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Robustness of chaotic behavior in iterated quantum protocols
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One of the simplest possible quantum circuits, consisting of a CNOT gate, a Hadamard gate, and a measurement
on one of the outputs is known to lead to chaotic dynamics when applied iteratively on an ensemble of equally
prepared qubits. The evolution of pure initial quantum states is characterized by a fractal (in the space of states),
formed by the border of different convergence regions. We examine how the ideal evolution is distorted in
the presence of both coherent error and incoherent initial noise, which are typical imperfections in current
implementations of quantum computers. It is known that under the influence of initial noise only, the fractal
is preserved, moreover, its dimension remains constant below a critical noise level. We systematically analyze
the effect of coherent Hadamard gate errors by determining fixed points and cycles of the evolution. We combine
analytic and numerical methods to explore to what extent the dynamics is altered by coherent errors in the
presence of preparation noise as well. We show that the main features of the dynamics, and especially the fractal
borders, are robust against the discussed noise, they will only be slightly distorted. We identify a range of error
parameters, for which the characteristic properties of the dynamics are not significantly altered. Hence, our
results allow to identify reliable regimes of operation of iterative protocols.
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I. INTRODUCTION

The emergence of efficient quantum protocols may result
in a computational speedup over classical computation for a
variety of tasks, such as cryptography [1], simulating quantum
systems [2], and machine learning [3]. The efficient realiza-
tion of a quantum protocol requires three essential steps to
be carried out in an adequately precise manner: the prepara-
tion of quantum states, their coherent manipulation through
the consecutive application of quantum gates, and their mea-
surement. Current quantum processors are not yet capable
of maintaining long-enough coherence times to preserve the
quantum information contained within quantum states due to
decoherence. At the same time, they also lack the necessary
size and complexity to allow for the use of advanced quantum
error correction methods to reduce the effects of quantum
noise [4], hence they are termed noisy intermediate-scale
quantum (NISQ) computers. In fact, in NISQ devices, any of
the fundamental steps of a quantum protocol may be affected
by noise. Faulty state preparation, imperfect quantum gates or
measurements, and decoherence all may jeopardize the final
result [5]. Consequently, the progress towards practical quan-
tum computing is dependent upon the advancement of both
quantum hardware and fault-tolerant quantum error correction
algorithms.

The noise that occurs in quantum computers can arise from
various sources, although it can be divided into two main
types: systematic or coherent errors and stochastic or random
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noise. The random noise emerges from a stochastic source,
such as environmental fluctuations of the parameters associ-
ated with the qubit system. This uncontrolled fluctuation leads
to qubit decoherence. Coherent error, however, is usually the
result of an underlying systematic error that occurs in the
same form, such as miscalibrated quantum logic gates [6,7].
Whenever the faulty quantum gate is applied, it distorts the
state of the qubit more and more, so that eventually, after such
a gate has been applied too many times the original quantum
information may be lost [8,9].

The time evolution of closed quantum systems is determin-
istic and can be formulated in terms of linear maps of the
density operator. However, if one measures a part of the sys-
tem and postselects according to a given measurement result,
a protocol can be designed where the unobserved part of the
system evolves according to a nonlinear transformation. Such
a time evolution can be achieved by applying an entangling
operation on two (or more) copies of a quantum system and
then performing a measurement on some of the subsystems
[10–12] according to the results of which one keeps or rejects
the unmeasured part of the system. By repeating this proce-
dure in an iterative manner on the kept systems, one can create
an iterated nonlinear quantum protocol. Already the very basic
protocol involving a CNOT gate and a subsequent single-qubit
unitary operation on the postselected state in each iterative
step, can create a diverse range of different nonlinear proto-
cols in the case of qubits [13,14]. Certain unitary operations
lead to a complex deterministic chaotic time evolution for
every pure initial state [15,16]. However, with the appropriate
choice of the unitary transformation, unique nonlinear proto-
cols can be constructed that are suitable for solving specific
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tasks, such as quantum state discrimination of qubits [17]
or benchmarking quantum computers [18,19]. Moreover, by
considering a similar scheme in a quantum communication
scenario on entangled qubit pairs shared by two parties, one
can construct entanglement distillation protocols [20,21].

To perform a large number of iterations of a nonlinear
protocol, one needs to prepare and coherently manipulate a
large number of qubits for long-enough times. Therefore, the
first physical implementations of these iterated protocols have
so far been limited to a few steps, i.e., up to two iterations
in optical experiments [22,23], and three in programmable
quantum computers [19]. In the latter case, even though the
available number of qubits is constantly increasing, the per-
formance of the devices still needs to be improved in order to
produce faithful results.

Iterated nonlinear quantum protocols offer a promising
way to study the effects of noise as they utilize the main
building blocks of any quantum algorithm in an iterative
manner. In the dynamics of certain protocols, a complicated
fractal structure appears in the space of initial states, which
separates different regions in which states converge to a spe-
cific outcome. The properties of the fractal are determined
by the actual unitary transformation applied in every step of
the protocol. Small changes in the initial state do not result
in a different outcome unless the initial state is located near
the border of a domain. Assuming that the protocol is imple-
mented in the presence of preparation noise, it is surprising
to observe that the fractal is preserved up to a certain critical
value of the noise [24,25]. Above this critical level, the funda-
mental properties of the fractal do not change. Although the
protocol itself can be particularly sensitive to the choice of
the initial state, at the same time, it can tolerate errors which
occur during state preparation. This feature of the protocol
suggests that it may tolerate other types of incoherent errors
as well [26]. However, its iterative structure might render it
susceptible to coherent errors stemming from the application
of faulty quantum logic gates since the repeated application
of the same quantum logic gates could amplify the effect of
any coherent, systematic errors and thus represent a significant
source of noise.

In this paper we study a quadratic iterated quantum proto-
col involving a CNOT gate and a subsequent Hadamard gate
on the kept qubit in every step. We assume that the CNOT gate
is ideal, but the Hadamard gate is affected by coherent errors.
We investigate how the characteristics of the protocol, specif-
ically, the corresponding fractal structure, changes. We show
that for small coherent errors the most significant features of
the protocol are very similar to the case when no coherent
errors are present. To further investigate these similarities, we
also study such “faulty” protocols in the presence of state
preparation noise and conclude that these two types of errors
can both be tolerated by the scheme up to a certain amount.

The paper is organized as follows. In Sec. II, we introduce
the iterated nonlinear quantum protocol and its characteristic
properties for pure initial states as well as mixed ones (ac-
counting for state preparation noise). In Sec. III, we propose
a model for the faulty Hadamard gate, where we assume
that the coherent error comes from the miscalibrated single-
qubit gates that realize the Hadamard gate. In Sec. IV, we
show how the characteristics of the protocol change when

FIG. 1. (a) Quantum circuit realizing a single step (S) of the
protocol: A CNOT gate acts on two copies of the quantum state,
then the target qubit is measured in the computational basis. If the
outcome of the measurement is 0, then a Hadamard gate is applied to
the other, unmeasured qubit. (b) Schematic quantum circuit imple-
menting three iterations of the protocol.

coherent gate errors occur and when both preparation noise
and coherent errors appear simultaneously. Section IV C fo-
cuses on the variation of the characteristic phase transition
as the consequence of the systematic error of the miscali-
brated gate. Finally, in Sec. IV D, we identify an error limit
beyond which the essential characteristics of the protocol do
not change significantly compared to the error-free case. We
conclude in Sec. V.

