBM Quito (IBM Quan-
tum Falcon r4T) processor. For this processor, the quoted
two-qubit gate times refer to CNOT gates. Thus, we will take
CNOT gates to be our native two-qubit gate. Further, our
simulations use one- and two-qubit gate-execution times of
35.5 and 295.1 ns, respectively.1 Further, we assume all-to-all
connectivity. Similar native gates and execution times apply
to silicon quantum processors [37].

In our simulations, we model amplitude damping of a
single qubit by the standard amplitude-damping channel. (For
detailed expressions of the amplitude-damping channel and
the other noise channels we use, see Appendix J 1.) Its decay
constant is determined by the inverse T1 time: ω1 = 1/T1.
Similarly, we model dephasing of a single qubit by the stan-
dard dephasing channel. The T1 and T ∗

2 times determine its
phase-flip probability via the decay constant ωz = 2/T ∗

2 −
1/T1. Finally, we model depolarization of a single qubit by a
symmetric depolarizing channel with depolarization strength
p ∈ [0, 1], where p = 0 leaves a pure qubit pure and p = 1
brings it to the maximally mixed state.

In our simulations, we model the effects of amplitude
damping, dephasing, and depolarizing noise on the Ansatz
circuits �t in a layer-by-layer approach. This is illustrated
in Fig. 11. We decompose the Ansatz circuit �t into l =
1, . . . , 
t layers of support-commuting Ansatz-element layers
{Al}:

�t = Ao

t

◦ · · · ◦ Ao
l ◦ · · · ◦ Ao

1. (61)

For amplitude damping and dephasing noise, each Ansatz-
element layer Ao

l is transpiled into columns of native gates
that can be implemented in parallel (see Ref. [35] for more
details). The native gate with the longest execution time
of each native-gate column sets the column execution time.
The sum of the column execution times then gives the ex-
ecution time τl of the Ansatz-element layer Ao

l . After each
Ansatz-element layer Ao

l , amplitude damping is implemented
by applying an amplitude-damping channel to every qubit
r = 1, . . . , N in an amplitude-damping layer. This results in
an amplitude-damped Ansatz circuit �t (ω1). Similarly, after
each Ansatz-element layer Ao

l , dephasing is implemented by
applying a dephasing channel to every qubit r = 1, . . . , N in
a dephasing layer. This results in a dephased Ansatz circuit
�t (ωz ). Finally, for depolarizing noise, we apply the whole
Ansatz-element layer and then a depolarizing channel to each

1These values were taken from the IBM Quantum services.
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Noiseless ansatz-element layer Noise Model

Single Qubit Evolution A1 (θ1 gnipmaDedutilpmA)

Rz(π
2 ) Rx(π

2 ) • Rx(θ1) • Rx(−π
2 ) Rz(−π

2 ) F(ω1) C(ωz)

Target qubit Rx(π
2 ) Rz(θ1) Rx(−π

2 ) D(p) D(p) F(ω1) C(ωz)

Idle qubit F(ω1) C(ωz)

Rz(π
2 ) Rx(π

2 ) • Rx(θ2) • Rx(−π
2 ) Rz(−π

2 ) F(ω1) C(ωz)

Target qubit Rx(π
2 ) Rz(θ2) Rx(−π

2 ) D(p) D(p) F(ω1) C(ωz)

Native-Gate Single Qubit Evolution A2 (θ2) Depolarizing Dephasing
Column

︸ ︷︷ ︸

︷ ︸︸ ︷

︸ ︷︷ ︸

FIG. 11. Circuit diagram visualizing the layer-by-layer noise model: on the left, a noiseless Ansatz-element layer with two support-
commuting Ansatz elements is decomposed into columns of native gates. On the right, noise is added to the Ansatz-element layer. For global
amplitude damping (or dephasing) noise, the channel F (or C) is applied to each qubit. For local depolarizing noise, the channels D are applied
to the target of the noisy (two-qubit, CNOT) gate.

qubit. The strength of a qubit’s depolarizing channel is deter-
mined by the exact number of times that the qubit was the
target in a CNOT gate in the preceding layer. This results in a
depolarized Ansatz circuit �t (p). For a visualization of our
layer-by-layer-based noise model, see Fig. 11. For detailed
mathematical expressions, see Appendix J 2.

We note that applying the noise channels after each Ansatz-
element layer could be refined by applying the noise channels
after each gate in the Ansatz-element layer. However, as
shown in Ref. [14], such a gate-by-gate noise model, as
opposed to our layer-by-layer based noise model, would in-
crease computational costs and has limited effect on the
results. In what follows, we collectively refer to amplitude-
damped Ansatz circuits �t (ω1), dephased Ansatz circuits
�t (ωz ), and depolarized Ansatz circuits �t (p) as �t (α). Here,
α refers to the key noise parameters ω1, ωz, or p of each
respective noise model.

B. Energy error and noise susceptibility

Going forward, we analyze the effect of noise on the energy
error [cf. Eq. (54)]

�t (α) = Et (α) − EFCI. (62)

�t (α) now depends not only on the iteration step t , but also
on the noise parameter α, via the noise-dependent expectation
value

Et (α) = Tr[H�t (α)[ρ0]]. (63)

To analyze the energy error, we expand the methodology of
Ref. [14]. More specifically, we decompose the energy error
into two contributions:

�t (α) = �t (0) + [�t (α) − �t (0)]. (64)

The first term, �t (0), is the energy error of the noiseless
Ansatz circuit. The second term, �t (α) − �t (0), is the energy
error due to noise. Subsequently, we Taylor-expand the energy
error due to noise to first order:

[�t (α) − �t (0)] = χtα + O(α2). (65)

As depicted in Fig. 12, in the regime of small noise parameters
α (where energy errors are below chemical accuracy), the
linear approximation is an excellent predictor for the energy
error. Conveniently, this allows us to summarize the effect of
noise on the energy error through the noise susceptibility χt ,
defined as

χt := ∂Et (α)

∂α

∣∣∣∣
α=0

= Tr

[
H

∂�t (α)

∂α

∣∣∣∣
α=0

[ρ0]

]
. (66)

In Appendix K, we calculate the noise susceptibility χt of am-
plitude damping F , dephasing C, and depolarizing D noise:

χF
t := ∂Et (ω1)

∂ω1

∣∣∣∣
ω1=0

= 
t N × dE (�t ,F ), (67a)

χC
t := ∂Et (ωz )

∂ωz

∣∣∣∣
ωz=0

= 
t N × dE (�t , C), (67b)
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FIG. 12. Energy error �t (α) for an Ansatz circuit �t of H4 as
a function of noise strength α = ω1, ωz, p going from the left to
right, respectively. Connected dots and crosses are calculated using
full density-matrix simulations. Dashed lines show the corresponding
extrapolation using noise susceptibility.
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FIG. 13. Amplitude-damping noise susceptibility as a function
of (left) energy accuracy and (right) the number of parameters
in Ansatz circuits �t . QEB-ADAPT is compared to support-
based Dynamic-ADAPT-VQE. Each row shows data for a specific
molecule, with the number of orbitals increasing up the page. Energy
accuracies better than chemical accuracy are shaded in cream.

χD
t := ∂Et (p)

∂ p

∣∣∣∣
p=0

= NII × dE (�t ,D), (67c)

respectively. Here, N denotes the number of qubits; 
t is the
number of Ansatz-element layers in the Ansatz circuit �t ; NII

is the number of noisy (two-qubit, CNOT) gates in the Ansatz
circuit �t ; and the dE’s denote the average energy fluctu-
ations, defined in Eqs. (K9) of Appendix K. As discussed
further in Appendix K, the average energy fluctuations can
be calculated from noiseless expectation values. This allows
us to compute the noise susceptibility with faster state-vector
simulations rather than computationally demanding density-
matrix simulations.

C. Benchmarking layered circuits with noise

In this section, we compare the noise susceptibility of stan-
dard, Static- (TETRIS-), and Dynamic-ADAPT-VQE in the
presence of noise. As before, we showcase these algorithms

FIG. 14. Same as Fig. 13, but for dephasing noise.

on a range of molecules (summarized in Table I) using the
QEB pool with support commutativity. When performing our
comparison, we grow the Ansatz circuits �t and optimize its
parameters in noiseless settings, as previously discussed in
Ref. [14]. We then compute the noise susceptibility of �t as
described in the previous section. The results for amplitude
damping, dephasing, and depolarizing noise are depicted in
Figs. 13–15, respectively. In all three figures, we plot the
noise susceptibility as a function of (left) the noiseless energy
accuracy �t (0) or (right) the number of parameters. The rows
of each plot depict different molecules in order of increasing
spin orbitals from bottom to top: H4, H6, LiH, BeH2, and H2O.
To interpret the graphs in Figs. 13–15, we remind the reader
that larger values of noise susceptibility correspond to lower
noise-tolerance. Thus, larger values of noise susceptibility in
Figs. 13–15 can be interpreted as worse performances.

