
PHYSICAL REVIEW A 109, 042411 (2024)

Better performance of quantum batteries in different environments compared to closed batteries
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We construct a central-spin battery model affected by noise or thermal bath and consider the impact of
environment on battery performance. In a noisy environment, we show that the steady-state energy and ergotropy
are related to the number of spins exposed to the noisy channel. In addition, we reveal the relationship between
the steady-state energy and ergotropy with the quantum information lost in the battery. In a thermal bath, we
find that the higher the mean occupation number of the thermal bath, the greater the steady-state energy. In
particular, we find that, in two different environments, the steady-state energy and ergotropy are related to the
effective magnetic-field strength of battery B, but not charger h. It is worth noting that, in the central-spin model,
when B is a constant and |h/B − 1| reaches a certain value, the steady-state energy and ergotropy with noise
or thermal bath are always greater than or equal to the maximum energy and ergotropy of the corresponding
closed battery. At the same time, we generalize the conclusions to the two-qubit, two-harmonic-oscillator, and
harmonic-oscillator-qubit models.
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I. INTRODUCTION

Batteries, as a type of energy storage device, play a cru-
cial role in human technology and social life. With the rapid
development of the device miniaturization, studying the prin-
ciples of energy storage and extraction in the molecular and
atomic-scale systems has become an important research topic.
In 2013, Alicki and Fannes first introduced the concept of
quantum battery and found that the global operation can ex-
tract more work from a multiqubit system compared to local
operation [1]. Since then, researchers have constructed a series
of different quantum battery models using various quantum
systems, such as Dicke or Rabi battery models, spin chain
battery models, central-spin battery models, and so on. The
performance of quantum battery, such as energy, ergotropy,
and capacity, were extensively studied [2–10]. In addition, it
is verified that quantum resources such as quantum entangle-
ment and coherence play an important role in improving the
performance of quantum batteries [11–15]. Moreover, quan-
tum batteries have been implemented in experiments [16,17].

However, in the experimental implementation of quantum
batteries, the system inevitably interacts with the environment.
This leads to the system experiencing dissipation processes,
such as decoherence and entanglement sudden death, which
will affect the performance of the system negatively. Quantum
batteries experience different physical processes when acting
in different environments, which leads to different perfor-
mance of the batteries [18–20]. In recent years, researchers
have used different methods to improve the performance
of quantum batteries in different environments [18,21–36].
Among them, how to utilize the physical properties of the
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environment itself to achieve efficient energy storage and ex-
traction is a very significant topic in quantum battery research.
The performance of a closed central-spin battery has been in-
vestigated [8,11]. This battery model has played a significant
role in studying the relationship between the storage capacity
of a quantum battery and the number of cells of battery and
charger [8]. In addition, in a closed central-spin battery, the in-
verse relationship between ergotropy and entanglement at the
end of the charging process has been rigorously proven [11].
In addition, the central-spin model has been implemented in
experiments [37–41], which also provided great assistance for
the experimental implementation of the central-spin quantum
battery. Therefore, it is of great significance to study the
central-spin battery that interacts with the environment.

In this paper, we study the performance of central-spin
battery in two different environments, including a noisy
environment and a thermal bath. In the phase-flip noisy envi-
ronment, we consider the effects of number of spins exposed
to the noisy channel and the strength of noise on the battery
performance, respectively. We also connect the changes of
battery performance with the quantum information lost in the
battery during the evolution process. In the thermal bath, we
analyze the effects of the global or local operations and the
mean occupation number of the thermal bath on the battery
performance. Specifically, in the above environments, by ad-
justing the effective external magnetic-field strength of the
battery and charger, we find that the steady-state energy and
ergotropy are always greater than or equal to the maximum
energy and ergotropy of the corresponding closed system. We
generalize these results to other battery models, both analyti-
cally and numerically.

This paper is organized as follows. In Sec. II, we intro-
duce the central-spin battery, master equation method, and
the definitions of quantum battery energy and ergotropy. In
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FIG. 1. Panel (a) is a schematic illustration of the closed central-spin model, showing the process of energy transfer from the charger
in the excited state to the battery in the ground state through interaction. Panel (b) is a schematic illustration of the central-spin model in a
noisy environment, showing the process in which the charger in the excited state transfers energy to the battery in the ground state through
interaction, and both the battery and charger are affected by noise. Panel (c) shows the schematic illustration of the central-spin model in a
thermal bath, showing that the thermal bath interacts with the charger and then transfers energy to the battery through the charger. Here, the
green (red) arrow represents spin up (down), the blue dashed line represents the interaction between the battery and charger, the gray shadow
represents noise, and the pink shadow represents a thermal bath.

Sec. III, we discuss the performance of the central-spin battery
in the phase-flip noisy environment. In Sec. IV, we analyze the
performance of the central-spin battery in a thermal bath. In
Sec. V, we draw the conclusion for our work.

II. MODEL OF CENTRAL-SPIN BATTERY
AND PERFORMANCE PARAMETERS

A. Model of central-spin battery

The central spin model is a system consisting of Nb central
spins surrounded by Nc spins, as shown in Fig. 1. The Hamil-
tonian can be written as

H = HB + HC + HI , (1)

HB = BSz, (2)

HC = hJz, (3)

HI = A(S+J− + S−J+) + 2�SzJz. (4)

In the above expression, Sα = ∑Nb
i=1 σα

i /2 represents the total
spin operator for Nb battery spins, Jα = ∑Nc

j=1 σα
j /2 repre-

sents the total spin operator for Nc charger spins, σα
i( j)(α =

x, y, z) is the Pauli operator. S± = Sx ± iSy and J± = Jx ± iJy

are spin ladder operators for the battery and charger, respec-
tively. B and h represent the effective external magnetic-field
strength of battery and charger. A and � are the spin flip-flop
interaction strength and Ising interaction strength.

At initial time, the battery is in the ground state,
which can be expressed as |0〉b ≡ |↓1,↓2,↓3, . . . ,↓Nb〉. The
charger is represented by the Dicke state, i.e., |m〉c ≡

1√
(Nc

m )

∑
k Pk (|↑1,↑2,↑3, . . . ,↑m,↓m+1, . . . ,↓Nc〉), where m

represents the number of up spins of all charger spins,
1√
(Nc

m )
= 1√

Nc!/[m!(Nc−m)!]
indicates the probability that the

charger is in a certain state, and Pk indicates all possi-
ble arrangements of charger spins. It is worth noting that
when m � Nc, the central-spin model can be mapped to the

Tavis-Cummings model using the Holstein-Primarkoff trans-
form [11], the above situation is not considered in our paper.