II. CHARACTERISTICS OF THE IDEAL PROTOCOL

In this work, we focus on the effect of coherent gate errors
on a previously studied iterated nonlinear quantum protocol
[24]. A single step of the protocol requires a pair of qubits in
the same initial quantum state |ψ0〉 as inputs of a CNOT gate.
After the CNOT, one measures the target qubit and keeps the
control qubit only if the target was measured to be |0〉, and
then applies a Hadamard gate on the kept qubit [see Fig. 1(a)].
By using the Riemann parametrization of single-qubit states
the input state can be written as |ψ0〉 = N0(|0〉 + z |1〉), where
z ∈ C∞, and N0 = 1√

1+|z|2 . It can be shown that the procedure

leads to an output state that can be written as |ψ1〉 = N1(|0〉 +
f (z) |1〉), where f (z) = 1−z2

1+z2 is a complex quadratic rational
function. Thus, the input state is transformed nonlinearly in a
single step of the protocol.

Provided we have multiple copies of the same input state
|ψ0〉, we can construct quantum circuits where we combine
two such nonlinearly transformed qubits in state |ψ1〉 as
inputs of a similar second step, which, when succeeding,
produces an output state |ψ2〉 = N2(|0〉 + f (2)(z) |1〉, where
f (2) = f ( f (z)) is the second iterate of the complex quadratic
rational function f (z). One can then continue in the same fash-
ion for yet another step, and so on as shown in Fig. 1(b). In this
way, n successful subsequent steps of the protocol will lead
to an output state of the form |ψn〉 = Nn[|0〉 + f (n)(z) |1〉],
where f (n)(z) is the nth iterate of f (z). As the procedure
assigns single-qubit states to single-qubit states which can
be described by the iterates of the complex rational func-
tion f (z), the qubit dynamics can be analyzed by studying
the characteristics of f (z), such as repelling points, attrac-
tors and their associated basins of attraction, and so on. It
can be easily shown that f (z) has a single attractive cycle
of length two: z1

1 = 0 ↔ z2
1 = 1. The basins of attraction of

these two points (they form together the so-called Fatou set)
are separated by a fractal (the so-called Julia set) on the
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FIG. 2. (a)–(c) Stereographic projections of spherical surfaces
corresponding to initial purity values P = 1, 0.95, and 0.75, respec-
tively. Initial states represented with light (dark) blue color converge
to the point C1

1 (C2
1 ) after an even number of iterations. Red color

marks initial states which converge to the maximally mixed state
(C0). Yellow dots in (b) mark the points of the backwards-iterated
Julia set (for details, see Sec. III or [24]). Note that the stereographic
projection is taken from the south pole of the spherical surface onto
the w = 0 plane, so that xP + iyP = u+iv√

2P−1+w
. (d) The invariant plane

(u, 0, w) of the map of Eq. (3). Coloring is the same as in (a). The
red dashed line indicates the purity of the preimages of the repelling
fixed point C3. It clearly shows that all four preimages have the same
purity.

complex plane [see Fig. 2(a)]. Both sets are invariant under
f : the Fatou set contains the “regular” points, while the Julia
set contains all repelling cycles and corresponds to chaotic
dynamics [27].

The above-mentioned mathematical analysis of the pure-
state dynamics can only describe an ideal, noiseless scenario.
Current quantum processors, however, are still not advanced
enough to achieve fault tolerance, therefore, the effect of noise
must also be taken into account in the model. In Ref. [24]
the authors assumed preparation noise to be present in the
system (without any quantum gate errors). The initial states
can then be described by density operators, and the nonlinear
transformation corresponding to a single step of the iterated
protocol is given by

ρ (n) → ρ (n+1) = H
ρ (n) � ρ (n)

Tr(ρ (n) � ρ (n) )
H†, (1)

where ρ (n) is the input, while ρ (n+1) is the output density
matrix of the (n + 1)th step of the protocol and the � symbol
stands for elementwise product in the computational basis
(also known as the Hadamard product).

In this description, it is practical to parametrize the density
matrix as

ρ = 1

2

[
1 + w u − iv
u + iv 1 − w

]
, (2)

where u, v,w ∈ R are the Bloch-sphere coordinates of ρ and
the purity P = Tr(ρ2) = (1 + u2 + v2 + w2)/2 � 1 can be
used to quantify the noisiness of ρ. With these three real
parameters, the transformation in Eq. (1) can be converted to
the following R3 → R3 nonlinear map

un+1 = 2wn

1 + w2
n

,

vn+1 = −2unvn

1 + w2
n

,

wn+1 = u2
n − v2

n

1 + w2
n

. (3)

The dynamics of the system can be analyzed by studying the
iterative properties of this map.

The analytical and numerical calculations in Ref. [24] re-
vealed that the map has three attractive periodic points: a
length-2 pure cycle consisting of points C1

1 = (0, 0, 1) and
C2

1 = (1, 0, 0) (note that this cycle is the same as the one
found in the case of the pure-state dynamics). The third at-
tractive point is the maximally mixed state C0 = (0, 0, 0). As
a consequence, some initial states purify into the cycle C1,
some converge to the maximally mixed state C0, and there are
also states which behave chaotically, or quasichaotically (we
will discuss this later phenomenon in more detail below).

An intriguing feature of the dynamics is that the v = 0
plane, which corresponds to real density matrices, is an in-
variant subset of the map. Its identification greatly facilitated
the numerical analysis in Ref. [24] as it contains the attractive
points C1

1 , C2
1 , and C0, as well as some repelling points of

the pure-state dynamics: C2 and its preimages, which are
members of the Julia set of f [see Fig. 2(d)]. There is also
a repelling mixed fixed point (C3) located on this plane that
plays a special role in the noisy dynamics.

The asymptotic dynamics of initial states with a given
purity can be visualized with the aid of the stereographic
projection of the corresponding spherical surface of the Bloch
sphere to the complex plane, as shown in Figs. 2(b) and 2(c).
Surprisingly, the fractal structure is not destroyed immedi-
ately with the addition of noise. Even though more and more
states converge to the maximally mixed state as the initial
purity is decreased, a fractal structure remains present up to
a certain critical purity Pc. Moreover, the fractal dimension is
constant above this critical purity. Reaching Pc however, the
fractal disappears and the fractal dimension drops to 1 [see
Fig. 13(a)]. This phenomenon has the character of a phase
transition, where the purity of the initial states is the control
parameter.

The constant fractal dimension suggests that the protocol
is, in some sense, robust against preparation noise. The fact
that the complexity of the convergence pattern remains un-
changed regardless of the presence of noise, indicates that the
information content is retained down to the critical purity.