Layering benefits: From Fig. 13, it is evident that layering
is successful in mitigating the effect of amplitude-damping
noise. Here, we observe that the noise susceptibility of Static-
and Dynamic-ADAPT-VQE is approximately half that of
standard ADAPT-VQE. This is a clear indication that layering
can reduce the effect of noise. In Fig. 14, we observe that
layering also tends to reduce the noise susceptibility in the
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FIG. 15. Same as Fig. 13, but for depolarizing noise. In addition,
black crosses correspond to density matrix simulations corroborat-
ing noise susceptibility via finite differences. The black crosses are
discussed further in Appendix D.

presence of dephasing noise. However, in this scenario, the ad-
vantage is less consistent across different Ansatz circuits and
molecules. Finally, in Fig. 15, we observe that for depolarizing
noise, all algorithms tend to produce similar noise susceptibil-
ities. Sometimes, one shows an advantage over the other, and
vice versa, depending on the Ansatz circuit and molecule. Our
simulations indicate no clear disadvantage of using layering in
the presence of depolarizing noise. In summary, our numeri-
cal simulations suggest that layering is useful for mitigating
global amplitude damping and dephasing noise. Moreover,
layering seems to have neither a beneficial nor a detrimental
effect in the presence of local depolarizing noise. To explain
these findings, we further investigate the dependence of noise
susceptibility on several circuit parameters in Sec. VI D.

Gate-fidelity requirements: We now use the noise suscepti-
bility data in Figs. 13–15 to estimate the fidelity requirements
for operating ADAPT-VQEs. For this estimation, recall that
quantum chemistry simulations of energy eigenvalues target
an accuracy of 1.6 mHa. To achieve this chemical accuracy,
we require the energy error due to noise to be smaller than
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FIG. 16. The ratio of the minimal T1 and T2 times and maximal
depolarizing probability p for Dynamic- and Static-ADAPT-VQE to
standard ADAPT-VQE required to reach an accuracy of � = 10−7

mHa for each molecule.

≈1 milli-Hartree: χtα � 1 mHa. Applying this condition to
amplitude damping (where α = 1/T1), dephasing (where α ≈
1/T ∗

2 ), and depolarizing noise (where α = p), we find a set of
gate fidelity requirements:

T1 � χF
t

1 mHa
, T ∗

2 � χC
t

1 mHa
, p � 1 mHa

χD
t

. (68)

The data presented in Figs. 13–15 suggest the following
requirements for the gate operations to enable chemically
accurate simulations:

T1 � 1 s, T ∗
2 � 100 ms, p � 10−6. (69)

A more detailed breakdown of the maximal p and minimal T1

and T2 := 2/ωz times for each algorithm and molecule is pre-
sented in Fig. 16. These requirements are beyond the current
state-of-the-art quantum processors [37,38]. How much these
requirements can be improved by error-mitigation techniques
[39] remains an open question for future research.

D. Noise-susceptibility scalings

In this section, we investigate the dependence of noise
susceptibility on basic circuit parameters, such as the number
of qubits N , circuit depth d ∝ 
t , or the number of noisy
(two-qubit, CNOT) gates NII . Our analysis will help in under-
standing why layering can mitigate global amplitude damping
and dephasing noise but not local depolarizing noise.

We study numerically how noise susceptibility scales with
circuit depth and the number of noisy (two-qubit, CNOT) gates
NII . The data are presented in Fig. 17. The top panels show
the noise susceptibility in the presence of amplitude damping
(left), dephasing (center), and depolarizing noise (right) for
various algorithms and molecules. The noise-susceptibility
data are presented on a log-log plot as a function of circuit
depths d (left and center) as well as NII (right), respectively.

042413-16



LAYERING AND SUBPOOL EXPLORATION FOR … PHYSICAL REVIEW A 109, 042413 (2024)

FIG. 17. Noise susceptibility for (a) amplitude-damping, (b) dephasing, and (c) depolarizing noise as a function of (a),(b) Ansatz-circuit
depths d and (c) the number of noisy CNOT-gates NII . The top panels show noise susceptibility as a function of d (a),(b) and NII (c). The
bottom panels of (a) and (b) show noise susceptibility divided by d , as a function d . The bottom panel of (c) shows noise susceptibility divided
by NII as a function of NII . The solid lines correspond to the simulation of Dynamic-ADAPT-VQE using support commutation for a range of
molecules. The dashed lines represent simulations based on QEB-ADAPT-VQE.

From Fig. 17, we find that the noise susceptibility scales
roughly linearly with the plotted parameters. To further ana-
lyze this rough linearity, we produce a log-log plot in the bot-
tom panels of χF

t /d (left), χC
t /d (center), and χD

t /NII (right)
as a function of d , d , and NII , respectively. Had the scalings
of interest been linear, the bottom panels would have depicted
constant curves. This is not entirely the case. But, the curves’
deviations from constants are sufficiently sublinear to support
our claim that the curves in the upper plots are roughly linear.

The scalings observed in Fig. 17 confirm our previous
intuition. Based on Eq. (67), and using the assumption that
dE is roughly constant, we would expect that the noise
susceptibility in the presence of amplitude damping or de-
phasing noise is proportional to the circuit depth and the
number of qubits:

χF
t ∝∼ Nd and χC

t ∝∼ Nd. (70)

This claim is supported by Fig. 17. Moreover, previous studies
[14] have found that the noise susceptibility scales linearly
with the number of depolarizing two-qubit gates:

χD
t ∝∼ NII . (71)

Also, this claim is supported by Fig. 17.
Thus, for global (amplitude damping and dephasing) noise,

which affects idling and nonidling qubits alike, our analysis
indicates that circuit depth is a good predictor of noise sus-
ceptibility. On the other hand, for local (depolarizing) noise,
which affects only the qubits that are nontrivially operated
on, NII is a good predictor of the noise susceptibility. Con-
sequently, we expect that compressing the depth of an Ansatz

circuit by layering can mitigate noise in the former, but not the
latter, of these settings.

VII. SUMMARY AND CONCLUSION

In this paper, we introduced layering and subpool-
exploration strategies for ADAPT-VQEs that reduced circuit
depth, runtime, and susceptibility to noise. In noiseless nu-
merical simulations, we demonstrate that layering reduces
the depths of an Ansatz circuit when compared to standard
ADAPT-VQE. We further showed that our layering algo-
rithms achieve circuits that are as shallow as TETRIS-
ADAPT-VQE. The reduction in Ansatz circuit depth is
achieved without increasing the number of Ansatz elements,
circuit parameters, or CNOT gates in the Ansatz circuit. The
noiseless numerical simulations further provide evidence that
layering and subpool-exploration can reduce the runtime of
ADAPT-VQE by up to O(N2), where N is the number of
qubits in the simulation. Finally, we benchmarked the effect of
reducing the depth of ADAPT-VQEs on the algorithms’ noise
susceptibility. For global noise models, which affect idling
and nonidling qubits alike (such as our amplitude-damping
and dephasing model), we show that the noise susceptibility
is approximately proportional to the Ansatz-circuit depth. For
these noise models, reduced circuit depth due to layering
is beneficial in reducing the noise susceptibility of ADAPT-
VQEs. For local noise models, where only nonidling qubits
are affected by noise (as with our depolarizing noise model),
we show that the noise susceptibility is approximately pro-
portional to the number of noisy (two-qubit, CNOT) gates. For
these noise models, layering strategies are neither useful nor
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harmful, as they hardly change the CNOT count of ADAPT-
VQEs. We finish our paper by stating three conclusions from
our work.

To layer or not to layer?: Depending on the dominant
noise source of a quantum processor, layering may or may
not lead to improved noise resilience. For processors where
global noise dominates, we recommend layering.

Static or dynamic layering?: Our paper considered static
and dynamic layering. Which of the two should be used?
Static layering optimizes each layer once, while dynamic lay-
ering optimizes the Ansatz after adding each Ansatz element.
Both layering strategies lead to Ansatz circuits of similar
depths and require a similar number of parameters and CNOT

gates to reach a certain energy accuracy. However, static lay-
ering calculates significantly fewer energy expectation values
on the quantum processor. Therefore, we recommend static
layering for the small molecules studied in this work. For
larger molecules, dynamic layering could be preferable.

How useful is subpool exploration?: Our paper introduced
a pool-exploration strategy that reduces the number of loss-
function evaluations and, thereby, the number of calls to the
quantum processor. However, in the examples studied in this
work, the number of loss-function evaluations was exceeded
by the energy-expectation-value calls. Thus, subpool explo-
ration had little impact on the algorithms. Again, this could
change when larger molecules are studied.
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APPENDIX A: BIG O, OMEGA, AND THETA NOTATIONS

This Appendix defines big O, big Omega (Knuth defini-
tion), and big Theta notations. For our purposes, the notations
can be defined, respectively, as

f (x) = O(g(x)) ⇐⇒ lim
x→∞

f (x)

g(x)
< ∞, (A1)

f (x) = �(g(x)) ⇐⇒ lim
x→∞

f (x)

g(x)
> 0, (A2)

f (x) = 
(g(x)) ⇐⇒ 0 < lim
x→∞

f (x)

g(x)
< ∞. (A3)

APPENDIX B: COMMUTATIVITY VERSUS SUPPORT

In this article, we introduced two notions of commu-
tation that can be leveraged in constructing ADAPT-VQE
algorithms. They were operator commutation and support
commutation, and we will compare them here.