As the battery interacts with environment, the dynamic
evolution of the quantum battery can be described by the
Lindblad master equation

ρ̇(t ) = −i[H, ρ(t )] + L[ρ], (5)

where ρ(t ) is the density matrix of the total quantum battery
system at time t . The first term on the right side of Eq. (5)
represents the von Neumann equation term, and the second
term represents that the system experience transition, dissipa-
tion, and so on, where L[ρ] = Lρ(t )L† − 1

2 {LL†, ρ(t )} is the
Lindblad superoperator.

B. Stored energy and ergotropy

Next we choose two parameters, which are the key indi-
cators for quantifying quantum battery performance. The first
one is stored energy. The energy of the battery at time t is
expressed as

EB(t ) = Tr[HBρB(t )], (6)

where ρB(t ) = Trc[|ψ (t )〉〈ψ (t )|] is the reduced density ma-
trix of the battery and |ψ (t )〉 describes the state of the whole
system. �EB(t ) = EB(t ) − EB(0) represents the energy stored
in the evolution of the system at time t . The second parameter
is ergotropy, which means the maximum energy that can be
extracted at time t , and its expression can be written as

εB(t ) = EB(t ) − min
U

Tr[HBUρB(t )U †], (7)

where U represents the unitary operator of the battery. The
min

U
Tr[HBUρB(t )U †] is the minimum energy obtained by the

unitary evolution of the battery at time t [1]. It can be ob-
tained by rearranging the eigenvalues of the density matrix
ρB in descending order and the eigenvalues of the Hamil-
tonian HB in ascending order, i.e., ρB(t ) = ∑

j�1 r j |r j〉〈r j |,
HB = ∑

j�1 ε j |ε j〉〈ε j |, where r1 � r2 � · · · � r j , ε1 � ε2 �
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FIG. 2. Panels (a) and (b) show the changes of the stored energy �EP
B (t ) and ergotropy εP

B (t ) over time t . The two figures show that
different numbers of spins are exposed to phase-flip noise. Here P = b (red solid line) indicates that the battery is exposed to phase-flip noise,
P = b + c (dark blue downward triangles) indicates that the battery and charger are exposed to the phase-flip noise, P = 1, 2, 3, 4, 5 (from
light blue dashed line to black upward triangles) indicates the number of spins in the charger exposed to phase-flip noise. Panel (c) shows the
steady-state energy EP

B (∞) (red dots), ergotropy εP
B (∞) (dark blue triangles), and the quantum information lost in the battery �SP

B (∞) (purple
squares) as a function of the number of spins exposed to the phase-flip noise P. The parameters Nc = 5, m = 5, Nb = 1, B = 1, h = 1, A = 1,
� = 0, κ = 1.

· · · � ε j . Equation (7) can be rewritten as [9]

εB(t ) = EB(t ) −
∑

j

r jε j . (8)

If the system is closed, energy will only flow between the
battery and charger. Therefore, the maximum energy that can
be stored is generally selected as the stored energy, expressed
as Emax = max[�EB(t )], the maximum energy that can be ex-
tracted is called the maximum ergotropy εmax = max[εB(t )].
Compared with the closed system, the energy and ergotropy of
the battery in the open system have no periodicity, but oscillate
in the initial stage and reach a steady state after a period of
time. When reaching the steady state, the energy that can be
stored is called the steady-state energy EB(∞), and the max-
imum energy that can be extracted is called the steady-state
ergotropy εB(∞) [27]. The larger the EB(∞) and εB(∞), the
more energy the battery can be stored and extracted at steady
state.

III. PERFORMANCE OF THE CENTRAL-SPIN
BATTERY IN A NOISY ENVIRONMENT

Consider the charger contains five spins (Nc = 5) and the
battery contains one spin (Nb = 1), the noisy type is phase-flip
noise, and Eq. (5) can be specifically written as

ρ̇(t ) = − i[H, ρ(t )] + κ (σz ⊗ I⊗5)[ρ]

+ κ (I ⊗ σz ⊗ I⊗4)[ρ] + · · ·
+ κ (I ⊗ I⊗4 ⊗ σz )[ρ], (9)

where κ represents the strength of phase-flip noise. The first
term represents the von Neumann equation term on the right
side of Eq. (9). The second term indicates that the battery spin
is exposed to the phase-flip noise. From the third to the last
terms indicate that one of the charger spins is exposed to the
phase-flip noise.

A. Number of spins exposed to the phase-flip noise
and the strength of noise

Set the initial state of the system to |ψ0〉 = |0〉b ⊗ |m〉c

(m = 5), where |m〉c is the Dicke state. Let’s consider the
effect of number of spins exposed to the phase-flip noise P on
the stored energy �EP

B (t ) and ergotropy εP
B (t ) of the battery,

as shown in Figs. 2(a) and 2(b). We observe that when the
battery is exposed to phase-flip noise, the steady-state en-
ergy is Eb

B(∞) = 0.5, the steady-state ergotropy is εb
B(∞) =

0. Moreover, the steady-state energy and ergotropy increase
with the increasing number of spins exposed to phase-flip
noise in the charger. When the battery and charger are com-
pletely exposed to phase-flip noise, the steady-state energy is
Eb+c

B (∞) ≈ 0.833, the steady-state ergotropy is εb+c
B (∞) ≈

0.667. Because phase-flip noise can cause quantum infor-
mation loss in the system, we use von Neumann entropy to
measure the quantum information of the density matrix ρ [42]:

S(ρ) = −Tr(ρ log2 ρ). (10)

So the quantum information lost in the battery during the
evolution process can be written as

�SB(t ) = S[ρB(t )] − S[ρB(0)]. (11)

We study the relationship between the �SP
B (t ) and the num-

ber of spins exposed to the phase-flip noise P, as shown in
Fig. 2(c). When P = b, we find that the �Sb

B(∞) = 1, the
quantum information is completely lost, and the battery is in
a completely mixed state, so the energy cannot be extracted.
However, when P = 1, 2, 3, 4, 5 and b + c, the quantum
information of the battery will not be completely lost, the
steady state is not completely mixed, and the energy can be
partially extracted. The EP

B (∞) and εP
B (∞) are correlated with

the �SP
B (∞) negatively, as shown in Fig. 2(c). When the

battery and charger are exposed to the phase-flip noise, the
battery has the best performance. So in the following study,
we consider the case that the battery and charger are exposed
to phase-flip noise.