042410-3



PORTIK, KÁLMÁN, JEX, AND KISS PHYSICAL REVIEW A 109, 042410 (2024)

III. COHERENT SINGLE-QUBIT GATE ERRORS

Random errors usually decrease the purity of a quantum
state. However, it is plausible to assume that the above proto-
col may be able to correct these random errors in a similar
way as it compensates for the effect of preparation noise.
In the case of preparation error, if the quantum state of the
qubit is displaced from the ideal, but the random deviation is
appropriately small or the given state is not at the brink of
the basins of attraction, then the result of the protocol will re-
main unchanged since the state remains in the same attraction
region as it was in the ideal case. However, coherent errors,
which arise systematically due to, for example, miscalibrated
quantum gates, may lead to significant deviations from the
ideal case, as in an iterated protocol, the same coherent error
occurs each time the faulty quantum gate is used.

The asymptotic dynamics corresponding to the protocol
reveal that for an arbitrary initial state, there are three possible
outcomes, i.e., the initial state can converge to three distinct
states. As long as the purity of the initial states is kept above a
critical value the borderline of the convergence regions has a
complicated fractal structure and even its fractal dimension
is constant. While for initial states with purities below the
critical value the fractal disappears, and the fractal dimension
drops to 1. This sudden change in system behavior with re-
spect to parameter P can be described as a phase transition
(see Fig. 2 in Ref. [24]). In our study, we aim to investigate
the resilience of the protocol to coherent noise, particularly
focusing on how its characteristic properties tolerate small
coherent errors. Specifically, we seek to understand how these
properties, and their dependence on parameter P, change as a
function of the epsilon noise parameter [see Eq. (5) for the
definition]. As we will see later, our findings indicate that,
while large coherent errors disrupt the dynamics, small errors
do not significantly affect the main features of the protocol,
such as the phase transition of the fractal dimension. We
successfully determine how the characteristic properties of
the protocol and the phase transitions themselves change in
response to coherent errors, identifying the fractal dimension,
the critical purity, and the critical points where distinct phases
separate, particularly with respect to the epsilon parameter
(see Fig. 14).

In what follows, we include the coherent error of the
Hadamard gate in the model of the nonlinear protocol
discussed in the previous section. In order to do so, we de-
compose the Hadamard gate into three consecutive rotations
along the x and z axes of the Bloch sphere as

H ≡ Zπ/2Xπ/2Zπ/2 = −
√

2i

2

[
1 1
1 −1

]
. (4)

This decomposition contains two different rotations only.
Moreover, in certain quantum computers (e.g., superconduct-
ing ones), the Z gates can be implemented virtually (via
changing the frame of reference) with zero error and du-
ration [28,29]. Thus, these so-called virtual Z gates can be
considered practically error-free, and one can assume that the
coherent error of the H gate, if present, mainly originates from
the miscalibration of the Xπ/2 gate. The miscalibration of a
single-qubit rotation can be interpreted as a small undesired
extra rotation ε. In our case, this means that instead of H , a

(n) (n+1)

ϵ

(n)

FIG. 3. The decomposition of the faulty Hadamard gate in the
quantum circuit that realizes one step of the nonlinear protocol. The
coherent gate error appears as an undesired Xε rotation.

slightly different H̃ Hadamard gate is applied in every step,
which can be written as

H̃ = Zπ/2Xπ/2XεZπ/2

= eiφ

[
cos

(
ε
2 + π

4

)
sin

(
ε
2 + π

4

)
sin

(
ε
2 + π

4

) − cos
(

ε
2 + π

4

)
]
, (5)

where the Xε term accounts for the errors resulting from mis-
calibration (see Fig. 3).

Assuming there are no other sources of errors, the dy-
namics of the protocol can still be described by a complex
quadratic rational function, which can be written as

fε (z) = sin
(

π
4 + ε

2

) − z2 cos
(

π
4 + ε

2

)
cos

(
π
4 + ε

2

) + z2 sin
(

π
4 + ε

2

) , (6)

mapping pure states to pure states. (Note that for ε = 0 fε =
f .)

Similarly, one can determine the R3 → R3 nonlinear map
describing the time evolution of the system in the presence of
both preparation noise and coherent errors (using the method
presented in Ref. [30])

uk+1 = 2wk cos (ε) + (
u2

k − v2
k

)
sin (ε)

1 + w2
k

,

vk+1 = −2ukvk

1 + w2
k

,

wk+1 =
(
u2

k − v2
k

)
cos (ε) − 2wk sin (ε)

1 + w2
k

. (7)

We will analyze the characteristic properties of these maps
in the following sections.

IV. EFFECT OF COHERENT ERROR

We examine the effect of the emerging coherent gate error
through investigating the basic properties of the dynamical
system associated with Eq. (7). By analyzing the characteris-
tics of this system, such as the invariant sets, the repelling and
attractive points and their basins of attraction, or the structure
of the set of chaotic states, we can reveal which properties
of the protocol are significantly changed compared to the
error-free case.

The analysis of Eq. (7) reveals that the dynamical system
has two invariant sets: the surface of the Bloch sphere (i.e.,
the set of pure states) and, similarly to the coherent-error-free
case, the v = 0 plane.
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ε [degree]

λ

FIG. 4. The multiplier λ of the maximally mixed state C0 as a
function of ε. 0 < λ < 1 corresponds to C0 being attractive, while
λ > 1 means that C0 is repelling.

A. Properties of the invariant sets

There are three fixed points among the pure states, which
can be determined by solving the polynomial equation

z3 + cot
(ε

2
+ π

4

)
z2 + cot

(ε

2
+ π

4

)
z − 1 = 0. (8)

One of them is always real, which means that it is located at
the intersection of the two invariant sets. By calculating the
multiplier

λ =
∣∣∣∣ d

dz
fε (z)

∣∣∣∣ (9)

at the z0 fixed points reveals that all of them are repelling
since the its value exceeds 1 for all the fixed points. We note
that for mixed initial states, the multiplier can be expressed as
the spectral radius of the Jacobian matrix at the fixed point or
cycle.

Fixed points, located on the v = 0 invariant plane of the
dynamics can be calculated by finding the roots of the coupled
equations

u = 2w cos (ε) + u2 sin (ε)

1 + w2
,

w = u2 cos (ε) − 2w sin (ε)

1 + w2
. (10)

Similarly to the ε = 0 case, there exist two mixed fixed points
on the invariant plane for any value of ε. One of these points
is the maximally mixed state C0, irrespective of the value of
ε, the other one is a mixed fixed point whose coordinates
are ε dependent: Changing ε continuously, the fixed point
shifts along the boundary of the different regions of attraction
on the invariant plane, and in the ε → 0 limit it coincides with
the mixed fixed point C3 of the error-free case. By evaluating
the spectral radius of the Jacobi matrix at these fixed points
(which we will also denote by C3), it can be shown that they
are always repelling, as shown in Table I. The value of the
spectral radius for the C0 maximally mixed state reveals that it
is attractive for a relatively small magnitude of the coherent
error (see Fig. 4). As the amount of undesired rotation is
increased, the range of attraction of the maximally mixed
state becomes smaller and smaller. At the same time, the

TABLE I. The coordinates and the multiplier of the internal
repelling fixed point C3 for different values of the error parameter
ε.