As noted in Appendix F, the operator and support noncom-
muting sets of the Ansatz elements in the QEB pool differ by,
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FIG. 18. Energy accuracy against Ansatz-circuit depths (left)
and the number of Ansatz-circuit parameters (Ansatz elements,
right), for qubit-Dynamic-ADAPT-VQE using support and operator
commutation—dashed and solid lines, respectively. Each row shows
data for a specific molecule, with the number of orbitals increasing
up the page. Energy accuracies better than chemical accuracy are
shaded in cream.

at most, two Ansatz elements. Additionally, both notions of
commutation result in layers of constant depth with respect
to the number of qubits. On the other hand, the operator
and support noncommuting sets of the qubit pool differ by

(N3) Ansatz elements. Thus, the two types of commuta-
tion could construct vastly different Ansätze. The Ansätze
constructed based on support commutation will have layers
of constant depth, while those constructed based on operator
commutation will have layers of depth O(N3). Thus, we con-
sider both the support and operator commutation variants of
Dynamic-ADAPT-VQE using the qubit pool to highlight the
differences between the commutation types. Figure 18 shows
the energy error [Eq. (54)] as a function of depth and the num-
ber of parameters. For LiH, H6, BeH2, and H2O we observe
that support commutation outperforms operator commutation.
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However, for H4, we find operator commutation outperforms
support commutation.

APPENDIX C: POOL AND DECISION RULE
COMPARISONS

This Appendix includes additional comparisons of
Dynamic-ADAPT-VQE with two different loss functions and
with the QEB and Pauli pools. We refer to the loss function in
Eq. (20) as gradient selection. An alternative loss function is

Lt (A) = min
θ

Et,A(θ ), (C1)

which we will refer to as energy selection. That is, we opti-
mize the Ansatz with respect to the last parameter for each
Ansatz element in the subpool and pick the Ansatz element
that reduces the energy by the most.

In Fig. 19, we see that both the energy and gradient se-
lection rules perform similarly in energy accuracy for a given
depth, number of parameters, and number of CNOT gates. Stan-
dard ADAPT-VQE with both gradient and energy selection
are included as reference points.

The QEB-Dynamic-ADAPT-VQE algorithms require
fewer parameters and shallower Ansatz circuits than
the qubit-Dynamic-ADAPT-VQE algorithms for a given
energy accuracy. However, the energy accuracy of QEB-
Dynamic-ADAPT-VQE and qubit-Dynamic-ADAPT-VQE
for a given number of CNOT gates is similar, suggesting
that the number of two-qubit gates in the Ansatz
could be a good pool-independent predictor of energy
convergence.

Additionally, in Fig. 20, we see that evaluating the energy
selection rule is more expensive than the gradient selection
rule. However, as the optimization dominates the total number
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FIG. 20. Energy accuracy against the number of loss function calls (left), the number of times the Ansatz is optimized (center), and
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page. Energy accuracies better than chemical accuracy are shaded in cream.

of expectation values we see for Dynamic-ADAPT-VQE, the
selection rule makes little difference for LiH, H6, and BeH2.
That said, the energy selection rule never significantly outper-
forms the gradient selection rule, which justifies the use of the
gradient selection rule throughout this article.

APPENDIX D: NOISE SUSCEPTIBILITY PEAKS

In this Appendix, we comment on the peaks that appear
in the noise susceptibility data of Figs. 14 and 15. To verify
that these apparent features are not numerical errors, we not
only computed the noise susceptibility but we also performed
full density-matrix simulations with depolarizing noise for a
few points on the H6 plots. We compute Et (p = 10−6) and

Et (p = 0) at the values of t located before the peak, at the
peak, and after the peak in Fig. 15, respectively. Then, we used
the finite-differences method to estimate χD

t . The correspond-
ing data points are depicted with black crosses in Fig. 15,
row 3, for H6. These points are in perfect agreement with the
noise-susceptibility data.

APPENDIX E: POOL DEFINITIONS

In this Appendix, we make more rigorous definitions of
the pools referred to throughout this article. These definitions
will prove useful in analyzing the runtime scalings of the
algorithms.

Let V be some set of even integers. In the body of
this paper, we take V = {2, 4} for all three pool definitions.

Additionally, let

I (V ) := {
(�k, �l ) : �k, �l ∈ Zq/2

n such that k0 � ki, li and all ki, li are distinct ∀i ∈ [q/2] ∀q ∈ V
}
. (E1)
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Definition 8 (Generalized fermionic pool). All the distinct fermionic excitations that act on q ∈ V distinct qubits are given by

P f (N ) := {
T �k

�l : (�k, �l ) ∈ I (V )
}

where T �k
�l :=

⎡
⎣∏

i∈�k
a†

i

⎤
⎦
⎡
⎣∏

j∈�l
a j

⎤
⎦ − H.c. (E2)

This is the fermionic pool over N qubits.
Definition 9 (Generalized QEB pool). All the distinct qubit excitations that act on q ∈ V distinct qubits are given by

PQEB(N ) := {
T �k

�l : (�k, �l ) ∈ I (V )
}

where T �k
�l :=

⎡
⎣∏

i∈�k
Q†

i

⎤
⎦
⎡
⎣∏

j∈�l
Q j

⎤
⎦ − H.c. (E3)

This is the QEB pool over N qubits.

The cardinality of both the fermionic and QEB pools is

|P f ,QEB(N )| =
∑
q∈V
:q�N

(
q − 1

1
2 q

)(
N
q

)
= 
(NmaxV ), (E4)

where the second choice is the number of sets of q distinct
qubits of N , and the first is the number of permutations of
these qubits that give distinct excitations.

Definition 10 (Generalized qubit pool). The qubit pool is
the set of all the Pauli excitations with an odd number of Y
gates in the generator that act on q ∈ V distinct qubits.

The cardinality of the qubit pool is

|Pqubit(N )| =
∑
q∈V
:q�N

2q−1

(
N
q

)
= 
(NmaxV ), (E5)

where the combinatorics follow as for the fermionic and QEB
pools, but the first choice is replaced with the factor 2q−1.

Lemma 1. For each P ∈ {PFermi,PQEB,Pqubit}, there exists
a finite constant V that will depend on the pool definition,
such that |P (N )| is a logarithmically concave function of N
for N � V .

Proof. Consider the polynomial

fq(x) :=
q−1∏
n=0

(x − n), (E6)

which has q integer roots: [0, q − 1]. We note that the kth
derivative can be expressed as

dk fq

dxk
=

∑
�α∈[0,q−1]k

:αi �=α j∀i, j

fq,�α (x), where fq,�α (x) ≡
∏

n∈[0,q−1]
:n �∈�α

(x − n).

(E7)
Further, let

gq,�α (x) := f 2
q (x)∏

l∈�α (x − l )
. (E8)

Using this notation, we will consider the following products:

d2 fq

dx2
fq(x) =

∑
�α∈[0,q−1]2

:α1 �=α2

fq,�α (x) fq(x) =
∑

�α∈[0,q−1]2

:α1 �=α2

gq,�α (x) (E9)

and

dfq

dx

dfq

dx
=

∑
�α∈[0,q−1]2

fq,α1 (x) fq,α2 (x)

=
∑

�α∈[0,q−1]2

:α1 �=α2

gq,�α (x) +
q−1∑
α1=0

gq,(α1,α1 )(x). (E10)

Now note the first terms from each cancel in the difference
of these products:

dfq

dx

dfq

dx
− d2 fq

dx2
fq(x) =

q−1∑
α1=0

gq,(α1,α1 )(x), (E11)

which is non-negative for x � q.
Note fq(x) is logarithmically concave within some convex

domain iff d2 fq

dx2 fq(x) � [ dfq

dx ]2 within the convex domain. Thus,
fq(x) is logarithmically concave for x � q. As the discrete
function

(
N
q

) = 1
q! fq(N ) it must also be logarithmically con-

cave for N � q. However, |P (N )| is a linear combination
with non-negative coefficients of such functions with q ∈ V .
Therefore, there will be a finite constant depending on these
coefficients for which the function ( N

maxV) dominates suffi-
ciently that |P (N )| is logarithmically concave. �

APPENDIX F: GENERALIZED NONCOMMUTATION SETS

In this Appendix, we derive rules to determine whether
two Ansatz elements from the same pool operator-commute.
We consider the qubit pool (Appendix F 1), QEB pool (Ap-
pendix F 2), and fermionic pool (Appendix F 3). All these
Ansatz elements are Stones encoded unitaries, eθT for some
skew-Hermitian generator T . Thus, two Ansatz elements
operator-commute iff the corresponding generators commute.
Below we derive the conditions under which the generators
commute and hence the Ansatz elements operator-commute.

1. Pauli excitations

For Pauli excitations, the generators are simply the Pauli
strings of length two and four with an odd number of Y
operators. Thus, the Pauli strings operator-commute iff the
tensor factors in the strings with mutual support differ in an
even number of places.
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2. Qubit excitations

First, we will consider a generalization of qubit excitation
generators which will later prove useful for fermionic excita-
tion generators. Consider the following definitions:

Definition 11 (Singleton matrix). Let [Mi j]ab := δaiδb j be a
singleton matrix. Note that these matrices have the following
properties:

(1) MklMγ δ ≡ δlγ Mkδ ,
(2) [Mkl , Mγ δ] ≡ δlγ Mkδ − δkδMγ l .
Definition 12 (Set of singleton matrices). Let Ml := {Mi j :

i, j ∈ [2l ]} ⊂ R2l ×2l
for all l ∈ N0. Note that this family of

sets has the following properties:
(1) M0 ≡ {1},
(2) Ml+m ≡ Ml ⊗ Mm ∀l � 1.
Representing the set of operators Ql := {Q, Q†}⊗l in the

computational basis is an injection Ql → {Mi j ∈ Ml : i �= j}
for l � 1. Thus, we consider the following skew-Hermitian
operator T = Mi j + aMji, which could represent a qubit exci-
tation generator in the computational basis when a = −1.

