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Quantum-phase-estimation algorithms are critical subroutines in many applications for quantum computers
and in quantum-metrology protocols. These algorithms estimate the unknown strength of a unitary evolution.
By using coherence or entanglement to sample the unitary Ntot times, the variance of the estimates can scale
as O(1/N2

tot ), compared to the best “classical” strategy with O(1/Ntot ). The original algorithm for quantum
phase estimation cannot be implemented on near-term hardware as it requires large-scale entangled probes and
fault-tolerant quantum computing. Therefore, alternative algorithms have been introduced that rely on coherence
and statistical inference. These algorithms produce quantum-boosted phase estimates without interprobe entan-
glement. This family of phase-estimation algorithms have, until now, never exhibited the possibility of achieving
optimal scaling O(1/N2

tot ). Moreover, previous works have not considered the effect of noise on these algorithms.
Here, we present a coherence-based phase-estimation algorithm which can achieve the optimal quadratic scaling
in the mean absolute error and the mean squared error. In the presence of noise, our algorithm produces errors
that approach the theoretical lower bound. The optimality of our algorithm stems from its adaptive nature: Each
step is determined, iteratively, using a Bayesian protocol that analizes the results of previous steps.
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I. INTRODUCTION

Quantum phenomena can be used to improve measure-
ment techniques beyond what is achievable with classical
techniques using similar resources. One example of this is
quantum phase estimation. Quantum phase estimation is used
as the following: a subroutine of many quantum algorithms
[1–3]; a component in gravitational-wave detection [4]; a
method to measure time [5]; and as a tool to compute ground-
state energies [6,7]. Phase estimation is the estimation of an
unknown phase, θ , that a unitary operation Û (θ ) applies to a
quantum state. Traditional techniques evolve separable probes
via Û (θ ) and can lead to an estimate with variance bounded
by the standard quantum limit O(1/Ntot ), where Ntot is the
number of unitary applications [8,9]. If multiple probes are en-
tangled instead, estimates can be made with variance bounded
by the Heisenberg limit O(1/N2

tot ) [10]. However, the most
trivial applications of entangled states in phase estimation
yield ambiguous estimates due to the multivalued nature of the
inverse functions used [11]. Precise, unambiguous estimates
of θ require the use of a phase-estimation algorithm. Such
algorithms achieve what is known as point identification of
θ ’s estimate [12].
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The goal of phase-estimation algorithms is to make the best
estimate of θ given a certain amount of resources, typically
the total number of times Û (θ ) is applied. The best-known
example is the quantum-phase-estimation algorithm (QPEA)
[13,14]. The QPEA requires large-scale fully entangled states,
the application of several controlled versions of Û (θ ), and the
ability to implement the inverse Fourier-transform algorithm
[15]. Although the QPEA attains some Heisenberg scaling
errors and point identification, its requirements put stringent
limits on which systems or platforms it can be successfully
implemented on [16,17]. This stringency has lead to the de-
velopment of less-cumbersome phase-estimation algorithms
based on statistical inference [18–22].

Inference-based algorithms achieve a quantum enhance-
ment by constructing distributions of possible candidate
values for the estimate of θ by iteratively sampling multiple
circuits. These circuits can either be selected before the algo-
rithm commences [11,20–22] or adaptively as the algorithm
runs [23–28]. The circuits constitute several applications
of Û (θ ), but do not necessitate interprobe entanglement,
loosening the requirements for physical implementation. A
shortcoming of the inference-led phase-estimation algorithms
is that few have considered the effect of noise present in
realistic devices. Current quantum devices belong to the class
of noisy intermediate-scale quantum (NISQ) devices and are
prone to environmental noise: qubits suffer from preparation
and measurement noise and from circuit-induced decoher-
ence. Such noise often degrades the acquired information and
reduces the quantum enhancement from a quadratic boost to a
constant-factor improvement [29].