ε[◦] C3 P3 λ

10 (0.877, 0, 0.48) 1 1.426
9 (0.871, 0, 0.484) 0.997 1.532
8 (0.844, 0, 0.47) 0.966 1.417
7 (0.817, 0, 0.456) 0.937 1.352
6 (0.79, 0, 0.442) 0.91 1.451
5 (0.764, 0, 0.428) 0.883 1.342
4 (0.738, 0, 0.414) 0.858 1.323
3 (0.713, 0, 0.401) 0.834 1.394
2 (0.688, 0, 0.388) 0.812 1.257
1 (0.663, 0, 0.374) 0.79 1.384
0 (0.639, 0, 0.361) 0.769 1.361
−1 (0.615, 0, 0.348) 0.75 1.311
−2 (0.591, 0, 0.335) 0.731 1.461
−3 (0.568, 0, 0.322) 0.713 1.351
−4 (0.545, 0, 0.31) 0.696 1.375
−5 (0.522, 0, 0.297) 0.68 1.549
−6 (0.499, 0, 0.285) 0.665 1.364
−7 (0.477, 0, 0.272) 0.651 1.405
−8 (0.455, 0, 0.26) 0.637 1.64
−9 (0.433, 0, 0.248) 0.624 1.399
−10 (0.411, 0, 0.235) 0.612 1.39

repelling point C3 approaches the center of the Bloch sphere
(see Fig. 5). Around |ε| = 30◦, these two points with opposite
properties get so close to each other, that the maximally mixed
state is overshadowed by C3 and it is no longer attractive (see
Figs. 4 and 5).

As it can be seen in Fig. 5, in the case of overrotation
the purity of C3 increases continuously and even accelerates
until it reaches the set of pure states at ε = 10◦. From that
point on, C3 and the pure repelling fixed point C2 are no
longer distinguishable. For larger values of ε there is no mixed
repelling fixed point in the dynamics.

In Sec. II we have seen that in the ideal (ε = 0) case,
there was an attractive length-2 cycle in the dynamics. It is
plausible to assume that, up to a certain value of ε, similarly

ε [degree]

P3

FIG. 5. The purity of the repelling mixed fixed point C3 as a
function of ε.
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TABLE II. The coordinates of the attractive pure states on the
Bloch sphere (C2

1 ↔ C2
1 ) for different values of the error parameter

(ε). The corresponding multipliers (λ) reveal that all of these cycles
are attractive.

ε[◦] C1
1 ↔ C2

1 λ

10 (−0.148, 0, 0.989) ↔ (0.987, 0, 0.161) 0.287
9 (−0.135, 0, 0.991) ↔ (0.989, 0, 0.148) 0.264
8 (−0.122, 0, 0.993) ↔ (0.991, 0, 0.134) 0.24
7 (−0.109, 0, 0.994) ↔ (0.993, 0, 0.118) 0.214
6 (−0.095, 0, 0.995) ↔ (0.995, 0, 0.1) 0.187
5 (−0.08, 0, 0.997) ↔ (0.996, 0, 0.089) 0.159
4 (−0.065, 0, 0.998) ↔ (0.998, 0, 0.063) 0.13
3 (−0.05, 0, 0.999) ↔ (0.999, 0, 0.045) 0.099
2 (−0.034, 0, 0.999) ↔ (0.999, 0, 0.045) 0.067
1 (−0.017, 0, 1.0) ↔ (1.0, 0, 0.0) 0.034
0 (0, 0, 1) ↔ (1, 0, 0) 0
−1 (0.018, 0, 0.999) ↔ (1, 0, 0) 0.036
−2 (0.036, 0, 0.999) ↔ (0.999, 0, 0.045) 0.072
−3 (0.055, 0, 0.998) ↔ (0.999, 0, 0.045) 0.11
−4 (0.075, 0, 0.997) ↔ (0.997, 0, 0.077) 0.149
−5 (0.096, 0, 0.995) ↔ (0.996, 0, 0.089) 0.19
−6 (0.117, 0, 0.993) ↔ (0.994, 0, 0.109) 0.231
−7 (0.139, 0, 0.99) ↔ (0.991, 0, 0.134) 0.273
−8 (0.162, 0, 0.987) ↔ (0.988, 0, 0.154) 0.317
−9 (0.186, 0, 0.983) ↔ (0.985, 0, 0.173) 0.362
−10 (0.211, 0, 0.977) ↔ (0.981, 0, 0.194) 0.408

to the above mentioned fixed points, a length-2 cycle exists
as well. This can be determined by analytically solving the
equation fε ( fε (z)) = z. The resulting periodic trajectory for
a given ε can be shown to be attractive by determining the
corresponding multiplier λ, as shown in Table II. (Note that
we use the same notation for these points, namely, C1

1 and
C2

1 , as in the ε = 0 case.) It can be seen that while in the
ε = 0 case the length-2 cycle is superattractive (λ = 0), as ε

is increased in either direction, the attractiveness of the cycle
decreases (λ > 0). The points of the cycle are shifted towards
(away from) each other when ε > 0 (ε < 0), see Fig. 6.

Let us point out here that it is known from the theory of
complex dynamical systems that the number of attractive pe-
riodic points of a complex function cannot exceed the number
of different critical points of the function since every direct
attraction region must contain at least one critical point [27].
The critical points of a complex function can be determined
from the equation f ′

ε (z) = 0. It is easy to see that for any
value of ε, fε has only two critical points: 0 and ∞. Thence,
fε cannot have more than two pure attractive periodic points,
and since we found a length-2 attractive cycle for every ε in
Table II, we determined all the pure, stable states.

Studying the dynamics on the invariant plane as shown
in Fig. 6, one can see that the protocol, apart from cases
of large coherent error, can result in three different stable
outcomes, which are very similar to the coherent-error-free
case [see Fig. 2(d)]: If the preparation noise is not too
large, then the protocol purifies the qubit state into one of the
pure, stable states of cycle C1, while for larger preparation
noise, the qubit states converge to the maximally mixed state.
As a consequence of the coherent error, the points of cycle
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(a)

C0 C2
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1

C2
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C0 C2
1
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1

C2C3
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(c) ε = −1.8◦

Pc

C0 C2
1

C1
1

C2

C3

u

w

(d) ε = −4.5◦

Pc

C0 C2
1

C1
1

C2

C3

FIG. 6. The convergence regions of the nonlinear map on the
(u, 0, w) invariant plane for different values of ε. (a)–(d) correspond
to ε = 1.8◦(2%), 4.5◦(5%), −1.8◦(−2%), and −4.5◦(−5%), respec-
tively. The convergence region consists of all initial states within the
state space that converge to a certain final state as a result of the
protocol. Initial states represented with light (dark) blue converge
to the point C1

1 (C2
1 ) of pure limit cycle C1 after an even number

of steps. Red color indicates states that converge to the maximally
mixed state (C0). The red dashed line marks the purity of the least
pure preimage of the repelling fixed point C3. It illustrates that the
purity of preimages depends on the value of epsilon, and it shows
that different preimages can posses different purities.