Theorem 1 (Singleton matrix excitation commutation).
Consider the following two operators acting on a tripartite
vector space:

T1 = 1 ⊗ Mi j ⊗ Mkl + a11 ⊗ Mji ⊗ Mlk, (F1)

T2 = Mαβ ⊗ 1 ⊗ Mγ δ + a2Mβα ⊗ 1 ⊗ Mδγ , (F2)

such that i �= j, k �= l , α �= β, and γ �= δ.
T1 and T2 commute if and only if any of the following three

conditions hold:
(1) T1 and T2 have disjoint support (i.e. Mkl = Mγ δ = 1),
(2) T1 ∝ T2,
(3) T1 and T2 have equivalent support and k, l , γ and δ are

all distinct.
Proof. Condition (1) follows trivially, as operators with

disjoint support always commute. Thus, henceforth, we will
assume Mkl , Mγ δ ∈ Ml for l � 1 (the compliment of Condi-
tion (1)). Now consider the product

T1T2 = Mi j ⊗ Mαβ ⊗ (MklMγ δ ) (F3)

+ a1Mji ⊗ Mαβ ⊗ (MlkMγ δ ) (F4)

+ a2Mi j ⊗ Mβα ⊗ (MklMδγ ) (F5)

+ a1a2Mji ⊗ Mβα ⊗ (MlkMδγ ). (F6)

Thus, we find the commutator using Property 2 of Defini-
tion 11:

[T1, T2] = Mi j ⊗ Mαβ ⊗ (δlγ Mkδ − δkδMγ l ) (F7)

+ a1Mji ⊗ Mαβ ⊗ (δkγ Mlδ − δlδMγ k ) (F8)

+ a2Mi j ⊗ Mβα ⊗ (δlδMkγ − δkγ Mδl ) (F9)

+ a1a2Mji ⊗ Mβα ⊗ (δkδMlγ − δlγ Mδk ). (F10)

First, suppose the tensor factors in parentheses are nonzero
and Mi j �= 1. Line (F7) cannot cancel with Line (F8) or (F10)
due to the first tensor factor: Mji �= Mi j . Further, Line (F7)
cannot cancel with Line (F9) due to the bracketed tensor factor
as γ �= δ. Thus, T1 and T2 do not commute if Mi j �= 1 and the
first condition is not met. By symmetry, the same argument
can be applied if we suppose the tensor factors in parentheses
are nonzero and Mαβ �= 1. Therefore, if the first condition is
not met, then we require Mi j = Mαβ = 1 in order for T1 and
T2 to commute—that is, we require equivalent support.

Suppose now that T1 and T2 do have equivalent support. We
can simplify the commutator to

[T1, T2] = δlγ Mkδ − δkδMγ l (F11)

+ a1(δkγ Mlδ − δlδMγ k ) (F12)

+ a2(δlδMkγ − δkγ Mδl ) (F13)

+ a1a2(δkδMlγ − δlγ Mδk ). (F14)

By noting if δab = 1 and a �= c, then δcb = 0, and that
Mab is linearly independent from Mcd if a �= c or b �= d ,
we can pair the lines as follows: A := {(G11), (G14)} and
B := {(G12), (G13)} where no term in A can cancel with a
term in B. For the terms in A to cancel, we require k = δ and
l = γ and a1a2 = 1 as k �= l and γ �= δ, or k �= δ and l �= γ .
Similarly, for terms in B to cancel, we require k = γ and l = δ

and a1 = a2 as k �= l and γ �= δ, or k �= γ and l �= δ.
Now we can try to combine these conditions. First, con-

sider combining the conditions

{
k = δ and l = γ and α1α2 = 1,

k = γ and l = δ and α1 = α2
⇒ k = l = γ = δ and α1 = α2 = ±1. (F15)

However, we know k �= l and γ �= δ, so these conditions cannot apply simultaneously. Next, we try the combination{
k = δ and l = γ and α1α2 = 1,

k �= γ and l �= δ
⇒ k = δ �= l = γ and α1α2 = 1, (F16)

which is possible and corresponds to T1 ∝ T2 (Condition (2)). Similarly,{
k �= δ and l �= γ ,

k = γ and l = δ and α1 = α2
⇒ k = γ �= l = δ and α1 = α2 (F17)

is possible and also corresponds to T1 ∝ T2 (Condition (2)). Finally, consider the combination{
k �= δ and l �= γ ,

k �= γ and l �= δ
⇒ {k, l, γ , δ} are all distinct, (F18)

which is Condition (3), where we have used k �= l and γ �= δ. �
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Corollary 1.1. Now consider qubit excitation generators defined as follows:

T = G + aG†, where G ∈ Ql . (F19)

If two such generators have equivalent support, then either Condition (2) or (3) must hold. Thus, two-qubit excitation generators
commute iff they have disjoint or equivalent support.

3. Fermionic excitations

A fermionic excitation generator generalizes to an operator of the following form:
Definition 13 (Generalized fermionic excitation),

T = K + bK†, where K :=
∏
i∈�i

a(xi )
i , a(xi )

i :=
{

a†
i , xi = 0,

ai, xi = 1,
(F20)

and x is a bit-string and �i is a tuple of unique orbital indices.

In the Jordan-Wigner encoding, ai = Qi ⊗ Zi, where Zi =⊗i−1
j=1 Zj is a Pauli string of Z operators. Now we will define

the commutation product and use it to express the generalized
fermionic excitation generators as the tensor product of a
singleton matrix excitation generator and a Pauli string of Z
operators:

Definition 14 (Commutation product). Let (•, •) : H×2 ×
H×2 → {0,±1} be a mapping from a pair of operators on the
Hilbert space H to {0,±1} such that

(A, B) :=

⎧⎪⎨
⎪⎩

1, [A, B] = 0,

−1, AB + BA = 0,

0 otherwise,

(F21)

which satisfies
(1) (A, A) = 1,
(2) (A, B) = (B, A),
(3) (A, BC) = (A, B)(A,C) = (A,CB) if (A, B)(A,C) �=

0,
(4) AB = (A, B)BA if (A, B) = ±1.
Using (3), let (

A,
∏

i

Bi

)
≡ (A, {Bi}i ), (F22)

if (A, Bi ) �= 0 for all i. Note that Q and Q† anticommute with
Z [i.e., (Q(†), Z ) = −1].

Lemma 2 (Generalized fermionic excitation tensor factor-
ization). Generalized fermionic excitation generators can be
expressed as follows:

T = ±Ts ⊗ Z̃, (F23)

where Ts is a singleton matrix excitation generator and Z̃ ∈
{1, Z}⊗k for some k ∈ N.

Proof.

K :=
∏
i∈�i

a(xi )
i (F24)

=
∏
i∈�i

[
Q(xi )

i Zi
]
, where Q(xi )

i :=
{

Q†
i , xi = 0

Qi, xi = 1
(F25)

=
⎡
⎣⊗

i∈�i
Q(xi )

i

⎤
⎦ ·

⎡
⎣dim�i∏

n=1

({
Q(xim )

im

}n−1

m=1,Zin

)
Zin

⎤
⎦ (F26)

=
⎡
⎣dim�i∏

n=1

({
Q(xim )

im

}n−1

m=1,Zin

)⎤⎦ ·
⎡
⎣⊗

i∈�i
Q(xi )

i

⎤
⎦ ·

⎡
⎣dim�i∏

n=1

Zin

⎤
⎦.

(F27)

Now note that

QZ = −Q; Q†Z = Q†. (F28)

Thus, the mutual support of [
⊗

i∈�i Q(xi )
i ] and [

∏dim�i
n=1 Zin ] can

be removed by replacing the Z operators within the mutual
support with 1 and obtaining a factor of 1 or −1. In this pro-

cess, the factor [
⊗

i∈�i Q(xi )
i ] is unchanged and [

∏dim�i
n=1 Zin ] �→

Z̃ . Additionally,⎡
⎣dim�i∏

n=1

({
Q(xim )

im

}n−1

m=1,Zin

)⎤⎦ ∈ {1,−1}, (F29)

which can be combined with the factor of 1 or −1 from earlier
to produce a factor ±1. Therefore, we find

K ≡ ±
⎡
⎣⊗

i∈�i
Q(xi )

i

⎤
⎦ ⊗ Z̃; K† ≡ ±

⎡
⎣⊗

i∈�i
Q(xi )

i

⎤
⎦

†

⊗ Z̃.