In addition, we find that when the battery and charger are
completely exposed to phase-flip noise, the value of steady-
state energy can be written as 5/6. This seems unusual. We
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FIG. 3. Panel (a) shows the variation of steady-state energy Eb+c
B (∞) with the number of up spins of all charger spins m, here Nb = 1,

Nc = 5. Panel (b) shows the variation of steady-state energy Eb+c
B (∞) with the spin numbers in charger Nc, here Nb = 1, m = 3. Panel (c) shows

the variation of steady-state energy Eb+c
B (∞) with the spin numbers in battery Nb, here Nc = 5, m = 5. The other parameters are same as Fig. 2.

summarize the law by numerical calculations, as shown in
Fig. 3. It was found that when the battery is in the ground
state, the steady-state energy is

Eb+c
B (∞) = Nb

m

Nb + Nc
, (12)

where m represents the number of up spins of all charger
spins. Nb and Nc are the spin numbers in battery and charger,
respectively. Phase-flip noise describes the loss of quantum
information in a system without the loss of energy [42]. So,
when the phase-flip noise is applied to each charger spin in
the excited state, it does not reduce the energy of each charger
spin. When the phase-flip noise is applied to each battery spin
in the ground state, it does not increase the energy of each
battery spin. As an environment, phase-flip noise will stabilize
the whole system. Because the steady-state density matrix of
all the spins is the same, the energy can only be distributed
averagely throughout the system to achieve stability. So the
steady-state energy can be expressed as Eq. (12). Since the
steady-state energy of the battery is determined, the steady-
state density matrix is determined. According to Eq. (8), the
steady-state ergotropy can be determined.

The strength of noise κ is also an important parameter af-
fecting the performance of central-spin quantum battery in an
open environment. We discuss the influence of the strength of
noise κ on the stored energy �Eb+c

B (t ) and ergotropy εb+c
B (t ),

as shown in Figs. 4(a) and 4(b). We find that the change of
κ does not affect the Eb+c

B (∞) and εb+c
B (∞). Before reaching

the steady state, the oscillation amplitude of the stored energy

and ergotropy of the battery, and the time to reach the steady
state are related to the κ . The smaller the κ , the greater the
oscillation amplitude of the stored energy and ergotropy of
the battery, and the longer the time to reach the steady state.
At the same time, we study the change of �Sb+c

B with κ . From
Fig. 4(c), we find that the �Sb+c

B does not change with κ . Be-
cause the �Sb+c

B is unchanged, which leads to an unchanged
mixed degree of the steady state, the Eb+c

B (∞) and εb+c
B (∞)

remain unchanged.

B. Effective magnetic-field strength of battery and charger

We investigate the changes of the steady-state energy
Eb+c

B (∞) and ergotropy εb+c
B (∞) of the battery with the ef-

fective magnetic-field strength of battery B and charger h,
respectively, as shown in Fig. 5. Through Fig. 5(a), we find
that the Eb+c

B (∞) and εb+c
B (∞) increase proportionally with

the increase of B. This is because the change of B does not
affect the steady-state density matrix of the battery, but the en-
ergy eigenvalue is proportional to B. On the contrary, Fig. 5(b)
shows that the Eb+c

B (∞) and εb+c
B (∞) are independent of h.

This is because h neither changes the steady-state density
matrix nor the energy eigenvalue of the battery.

In a closed central-spin system, when B = h, that is, reso-
nance, the maximum energy Emax and ergotropy εmax reach
the peak value [8]. According to the results in the above
paragraph, when the system is in the phase-flip noisy envi-
ronment, the Eb+c

B (∞) and εb+c
B (∞) are only related to B and

not related to h. In other words, when B is a constant, the

FIG. 4. Panels (a) and (b) show the evolutions of the stored energy �Eb+c
B (t ) and ergotropy εb+c

B (t ) over time t with the different strength
of noise κ = 0.1, 0.3, 0.5, 0.7, 0.9, respectively (from light blue solid line to dark blue upward triangles). Panel (c) shows the evolution of
quantum information lost �Sb+c

B (t ) over time t in the battery with the different strength of noise κ = 0.1, 0.3, 0.5, 0.7, 0.9, respectively (from
light blue solid line to dark blue upward triangles). The other parameters are same as Fig. 2.
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FIG. 5. Panel (a) shows the variations of the steady-state energy Eb+c
B (∞) (red solid line) and ergotropy εb+c

B (∞) (dark blue dashed line)
with the effective magnetic-field strength of battery B. Panel (b) shows the variations of the steady-state energy Eb+c

B (∞) (red solid line) and
ergotropy εb+c

B (∞) (dark blue dashed line) with the effective magnetic-field strength of charger h. The other parameters are same as Fig. 2.

value of h/B only affects the Emax and εmax in the closed
central-spin system, and does not affect the Eb+c

B (∞) and
εb+c

B (∞) in the phase-flip noisy environment. We calculate
the Emax and εmax in the closed central-spin system and the
Eb+c

B (∞) and εb+c
B (∞) in the phase-flip noisy environment

with the change of h/B, as shown in Fig. 6. It is shown that
for a closed system, when B is a constant and |h/B − 1| = 0,
the Emax and εmax can reach the peak value, and the larger
the value of |h/B − 1|, the smaller the Emax and εmax. While
the Eb+c

B (∞) and εb+c
B (∞) in the phase-flip noisy environ-

ment are independent of |h/B − 1|. So, we conclude that in
the central-spin system, when B is a constant and |h/B − 1|
reaches a certain value, the Eb+c

B (∞) and εb+c
B (∞) in the

phase-flip noisy environment will always be greater than or
equal to the Emax and εmax in the corresponding closed system.

In addition, we also proved this conclusion in other
battery models [23]. We consider the steady-state energy
Eb+c

B (∞) and ergotropy εb+c
B (∞) under the phase-flip noise

of the two-qubit, two-harmonic-oscillator, and harmonic-
oscillator-qubit models, and compare them with the maximum
energy Emax and ergotropy εmax of the corresponding closed
system.