C1 are slightly shifted compared to the noise-free case (see
also Table II). The regions of attraction on the invariant plane
exhibit a similar arrangement regardless of the magnitude of
the undesired rotation; however, their exact shape and position
vary as the error parameter changes. The extent and direction
of these distortions depend on the magnitude and sign of ε.
In the case of underrotation [Figs. 6(c) and 6(d)], parts of
the attraction region in the northern hemisphere shrink, while
in the southern hemisphere they expand. For overrotations
[Figs. 6(a) and 6(b)], this behavior is just the opposite. At the
same time, the region of attraction of the maximally mixed
state is continuously getting closer to the surface for larger
and larger values of ε. The position of the repelling mixed
fixed point C3 is shifted as ε is varied, but it always lies in
the positive quadrant, at the point where the three different
basins of attraction touch. Let us point out that in the ε = 0
case, it was shown that there are similar points in the other
three quadrants which are in fact preimages of C3, having the
same purity. In the ε �= 0 case, as the shape of the different
convergence regions is no longer symmetric to the w = 0 axis,
the purity of two of these points is different.

One can observe that in the case of large enough overrota-
tions (ε � 27◦), the basin of attraction of the maximally mixed
state reaches the immediate surrounding of the pure-state

042410-6



ROBUSTNESS OF CHAOTIC BEHAVIOR IN ITERATED … PHYSICAL REVIEW A 109, 042410 (2024)

u

w
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(b) ε = −14◦
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(c) ε = 27◦
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(d) ε = −27◦

u
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u

w
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FIG. 7. The convergence regions on the v = 0 invariant plane.
(a), (c), and (e) correspond to ε = 22.4◦(24.9%), ε = 27◦(30%), and
45◦(50%), respectively. As well the (b), (d), and (f) correspond to
−14◦(−15.6%), −27◦(−30%), and −45◦(−50%). Coloring is the
same as in Fig. 6, with the exception of (d), where the red color
represents convergence to a long attractive mixed cycle, denoted by
the black points inside the red region.

surface on the invariant plane [see Figs. 7(a) and 7(c)]. Thus,
there exist points on the invariant plane where an arbitrarily
small amount of preparation error can hinder the purification
of the state. If the angle of overrotation is even larger (ε >

30◦), then the maximally mixed state loses its attractiveness
and becomes repelling [see Fig. 7(e)]. In these cases, there is
no attractive point inside the Bloch sphere any more.

When the faulty Hadamard gate suffers from an under-
rotation (ε < 0◦), the elements of the pure attractive cycle
gradually approach each other for smaller and smaller values
of ε. At ε = −21.5◦, the two points merge, and below this
value, only a single pure attractive fixed point exists. The
maximally mixed state remains attractive, and the repelling
fixed point C3 is situated at the boundary of the two basins of
attraction, i.e., that of the sinlge pure attractor and the max-
imally mixed state [see Fig. 7(d) and Table III]. If the angle
of underrotation is less than ε = −30◦, where the maximally
mixed state becomes repelling, a new attractive mixed cycle

TABLE III. The coordinates of attractive pure states in the Bloch
sphere (C2

1 ↔ C2
1 ) for different values of the error parameter (ε).

The corresponding multipliers (λ) show that all of these cycles are
attractive.

ε[◦] C1
1 ↔ C2

1 λ

−10 (0.981, 0, 0.194) ↔ (0.211, 0, 0.977) 0.408
−11 (0.976, 0, 0.218) ↔ (0.237, 0, 0.972) 0.454
−12 (0.97, 0, 0.243) ↔ (0.265, 0, 0.964) 0.502
−13 (0.963, 0, 0.27) ↔ (0.293, 0, 0.956) 0.551
−14 (0.955, 0, 0.297) ↔ (0.324, 0, 0.946) 0.601
−15 (0.946, 0, 0.324) ↔ (0.356, 0, 0.934) 0.652
−16 (0.935, 0, 0.355) ↔ (0.391, 0, 0.92) 0.703
−17 (0.922, 0, 0.387) ↔ (0.428, 0, 0.904) 0.756
−18 (0.469, 0, 0.883) ↔ (0.906, 0, 0.423) 0.809
−19 (0.885, 0, 0.466) ↔ (0.515, 0, 0.857) 0.863
−20 (0.856, 0, 0.517) ↔ (0.57, 0, 0.822) 0.918
−21 (0.807, 0, 0.591) ↔ (0.645, 0, 0.764) 0.974
−22 (0.731, 0, 0.682) 0.99
−23 (0.729, 0, 0.685) 0.971
−24 (0.727, 0, 0.687) 0.952
−25 (0.725, 0, 0.689) 0.935

appears and practically takes over the role of the C0 point [see
Fig. 7(f)].

Let us now examine the Julia set of the complex func-
tion fε describing the pure-state dynamics of the protocol
in the presence of coherent errors. The Julia set in this case
is constituted by the points of the border of the different
basins of attraction. The change of its shape can reveal how
the convergence pattern is changed when coherent errors are
present. One can estimate the Julia set of fε by the iteration of
the inverse of the complex function [27]. We will refer to this
procedure as “backward iteration.” Since fε is a second-order
complex rational function, it has two inverses

f −1
ε (z) = ±

√
sin

(
ε
2 + π

4

) − z cos
(

ε
2 + π

4

)
cos

(
ε
2 + π

4

) + z sin
(

ε
2 + π

4

) , (11)

meaning that every point has two preimages. In the simplest
case, when one applies only one of the above inverse functions
consecutively starting from a given point, then the resulting
points constitute two special branches of the backward itera-
tion.

In Fig. 8 we present points of the Julia set of different
fε functions obtained by backward iteration (starting from
one already known point of the Julia set and applying both
inverses in every iteration). It can be seen that in the presence
of coherent errors, the shape of the Julia set is deformed
[Figs. 8(c) and 8(e)]. For negative (positive) values of ε, it
contracts along the real (imaginary) axis and widens along the
imaginary (real) axis [see Figs. 8(c) and 8(e), respectively].
The deformation is not completely analogous for under and
overrotations [see also Figs. 8(b), 8(d), and 8(f)]. We also note
here that according to our analysis, the distortion of the shape
of the fractal occurs for smaller changes in ε in the case of
underrotations, as compared to overrotations.

Figures 9(a) and 9(b) show the Julia set for two values of
ε corresponding to overrotations close to the limit where the
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FIG. 8. Julia sets of the fε (z) complex rational map for different
values of ε. (a), (c), and (e) correspond to ε = 0◦, 4.5◦(5%), and
−4.5◦(−5%), respectively. (b), (d), and (f) show the magnified struc-
ture of the Julia sets.

yP
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(a) ε = 27◦

yP

xP

(b) ε = 45◦

yP

xP

(c) ε = −27◦

yP
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(d) ε = −45◦

FIG. 9. Stereographic projection of the surface of the Bloch
sphere colored according to the convergence to the attractive
points. Black points represent the Julia set. (a)–(d) correspond
to ε = 27◦(30%), 45◦(50%), −27◦(−30%), and −45◦(−50%),
respectively.