In this paper, we present an adaptive Bayesian phase-
estimation algorithm. This algorithm obtains, in the limit of
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FIG. 1. The quantum circuit (n, φ).

large Ntot , the Heisenberg scaling of two errors, the mean
absolute error, and the mean squared error, when noise is
absent, and a theoretical lower bound on errors when noise is
present. Our algorithm attains this performance through adap-
tive iteration, executing a series of circuits with parameters
depending on the results of previous measurements. These
circuits require one probe at a time and, hence, no interprobe
entanglement [30]. We also demonstrate through numerical
simulations that our Bayesian algorithm outperforms other
phase-estimation algorithms in these error metrics.

II. BAYESIAN PHASE ESTIMATION

We consider the unitary operation Û (θ ) with at least two
eigenstates |ψ0〉 and |ψ1〉, such that

Û (θ ) |ψ0〉 = |ψ0〉 ,

Û (θ ) |ψ1〉 = eiθ |ψ1〉 . (1)

Here, θ ∈ � = [0, 2π ] is the unknown phase to be esti-
mated. When measuring θ , it is optimal to do so with
probes in an equal superposition of |ψ0〉 and |ψ1〉 [8]: |�〉 =

1√
2
(|ψ0〉 + |ψ1〉). Here, we focus on such optimal phase esti-

mation and consider only two-level subspaces of potentially
d-dimensional unitaries.

An estimate of θ can be achieved through analyzing the
output of the quantum circuit in Fig. 1. A single probe is
prepared in the state |�〉 and evolved coherently through Û (θ )
a number n times. The probe is then evolved a single time
through a known phase-shift Û (φ) before being measured
in the basis {|�〉 , |�⊥〉}. [Throughout this paper, we use
(n, φ) to denote such a circuit]. This measurement process
maximizes the quantum Fisher information (QFI) and leads to
asymptotically optimal measurements [10,31,32]. The circuit
(n, φ) is sampled ν times, and the number of probes in the
state |�〉 is recorded as x. This process applies Û (θ ) a number
nν times. The probability of x taking a certain value is given
by the binomial distribution

p(x|n, φ, ν, θ ) =
(

ν

x

)
[p0(θ, n, φ)]x[1 − p0(θ, n, φ)]ν−x.

(2)

Here, p0(θ, n, φ) is the probability of measuring a single
probe in the state |�〉. This work considers the following
sources of noise: Depolarization, such that each gate creates
the target state with probability 1 − λ, and the maximally
mixed state with probability of λ; preparation errors, such
that the optimal initial state |�〉 is prepared with probability
1 − η and an orthogonal state is incorrectly prepared with
probability η; and measurement errors, such that the output
state is recorded correctly with a probability of 1 − ξ . Our
noise model leads to a probability of recording the state |�〉
after the circuit runs of

p0(θ, n, φ) = 1

2
+ αβn

2
cos(nθ + φ), (3)

FIG. 2. Unnormalized posterior distribution generated from 20
applications of Û (θ ) in the circuits (a) (1,0), (b) (1, π/2), and
(c) (2,0), with θ = 3π/4 [vertical line]. (d) By combining the results
from (a)–(c), erroneous peaks can be reduced in size.

where α = (1 − 2η)(1 − 2ζ ) and β = (1 − λ). Note that α =
β = 1 in noiseless systems.

After observing x, Bayesian inference gives a posterior
distribution for θ [33],

p(θ |n, φ, ν, x) = p(x|n, φ, ν, θ )π (θ )∫
�

p(x|n, φ, ν, θ )π (θ )dθ
, (4)

where π (θ ) is any prior knowledge of θ . This posterior can
be used to produce an estimator of θ , θ̂ . Examples of such es-
timators include the minimum-mean-squared-error (MMSE)
estimator, θ̂MMSE = E[θ ], and the maximum-a posteriori
(MAP) estimator θ̂MAP = arg maxθ p(θ |n, φ, ν, x). Some es-
timators can have biases due to the lack point identification
[12]. Lack of point identification occurs when an estimator
has multiple values: θ̂MAP has 2n values because cos−1(nθ )
is multivalued in the interval �. This ambiguity is demon-
strated in Figs. 2(a) to 2(c): the posterior distribution has
2n symmetric peaks centered at either θc = θ + 2π l1

n or θc =
−θ − 2φ

n + 2π l2
n , where l1 and l2 are integers.