Considering that the charger C and battery B are qubits, the
total Hamiltonian can be written as

H1 = ωb
σ z

B

2
+ ωc

σ z
C

2
+ g(σ−

C σ+
B + σ+

C σ−
B ), (13)

where ωc is the energy level spacing of the charger, ωb is
the energy level spacing of the battery, and g is the cou-
pling strength of the battery and charger. σ

x,y,z
B,C represent the

Pauli operators acting on system B or C, and σ±
B,C = (σ x

B,C ±
iσ y

B,C )/2 represent the up and down operators of the qubit.
Assume that the battery is in the ground state and the

charger is in the excited state at the initial time, and consider
that the charger and battery are exposed to phase-flip noise.
We calculate the Emax and εmax in the closed system and the
Eb+c

B (∞) and εb+c
B (∞) in the phase-flip noisy environment

with the change of ωc/ωb, as shown in Fig. 7. We can find
that the steady-state energy is Eb+c

B (∞) = 0.5, steady-state
ergotropy is εb+c

B (∞) = 0. The conclusion is verified that
when ωb is a constant and |ωc/ωb − 1| reaches a certain
value, the Eb+c

B (∞) and εb+c
B (∞) in the phase-flip noisy en-

vironment will always be greater than or equal to the Emax

and εmax of the corresponding closed system. Similarly, we

FIG. 6. Panel (a) shows the variations of maximum energy Emax (dark blue dashed line) in the closed central-spin system and steady-state
energy Eb+c

B (∞) (red solid line) in the phase-flip noisy environment with h/B. Panel (b) shows the variations of maximum ergotropy εmax (dark
blue dashed line) in the closed central-spin system and steady-state ergotropy εb+c

B (∞) (red solid line) in the phase-flip noisy environment with
h/B. Here Nc = 5, m = 5, Nb = 1, B = 1, A = 1, � = 0, κ = 1.
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FIG. 7. Panel (a) shows that the maximum energy Emax (dark blue dashed line) in the closed two-qubit system and steady-state energy
Eb+c

B (∞) (red solid line) in the phase-flip noisy environment vary with ωc/ωb changes. Panel (b) shows that the maximum ergotropy εmax (dark
blue dashed line) in the closed two-qubit system and steady-state ergotropy εb+c

B (∞) (red solid line) in the phase-flip noisy environment vary
with ωc/ωb changes. Here ωb = 1, g = 0.1, κ = 1.

can get this conclusion in the two-harmonic-oscillator and
harmonic-oscillator-qubit models, see Appendix A. When the
environment is bit-flip noise, we find that there are similar
conclusions in the above four models, see Appendix B. In
three models, we analytically demonstrate the variation of
Emax and εmax with ωc, see Appendix C.

IV. PERFORMANCE OF THE CENTRAL-SPIN BATTERY
IN A THERMAL BATH

Because it is difficult to reach absolute zero under actual
experimental conditions, quantum systems are often in a ther-
mal bath. It is necessary to study the performance of quantum
battery in the thermal bath [18,24,43–47]. In this section, we
mainly study the performance of the central-spin battery in a
thermal bath. The charger contains five spins (Nc = 5) and the
battery contains one spin (Nb = 1). At the initial moment, the
system is in the state |ψ0〉 = |0〉b ⊗ |m〉c (m = 1). And con-
sider the process where the thermal bath acts on the charger
and then transfers energy to the battery through the interaction
of the battery and charger.

A. Global or local operations and the mean occupation
number of the thermal bath

We first consider the effect of the global or local operations
of the thermal bath on the stored energy and ergotropy. Global
operation refers to the thermal bath acting on all charger spins,
while local operation refers to the thermal baths acting on each
charger spin. The master equation for the thermal bath acting
on the charger through the global operation can be written as

ρ̇(t ) = − i[H, ρ(t )] + γ nB(I ⊗ J+)[ρ]

+ γ (nB + 1)(I ⊗ J−)[ρ], (14)

where γ is the spontaneous emission rate of the charger,
nB = 1/{exp[ωc/(kBT )] − 1} denotes the mean occupation
number of the thermal bath. The second and third terms on
the right side of Eq. (14) represent the process of the charger
absorbing and releasing photons when a thermal bath acts on
the five charger spins. The master equation for the thermal
baths acting on the charger through the local operation can be

written as

ρ̇(t ) = − i[H, ρ(t )] + γ nB(I ⊗ σ+ ⊗ I⊗4)[ρ]

+ γ (nB + 1)(I ⊗ σ− ⊗ I⊗4)[ρ] + · · ·
+ γ nB(I ⊗ I⊗4 ⊗ σ+)[ρ]

+ γ (nB + 1)(I ⊗ I⊗4 ⊗ σ−)[ρ]. (15)

The second to the last terms on the right side of Eq. (15)
represent the process of the charger absorbing and releasing
photons when five thermal baths act on five charger spins,
respectively. For the global or local operations of the thermal
bath, we solve the stored energy �EB(t ) over time, as shown
in Fig. 8. From the numerical results, it can be seen that
regardless of whether the thermal bath acts globally or locally
on the charger, the steady-state energy is the same. In addition,
the steady state is a thermal state. In this state, the energy is
equal to the minimum energy that can be obtained after the
unitary transformation. So the steady-state ergotropy is zero
[23,27]. Although the steady-state ergotropy of the battery is
zero, we believe that the study of steady-state energy is of

FIG. 8. The evolution of stored energy �EB(t ) with time t , where
the red solid line represents the global operation of thermal bath
on the charger, and the dark blue dashed line represents the local
operation of thermal bath on the charger. The parameters Nc = 5,
m = 1, Nb = 1, B = 1, h = 1, A = 1, � = 0, γ = 1, nB = 2.
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FIG. 9. The variation of steady-state energy EB(∞) with the
mean occupation number of thermal bath nB. The other parameters
are same as Fig. 8.

great significance. Ergotropy is the maximum energy that can
be extracted by any unitary operations. Considering nonuni-
tary operations, more energy will be extracted. Therefore,
even if the steady-state ergotropy is zero in the current defi-
nition, it is still worthwhile to study the steady-state energy in
this case.

Based on the above analysis, the influence of mean occu-
pation number of the thermal bath nB on the performance of
central-spin battery should not be underestimated. Consider
that the thermal bath acts on the charger in global operation.
From Fig. 9, we can see that the EB(∞) gradually increases
with the increasing nB and tends to a stable value.

B. Effective magnetic-field strength of battery and charger

Since the steady-state ergotropy of the battery is zero, we
only calculate the steady-state energy EB(∞) in the thermal
bath with respect to the effective magnetic field of battery B
and charger h, respectively, as shown in Fig. 10. Similarly, by
Fig. 10(a), we find that the EB(∞) increases proportionally
with the increase of B. This is because the steady state of the
battery is the thermal state, which is independent of B, and
the energy eigenvalue is proportional to B. On the contrary,
Fig. 10(b) shows that the EB(∞) is independent of h. This is

because the steady state and energy eigenvalues of the battery
are independent of h.