ε [degree]

d

FIG. 10. Numerically estimated fractal dimension d of the Julia
set of fε as a function of ε.

maximally mixed state ceases to be attractive. It can be seen
that, although a stable pure length-2 cycle still exists [see also
Figs. 7(c) and 7(e)], the shape of the Juila set is very different
from the ones seen in the presence of small overrotations [see
Fig. 8(e)]. In the case of an underrotation corresponding to
ε � −21.5◦ there is only one stable state on the surface of the
Bloch sphere [see Figs. 7(d) and 7(f)], therefore, the structure
of the Julia set is completely different: There is only one pure
stable state (only one pure attraction region), thus the Julia
set is disconnected [see Fig. 9(c)]. Note that for even larger
underrotations, the Julia set remains disconnected for the same
reason [see Figs. 7(f) and 9(d)].

The complexity of the Julia set is reflected by its fractal
dimension, which can be estimated numerically by applying,
e.g., the box-counting method [24]. In Fig. 10 we show the
fractal dimension (d) as a function of the coherent error (ε)
which we obtained by applying a special version of the box-
counting method introduced in Ref. [28]. One can see that
the fractal dimension varies only to a small extent within the
[−5◦, 5◦] interval, corresponding to an under or overrotation
of less than 6% of the ideal rotation angle (i.e., 90◦). In
fact, its variation falls within the accuracy of the numerical
computation.

As we have seen above, the presence of a coherent error
changes both the possible final states and the pattern that
separates the different convergence regions of initial states.
The later effect is more significant since due to the distortion
of the very fine details of the border of attractive states, a given
pure initial state might converge to the other attractive state
and not the one that we would expect from the noise-free case.

B. Dynamics of noisy initial states

In the coherent-error-free case we have seen that when
state preparation errors are present, certain mixed initial states
converge to the maximally mixed state, but the fractal nature
of the border between the different attractive states is not
necessarily destroyed [see Fig. 2(b)]. Moreover, in Ref. [24]
it was shown that the boundary of the basins of attraction of
the two attractive pure periodic points, which we will term
“pure attraction regions,” on spherical surfaces corresponding
to P < 1 purities has a similar fractal structure as the Julia
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FIG. 11. Stereographic projections of the spherical surface
corresponding to initial purity P = 0.95 for different values of the co-
herent error. (a)–(d) figures correspond to ε = 1.8◦(2%), 4.5◦(5%),
−1.8◦(−2%), and −4.5◦(−5%), respectively. Light (dark) color
marks states that converge after an even (odd) number of steps to the
first element of the attractive cycle C1. Red color indicates states that
converge to the maximally mixed state (C0). Yellow dots represent
points of the quasi-Julia set, numerically calculated via backward
iteration.

set, with the same fractal dimension. Therefore, we introduce
here the term quasi-Julia set, constituted by all mixed points
of this dynamical system which are situated at the boundary
of the pure attraction regions, being responsible for the fractal
properties on lower purity surfaces, and possessing somewhat
similar properties to the pure-case Julia set.

Figure 11 shows stereographic projections of convergence
regions on the spherical surface corresponding to initial purity
P = 0.95 for different values of the coherent error. One can
see that the convergence regions, together with the quasi-
Julia set, are distorted under the influence of coherent errors
similarly to the Julia set [see Figs. 8(c) and 8(e)]. For under-
rotations [Figs. 11(c) and 11(d)], the quasi-Julia set widens
along the y axis and shrinks along the x axis, while for
overrotation, the direction of the distortion is reversed [see
Figs. 11(a) and 11(b)]. The small structural details of the Julia
set remain unchanged, suggesting that the information content
of the convergence pattern is only slightly affected by the
coherent error.

Because of the distortion of the convergence regions, how-
ever, a given noisy initial state, which, without coherent error,
would be purified by the protocol, may get maximally mixed
instead. This represents a deviation caused by the faulty
Hadamard gate. To quantify this effect, we calculated the out-
come of the protocol for uniformly chosen initial states from
the entire state space and then determined the ratio of states
that fall into the convergence range of a different attractive

ε [%]

δ [%]

(a)

ε [%]

N [%]

(b)

FIG. 12. (a) The ratio δ of uniformly chosen initial states that
converge to a different attractor compared to the coherent-error-free
case. A total of 106 initial states were considered and the small dis-
placement of the attractive states was neglected. (b) The percentage
N of uniformly chosen initial states that are purified by the protocol
as a function of ε.

state compared to the coherent-error-free case (see Fig. 12).
The results reveal that the protocol is sensitive to coherent
errors. The system is disturbed already by small perturbations
of the angle of rotation: In the case of an over or underrota-
tion by 4.5◦, about 5% of the noisy initial states converge to
different attractive states compared to the coherent-noise-free
case. We note here that in the calculations, we neglected the
displacement of the attractive states from their ideal values,
as this is a much smaller effect than that of the distortion
of the boundary of the convergence regions, which results
in certain initial states converging to a different final state.
Instead, we introduce an environment of radius r around the
original attractive states, where r was equal to or greater than
the displacement of the attractive periodic points due to the
coherent error, and checked the convergence of the initial
states with this tolerance. The calculation revealed that the
main component of the deviation comes from the contribution
of states that moved from one pure domain to another. The
coherent error did not influence significantly the percentage
of noisy initial states which get purified. In the case of under-
rotation, this ratio is even slightly increased [see Fig. 12(b)].

C. Phase transition

The coherent-error-free protocol is robust to a certain
degree of preparation noise (see Sec. II). The presence of
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coherent errors modifies the time evolution of the initial states,
yet the primary features of the protocol remain similar. In what
follows, we investigate how the preparation noise tolerance
characteristics of the protocol are impacted when coherent
errors are also present.

The preparation error tolerance of the coherent-error-free
protocol was reflected by the fact that the fractal dimension
of the convergence pattern remained constant up to a critical
amount of noise (or equivalently, down to a critical purity
Pc), where the disappearance of the fractal caused an abrupt
change in the fractal dimension, similarly to a phase transition
[see Fig. 13(a)]. In Ref. [24] the authors observed that the
fractal behavior on P < 1 purity surfaces can be attributed to
the boundary of pure attraction regions, i.e., to the quasi-Julia
set. They also showed that the mixed repelling fixed point C3

was the least pure state where the regions of attraction of the
two pure states were in contact [see Fig. 2(d)]. Above this
noise level (below this purity), the two pure attraction regions
had no common boundary, therefore, there was no fractal-like
boundary section. According to the numerical results, the crit-
ical purity of the phase transition, which can be thought of as
the threshold value above which the noise does not destroy
the fractal, was precisely the purity of the mixed repelling
fixed point C3 located on the invariant plane at the common
boundary point of the three different attraction regions.

