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Incorporating encoding into quantum system design
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When creating a quantum system whose natural dynamics provide useful computational operations, designers
have two key tools at their disposal: the (constrained) choice of both the Hamiltonian and the the initial state of
the system (an encoding). Typically, we fix the design and utilize encodings post factum to tolerate experimental
imperfections. In this paper we describe a vital insight that incorporates encoding into the design process,
with radical consequences. This transforms the study of perfect state transfer from the unrealistic scenario of
specifying the Hamiltonian of an entire system to the far more realistic situation of being given a Hamiltonian
over which we had no choice in the design, and designing time control of just two parameters to still achieve
perfect transfer.
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I. INTRODUCTION

Quantum computers are at the stage of being able to
perform some computations much faster than their classi-
cal counterparts, possibly even surpassing the requirements
of quantum supremacy [1,2]. Nevertheless, these are very
specific instances of algorithms, and we are still far from im-
plementing arbitrary algorithms. That will need to wait until
the available resources are significantly increased, and fault-
tolerant computation becomes a reality. In the near term, we
instead operate with noisy, intermediate-scale devices (the so-
called “NISQ” era [3]). A critical goal, then, is to implement
all the elements of a computation as quickly and accurately as
possible in order to maximize the quantum advantage of our
device before being overcome by the inevitable decoherence.
This means working at the fundamental, “machine code”
level, which for many devices means describing the interac-
tions between qubits with a Hamiltonian with time-controlled
fields. For any given task, how quickly can it be implemented?
How is that run-time affected by how much control we choose
to implement? (Roughly speaking, the more control we use,
the more potential to introduce error, so we want operations
to be as fast as possible, but with as little control as possible.)
How hard is it to find the controls that implement our desired
operation?

One limit of this scenario is that of no control whatsoever,
allowing the natural Hamiltonian dynamics to achieve the
desired task. This requires a different, specific Hamiltonian
for each task. One well-studied benchmark task in this context
is known as perfect state transfer (PST) [4–8], where one
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transfers an unknown quantum state between two remote re-
gions of a quantum computer. Perhaps surprisingly, the results
here give a faster transfer than that offered by the gate model
of quantum computation [9]. The twofold speed-up may be
attributed to the use of multiqubit interference instead of local-
ized two-qubit operations. On the other hand, some minimal
levels of control enable even faster transfer, saturating the
limit imposed by the system’s group velocity [10,11].

Studies of PST have, since their inception, been charged
with the major shortcoming of requiring precisely engineered
conditions in order to achieve their results, being unable to
adapt for manufacturing imperfections etc. High-quality trans-
fer [12,13] requires less variation in the coupling strengths,
but still requires precision. This constraint has only been
reduced in exchange for an uncertain arrival time [14] or
mitigated via the use of an encoding process [10,15–17].

Our aim is to reject all such impositions, and instead
demonstrate how an existing system can be altered (extended)
or controlled to achieve a task such as PST, as depicted in
Fig. 1. In this paper, we use a uniformly coupled system as
proxy for no engineering requirements. A subsequent study
[18] will generalize the present results to near-universal appli-
cability, the key difference being the need for a highly tech-
nical proof of the existence of solutions, which we are side-
stepping by considering the uniform case. Thus, we are inter-
ested in a perfect quantum state transfer system where the
central region is uniformly coupled, but we can choose the
couplings at either end. One extreme, where one or two cou-
plings at the end of the chain are chosen, is already known to
give high-quality, but imperfect, transfer [12,13]. The opposite
extreme is where all couplings may be chosen [5] and results
in perfect transfer. We bridge these two extremes, proving that
when the central third of the chain is fixed, the error in the
transfer is exponentially small in the chain length. This result
is similar in nature to that of [19], but with an exponential
improvement in error behavior. We will show that the same
chain achieves perfect transfer if one uses the first and last
thirds of the chain as encoding and decoding regions. Our
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FIG. 1. A uniformly coupled spin chain (a), described by Hamil-
tonian B, is extended to fix some of the overall system’s eigenvalues
(b), permitting a task such as perfect encoded transfer between the
two additions. (c) The extensions are simulated by time-varying
control of two coupling strengths.

method permits the creation of extensions of arbitrary lengths,
and we numerically investigate the performance of these dif-
ferent extensions, and their trade-off between transfer time
and accuracy.