(F30)

Finally, we can substitute this into the form of T :

T = ±

⎛
⎜⎝

⎡
⎣⊗

i∈�i
Q(xi )

i

⎤
⎦ + b

⎡
⎣⊗

i∈�i
Q(xi )

i

⎤
⎦

†
⎞
⎟⎠ ⊗ Z̃, (F31)

and note that the tensor factor in parenthesis is a singleton
matrix excitation generator. �

Moving forward with this form of generalized fermionic
excitation generators allows us to use Theorem 1 to show
the following commutation relations hold for generalized
fermionic excitations:
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Theorem 2 (Generalized fermionic excitation commutation). Two generalized fermionic excitations T1 and T2 commute iff
any of the following conditions are satisfied:

(1) Ts1 and Ts2 have disjoint support and |SuppTs1 ∩ SuppZ̃2| + |SuppTs2 ∩ SuppZ̃1| is even,
(2) Ts1 ∝ Ts2,
(3) Ts1 and Ts2 have equivalent support and can be written as

Ts1 ≡ Mrs + b1Msr ; Ts2 ≡ Mtu + b2Mut . (F32)

where r, s, t , and u are all distinct.
Proof. Consider the product

T1T2 = c1Ts1 ⊗ Z̃1 · c2Ts2 ⊗ Z̃2 (F33)

= c1c2Ts1 ⊗ Z̃1 · Ts2 ⊗ Z̃2 (F34)

= c1c2(Z̃1, Ts2)Ts1Ts2Z̃1Z̃2, where tensor products with the identity are implied (F35)

= c1c2(Z̃1, Ts2)Ts2Ts1Z̃1Z̃2 + c1c2(Z̃1, Ts2)[Ts1, Ts2]Z̃1Z̃2 (F36)

= (Z̃1, Ts2)(Z̃2, Ts1)c2Ts2 ⊗ Z̃2 · c1Ts1 ⊗ Z̃1 + c1c2(Z̃1, Ts2)[Ts1, Ts2]Z̃1Z̃2 (F37)

= (Z̃1, Ts2)(Z̃2, Ts1)T2T1 + c1c2(Z̃1, Ts2)[Ts1, Ts2]Z̃1Z̃2, (F38)

where c1, c2 ∈ {1,−1} and we have used the fact that (Z̃m, Tsn) ∈ {1,−1} for all m, n ∈ {1, 2}.
Therefore, we can write the commutator as

[T1, T2] = [(Z̃1, Ts2)(Z̃2, Ts1) − 1]T2T1 + c1c2(Z̃1, Ts2)[Ts1, Ts2]Z̃1Z̃2. (F39)

The entries of Tsn are drawn from the set {0, 1}. Thus, if Ts1 and Ts2 do not commute, then Ts2Ts1 and [Ts1, Ts2] are linearly
independent, so for [T1, T2] = 0 we require both both terms to vanish:

[(Z̃1, Ts2)(Z̃2, Ts1) − 1]T2T1 = 0, and (F40)

c1c2(Z̃1, Ts2)[Ts1, Ts2]Z̃1Z̃2 = 0, (F41)

which simplifies to

[(Z̃1, Ts2)(Z̃2, Ts1) − 1] = 0 or T2T1 = 0, and (F42)

[Ts1, Ts2] = 0. (F43)

Thus, Condition (F43) requires we satisfy at least one of the three conditions from Theorem 1. Therefore, each condition in
Theorem 2 corresponds to the condition with the same number in Theorem 1. However, Condition (F42) requires us to strengthen
the conditions in Theorem 2.

First, consider when T2T1 = 0. The Z̃n factors will only produce phase factors and so T2T1 = 0 ⇐⇒ Ts2Ts1 = 0. Using the
identities

Ts1 ≡ Mrs + b1Msr, Ts2 ≡ Mtu + b2Mut , (F44)

where r �= s and t �= u, we find

0 = Ts2Ts1 = δurMts + b2δtrMus + b1δusMtr + b2b1δtsMur .

(F45)

We note Mts, Mus, Mtr , and Mur are linearly independent as r �= s and t �= u. Thus, T2T1 = 0 iff:

u �= r, (F46)

t �= r, (F47)

u �= s, (F48)

t �= s. (F49)

Combining these conditions with r �= s and t �= u implies T2T1 = 0 iff r, s, t , and u are all distinct. We already obtained this
condition from Condition (F43), giving us Condition (3).

Finally, as Q and Q† anticommute with Z , then [(Z̃1, Ts2)(Z̃2, Ts1) − 1] = 0 occurs iff |SuppTs1 ∩ SuppZ̃2| +
|SuppTs2 ∩ SuppZ̃1| is even. As Ts1 ∝ Ts2 implies |SuppTs1 ∩ SuppZ̃2| + |SuppTs2 ∩ SuppZ̃1| is even we need only modify
Condition (1). �
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Corollary 2.1 (Fermionic excitation commutation). Now
consider fermionic excitation generators defined as follows:

T = K − K† where K :=
∏
i∈�i

a(xi )
i , a(xi )

i :=
{

a†
i , xi = 0,

ai, xi = 1,

(F50)

and x is a bit-string and �i is a tuple of unique orbital indices.
If, for two such generators, the sets of orbitals acted upon

are equivalent, then either Condition (2) or (3) must hold.
Thus, one can simplify the conditions for commutation to

(1) The sets of orbitals acted upon are disjoint and
|SuppTs1 ∩ SuppZ̃2| + |SuppTs2 ∩ SuppZ̃1| is even,

(2) The sets of orbitals acted upon are equivalent.
Corollary 2.2 (Electron conserving fermionic excitation

commutation). Fermionic excitations that conserve elec-
tron number have even dim�i, so if the sets of orbitals
acted upon by two different fermionic excitations are dis-
joint, then |SuppTs1 ∩ SuppZ̃2| + |SuppTs2 ∩ SuppZ̃1| must
be even. Hence, we can simplify Condition (1) to the follow-
ing: the set of orbitals acted upon are disjoint.

APPENDIX G: GENERALIZED NONCOMMUTING
SET CARDINALITIES

In this Appendix, we derive the cardinalities of the
generalized noncommuting sets for both the QEB pool
(Appendix G 1) and the qubit pool (Appendix G 2) using op-
erator and support commutation. Further, we will derive their
asymptotic scalings.

To proceed, we will define

Pq(N ) := {A ∈ P (N ) : |SuppA = q|} (G1)

as the subpool of elements supported only by q qubits.

1. Generalized QEB pool

The cardinality of the support noncommuting set of A ∈
Pq(N ) is independent of A and is given by

CS
q (N ) ≡ |NS[P (N ), A ∈ Pq(N )]|

=
∑
p∈V

:p�N

min {p,q}∑
a=1

(
p − 1

1
2 p

)(
q
a

)(
N − q
p − a

)
− 1 (G2)

= 
(NmaxV−1). (G3)

Here we sum over the possible numbers of overlapping qubits,
a. The third choice is the number of sets of p − a distinct
qubits of N − q, the second is the number of sets of a distinct
qubits of q, and the first is the number of permutations of these
qubits that give distinct qubit excitations. The −1 removes the
operator inducing the support noncommuting set.

Similarly, we can use the operator commutation rules for
qubit excitations to show that

CO
q (N ) ≡ |NO[P (N ), A ∈ Pq(N )]|

=
∑
p∈V

:p�N

α(p,q)∑
a=1

(
p − 1

1
2 p

)(
q
a

)(
N − q
p − a

)
(G4)

= 
(NmaxV−1), (G5)

where

α(p, q) :=
{

min {p, q}, p �= q,

q − 1, p = q.
(G6)

The choices are the same as for the cardinality of the sup-
port noncommuting set. However, the summation excludes
equivalent support. We note that the operator and support
noncommuting sets are almost equivalent:

CS
q (N ) − CO

q (N ) =
(

q − 1
1
2 q

)
− 1 = 
(1). (G7)

Because NO(P, A) ⊆ NS(P, A), then CS
q (N ) − CO

q (N ) is
number of elements by which the sets differ. For single ex-
citations, this difference vanishes, and for double excitations
it is two.

Note that because the support and operator noncommuting
sets differ by 
(1) elements, then an Ansatz circuit of mu-
tually operator-commuting Ansatz elements will be, at most,

exactly maxq∈V (q − 1
1
2 q ) = 
(1) times deeper than an Ansatz

circuit of mutually support-commuting Ansatz elements.

2. Generalized qubit pool

Similarly, the support noncommuting sets for the qubit
pool have cardinalities

CS
q (N ) ≡ |NS[P (N ), A ∈ Pq(N )]|

=
∑
p∈V

:p�N

min {p,q}∑
a=1

2p−1

(
q
a

)(
N − q
p − a

)
− 1 (G8)

= 
(NmaxV−1). (G9)

Further, half of the Ansatz elements with partial sup-
port with A ∈ Pq(N ) operator-commute with A. Additionally,
those with equivalent support to A operator-commute with A.
Thus,

CO
q (N ) ≡ |NO[P (N ), A ∈ Pq(N )]|

=
∑
p∈V

:p�N

α(p,q)∑
a=1

2p−2

(
q
a

)(
N − q
p − a

)
(G10)

= 
(NmaxV−1). (G11)

Therefore, the support- and operator-noncommuting sets dif-
fer asymptotically in size by a perfector of two:

CS
q (N ) − CO

q (N ) = CO
q (N ) + 2q−1 − 1 = 
(NmaxV−1).