We saw in Sec. IV A that the presence of small coherent
errors (i.e., ε ∈ [−10◦, 10◦]) does not significantly change the
important features of the protocol: There still exists an invari-
ant plane in the dynamics, with an attractive pure length-2
cycle C1 as well as a repelling mixed fixed point C3. This
suggests that the phase transition phenomenon might also sur-
vive the presence of such small coherent errors. Therefore, we
performed a numerical analysis of the fractal dimension of the
boundary of convergence regions as a function of the initial
purity in the case of different values of ε, as shown in Fig. 13.
We used the same method as in Sec. IV A but this time on the
stereographic projections of spherical surfaces corresponding
to different purities. In Fig. 13, one can see that the presence
of a small coherent error does not lead to the disappearance
of the phase transition phenomenon. The fractal dimension
(d) remains constant (and equal to the dimension of the Julia
set) down to some critical purity, where it suddently drops to
1, indicating that the fractal disappears. We directly estimated
the purity where the fractal disappears (denoted by the vertical
dashed lines in the plots). It can be seen that the critical purity
decreases for underrotations [Figs. 13(d) and 13(e)], while it
increases for overrotations [as shown in Figs. 13(b) and 13(c)].
The numerical findings also indicate that for underrotations,
the critical purity is equal to the purity of the mixed fixed point
C3, but if the coherent error is an overrotation, this is no longer
true, as the critical purity is lower than the purity of C3 [this
can be seen by comparing the values indicated in Figs. 13(d)
and 13(e) with those presented in Table I].

The fact that for ε > 0◦ the critical purity is not the same
as the purity of the mixed fixed point can be explained by
examining Fig. 6 again. One can see that the presence of
coherent errors deforms the attraction region of the maximally
mixed state on the invariant plane: It is no longer symmetric
to the axis w. As a result, the mixed repelling fixed point
C3, located in the positive quadrant of the invariant plane,

P
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P

d

(b)

P

d

(c)

P

d

(d)

P

d

(e)

FIG. 13. Numerically estimated fractal dimensions of the bound-
ary of different convergence regions as a function of the initial
purity. (a)–(e) correspond to the ε = 0◦ (error-free), 0.9◦(1%),
4.5◦(5%), −0.9◦(−1%), and −4.5◦(−5%), cases, respectively. Hor-
izontal dashed lines show the value of the fractal dimension of the
corresponding Julia set. Vertical dashed lines mark the critical purity.

is actually not the lowest-purity touching point of the pure
attraction regions as there are two such points (one in the
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third, one in the fourth quadrant) with lower purities [see
Figs. 6(a) and 6(b)]. Since the fractal part of the boundary can
be associated with the boundary of the pure attraction regions,
one can expect that these points determine the critical purity
of the phase transition.

An effective method that was used in Refs. [24,30] to
determine the critical purity was to iterate the inverses of
the map of Eq. (3). There were two special branches of the
backward iteration generated by applying iteratively only one
of the inverses in each. In one of the branches, the sequence
of preimages converged to the pure repelling fixed point C2

situated at the intersection of the invariant plane and the sur-
face of the Bloch sphere. In the other branch, the trajectories
converged to the repelling mixed fixed point C3, the purity of
which was then identified as the critical purity.

In the case of coherent errors we can also determine the in-
verses of the map of Eq. (7), as presented in the Appendix, and
identify these two branches of the backward iteration. More-
over, we find the exact same behavior: One of the branches
purifies the points into C2, while in the other branch, the
trajectories converge to C3, irrespective of the value of ε.
Consequently, this method cannot be used here to explain the
fact that the critical purity in certain cases can be lower than
the purity of C3.

We saw in Sec. IV A that the Julia set, which coincides
with the boundary of the pure attraction regions, can be iden-
tified through the repeated application of the inverses of the
complex map, given in Eq. (11). The preimages of any point
of the Julia set are also elements of the set; therefore, during
the backward iteration, the trajectory always remains on the
boundary of the attraction regions. The numerical results sug-
gest that, similarly to the case of the Julia set, the preimages
of any point of the quasi-Julia set are also elements of the
quasi-Julia set [see yellow points in Fig. 2(c) and Figs. 11(a)
to 11(d)]. Hence, by the iteration of the inverses of the map of
Eq. (7) presented in the Appendix, starting from an arbitrary
point on the boundary of the pure attraction regions associated
with a mixed state, it is possible to generate other quasi-Julia
set points.

In principle, one might be able to determine the entire
quasi-Julia set by calculating all possible preimage sequences
of a point from the set by evaluating all the combinations
of the inverse functions. Unfortunately, the number of points
grows exponentially with the number of iterations, therefore,
this becomes infeasible already after a few steps. What one
can do is to start from a given mixed point that is part of
the quasi-Julia set and then determine its preimages by ran-
domly choosing one of the two inverses in each iteration.
This way, one can generate longer sequences of points, and
the procedure can be repeated with other randomly chosen
combinations of the inverses, to obtain a sufficient number
of points from the quasi-Julia set. Obviously, this is not an
effective method to get points on a given purity surface, but
it can be a useful approach to see whether the pure attraction
regions still have a common border below the purity of C3

or not. Applying this method we find that in the cases with
ε > 0◦ there are indeed points of the quasi-Julia set, which
have lower purities than that of C3, but none of these were
lower than the purities of the points in the third and fourth
quadrants of the invariant plane, where the pure attraction

ε [degree]

P

Fractal d ≈ 1.536

d = 1

FIG. 14. Critical purity of the phase transition as a function of
ε. The black dashed line shows the purity of C3, while the red line
shows the critical purity calculated from the preimages obtained
by backward iteration. The black dots with error bars denote the
values of the critical purity estimated numerically from the results
of Fig. 13. The coloring of the different regions of the diagram
indicates the two distinct phases of the system associated with the
fractal dimension of the border line.

regions still touch [see Figs. 6(c) and 6(d)]. In fact, these
points are also preimages of C3, with a given combination
of the two inverses. Since no other combination of inverses
produces a valid preimage of C3, we conclude that the lowest
purity quasi-Julia set points are one of these four points in
the invariant plane (C3 or its three preimages) and identify the
critical purity of the phase transition with the purity of this
lowest-purity point.

The critical purities determined from the change of the
fractal dimension and the purity of the preimages of C3 on
the invariant plane are in good agreement, as it can be seen
in Fig. 14 and Table IV. The difference between the two
approaches is less than the accuracy of the calculation. Our
findings numerically confirm that, although the emergence
of coherent errors might alter the critical purity, the phase
transition remains present. Additionally, let us point out that
if the coherent error is an underrotation [see Figs. 13(d) and

TABLE IV. Purity P3 of C3, the critical purity Pc from the lowest-
purity quasi-Julia set point calculated via backward iteration and the
estimated critical purity (Pest

c ) from the direct calculation of where
the fractal vanishes, for different values of the coherent error param-
eter ε. The uncertainty of the directly estimated critical purity is equal
to 0.0125, which is the resolution of the numerical calculation.