In Sec. II we review the required background of PST on
spin chains, while also introducing our insight about how
to use encoding methods. Section III shows how to sym-
metrically extend a preexisting spin chain, fixing some of
the eigenvalues of the overall system. These two methods
combine to give perfect transfer. We explore the case of a
chain, initially of 40 qubits, uniformly coupled, in Sec. IV.
We extend this to a chain of 124 qubits on which perfect
transfer can be observed. We consider the same chain from the
perspective of end-to-end transfer, proving that high-quality
transfer results, approaching perfection, exponentially quickly
in the chain length. Finally, we numerically study the perfor-
mance of shorter extensions to the original system and find
that they can also be extremely effective. In Sec. V we extend
the results beyond those of state transfer to the creation of
useful, entangled, states.

We also apply a result of Haselgrove’s [15], as depicted in
Fig. 1, which immediately demonstrates how to replace the
extensions with time control of a single coupling strength at
either end of the chain. Employing these results yields per-
fect communication through an imperfectly prepared system
just by modifying the end couplings, and essentially maps
to a constructive, analytic method of time control for perfect
communication between two pendant vertices on a network,
similar to the study of [20], studied from a control-theory
perspective. The advantage of choosing the special case of
a uniform chain to extend is that we have a good basis for
comparison to results such as [10,21].

Our methods rely heavily on those of Haselgrove [15]. In
that paper, two techniques were given: (1) for any given chain

extension, how to find the optimal encoding (with no guidance
about what the extension should be), and (2) how to simulate
an extension, replacing it with time control of a single cou-
pling. The primary purpose of this paper is to extend the chain
of reasoning, describing (1) how to analytically identify when
perfect transfer is possible for a given extension and, as such,
(2) how to design extensions that promise perfect transfer.

II. SPIN CHAINS

Consider a system Hamiltonian

H = 1

2

N∑
n=1

BnZn + 1

2

N−1∑
n=1

Jn(XnXn+1 + YnYn+1), (1)

in which Zn specifies a Pauli-Z matrix applied to qubit n, and
1 elsewhere. This describes a coupled chain of length N with
tunable coupling strengths Jn and magnetic fields Bn. We limit
ourselves to the field-free case of Bn = 0 for simplicity. The N
qubits can be grouped into three distinct sets, �in, �bulk, and
�out, as depicted in Fig. 1(b). Couplings between two qubits
that are both in �bulk are assumed to be equal, and taken to be
1 without loss of generality. This is the Hamiltonian that we
have been given and have no choice over. We retain the ability
to choose the couplings on the extensions that we add to either
end of the chain. We also take h̄ = 1 so that all energies,
transfer times, etc., are dimensionless.

The Hamiltonian H decomposes into subspaces character-
ized by the number of |1〉s in the basis elements. We focus on
the single-excitation subspace, spanned by

|n〉 = |0〉⊗(n−1)|1〉|0〉⊗(N−n).

Within this subspace, we introduce the projectors onto the
three different regions. For example,

�in =
∑

n∈�in

|n〉〈n|.

Perfect encoded state transfer identifies a single-excitation
state |�in〉 localized to the input region which evolves in the
transfer time t0 to |�out〉 = e−iHt0 |�in〉:

�in|�in〉 = |�in〉, �out|�out〉 = |�out〉.
This gives perfect transfer of a quantum state because an
arbitrary superposition α|0〉⊗N + β|�in〉 can be created on the
input region, evolving to the output state α|0〉⊗N + β|�out〉.

Our primary goal is to discover how to choose the {Jn}
on the input and output regions such that we achieve perfect
encoded state transfer. To assess the quality of transfer, we
evaluate σ , the maximum singular value of �oute−iHt0�in,
and define the fidelity to be F = σ 2 [15] or transfer error
ε = 1 − σ 2. Note that, strictly, this is the excitation transfer fi-
delity. Given that the |0〉 component transfers perfectly, this is
the worst-case fidelity for the transfer of an unknown quantum
state. One could alternatively consider the average fidelity,
1
3 + 1

6 (1 + √
F )2, but we will always use this worst case F .

The left- and right-singular vectors in this case correspond
to the states |�out〉 and |�in〉 respectively. End-to-end transfer
is a special case with �in = |1〉〈1| and �out = |N〉〈N | [22].