In addition, we calculate the maximum energy Emax and
ergotropy εmax in the closed central-spin system and the
steady-state energy EB(∞) and ergotropy εB(∞) in the ther-
mal bath with the change of h/B, as shown in Fig. 11. For
a closed system, it is shown that when B is a constant and
|h/B − 1| = 0, the Emax and εmax have peak values. The Emax

and εmax decrease with the increasing |h/B − 1|. In contrast,
in the thermal bath, the value of EB(∞) and εB(∞) are
independent of |h/B − 1|. Therefore, we conclude that in
a central-spin system, when B is a constant and |h/B − 1|
reaches a certain value, the EB(∞) and εB(∞) in the thermal
bath will always be greater than or equal to the Emax and εmax

in the corresponding closed system.
Furthermore, we consider the steady-state energy EB(∞)

and ergotropy εB(∞) of the battery in the thermal bath for the
two-qubit, two-harmonic-oscillator, and harmonic-oscillator-
qubit models, and compare them with the maximum energy
Emax and ergotropy εmax of the corresponding closed system.
Let the battery in the ground state and charger in the ex-
cited state at the initial moment, the thermal bath acts on
the charger. We calculate the Emax and εmax in the closed
two-qubit system and the EB(∞) and εB(∞) in the thermal
bath with the change of ωc/ωb, as shown in Fig. 12. We find
that the two-qubit model is also consistent with the conclusion
that when ωb is a constant and |ωc/ωb − 1| reaches a certain
value, the EB(∞) and εB(∞) in the thermal bath will always
be greater than or equal to the Emax and εmax of the corre-
sponding closed system. Similarly, we can get this conclusion
in the two-harmonic-oscillator and harmonic-oscillator-qubit
models, see Appendix A.

V. CONCLUSION

Generally speaking, the interaction between the system
and environment will lead to decoherence of the system and
negative effect in battery performance. Therefore, it is sig-
nificant to design batteries that use the environment itself
to improve performance. We considered the performance of
the central-spin battery in two different environments. In the
phase-flip noisy environment, we found that the steady-state

FIG. 10. Panel (a) shows the variation of steady-state energy EB(∞) with the effective magnetic-field strength of battery B. Panel (b) shows
the variation of steady-state energy EB(∞) with the effective magnetic-field strength of charger h. The other parameters are same as Fig. 8.
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FIG. 11. Panel (a) represents the maximum energy Emax (dark blue dashed line) in the closed central-spin system and steady-state energy
EB(∞) (red solid line) in the thermal bath as a function of h/B. Panel (b) represents the maximum ergotropy εmax (dark blue dashed line) in
the closed central-spin system and steady-state ergotropy εB(∞) (red solid line) in the thermal bath as a function of h/B. Here Nc = 5, m = 1,
Nb = 1, B = 1, A = 1, � = 0, γ = 1, nB = 2.

energy and ergotropy are related to the number of spins ex-
posed to the noisy channel, but independent of the strength
of noise. We investigated the relationship between the stored
energy, ergotropy, and the quantum information lost in the
battery during the evolution process. In addition, we found
that the more information lost, the smaller the steady-state
energy and ergotropy. In the thermal bath, we found that
the steady-state energy and ergotropy increase with the mean
occupation number of the thermal bath, independent of the
global or local operations of the thermal bath.

In particular, in both of these environments, we found
that the steady-state energy and ergotropy are related to the
effective magnetic-field strength of battery B, but not charger
h. However, the maximum energy and ergotropy of the closed
central-spin system are related to B and h. When B is a con-
stant and |h/B − 1| = 0, the maximum energy and ergotropy
reach the peak value. The maximum energy and ergotropy
decrease with the |h/B − 1| increases. Therefore, it is shown
that in the central-spin model, when B is a constant and
|h/B − 1| reaches a certain value, the steady-state energy and
ergotropy in the open system (including the thermal bath,
phase-flip noise, and bit-flip noise) are always greater than
or equal to the maximum energy and ergotropy in the closed

system. The conclusion has also been validated analytically
and numerically in the two-qubit, two-harmonic-oscillator,
and harmonic-oscillator-qubit models.

We believe that the results in this paper can contribute to
the study of the performance of quantum batteries in open
systems and our work is of great help to the experimental
realization of the quantum battery.
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APPENDIX A

Considering that the charger and battery are harmonic os-
cillators, the total Hamiltonian can be written as

H2 = ωbb†b + ωcc†c + g(c†b + cb†), (A1)

FIG. 12. Panel (a) shows that the maximum energy Emax (dark blue dashed line) in the closed two-qubit system and steady-state energy
EB(∞) (red solid line) in the thermal bath vary with ωc/ωb changes. Panel (b) shows that the maximum ergotropy εmax (dark blue dashed line)
in the closed two-qubit system and steady-state ergotropy εB(∞) (red solid line) in the thermal bath vary with ωc/ωb changes. Here ωb = 1,
g = 0.1, γ = 1, nB = 2.
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FIG. 13. Panel (a) shows that the maximum energy Emax (dark blue dashed line) in the closed two-harmonic-oscillator system and steady-
state energy Eb+c

B (∞) (red solid line) in the phase-flip noisy environment vary with ωc/ωb changes. Panel (b) shows that the maximum
ergotropy εmax (dark blue dashed line) in the closed two-harmonic-oscillator system and steady-state ergotropy εb+c

B (∞) (red solid line) in the
phase-flip noisy environment vary with ωc/ωb changes. The other parameters are same as Fig. 7.

where ωc is the frequency of the charger, ωb is the frequency
of the battery, and g is the coupling strength of the battery and
charger. Here, b, c (b†, c†) are the boson annihilation (creation)
operators for the battery and charger.

Considering that the battery is a qubit, the charger is a
harmonic oscillator, the total Hamiltonian can be written as

H3 = ωb
σ z

B

2
+ ωcc†c + g(c†σ−

B + cσ+
B ), (A2)

where ωc is the frequency of the charger, ωb is the energy level
spacing of the battery, and g is the coupling strength of the
battery and charger. Here, σ

x,y,z
B represents the Pauli operator

acting on the battery, and σ±
B = (σ x

B ± iσ y
B )/2 represent the

up and down operators of the qubit. In addition, c (c†) is the
boson annihilation (creation) operator for the charger.

Assume that the battery is in the ground state and the
charger is in the excited state at the initial time. For the
above two models, we calculate the Emax and εmax in the
closed system and the Eb+c

B (∞) and εb+c
B (∞) in the phase-flip

noisy environment with the change of ωc/ωb, as shown in
Figs. 13 and 14. Moreover, we also consider the case that the

environment is a thermal bath which acts on the charger. For
the above two models, we calculate the Emax and εmax in the
closed system and the Eb+c

B (∞) and εb+c
B (∞) in the thermal

bath with the change of ωc/ωb, as shown in Figs. 15 and 16.
The conclusions are verified in the two-harmonic-oscillator
and harmonic-oscillator-qubit models that when ωb is a con-
stant and |ωc/ωb − 1| reaches a certain value, the Eb+c

B (∞)
and εb+c

B (∞) in the phase-flip noisy environment and the
thermal bath will always be greater than or equal to the Emax

and εmax of the corresponding closed system.