ε[%] ε[◦] P3 Pc Pest
c

5 4.5 0.871 0.838 0.8375
3 2.7 0.827 0.806 0.8125
2 1.8 0.807 0.793 0.7875
1 0.9 0.788 0.781 0.7875
0 0 0.769 0.769 0.7625
−1 −0.9 0.752 0.751 0.7625
−2 −1.8 0.735 0.735 0.7375
−3 −2.7 0.718 0.718 0.7125
−5 −4.5 0.688 0.688 0.6875
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13(e)], then the critical purity is lower than in the coherent
error-free case, enhancing, in a sense, the tolerance of the
protocol against preparation noise.

D. Small coherent error

We saw in the previous sections that for small coherent
errors, the main characteristics of the protocol and the phase
transition phenomenon are not altered significantly. Based on
the results, we determine the maximum magnitude of the
coherent error for which the protocol remains similar to the
coherent-error-free case in the sense that there still exists an
attractive pure length-2 cycle into which noisy initial states
may get purified, as well as a repelling mixed fixed point,
which can be associated with a phase transition critical point.

For coherent errors representing underrotations with a
magnitude larger than 21.5◦, the structure of the dynamics is
significantly altered since there is no attractive length-2 cycle
on the surface of the Bloch sphere. All states which purify
converge to a single attractive pure fixed point. In the case of
overrotations, the most rapidly changing characteristic of the
protocol is the purity of the internal fixed point C3, thus, the
critical point of the phase transition. For overrotations larger
than 10◦ there is no internal fixed point.

However, for small coherent errors in the [−10◦, 10◦]
symmetric error range, all essential properties of the proto-
col change only slightly: The structure of the corresponding
basins of attraction ranges is distorted, but all the phenomena
experienced in the error-free case take place in a similar way.
Although the critical purity of the phase transition signifi-
cantly varies, the phase transition still takes place. Knowing
that the current quantum processors have an error rate of less
than 1% for single- and two-qubit operations [4,31], we can
state that the studied nonlinear quantum protocol is robust
against coherent gate errors.

V. DISCUSSION

We studied the effect of coherent quantum logic gate errors
on a specific iterated quadratic nonlinear quantum protocol.
We assumed a scenario, where the coherent error affects
the Hadamard gate applied in every step of the protocol.
Since the Hadamard gate is usually implemented as a se-
quence of Z and X gates, where the Z gates are only virtual,
we trace back the error to a miscalibrated single-qubit X gate,
and described the coherent error as an over or underrotation.
We determined the relations describing the evolution of an
arbitrary (pure or mixed) qubit state and examined the effects
of the occurring coherent gate errors. We show that for small
coherent errors, the characteristic properties of the protocol
are slightly distorted: in the preparation noise-free case the
attractive pure states are displaced, and the border of their
convergence regions are deformed, but the fractal nature of
this border remains. In addition, its fractal dimension is not
significantly changed. However, as a result of the distortion
of the delicate fractal pattern, a given pure initial state might
converge to a different pure state than in the ideal protocol.
In the case when preparation noise is also present, we showed
that all relevant features of the coherent-error-free case sur-
vive, namely, the invariant plane still exists and contains the

relevant fixed points and cycles of the dynamics, which are
slightly shifted, and the border of the convergence regions
continues to be a fractal, though, similarly to the pure case,
somewhat deformed. We pointed out that, if the initial state is
chosen from regions less affected by the distortion, then the
adverse effects of coherent errors can be eliminated. Hence,
we are able to identify regions of reliable operation.

We investigated the most notable characteristic of the
original protocol, the preparation noise tolerance property
manifested as a phase transition of the fractal dimension of
the the border of convergence regions as a function of the
initial purity. We showed that the presence of small coherent
errors does not destroy this property, although the critical
purity of the phase transition shifts from its original value.
Remarkably, we found that as a result of the distortion of the
convergence regions on the invariant plane of the dynamics,
the critical purity cannot always be identified with the same
type of repelling point as in the coherent-error-free case, but
rather with its lowest purity preimage on the invariant plane.

We also investigated how large coherent errors affect the
dynamics and identified thresholds of the coherent error for
both over and underrotations, where the above-mentioned
similarities with the original dynamics are completely lost.

Our work demonstrates that despite the fact that the out-
come of a quantum protocol can be affected by coherent
errors, as long as the coherent error is small, the characteristic
properties of the time evolution remain unchanged. In this
respect, our general finding suggests a certain resilience of
the fragile chaotic dynamics against noise and errors. This
fact may encourage the utilization of such nonlinear protocols
and the search for new applications in addition to the existing
ones. Nevertheless, further examination of the delicate com-
ponents of the system is necessary to identify all potential
sources of error if the protocol is to be utilized in a practical
setting. As the key ingredients of these protocols are the mea-
surement and the postselection steps, it is extremely important
to examine the consequences of their errors on the dynamics
in these schemes.
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APPENDIX: INVERSE MAP

Backward iteration makes it possible to calculate the points
of the quasi-Julia set and the preimages of the internal re-
pelling fixed point, one of which is the critical point of the
phase transition. This procedure requires the iterative appli-
cation of the inverse time evolution maps. To determine the
inverses of Eq. (3), one can rearrange Eq. (1) as

H̃−1ρ (n+1)(H̃†)−1 = ρ (n) � ρ (n)

Tr(ρ (n) � ρ (n) )
, (A1)
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where H̃ is the faulty Hadamard gate introduced in Eq. (5). H̃
is unitary, which results in that H̃ = H̃−1 = H̃†, therefore one
can rewrite the equation as

H̃ρ (n+1)H̃ = ρ (n) � ρ (n)

Tr(ρ (n) � ρ (n) )
. (A2)

We parametrize the density operator of the initial state with
lowercase letters and the density operator of the final state
with uppercase letters corresponding to the coordinates of
the Bloch vector. The left side of the equation can be easily
derived[

1 − sin (ε)U + cos (ε)W cos (ε)U + sin (ε)W − iV

cos (ε)U + sin (ε)W + iV 1 + sin (ε)U − cos (ε)W

]
,

at the same time, according to the definition, the right side is

1

2(1 + w2)

[
(1 + w)2 (u − iv)2

(u + iv)2 (1 − w)2

]
.

From the diagonal part of the matrix equation, one can express
a combination of the w coordinate(

1 − w

1 + w

)2

= 1 + sin (ε)U − cos (ε)W

1 − sin (ε)U + cos (ε)W
, (A3)

from this equation, one can express w as

w =
1 −

√
1+sin (ε)U−cos (ε)W
1−sin (ε)U+cos (ε)W

1 +
√

1+sin (ε)U−cos (ε)W
1−sin (ε)U+cos (ε)W

. (A4)

Based on the derived value of w and the off-diagonal part of
Eq. (A2), one can express the other two coordinates with the
Bloch coordinates of the image state as

u = Re
(√

2(1 + w2)[cos (ε)U + sin (ε)W + iV ]
)
,

v = Im
(√

2(1 + w2)[cos (ε)U + sin (ε)W + iV ]
)
. (A5)
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