Point-identifying θ̂MAP (i.e., selecting the correct peak)
can be achieved by executing several circuits, (n,φ) ≡
{(n1, φ1), . . . , (nm, φm)}. Each circuit is executed a number
ν = (ν1, . . . , νm) times, respectively, resulting in observations
x = (x1, . . . , xm). This new measurement strategy applies
Û (θ ) a total

∑m
j=1 n jν j times. Combining observations pro-

vides the posterior distribution

p(θ |n,φ, ν, x) = π (θ )
∏m

i=1 p(xi|ni, φi, νi, θ )∫
�

π (θ )
∏m

i=1 p(xi|ni, φi, νi, θ )dθ
. (5)

Careful selection of n,φ, and ν can ensure that θ̂MAP is unique.
This is demonstrated in Fig. 2(d), which combines the obser-
vations of Figs. 2(a) to 2(c). The erroneous peak at 2π − θ can
be removed by sampling two circuits with differing values of
φ [11].

Performance of estimators

The performance of θ̂ can be judged through a distance
from the true value of θ , calculated through a loss function
L(θ̂ , θ ). Due to the periodicity of phases, θ̂ = θ̂ + 2π l for in-
teger l . Distance from θ to θ̂ should be taken as the minimum
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loss for each possible θ̂ :

L(θ̂ , θ ) = min
l∈Z

{L(θ̂ + 2π l, θ )}. (6)

In this work, we consider two loss functions: The abso-
lute error, |θ̂ − θ |, with average mean absolute error (MAE),
LMAE(θ̂ ); The squared error, (θ̂ − θ )2, with average mean
squared error (MSE), LMSE(θ̂ ). The average of a loss function
is taken over the posterior distribution when the true value of
θ is unknown:

L(θ̂ ) = E[L(θ̂ , θ )] =
∫

�

p(θ |n,φ, ν, x)L(θ̂ , θ )dθ. (7)

A lower value of L(θ̂ ) indicates that, on average, θ̂ is close to
the likely values of θ . Therefore, phase-estimation algorithms
aim to minimize L(θ̂ ) for a specified L(θ̂ , θ ).

L(θ̂ ) is reduced by reducing the number of, and width of,
the peaks in the posterior distribution. The number of peaks
can be reduced through point identification. The widths of
the peaks relates to the statistical variance σ 2

θ which can be
estimated by considering the limit of many circuit executions,
ν → ∞: If the single circuit (n, φ) is executed ν times, the
binomial distribution p(x|n, φ, ν, θ ) tends to a normal distri-
bution [34]

p(x|n, φ, ν, θ ) = N (x̄, σx ) = N (νp0,
√

νp0(1 − p0)). (8)

p(θ |n, φ, ν, x) is then a sum of normal distributions with cen-
tres θc and identical variances σ 2

θ . σ 2
θ can be estimated through

linear error propagation

σ 2
θ =

(
∂θ

∂ x̄

)2

σ 2
x ≡ 1 − α2β2n cos2(nθ + φ)

α2β2n sin2(nθ + φ)n2ν
. (9)

A normal distribution centered on θ̂ with variance σ 2
θ has

LMAE(θ̂ ) =
√

2σ 2
θ /π and LMSE(θ̂ ) = σ 2

θ .