(G12)

This is the cardinality of the set of Ansatz elements that do not
support-commute but do operator-commute with A ∈ Pq(N ).
Thus, an Ansatz circuit of mutually operator-commuting
Ansatz elements can be, at most, �(NmaxV−1) times deeper
than an Ansatz circuit of mutually support-commuting Ansatz
elements. But as we can construct any Ansatz circuit of mu-
tually operator-commuting Ansatz elements by splitting the
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pool into 
(NmaxV−1) disjoint subsets of mutually support-
noncommuting Ansatz elements and using each subset to
construct a layer of the Ansatz circuit, then we can remove
all the Ansatz elements that do not appear in the Ansatz cir-
cuit we originally wished to construct—this Ansatz circuit is
O(NmaxV−1) layers deep. Thus, an Ansatz circuit of mutually
operator-commuting Ansatz elements is at most 
(NmaxV−1)
times deeper than an Ansatz circuit of mutually support-
commuting Ansatz elements.

APPENDIX H: STATISTICAL ANALYSIS OF SEQUENCES
OF NONCOMMUTING SETS

In this Appendix, we derive expressions for the expected
cardinality of the subpool searched to find a local minimum by
subpool exploration. This will allow us to derive the expected
number of loss function evaluations per element appended for
Explore- and Dynamic-ADAPT-VQE. First, we will consider
how the subpools at each step of subpool exploration vary for
support commutation in Appendix H 1. Next, we will extend
this result to operator commutation for the QEB pool only
in Appendix H 2. Using these results in Appendix H 3 and
Appendix H 4, we will derive an upper bound for the expected
number of loss function evaluations per element for Explore-
ADAPT-VQE in terms of the number of local minima (see
Property 1) in the pool

M :=
∣∣∣∣
{

A ∈ P : L(A) = min
B∈NG(P,A)

L(B)

}∣∣∣∣. (H1)

Finally, we will use this upper bound to also upper bound the
expected number of loss function evaluations per element for
Dynamic-ADAPT-VQE in Appendix H 5.

1. Support-based-commutation sequences

Within this subsection, we do not specify a pool as support
commutation allows for a pool agnostic analysis. First, we will
consider the case in which S0 is a singleton. Next, we will use
this to upper bound the general case.

If S0 is a singleton, using the recursion relation in Eq. (37),
then Sm+1 has no operators that support any of {Ai}m−1

i=0 . Thus,
at step m the remaining pool P\S�m will only have support

on Nm := N − ∑m−1
i=0 νm qubits, where

νm :=
{∣∣SuppAm ∩ (∪m−1

l=0 SuppAl
)∣∣ ∈ [0, qm − 1], m � 1

q0, m = 0

(H2)

is the cardinality of the mutual support of the previous Ansatz
elements and Am, with qm := |SuppAm|. Therefore,

|Sm+1| ≡ |NS
[
P\S�m, Am ∈ Pqm (N )

]∣∣
= CS

qm−νm
(Nm) + min{1, νm} (H3)

= 

(
NmaxV−1

m

)
. (H4)

If |S0| � 1, then we will have preevaluated some Ansatz
elements in the pool, and so the equivalence is demoted to an
inequality:

|Sm+1| ≡ ∣∣NS
[
P\S�m, Am ∈ Pqm (N )

]∣∣
� CS

qm−νm
(Nm) + min {1, νm} (H5)

= O
(
NmaxV−1

m

)
. (H6)

2. Operator-based-commutation sequences

Here we consider the more complex case of operator com-
mutation. We can no longer remain pool agnostic; we will
only consider the QEB pool for ease. First, we note a property
of the QEB pool that allows us to establish an approximate
equivalence between operator and support commutation se-
quences for the QEB pool. Using this, we will modify the
results for support commutation sequences to QEB operator-
commutation sequences.

First, note that the QEB pool has the following property.
Consider an element A in the operator noncommuting set of
B ∈ P . All the Ansatz elements that do not support-commute
but do operator-commute with A form a subset of the operator-
noncommuting set of B ∈ P . That is,

A ∈ NO[P, B] ⇐⇒ NS[P, A]\NO[P, A] ⊂ NO[P, B].

(H7)

Thus, all Ansatz elements that support- and operator-commute
with Am will be in the set S�m for m � 1 if Am ∈ S�m. The
condition of Am ∈ S�m is true in subpool exploration. If, how-
ever, the Ansatz elements that support- and operator-commute
with A0 are in S0, then this is extended to m � 0. Thus

|Sm+1| ≡ ∣∣NO
[
P\S�m, Am ∈ Pqm (N ) ∩ (S�m)

]∣∣ (H8)

�

⎧⎪⎨
⎪⎩

CO
qm

(N0), m = 0,

CS
qm−νm

(N1) +
(

Supp A0 − 1
1
2 Supp A0

)
for m = 1 if NS[P, A0]\NO[P, A0] �⊆ S0,

CS
qm−νm

(Nm) + 1 otherwise,

(H9)

with equality if S0 ≡ {A0} or {A0} ∪ NS[P, A0]\NO[P, A0]. This means that after the first two steps, subpool exploration is the
same, when using the QEB pool, independent of whether support and operator commutativity is used.
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3. Statistical analysis of support-based-commutation sequences

This subsection outlines an upper bound for the probability
of having terminated during subpool exploration after m steps
under a reasonable assumption: subpool exploration is more
effective than random sampling. With this framework, we will
bound the expected number of steps and elements searched
for Explore- and Dynamic-ADAPT-VQE in the subsequent
subsections.

Suppose we are seeking a local minimum, as in subpool
exploration, but instead, we generate the sequence

Sm+1 = NG(P\S�m, Am) ⊆ NG(P, Am) ∀m � 0, (H10)

using Am drawn from a distribution independent of {Al}m−1
l=0 .

Suppose further that the set M of M local minima is
distributed randomly in the pool. Let m̃ be the random
variable for the number of steps taken such that the mini-
mum Ansatz element in S�m̃−1 is a local minimum. Let the
probability of m̃ � m given a pool P over N qubits and
the sequences �q and �ν be denoted by P (m̃ � m|N, �q, �ν ).
As M ∩ S�m−1 = ∅ ⇒ m̃ > m, then P (m̃ > m|N, �q, �ν ) �
P (M ∩ S�m−1 = ∅|N, �q, �ν). That is, P (m̃ � m|N, �q, �ν ) �
1 − P (M ∩ S�m−1 = ∅|N, �q, �ν).

We can calculate P (M ∩ S�m−1 = ∅|N, �q, �ν ) by fixing the
subset S�m−1 ⊂ P and then sequentially placing the local
minima randomly in the pool. The probability that the first
local minimum is not placed in S�m−1 is (|P| − |S�m−1|)/|P|.
However, note that a local minimum cannot lie within the
generalized noncommuting set of another local minimum.
Thus, we must remove the Ansatz elements of the generalized
noncommuting set from both the P and S�m−1 before the
next step. Thus, the probability of not placing the ith local
minimum in S�m−1 conditional on all previous local minima
not being placed in S�m−1 and the cardinality of the support
of the jth local minimum being μ j is given by

∣∣P(
Nm−1 − ∑i−1

j=1 μ j
)∣∣∣∣P(

N − ∑i−1
j=1 μ j

)∣∣ (H11)

for support commutation. Here we have assumed our initial
subpool is a singleton. If the initial subpool is not a singleton,
then we will have preevaluated some Ansatz elements in future
subpools, and so the numerator will decrease. Therefore, this
probability constitutes an upper bound. Further, we can bound
this probability as follows:

Lemma 3. There exists a finite constant V , such that if
Nm−1 − ∑i−1

j=1 μ j � V , then

∣∣P(
Nm − ∑i−1

j=1 μ j
)∣∣∣∣P(

N − ∑i−1
j=1 μ j

)∣∣ � |P (Nm)|
|P (N )| . (H12)

Proof. Consider the ratio r := f (x−a)
f (x) where a is non-

negative. Now consider when the derivative is non-negative:

dr

dx
≡ f ′(x − a)

f (x)
− f (x − a) f ′(x)

f 2(x)
� 0 (H13)

⇐⇒ d

dx
ln [ f (x − a)] � d

dx
ln [ f (x)]. (H14)

This is true iff f (x) is logarithmically concave. Note by
Lemma 1 there exists some finite constant V such that |P (N )|
is logarithmically concave. �

Putting these results together, we can bound P (M ∩
S�m = ∅|N, �q, �ν, �μ) for m small enough to satisfy Nm −∑M−1

j=1 μ j � V and then use a looser bound for the remaining
terms:

P (M ∩ S�m = ∅|N, �q, �ν, �μ)

�
M∏

i=1

∣∣P(
Nm − ∑i−1

j=1 μ j
)∣∣∣∣P(

N − ∑i−1
j=1 μ j

)∣∣ (H15)

�

⎧⎪⎨
⎪⎩

∏M
i=1

|P (Nm )|
|P (N )| , m � m′

max,∏M
i=1

∣∣P(
Nm′

max

)∣∣
|P (N )| , m > m′

max,

(H16)

=

⎧⎪⎨
⎪⎩

[ |P (Nm )|
|P (N )|

]M
, m � m′

max,[ |P (Nm′
max

)|
|P (N )|

]M
, m > m′

max,
(H17)

where m′
max is the largest m that satisfies Nm − ∑M−1

j=1 μ j � V .
Similarly, ms is the largest m that satisfies Nm − ‖�μ‖1 � 0.
Thus, there will at most be V − minV � ms − m′

max terms for
which m is too large to satisfy Nm − ∑M−1

j=1 μ j � V and we
will find these terms will asymptotically yield second-order
contributions to our quantities of interest.