APPENDIX B

Let the initial state of the central-spin model be |ψ0〉 =
|0〉b ⊗ |m〉c (m = 5), and consider the case where both the
charger and battery are exposed to bit-flip noise. We calculate
the maximum energy Emax and ergotropy εmax in the closed
central-spin system and the steady-state energy Eb+c

B (∞) and
ergotropy εb+c

B (∞) in the bit-flip noisy environment with
the change of h/B, as shown in Fig. 17. We find that the
central-spin model in bit-flip noise is still consistent with the

FIG. 14. Panel (a) shows that the maximum energy Emax (dark blue dashed line) in the closed harmonic-oscillator-qubit system and steady-
state energy Eb+c

B (∞) (red solid line) in the phase-flip noisy environment vary with ωc/ωb changes. Panel (b) shows that the maximum
ergotropy εmax (dark blue dashed line) in the closed harmonic-oscillator-qubit system and steady-state ergotropy εb+c

B (∞) (red solid line) in the
phase-flip noisy environment vary with ωc/ωb changes. The other parameters are same as Fig. 7.
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FIG. 15. Panel (a) shows that the maximum energy Emax (dark blue dashed line) in the closed two-harmonic-oscillator system and steady-
state energy Eb+c

B (∞) (red solid line) in the thermal bath vary with ωc/ωb changes. Panel (b) shows that the maximum ergotropy εmax (dark
blue dashed line) in the closed two-harmonic-oscillator system and steady-state ergotropy εb+c

B (∞) (red solid line) in the thermal bath vary
with ωc/ωb changes. The other parameters are same as Fig. 12.

conclusion in Sec. III B. That is, in a central-spin system,
when B is a constant and |h/B − 1| reaches a certain value,
the Eb+c

B (∞) and εb+c
B (∞) in the bit-flip noisy environment

will always be greater than or equal to the Emax and εmax in
the corresponding closed system. We demonstrate this result
in the two-qubit model, as shown in Fig. 18. Similarly, we
can get this conclusion in the two-harmonic-oscillator and
harmonic-oscillator-qubit models.

APPENDIX C

In Figs. 9, 12–16, 18, we note that the Emax and εmax of the
two-qubit, two-harmonic-oscillator, and harmonic-oscillator-
qubit models change the same with ωb in the closed case. To
explain this phenomenon, we give the analytical expressions
of Emax and εmax of the three models.

When the battery and charger are qubits, the Hamiltonian
is Eq. (13). Since the system dynamics of two quibts are
enclosed in a two-dimensional subspace consisting of |gb, ec〉
and |eb, gc〉, the Hamiltonian of Eq. (13) can be rewritten

as a matrix:

H1 =
[

(ωc − ωb)/2 g
g (ωb − ωc)/2

]
, (C1)

where |gb〉 and |eb〉 (|gc〉 and |ec〉) represent the ground
state and excited state of the battery (charger), respec-
tively. The eigenvalues of the Hamiltonian are E+ =√

g2 + [(ωc − ωb)/2]2 and E− = −
√

g2 + [(ωc − ωb)/2]2.
The corresponding eigenstates are |ψ+〉 = (X |gb, ec〉 +
|eb, gc〉)/α and |ψ−〉 = (Y |gb, ec〉 + |eb, gc〉)/β, where α

and β are the normalization constants of |ψ+〉 and
|ψ−〉, X = (ωc − ωb)/2g +

√
g2 + [(ωc − ωb)/2]2/g, Y =

(ωc − ωb)/2g −
√

g2 + [(ωc − ωb)/2]2/g. The initial moment
of the battery is in the ground state, the charger is in the
excited state, and the evolution equation of the initial state
over time can be expressed as

|ψ (t )〉 = e−iH1t |gb, ec〉 = e−iH1t (α|ψ+〉 − β|ψ−〉)

X − Y

= αe−iE+t |ψ+〉 − βe−iE−t |ψ−〉
X − Y

. (C2)

FIG. 16. Panel (a) shows that the maximum energy Emax (dark blue dashed line) in the closed harmonic-oscillator-qubit system and steady-
state energy Eb+c

B (∞) (red solid line) in the thermal bath vary with ωc/ωb changes. Panel (b) shows that the maximum ergotropy εmax (dark
blue dashed line) in the closed harmonic-oscillator-qubit system and steady-state ergotropy εb+c

B (∞) (red solid line) in the thermal bath vary
with ωc/ωb changes. The other parameters are same as Fig. 12.
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FIG. 17. Panel (a) shows the variations of maximum energy Emax (dark blue dashed line) in the closed central-spin system and steady-state
energy Eb+c

B (∞) (red solid line) in the bit-flip noisy environment with h/B. Panel (b) shows the variations of maximum ergotropy εmax (dark
blue dashed line) in the closed central-spin system and steady-state ergotropy εb+c

B (∞) (red solid line) in the bit-flip noisy environment with
h/B. The other parameters are same as Fig. 6.

At time t , the density matrix of the battery can be written as

ρB(t ) = TrC[|ψ (t )〉〈ψ (t )|]
= 〈ec|ψ (t )〉〈ψ (t )|ec〉 + 〈gc|ψ (t )〉〈ψ (t )|gc〉. (C3)

The free Hamiltonian of the battery is HB
1 = ωbσ

z
B/2 =

ωb(|eb〉〈eb| − |gb〉〈gb|)/2. According to Eq. (6)

EB(t ) = Tr
[
HB

1 ρB(t )
] = ωb

2(X − Y )2
{ 2 − 2 cos(2E+t )

− [X 2 + Y 2 − 2XY cos(2E+t )]}. (C4)

The maximum energy that can be stored in the evolution
of a battery is called the maximum energy, that is, Emax =
max[EB(t ) − EB(0)]. At the initial moment, the battery is
in the ground state, and the ground-state energy is EB(0) =
−ωb/2. Through calculation, we find that XY = −1. So when
cos(2E+t ) = −1, EB(t ) has the maximum value. The expres-
sion for Emax is as follows:

Emax = max[EB(t ) − EB(0)] = 4ωb

(X − Y )2 . (C5)

We arrange the eigenvalues of the battery Hamiltonian HB
1 in

ascending order to obtain ε1 = −ωb/2 and ε2 = ωb/2. The
density matrix of the battery over time is written in the matrix
form as

ρB(t ) =
[ 2−2 cos(2E+t )