In the absence of noise, σ 2
θ = 1/n2ν independent of θ and

φ. Restricting the number of times Û (θ ) can be applied to Ntot

times, a depth-one circuit without multiple coherent unitary
applications achieves σ 2

θ = 1/Ntot, the standard quantum limit
(SQL). A point-identified estimate with a single peak in the
posterior has LMAE(θ̂ ) = √

2/πNtot and LMSE(θ̂ ) = 1/Ntot.
Instead, utilizing coherent applications of multiple instances
of the unknown unitary, by using a circuit of depth n ∝ Ntot,
achieves a quadratic speed-up with σ 2

θ = O(1/N2
tot ), the opti-

mal Heisenberg limit (HL) [35]. A point-identified estimate
with a single peak in the posterior will also demonstrate
quadratic speed-ups of LMAE(θ̂ ) =

√
2/πN2

tot and LMSE(θ̂ ) =
1/N2

tot. For large Ntot, this scaling requires unrealistic infinitely
long circuits. In real devices, circuit depth is restricted by
some limiting value nlim. Executing the circuit (nlim, φ) results
in σ 2

θ = O(1/Ntot ) which is the SQL.
When noise is present (β < 1), σ 2

θ → ∞ for n → ∞.
Therefore, deep circuits, and algorithms using them, give es-
timates with high uncertainties. Instead of letting the circuit
depth increase indefinitely with Ntot, our algorithm samples
the circuit

(
nopt, φopt

) ≡
(⌊

− 1

2 ln β

⌉
,
π

2
− noptθ

)
, (10)

to minimize σ 2
θ to − 2e ln β

α2Ntot
. Then, σ 2

θ scales with the SQL,
suggesting the quantum advantage has become a prefactor
rather than a quadratic speedup. The loss of the quadratic
speedup is derived for more general noise models in Ref. [29].
A complication with finding this optimal circuit is that the
value of φopt depends on the unknown value of θ . Therefore,
one has to rely on an adaptive scheme to find φopt.

The aforementioned variance is often quoted as the fig-
ure of merit of phase-estimation algorithms [10]. However,
this is only appropriate if the correct peak (out of the 2n
peaks) is picked out with certainty. This selection is typically
achieved by sampling shallower circuits alongside the optimal
circuit. Doing this requires the applications of Û (θ ), and thus
prevents σ 2

θ from reaching its minimum value for a given
amount of resources.

An alternative way to judge performance is to calculate the
probability that θ belongs to a credible interval �i ⊆ �:

Pr[θ ∈ �] =
∫

�i

p(θ |n, φ, ν, x)dθ. (11)

This credible-interval analysis alone is a poor way to judge
performance of θ̂ due to the ignorance of the tail of the distri-
bution outside �i. This tail may lead to a finite probability of
the distance between the true θ and θ̂ being large. Therefore,
the main focus of this paper is producing a phase-estimation
algorithm that minimizes an average loss rather than focusing
solely on credible intervals.

III. ADAPTIVE PHASE-ESTIMATION ALGORITHM

From the above analysis, circuits with n > 1 may lead
to narrower posterior peaks. However, this requires the ex-
ecution of shallower circuits to point-identify the estimate.
This point-identification process requires the use of resources
in a suboptimal way. To reduce the potential waste of re-
sources, previous noiseless phase-estimation algorithms have
suggested doubling circuit depths [11,20,22,36,37]. However,
these algorithms tend to be nonadaptive, either executing
suboptimal circuits excessively or requiring circuits beyond
hardware capabilities. Furthermore, some algorithms require
measurements of the probes along multiple axes, which may
lead to further resources being wasted on these suboptimal
circuits.

To prevent potential resource waste, we present an adap-
tive algorithm. The algorithm uses the outcomes of previous
measurements to predict which circuit to execute next to min-
imize the final value of L(θ̂ ) after all remaining resources,
Nleft, are used. This prediction is achieved by calculating
p(θ |n,φ, ν, x) and θ̂ either after each measurement or after
a batch of measurements. The algorithm is outlined in Algo-
rithm1 and pictorially in Fig. 3. As shown in the Appendix,
this algorithm achieves quadratic speedups of both LMAE(θ̂ )
and LMSE(θ̂ ) when compared to classical techniques in the
noiseless regime.