As the final upper bound is independent of �μ and �q, then
we can marginalize over �μ and �q to get

P (M ∩ S�m = ∅|N, �ν ) �

⎧⎪⎨
⎪⎩

[ |P (Nm )|
|P (N )|

]M
, m � m′

max,[ |P (Nm′
max

)|
|P (N )|

]M
, m > m′

max,

(H18)

and finally lower bound the probability of interest:

P (m̃ � m|N, �ν ) �

⎧⎪⎨
⎪⎩

1 − [ |P (Nm )|
|P (N )|

]M
, m � m′

max,

1 −
[ |P(Nm′

max )|
|P (N )|

]M
, m > m′

max.

(H19)

Finally, we note the asymptotic scaling:

[ |P (Nm)|
|P (N ′)|

]M

∼
[

Nm

N

]M maxV
, (H20)

which does not necessarily hold for m > m′
max, but we no

longer have any terms of this form.
However, in our proposed pool exploration strategy, the

Am are drawn from a dependent distribution. We take Am as
the Ansatz element with the minimum loss in S�m. Assuming
this dependent sequence is a better exploration strategy than
independent random sampling, then this strategy should drive
the sequence to a local minima faster than the independent
proposal strategy. Thus, one would expect the cumulative
probability distribution of termination to shift to larger
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probabilities:

P (m̃ � m|N, �ν ) � P (m̂ � m|N, �ν ), (H21)

where m̂ is the random variable for the number of steps taken
to find a local minimum using this dependent sequence. That
is, m̂ is the random variable for the number of steps taken
such that the minimum Ansatz element in S�m̂−1 is a local
minimum.

We can write the mean of a monotonically increasing func-
tion f with respect to m̃ as

E( f (m̃)|N, �ν ) ≡
ms∑

m=0

f (m)P (m̃ = m|N, �ν ) (H22)

= f (0) +
ms∑

m=1

[ f (m) − f (m − 1)]

×P (m̃ � m|N, �ν ) (H23)

= f (0) +
ms−1∑
m=0

[ f (m + 1) − f (m)]

× [1 − P (m̃ � m|N, �ν )] (H24)

= f (ms) −
ms−1∑
m=0

[ f (m + 1) − f (m)]

×P (m̃ � m|N, �ν ), (H25)

and similarly for m̂. Using this, we can lower bound the
expected values:

E(m̃|N, �ν ) � E(m̂|N, �ν ), (H26)

E(|S�m̃||N, �ν ) � E(|S�m̂||N, �ν ). (H27)

Next, we proceed by considering specifically Explore-
ADAPT-VQE.

4. Statistical analysis of Explore-ADAPT-VQE

Now we substitute for the bounding cumulative probability distribution to obtain the asymptotic scaling for the mean:

E(|S�m̃||N, �ν ) =
ms∑

m=0

|S�m|P (m̃ = m|N, �ν ) (H28)

= |S0| +
ms∑

m=1

|Sm|P (m̃ � m|N, �ν ) (H29)

= |S0| +
ms−1∑
m=0

|Sm+1|P (m̃ > m|N, �ν ) (H30)

� |S0| +
m′

max−1∑
m=0

|Sm+1|
[ |P (Nm)|

|P (N )|
]M

+
ms−1∑

m=m′
max

|Sm+1|
[∣∣P(

Nm′
max

)∣∣
|P (N )|

]M

(H31)

= |S0| + 


⎡
⎣m′

max−1∑
m=0

NmaxV−1
m

(
Nm

N

)M maxV
+

ms−1∑
m=m′

max

NmaxV−1
m

(
Nm′

max

N

)M maxV
⎤
⎦, (H32)

where Eqs. (H28) and (H29) follow from Eqs. (H22) and (H23), and in Eqs. (H31) and (H32) we have substituted in the
inequality given in Eq. (H19) and then the asymptotics in Eqs. (H20) and (E4) or (E5). However, Nm = O(1) for m � m′

max, so

both
∑ms−1

m=m′
max

NmaxV−1
m (

Nm′
max

N )M maxV = O(N−M maxV ) and
∑ms−1

m=m′
max

NmaxV−1
m ( Nm

N )M maxV = O(N−M maxV ). On the other hand,

the first term in the first summation of Eq. (H32) is 
(NmaxV−1). Therefore, assuming maxV > 1, we can neglect the second
summation and extend the first summation from m′

max to ms, to leading order:

E(|S�m̃||N, �ν ) = |S0| + O

[
ms−1∑
m=0

NmaxV−1
m

(
Nm

N

)M maxV
]
. (H33)

Now consider the second term:

ms−1∑
m=0

NmaxV−1
m

(
Nm

N

)M maxV
= NmaxV−1

ms−1∑
m=0

(
1 − 1

N

m−1∑
i=0

νi

)(M+1) maxV−1

. (H34)

Note that we can bound 1
N

∑m−1
l=0 νl as follows:

1

N

m−1∑
l=0

νl � m

N
= a

m

ms
, where a ≡ ms

N
= 
(1). (H35)
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Note a ∈ [0, 1], and using this we bound Eq. (H34) with

NmaxV−1
ms−1∑
m=0

⎛
⎝1 − 1

N

m−1∑
j=0

ν j

⎞
⎠

(M+1) maxV−1

� NmaxV−1
ms−1∑
m=0

(
1 − a

m

ms

)(M+1) maxV−1

(H36)

∼ NmaxV−1ms

∫ 1

0
(1 − ax)(M+1) maxV−1dx ≡ I. (H37)

Next, using the substitution y = 1 − ax we can evaluate the integral:

I = NmaxV−1 ms

a

∫ 1

1−a
y(M+1) maxV−1dy (H38)

= NmaxV−1ms

a(M + 1) maxV [1 − (1 − a)(M+1) maxV ]. (H39)

Indeed, M can depend on N , and so it will have an asymptotic scaling M = �(1), O(N ). Thus, the asymptotic scaling of the
mean is

E(|S�m̃||N, �ν ) = |S0| + O

(
NmaxV

M

)
(H40)

as ms = O(N ).

Following a similar method, one can show

E(m̃|N, �ν ) = O

(
N

M

)
. (H41)

Further, inequalities (H26) and (H27) yield

E(|S�m̂||N, �ν ) = O

(
|S0| + NmaxV

M

)
, (H42)

E(m̂|N, �ν ) = O

(
N

M

)
. (H43)

As these scalings are independent of �v, then conditioning
our probabilities and means with some prior distribution for �v
will leave the scalings invariant:

E(|S�m̂||N ) = O

(
|S0| + NmaxV

M

)
, (H44)

E(m̂|N ) = O

(
N

M

)
. (H45)

5. Statistical analysis of Dynamic-ADAPT-VQE

Finally, when we additionally apply layering, we have the
complication that the pool size reduces throughout the layer.
Thus, the upper bound on the means becomes

E(|S�m̂||N ) �
tmax∑
t=1

∑
�q∈V t

:‖�q‖1�N

E(|S�m̃||N − ‖�q‖1)P (�q)

= O

(
|S0| + NmaxV

M

)
, (H46)

E(m̂|N ) �
tmax∑
t=1

∑
�q∈V t

:‖�q‖1�N

E(m̃|N − ‖�q‖1)P (�q) = O

(
N

M

)
,

(H47)

where P (�q) is the frequency at which the algorithm had al-
ready placed dim �q gates in a layer each acting on qi qubits
prior to a given iteration. P (�q) will decay with dim �q due to
early termination or use of larger Ansatz elements.

APPENDIX I: GENERALIZED COMMUTATIVITY

We can generalize the notion of commutativity used in the
body of this article as follows:

Definition 15 (Generalized commutativity). NG(P, A) and
its complement define valid notions of generalized noncom-
mutation and generalized commutation over P , respectively,
if

NO(P, A) ⊆ NG(P, A) ∀A ∈ P . (I1)

In particular, note that Property 3 holds for generalized
commutativity. This is because Eq. (I1) ensures that the order-
ing of Ansatz elements found by Algorithm 2 does not matter.

Therefore, if the shallowness of circuits is of less impor-
tance, then subsets of the support noncommuting set can be
used:

NO(P, A) ⊆ NG(P, A) ⊆ NS(P, A) ∀A ∈ P . (I2)

Alternatively, in physical systems, one can imagine cross-
talk from simultaneous qubit operations being problematic,
and so a more generous notion of support, including some
padding, may be beneficial:

NO(P, A) ⊆ NS(P, A) ⊆ NG(P, A) ∀A ∈ P . (I3)

APPENDIX J: NOISE MODELS

In this Appendix, we document the details of our noise
models.
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1. Noise channels acting on a single qubit

This subsection describes how noise acts on a single qubit.
Amplitude damping noise acts on the density matrix of a
single-qubit as

F (γ )

[(
ρ00 ρ01

ρ10 ρ11

)]
:=

(
ρ00 + γ ρ11

√
1 − γ ρ01√

1 − γ ρ01 (1 − γ )ρ11

)
. (J1)

Here, the decay constant γ is given by

γ (ω1, τ ) := 1 − e−ω1τ , (J2)

where τ is the duration for which the qubit is exposed to
amplitude damping, and ω1 := T −1

1 is determined by the T1

time. Below, we denote amplitude damping of the rth qubit of
a density matrix ρ as F (γ (ω1, τ ), r)[ρ].