(X−Y )2 0

0 X 2+Y 2−2XY cos(2E+t )
(X−Y )2

]
. (C6)

When X 2 + Y 2 − 2XY cos(2E+t ) � 2 − 2 cos(2E+t ), that
is, cos(2E+t ) � (X 2 + Y 2 − 2)/(2XY − 2), we arrange the
eigenvalues of the density matrix of the battery in descending
order to obtain r1 = [X 2 + Y 2 − 2XY cos(2E+t )]/(X − Y )2

and r2 = [2 − 2 cos(2E+t )]/(X − Y )2. According to Eq. (8),
εB(t ) = EB(t ) − (r1ε1 + r2ε2). According to the calculation,
in this case, the ergotropy is 0. So εmax = max[εB(t )] =
0. When X 2 + Y 2 − 2XY cos(2E+t ) � 2 − 2 cos(2E+t ), that
is, cos(2E+t ) � (X 2 + Y 2 − 2)/(2XY − 2), we arrange the
eigenvalues of the density matrix of the battery in descend-
ing order to obtain r1 = [2 − 2 cos(2E+t )]/(X − Y )2 and
r2 = [X 2 + Y 2 − 2XY cos(2E+t )]/(X − Y )2. According to

FIG. 18. Panel (a) shows that the maximum energy Emax (dark blue dashed line) in the closed two-qubit system and steady-state energy
Eb+c

B (∞) (red solid line) in the bit-flip noisy environment vary with ωc/ωb changes. Panel (b) shows that the maximum ergotropy εmax (dark
blue dashed line) in the closed two-qubit system and steady-state ergotropy εb+c

B (∞) (red solid line) in the bit-flip noisy environment vary with
ωc/ωb changes. The other parameters are same as Fig. 7.
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Eq. (8),

εB(t ) = EB(t ) − (r1ε1 + r2ε2) = ωb

(X − Y )2 [2 − 2 cos(2E+t )

− (X 2 + Y 2 − 2XY cos(2E+t )]. (C7)

Since XY = −1, the ergotropy of the battery can be max-
imized when cos(2E+t ) is taken as the minimum value.
Bringing the values of X and Y into (X 2 + Y 2 − 2)/(2XY −
2), we can find that (X 2 + Y 2 − 2)/(2XY − 2) = −(ωc −
ωb)2/4g2. The value range of (X 2 + Y 2 − 2)/(2XY − 2)
is [0,−∞). Since cos(2E+t ) � (X 2 + Y 2 − 2)/(2XY − 2),
εmax needs to be discussed in two cases. In the first case,
when (X 2 + Y 2 − 2)/(2XY − 2) � −1, cos(2E+t ) can obtain
a minimum value of −1, and the ergotropy has a maximum
value, which is expressed as

εmax = ωb

(X − Y )2 [4 − (X + Y )2]. (C8)

In the second case, when −1 < (X 2 + Y 2 − 2)/(2XY − 2) �
0, cos(2E+t ) can obtain a minimum value of (X 2 + Y 2 −
2)/(2XY − 2), and the ergotropy has a maximum value. By
calculation, we find that the maximum value of the ergotropy
is equal to 0.

Using the same approach, we can analytically calculate
the Emax and εmax of two-harmonic-oscillator and harmonic-
oscillator-qubit models. We find that the Emax and εmax of
these models are same as the two-qubit model. Considering
that the harmonic oscillator and qubit are two-dimensional, by
comparing the Hamiltonian of the harmonic oscillator and the
qubit, we can find that they choose different ground states, but
the energy level spacing is the same. In the study of quantum
battery, we focus on the change in energy and ergotropy,
which is related to the spacing of energy levels. So, we can
see that the dark blue dashed lines in Figs. 9, 12–16, 18 are
the same.

[1] R. Alicki and M. Fannes, Entanglement boost for extractable
work from ensembles of quantum batteries, Phys. Rev. E 87,
042123 (2013).

[2] K. V. Hovhannisyan, M. Perarnau-Llobet, M. Huber, and A.
Acín, Entanglement generation is not necessary for optimal
work extraction, Phys. Rev. Lett. 111, 240401 (2013).

[3] F. Campaioli, F. A. Pollock, F. C. Binder, L. Céleri, J. Goold, S.
Vinjanampathy, and K. Modi, Enhancing the charging power of
quantum batteries, Phys. Rev. Lett. 118, 150601 (2017).

[4] L. P. García-Pintos, A. Hamma, and A. del Campo, Fluctua-
tions in extractable work bound the charging power of quantum
batteries, Phys. Rev. Lett. 125, 040601 (2020).

[5] D. Ferraro, M. Campisi, G. M. Andolina, V. Pellegrini, and M.
Polini, High-power collective charging of a solid-state quantum
battery, Phys. Rev. Lett. 120, 117702 (2018).

[6] D. Rossini, G. M. Andolina, and M. Polini, Many-body local-
ized quantum batteries, Phys. Rev. B 100, 115142 (2019).

[7] D. Rosa, D. Rossini, G. M. Andolina, M. Polini, and M.
Carrega, Ultra-stable charging of fast-scrambling SYK quan-
tum batteries, J. High Energ. Phys. 11 (2020) 067.

[8] L. Peng, W. B. He, S. Chesi, H. Q. Lin, and X. W. Guan, Lower
and upper bounds of quantum battery power in multiple central
spin systems, Phys. Rev. A 103, 052220 (2021).

[9] X. Y. Yang, Y. H. Yang, M. Alimuddin, R. Salvia, S. M. Fei,
L. M. Zhao, S. Nimmrichter, and M. X. Luo, Battery capacity of
energy-storing quantum systems, Phys. Rev. Lett. 131, 030402
(2023).

[10] A. Delmonte, A. Crescente, M. Carrega, D. Ferraro, and S.
Sassetti, Characterization of a two-photon quantum battery:
Initial conditions, stability and work extraction, Entropy 23, 612
(2021).

[11] J. X. Liu, H. L. Shi, Y. H. Shi, X. H. Wang, and W. L. Yang,
Entanglement and work extraction in the central-spin quantum
battery, Phys. Rev. B 104, 245418 (2021).

[12] S. Julià-Farré, T. Salamon, A. Riera, M. N. Bera, and M.
Lewenstein, Bounds on the capacity and power of quantum
batteries, Phys. Rev. Res. 2, 023113 (2020).

[13] F. H. Kamin, F. T. Tabesh, S. Salimi, and A. C. Santos, Entan-
glement, coherence, and charging process of quantum batteries,
Phys. Rev. E 102, 052109 (2020).