The point-identification process occurs by executing cir-
cuits with doubling depth until some optimal cutoff: At the ith
step, the circuit

(ni, φi ) =
(

min{2i−1, nopt, nlim}, π

2
− niθ̂

)
(12)
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FIG. 3. The circuits executed at each iteration step of our algorithm and the posterior distribution at the end of the step. The initial conditions
were θ = 2π

3 (vertical line), Ntot = 300 and β = 0.9 (nopt = 5). The regions �i are shaded.

is executed enough times to restrict θ to an interval �i with a
probability of at least 1 − εi, where

�i =
[
θ̂ − π

2ni+1
, θ̂ + π

2ni+1

]
(13)

and εi = (ni/Ntot )3. The interval �i is chosen such that the
posterior distribution generated from execution of the fol-
lowing circuit, (ni+1, φi+1), contains only one peak, thus,
point-identifying the estimate. The fewest executions of the
suboptimal shallower circuit (ni, φi ) required for the above
restriction will occur when the posterior peak variance σ 2

θ is
minimized: φi = π/2 − niθ and θc = θ + π l/ni for integer
l . As the true θ is unknown, we use θ̂ to determine φ. The
first step of the algorithm requires two circuits being sam-
pled, (1, φ1) and (1, φ1 + π/2), to remove the initial peak at
2π − θ . The combination of these two circuits is equivalent to
measuring the probe along both the z axis and x axis if probes

ALGORITHM 1. Adaptive algorithm.

1: Set i ← 1, Nleft ← Ntot, p(θ |n, φ, ν, x) ← π (θ ).
2: while Nleft > ni do
3: while Pr[θ ∈ �i] < 1 − εi do
4: Execute circuit (ni, φi ).
5: If i = 1, execute circuit (1, φi + π/2).
6: Update Nleft, p(θ |n, φ, ν, x) and θ̂ .
7: end while
8: Calculate L̂i(θ̂ ) and L̂i+1(θ̂ ).
9: If L̂i+1(θ̂ ) < L̂i(θ̂ ), set i ← i + 1 and return to step 3.

Else, go to step 11.
10: end while
11: Execute the circuit (ni, φi ) a number �Nleft/ni times.
12: Execute circuit (1, φ1) a number Nleft mod ni times to use.

up any remaining resources

are single qubits. We also redefine � = [θ̂ − π, θ̂ + π ] for
the normalization of intervals to avoid potential issues with
discontinuous intervals.

Adaptivity is also used to determine which circuit is ex-
ecuted next after we establish Pr[θ ∈ �i] � 1 − εi. Using
the current posterior distribution, we calculate the predicted
loss when using all of the remaining resources to execute
either the circuit (ni, φi ), with loss L̂i(θ̂ ), or (ni+1, φi+1), with
loss L̂i+1(θ̂ ). The circuit with the smallest predicted loss is
then executed. If (ni+1, φi+1) is (is not) selected, the iteration
proceeds with i ← i + 1 [iteration concludes with the circuit
(ni, φi ) executed until all remaining resources are used up].
Losses are predicted by estimating expected outcomes

x̂i =
∫

�

νi p0(θ, ni, φi )p(θ |n,φ, ν, x)dθ, (14)

where νi = �Nleft/ni is the maximum number of times the
circuit (ni, φi ) can be executed. x̂i is used to generate a new
posterior distribution from which the expected loss L̂i is cal-
culated. Our adaptive algorithm does not suffer from the same
shortfalls as other nonadaptive phase-estimation algorithms.
(1) Other algorithms that use fixed intervals instead of our
adaptively changing single interval �i may require a large
number of circuit executions to place θ , with high confidence,
within one of the intervals. Indeed if θ lies on the boundary,
circuits must be executed infinite number of times [11]. (2)
Other algorithms that use predecided constant numbers of cir-
cuit executions may waste resources building overconfidence
placing θ in an interval if θ is far from an interval boundary.
(3) Previous algorithms lack a cutoff depth, such that circuits
with depths exceeding nopt are sampled. (4) Previous algo-
rithms do not take into account hardware limitations on circuit
depths. (5) Beyond the first circuit, probes are only measured
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FIG. 4. Simulated values of the MAE and MSE against total number of unitary applications for different phase-estimation algorithms
with α = 1 and (a), (b) β = 1; (c), (e) β = 0.99; (d), (f) β = 0.9. Error bars are plotted between the minimum and maximum average losses
achieved after 1000 samples.