Dephasing noise on a single qubit r of a density matrix ρ

is modeled using the following noise channel:

C(pz, r)[ρ] := (1 − pz )ρ + pzZ (r)[ρ]. (J3)

Here, Z (r) denotes the channel induced by the Pauli-Z gate
acting on the rth qubit. The phase-flip probability is given by

pz(ωz, τ ) = 1
2 (1 − e−ωzτ ), (J4)

where τ is again the duration for which the qubit is dephasing.
The decay constant ωz, on the other hand, is set by the T1 and
T ∗

2 times:

ωz = 1

T ∗
2

− 1

2T1
= ω∗

2 − 1

2
ω1. (J5)

Depolarizing noise on a single qubit r is modeled using the
channel

D(p, r)[ρ] := (1 − p)ρ + p

3

∑
P∈{X ,Y,Z}

P (r)[ρ]. (J6)

Here, p ∈ [0, 1] is the polarization probability, while P (r)
are the X ,Y,Z channels induced by the corresponding Pauli
gates, acting on qubit r.

2. Noise channels acting on an Ansatz-element layer

Next, we explain how the noise channels acting on a single
qubit are used in the noisy simulation of an Ansatz circuit
�t . To begin with, we decompose the Ansatz circuit �t into

l = 1, . . . , 
t layers of support-commuting Ansatz-element
layers {Al} as �t = Ao


t
◦ · · · ◦ Ao

l ◦ · · · ◦ Ao
1, Eq. (61). For

amplitude damping and dephasing noise, each Ansatz-element
layer Ao

l is transpiled into columns of native gates that can
be implemented in parallel. The native gate with the longest
execution time of each native-gate column sets the column
execution time. The sum of the column execution times then
gives the execution time τl of the Ansatz-element layer Ao

l .
After each Ansatz-element layer Ao

l amplitude damping is
implemented by applying an amplitude-damping channel to
every qubit r = 1, . . . , N in an amplitude-damping layer:

F̄ (ω1, τl ) =
N⊗

r=1

F (γ (ω1, τl ), r). (J7)

This results in the amplitude-damped Ansatz circuit

�t (ω1) = F̄ (ω1, τ
t ) ◦ Ao

t

◦ · · · ◦ F̄ (ω1, τ1) ◦ Ao
1. (J8)

Similarly, after each Ansatz-element layer Ao
l , dephasing is

implemented by applying a dephasing channel to every qubit
r = 1, . . . , N in a dephasing layer:

C̄(ωz, τl ) =
N⊗

r=1

C(pz(ωz, τl ), r). (J9)

This results in the dephased Ansatz circuit

�t (ωz ) = C̄(ωz, τ
t ) ◦ Ao

t

◦ · · · ◦ C̄(ωz, τ1) ◦ Ao
1. (J10)

Finally, for depolarizing noise, we first apply the whole
Ansatz-element layer. We then apply a depolarizing channel
to each qubit, the exact number of times that the qubit was
a target qubit of a CNOT gate in the preceding layer. More
specifically, defining Mr,l to be the number of times the rth
qubit was the target qubit of a CNOT gate in the lth layer, we
model the effect of depolarization after the layer Ao

l by

D̄(p, l ) =
N⊗

r=1

⎛
⎝Ml,r∏

i=1

D(p, r)

⎞
⎠. (J11)

This results in the depolarized Ansatz circuit

�t (p) = D̄(p, 
t ) ◦ Ao

t

◦ · · · ◦ D̄(p, 1) ◦ Ao
1. (J12)

APPENDIX K: DERIVATION OF NOISE SUSCEPTIBILITY RELATIONS

In this Appendix, we derive the noise susceptibility expressions of Eqs. (67). We start from the definition of noise suscep-
tibility in Eq. (66) and differentiate the amplitude-damped Ansatz circuit �t (ω1) Eq. (J8), the dephased Ansatz circuit �t (ωz )
Eq. (J10), and the depolarized Ansatz circuit �t (p) Eq. (J12), with respect to the noise parameter ω1, ωz, and p, respectively.
This results in the following expressions:

∂�t (ω1)

∂ω1

∣∣∣∣
ω1=0

=

t∑

l=1

N∑
r=1

Ao

t

◦ · · · ◦
(

∂F (γ , r)

∂γ

∣∣∣∣
γ=0

× τl

)
◦ Ao

l ◦ · · · ◦ Ao
1, (K1a)

∂�t (ωz )

∂ωz

∣∣∣∣
ωz=0

=

t∑

l=1

N∑
r=1

Ao

t

◦ · · · ◦
(

∂C(pz, r)

∂ pz

∣∣∣∣
pz=0

× τl

2

)
◦ Ao

l ◦ · · · ◦ Ao
1, (K1b)
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∂�t (p)

∂ p

∣∣∣∣
p=0

=

t∑

l=1

N∑
r=1

Ml,rAo

t

◦ · · · ◦
(

∂D(p, r)

∂ p

∣∣∣∣
p=0

)
◦ Ao

l ◦ · · · ◦ Ao
1. (K1c)

Next, we compute the derivatives of the individual channels, given as

∂F (γ , r)

∂γ

∣∣∣∣
γ=0

= dF (r) − 1, (K2a)

∂C(pz, r)

∂ pz

∣∣∣∣
pz=0

= Z (r) − 1, (K2b)

∂D(p, r)

∂ p

∣∣∣∣
p=0

= 1

3
[X (r) + Y (r) + Z (r)] − 1. (K2c)

Here we use the linear, but the no longer positive nor trace-preserving, map

dF (r) = F
(

3
4 , r

) + 1
4R(r), (K3)

with the residual linear map

R
[(

ρ00 ρ01

ρ10 ρ11

)]
:=

(
ρ11 0

0 −ρ11

)
, (K4)

which admits to the following representation:

R[ρ] = K1ρK†
1 − K2ρK†

2 , with K1 :=
(

0 1

0 0

)
, and K2 :=

(
0 0

0 1

)
. (K5)

Combining the channel derivatives, Eqs. (K2), back into the Ansatz-circuit derivatives, Eqs. (K1), and substituting these back
into the noise susceptibility definition, Eq. (66), we obtain

χF
t =


t∑
l=1

N∑
r=1

τl
(
Tr

[
HAo


t
◦ · · · ◦ dF (r) ◦ Ao

l ◦ · · · ◦ Ao
1[ρ0]

] − Tr
[
HAo


t
◦ · · · ◦ 1 ◦ Ao

l ◦ · · · ◦ Ao
1[ρ0]

])
, (K6a)

χC
t =


t∑
l=1

N∑
r=1

τl

2

(
Tr

[
HAo


t
◦ · · · ◦ Z (r) ◦ Ao

l ◦ · · · ◦ Ao
1[ρ0]

] − Tr
[
HAo


t
◦ · · · ◦ 1 ◦ Ao

l ◦ · · · ◦ Ao
1[ρ0]

])
, (K6b)

χD
t =


t∑
l=1

N∑
r=1

Ml,r

∑
P∈{X ,Y,Z}

1

3

(
Tr

[
HAo


t
◦ · · · ◦ P (r) ◦ Ao

l ◦ · · · ◦ Ao
1[ρ0]

] − Tr
[
HAo


t
◦ · · · ◦ 1 ◦ Ao

l ◦ · · · ◦ Ao
1[ρ0]

])
. (K6c)

To summarize these expressions in a compact form, we define energy expectation values, where the original Ansatz circuit
[�t in Eq. (61)] is perturbed by a linear map M acting on qubit r after layer Ao

l as

E (M, r, l ) = tr
[
HAo


t
◦· · ·◦Ao

l+1◦M(r)◦Ao
l ◦· · ·◦Ao

1[ρ0]
]
. (K7)

As E (1, r, l ) is identical to the noiseless energy bound Et (0), we can further define energy fluctuations as

δE (M, r, l ) = E (M, r, l ) − Et (0). (K8)

Averaging these fluctuations over the layer and qubit indices, l and r, respectively, further allows us to define an average noise-
induced energy fluctuation for amplitude damping, dephasing, and depolarizing noise as

dE (�t ,F ) = 1


t N


t∑
l=1

N∑
r=1

τlδE (dF , r, l ), (K9a)

dE (�t , C) = 1


t N


t∑
l=1

N∑
r=1

τl

2
δE (Z, r, l ), (K9b)

dE (�t ,D) = 1

NII


t∑
l=1

N∑
r=1

Ml,r

3

∑
P∈{X ,Y,Z}

δE (P, r, l ). (K9c)

These expressions allow us to cast the noise susceptibility of amplitude damping, dephasing, and depolarizing noise in a compact
form, given by Eqs. (67), as summarized in the body of this article.
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