[14] H. L. Shi, S. Ding, Q. K. Wan, X. H. Wang, and W. L. Yang,
Entanglement, coherence, and extractable work in quantum bat-
teries, Phys. Rev. Lett. 129, 130602 (2022).

[15] L. Wang, S. Q. Liu, F. L. Wu, H. Fan, and S. Y. Liu, Two-mode
Raman quantum battery dependent on coupling strength, Phys.
Rev. A 108, 062402 (2023).

[16] J. Q. Quach, K. E. McGhee, L. Ganzer, D. M. Rouse, B. W.
Lovett, E. M. Gauger, J. Keeling, G. Cerullo, D. G. Lidzey, and
T. Virgili, Superabsorption in an organic microcavity: Toward a
quantum battery, Sci. Adv. 8, eabk3160 (2022).

[17] F. Q. Dou and F. M. Yang, Superconducting transmon qubit-
resonator quantum battery, Phys. Rev. A 107, 023725 (2023).

[18] S. Ghosh, T. Chanda, S. Mal, and A. Sen(De), Fast charging of
a quantum battery assisted by noise, Phys. Rev. A 104, 032207
(2021).

[19] V. Shaghaghi, V. Singh, M. Carrega, D. Rosa, and G. Benenti,
Lossy micromaser battery: almost pure states in the jaynescum-
mings regime, Entropy 25, 430 (2023).

[20] S. Gherardini, F. Campaioli, F. Caruso, and F. C. Binder, Sta-
bilizing open quantum batteries by sequential measurements,
Phys. Rev. Res. 2, 013095 (2020).

[21] A. C. Santos, Quantum advantage of two-level batteries in the
self-discharging process, Phys. Rev. E 103, 042118 (2021).

[22] S. Y. Bai and J. H. An, Floquet engineering to reactivate a dis-
sipative quantum battery, Phys. Rev. A 102, 060201(R) (2020).

[23] D. Farina, G. M. Andolina, A. Mari, M. Polini, and V.
Giovannetti, Charger-mediated energy transfer for quantum bat-
teries: An open-system approach, Phys. Rev. B 99, 035421
(2019).

[24] J. Q. Quach and W. J. Munro, Using dark states to charge and
stabilize open quantum batteries, Phys. Rev. Appl. 14, 024092
(2020).

[25] M. Carrega, A. Crescente, D. Ferraro, and M. Sassetti, Dissi-
pative dynamics of an open quantum battery, New J. Phys. 22,
083085 (2020).

[26] F. Barra, Dissipative charging of a quantum battery, Phys. Rev.
Lett. 122, 210601 (2019).

[27] F. Zhao, F. Q. Dou, and Q. Zhao, Quantum battery of interacting
spins with environmental noise, Phys. Rev. A 103, 033715
(2021).

042411-12

https://doi.org/10.1103/PhysRevE.87.042123
https://doi.org/10.1103/PhysRevLett.111.240401
https://doi.org/10.1103/PhysRevLett.118.150601
https://doi.org/10.1103/PhysRevLett.125.040601
https://doi.org/10.1103/PhysRevLett.120.117702
https://doi.org/10.1103/PhysRevB.100.115142
https://doi.org/10.1007/JHEP11(2020)067
https://doi.org/10.1103/PhysRevA.103.052220
https://doi.org/10.1103/PhysRevLett.131.030402
https://doi.org/10.3390/e23050612
https://doi.org/10.1103/PhysRevB.104.245418
https://doi.org/10.1103/PhysRevResearch.2.023113
https://doi.org/10.1103/PhysRevE.102.052109
https://doi.org/10.1103/PhysRevLett.129.130602
https://doi.org/10.1103/PhysRevA.108.062402
https://doi.org/10.1126/sciadv.abk3160
https://doi.org/10.1103/PhysRevA.107.023725
https://doi.org/10.1103/PhysRevA.104.032207
https://doi.org/10.3390/e25030430
https://doi.org/10.1103/PhysRevResearch.2.013095
https://doi.org/10.1103/PhysRevE.103.042118
https://doi.org/10.1103/PhysRevA.102.060201
https://doi.org/10.1103/PhysRevB.99.035421
https://doi.org/10.1103/PhysRevApplied.14.024092
https://doi.org/10.1088/1367-2630/abaa01
https://doi.org/10.1103/PhysRevLett.122.210601
https://doi.org/10.1103/PhysRevA.103.033715


BETTER PERFORMANCE OF QUANTUM BATTERIES IN … PHYSICAL REVIEW A 109, 042411 (2024)

[28] K. Xu, H. J. Zhu, G. F. Zhang, and W. M. Liu, Enhancing
the performance of an open quantum battery via environment
engineering, Phys. Rev. E 104, 064143 (2021).

[29] K. Xu, H. G. Li, Z. G. Li, H. J. Zhu, G. F. Zhang, and W. M. Liu,
Charging performance of quantum batteries in a double-layer
environment, Phys. Rev. A 106, 012425 (2022).

[30] F. H. Kamin, F. T. Tabesh, S. Salimi, F. Kheirandish, and
A. C. Santos, Non-Markovian effects on charging and self-
discharging process of quantum batteries, New J. Phys. 22,
083007 (2020).

[31] M. T. Mitchison, J. Goold, and J. Prior, Charging a quan-
tum battery with linear feedback control, Quantum 5, 500
(2021).

[32] Y. Yao and X. Q. Shao, Optimal charging of open spin-chain
quantum batteries via homodyne-based feedback control, Phys.
Rev. E 106, 014138 (2022).

[33] Y. Yao and X. Q. Shao, Stable charging of a Rydberg quan-
tum battery in an open system, Phys. Rev. E 104, 044116
(2021).

[34] S. Tirone, R. Salvia, S. Chessa, and V. Giovannetti, Work ex-
traction processes from noisy quantum batteries: The role of
nonlocal resources, Phys. Rev. Lett. 131, 060402 (2023).

[35] M. B. Arjmandi, H. Mohammadi, and A. C. Santos, Enhanc-
ing self-discharging process with disordered quantum batteries,
Phys. Rev. E 105, 054115 (2022).

[36] A. G. Catalano, S. M. Giampaolo, O. Morsch, V.
Giovannetti, and F. Franchini, Frustrating quantum batteries,
arXiv:2307.02529.

[37] A. Faribault, H. Koussir, and M. H. Mohamed, Read-Green
points and level crossings in XXZ central spin models and px +
ipy topological superconductors, Phys. Rev. B 100, 205420
(2019).

[38] W. Yao, R. B. Liu, and L. J. Sham, Theory of electron spin
decoherence by interacting nuclear spins in a quantum dot,
Phys. Rev. B 74, 195301 (2006).
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