along one axis in our algorithm, so less resources are used for
point identification than in other algorithms.

Our algorithm also reduces the classical computing times
of other adaptive algorithms. Algorithms based on Bayesian
experimental designs calculate an average of L(θ̂ ) over all
potential outcomes, based on the current posterior [23,24].
This average-loss calculation may require evaluating many
costly integrals for each potential measurement. Furthermore,
if every circuit is allowed to be executed at any stage of the
algorithm, huge classical computing costs after each mea-
surement are expected to calculate all risks and determine
which circuit to use. Our algorithm circumvents this issue by
evaluating L(θ̂ ) of the most likely outcomes for two circuits
only, and also delays these less-costly computations until the
condition Pr[θ ∈ �i] � 1 − εi is met.

IV. PERFORMANCE

We benchmark the performance of our adaptive algorithm
through both analytic bounds for large Ntot and numerical
simulation for finite values of Ntot. The analytic bounds are
derived in the Appendix by considering the maximum con-
tributions from both the bias and width of the posterior.
Our adaptive algorithm achieves a quadratic speedup of both
LMAE(θ̂ ) and LMSE(θ̂ ) when compared to classical techniques
in the noiseless regime. When β < 1 or nlim is finite, both
LMAE(θ̂ ) and LMSE(θ̂ ) achieved by our adaptive algorithm
tend towards the performance of a point-identified optimal
circuit.

The results of numerical simulations are presented in
Fig. 4. The adaptive algorithm is evaluated for α = 1, varying
β, and 1000 uniformly spread values of θ ∈ [0, 2π ] for a
fixed Ntot ∈ [101, 105], assuming no hardware limitations and

the uniform prior π (θ ) = 1/2π . The target loss is either the
absolute error [Figs. 4(a), 4(c) and 4(d)] or the squared error
[Figs. 4(b), 4(e) and 4(f)], with θ̂ = θ̂MMSE for both cases.
Alongside these data, we plot the performance from simi-
lar simulations of the quantum phase-estimation algorithm
(QPEA) [13] and the nonadaptive iterative two-part protocol
[11]. Also plotted are the SQL, the HL, and the theoretical
limit from sampling the optimal circuit, all when the posterior
has a single peak.

For a noiseless system (β = 1), our algorithm achieves a
sub-SQL average MAE for roughly Ntot � 20 and a sub-SQL
average MSE for roughly Ntot � 40. The iterative two-part
algorithm has sub-SQL MAE and MSE for Ntot greater than
approximately 1000. This demonstrates that our adaptive al-
gorithm achieves a quantum advantage with fewer resources
used than the nonadaptive algorithm. Although having a sub-
SQL MAE at Ntot � 31, the MAE of the QPEA diverges
from the HL line showing suboptimal scaling. In addition, the
MSE of the QPEA shows SQL-like scaling. These observa-
tions of the QPEA are due to the long tail of the posterior
distribution [38].

In Figs. 4(c) to 4(f), we plot the MAE and MSE when noise
does scale with circuit depth: β < 1. Our adaptive algorithm
tends to to the optimal limit when Ntot is large. We also
observe a reduced spread of the MAE and MSE achieved for
larger Ntot, indicating the algorithms ability to find the optimal
circuit.

V. CONCLUSION

We present an adaptive algorithm for quantum phase esti-
mation based on Bayesian inference. Our algorithm samples
a series of circuits with parameters determined, iteratively,
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by the outcomes of previous measurements. The algorithm
operates to minimize the predicted expected loss for a given
amount of resources. Our algorithm achieves the Heisenberg
scaling of both the mean absolute error and the mean squared
error in the noiseless setting. Furthermore, in the presence of
noise, our algorithm’s performance tends to the optimal error
limit imposed by the statistical variance. An experimental
implementation of this adaptive algorithm is the subject of
future research.
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APPENDIX: ASYMPTOTIC SCALING

We now derive upper bounds of both the MAE and MSE
achieved by our adaptive algorithm when Ntot is large and
π (θ ) is uniform. We assume Ntot is large enough for all circuits
up to and including the optimum circuit executed. At the
conclusion of our algorithm, circuits (n1, φ1) to (nm, φm) are
executed ν1 to νm times, with

ni =
{

min{nopt, nlim} i = m & nlim �= ∞ or β < 1,

2i−1 otherwise.
(A1)

For εi = (ni/Ntot )3, the circuit (ni, φi ) must be executed a
large number of times to ensure Pr[θ ∈ �i] � 1 − εi. The
posterior distribution generated by the circuit (ni, φi ) in this
limit is the normalized sum of normal distributions

∑
c

N (θc, σθ,i ) ≡
2ni−1∑
l=0

N

(
θ + π l

ni
,

1

αβni ni
√

νi

)
, (A2)

as described above, provided θ̂ is a consistent estimator.
After the ith stage of iteration, the circuits up to and includ-

ing (ni, φi ) are executed and the value of θ is restricted to the
interval �i with a confidence at least 1 − εi. This process dis-
cards the interval �̄i = �i−1 − �i. The posterior distribution
inside �i at this stage is

i∏
j=1

N (θ, σθ, j ) = N (θ,�i ) ≡ N

⎛
⎜⎝θ,

1√∑i
j=1 σ−2

θ, j

⎞
⎟⎠, (A3)

which will be sharply peaked at the value of θ . After all
circuits have been executed, the total average loss is

L(θ̂ ) =
∫

�m

p(θ |n,φ, ν, x)L(θ̂ , θ )dθ

+
m−1∑
i=1

∫
�̄i

p(θ |n,φ, ν, x)L(θ̂ , θ )dθ

�
∫

�m

p(θ |n,φ, ν, x)L(θ̂ , θ )dθ

+
m−1∑
i=1

max
�̄i

{L(θ̂ , θ )}
∫

�̄i

p(θ |n,φ, ν, x)dθ

� L�m (θ̂ ) +
m−1∑
i=1

max
�̄i

{L(θ̂ , θ )}(εi−1 − εi), (A4)

where L�m (θ̂ ) is the average loss from the normal distribution
inside �m. The sum over all �̄i is the maximal contribution of
the bias on L(θ̂ ). The quantity max�̄i

{L(θ̂ , θ )} occurs when θ

is at the edge of �̄i as this maximizes distance from θ̂ . Using
the absolute error as the loss leads to

max
�̄i

{L(θ̂ , θ )} =
{
π i = 1,

π
2ni+1

i �= 1,
(A5)

and using the squared error as the loss leads to the square of
this. These results give upper bounds

LMAE(θ̂ ) �
√

2

π
�m + π

2

(
ε1 + εm−1

nm
+ 1

2

m−2∑
i=1

εi

2i

)
,

LMAE(θ̂ ) � �2
m + π2

4

(
3ε1 + εm−1

n2
m

+ 3

4

m−2∑
i=1

εi

4i

)
, (A6)

where �2
m is the variance of the normal distribution inside �m.

To derive an expression for �m, we must first find a re-
lationship between εi and νi for i < m. The maximum value
of νi required to achieve Pr[θ ∈ �i] � 1 − εi can be derived
using the Chernoff-Cramér bound for normal distributions
[14]

Pr[|θ̂ − θ | � δi] = εi � 2 exp
[−δ2

i /�
2
i

]
, (A7)

where δi = π
2ni+1

is half the length of the interval �i. By

rearranging, we find the largest value of νi is when �−2
i =

8n2
i+1

π2 ln( 2
εi

). We can also note that σ−2
θ,i = �−2

i − �−2
i−1, which

leads to

σ 2
θ,i = 8n2

i+1

π2

[
ln

(
2

εi

)
− 1

4
ln

(
2

εi−1

)]
. (A8)

Equating this to Eq. (9),

νi = 32

π2α2β2ni

[
ln

(
2

εi

)
− 1

4
ln

(
2

εi−1

)]
. (A9)

The total number of times Û (θ ) is applied is fixed to Ntot.
Therefore,

nmνm = Ntot −
m−1∑
i=1

2i+4

π2α2β2i

[
ln

(
2

εi

)
− 1

4
ln

(
2

εi−1

)]

= Ntot − 72

π2α2

m−1∑
i=1

(
2

β2

)i

ln

(
2Ntot

2i

)
. (A10)

nmνm is used to find �m:

�−2
m = �−2

m−1 + σ−2
θ,m

= 8n2
m

π2
ln

(
2N3

tot

8m−2

)
+ α2β2nm n2

mνm. (A11)
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As we only care about the scalings of losses for large Ntot,
we only focus on the greatest scaling terms. When β < 1 or
nlim is finite, m remains fixed for all large Ntot. The sum in
Eq. (A10) will scale as O(ln Ntot ), leading to nnνm = O(Ntot )
and �−2

m = O(Ntot ).
If, however, β = 1 and nlim → ∞, m varies with Ntot.

m must scale no larger than O(log2 Ntot ) to ensure νm in
Eq. (A10) is not negative. Assume now m = O(log2 Ntot ), so
Ntot = O(2m). �−2

m = O(2mNtot ) and Eq. (A6) leads to

LMAE(θ̂ ) =
⎧⎨
⎩

O
(

1√
Ntot

)
β < 1 or nlim �= ∞,

O
(

1
Ntot

)
otherwise,

(A12)

for the MAE and

LMSE(θ̂ ) =
⎧⎨
⎩

O
(

1
Ntot

)
β < 1 or nlim �= ∞,

O
(

1
N2

tot

)
otherwise,

(A13)

for the MSE. These are optimal scalings [29]. If Ntot scales
with m as a function larger than O(2m), these noiseless losses
would have a worse scaling. However, these larger scalings
require a smaller m and a shallower circuit depth cutoff. The
adaptive algorithm would have predicted the outcomes of

selecting this smaller m (where the estimates are exact due to
the sharpness of the posterio) and decided this smaller m leads
to a larger loss than the larger m. Therefore, the larger m would
have been selected, leading to the choice of Ntot = O(2m).

Classical techniques that involve sampling circuits of depth
one lead to a posterior that is a normal distribution with
variance O(1/Ntot ) [Eq. (9)]. This normal distribution has a
MAE of O(1/

√
Ntot ) and a MSE of O(1/Ntot ). Therefore,

our algorithm achieves a quadratic speedup in ideal cases.
When β < 1 or nlim �= ∞, the speedup is a constant. How-
ever, we now argue that the loss tends to the same value
achieved by sampling a point-identified optimal circuit alone
[Eq. (10)]. The Ntot term will outgrow the sum in Eq. (A10)
such that νm ≈ Ntot/nm for large-enough Ntot. In this case,
�−2

m ≈ α2β2nm nmNtot, the same as if all resources were used
sampling the optimal circuit. The terms in the loss functions
proportional to εi will scale as O(1/N3

tot ) which is much less
than �m. Therefore, the losses are bounded by

LMAE(θ̂ ) �
√

2

π
�m =

√
2

πα2β2nm nmNtot
,

LMAE(θ̂ ) � �2
m = 1

α2β2nm nmNtot
, (A14)

the theoretical lower bound if the optimal circuit is used.
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