Throughout this paper, we will assume symmetry: Jn =
JN−n. The reason for this is that the necessary and sufficient
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conditions for PST between opposite ends of a chain are
well known [7] and include the requirement of this symme-
try. While the symmetry is not necessary when one moves
away from the end of the chain, it vastly reduces further
requirements to a simple spectral condition. If we define the
symmetry operator

S =
N∑

i=1

|N + 1 − i〉〈i|,

then SHS = H and hence, if transfer is perfect, |�out〉 =
eiφS|�in〉 up to a known phase φ [23]. A symmetry operator
SA is sized for a specific matrix A: SAASA = A.

Making use of encoding

Our aim in this section is to reverse engineer the singu-
lar value description in order to guarantee perfect encoded
state transfer. To that end, let the eigenvalues and eigenvec-
tors of H be λn and |λn〉, respectively. These are ordered
such that λn > λn+1. In a symmetric system, the Hamiltonian
decomposes into two subspaces H = H+ ⊕ H−, with each
eigenvalue being associated with one of these. Indeed, for a
chain, λ2n−1 ∈ spec(H+) and λ2n ∈ spec(H−) for all n. In such
a symmetric system, the perfect transfer conditions using an
encoded state |�in〉 at time t0 are readily stated [5]:

∃φ : e−iλnt0 = ±eiφ, ∀λn ∈ spec(H±) : 〈λn|�in〉 
= 0.

Up to an arbitrary scale factor and offset, the spectrum for a
PST system is a set of integers where the even (odd) integers
are assigned to H+ (H−) and the perfect transfer time is π . In
the field-free case of Bn = 0, φ is an integer multiple of π

2 .
For end-to-end transfer, where |�in〉 = |1〉, then 〈λn|�in〉

is nonzero for all eigenvectors, and hence every eigenvalue
must satisfy the integral condition. Transfer between nodes
in the bulk of a chain has, to date, defied such a concise
description because it is possible for a given 〈λn|m〉 to be
0, meaning that the corresponding eigenvalue need not fulfill
the spectral conditions. However, we will now use this to our
advantage. Imagine that we have a fixed Hamiltonian H whose
eigenvalues we know. These may be categorized as the set �P

which satisfy the perfect transfer conditions at time t0, and �P̄,
the imperfect ones which do not satisfy the perfect transfer
conditions. If we can select an encoding |�in〉 such that for all
n ∈ �P̄, 〈λn|�in〉 = 0, we have perfect encoded state transfer.
Our task is straightforward: find any state supported on �in

that is in the null space of

{�in|λ〉}λ∈�P̄
.

The existence of such a state is guaranteed provided the size
of the encoding region is larger than |�P̄|.

Example 1. Consider the following chain:

where each circle is a qubit, a number over an edge is a
coupling strength J between the specified pair of qubits,
and a number over a qubit is a field strength Bn on that
qubit (and 0 if not specified). This system has eigenvalues

√
185 × {±1,±2,±6,±10}. We make the assignment

�P =
√

185 × {±2,±6,±10},
�P̄ = {±

√
185}.

Using only the values in �P, we have a perfect transfer time
t0 = π/(4

√
185) since this gives the set of values

λnt0 = −5π

2
,
−3π

2
,
−π

2
,
π

2
,

3π

2
,

5π

2
,

which have gaps of π between them.
So, if we choose to take an encoding region of size |�P̄| +

1 = 3, and evaluate the two eigenvectors of �P̄ restricted to
the first three sites, we have

|1〉 ∓
√

37

10
|2〉 − 3

8

√
7

10
|3〉.

There is a state

3
√

7|1〉 + 8
√

10|3〉
that is orthogonal to both of these. In the time t0 =
π/(4

√
185), this transfers to

−i(3
√

7|8〉 + 8
√

10|6〉),

which is just on the decoding region (also size 3). We have
perfect transfer of a single encoded excitation, and hence
perfect transfer of a single encoded qubit.

By interpreting the use of the encoding and decoding re-
gions in this way, we have the opportunity to incorporate
encoding into our analytic strategies for the first time, rather
than just adding it in subsequently. If the null space is of
dimension k, one can encode k qubits, and they will all be
perfectly received (up to a suitable decoding sequence upon
arrival) [7]. Moving beyond the perfect transfer regime, a
good use of the encoding strategy (although not necessarily
optimal) is to find the eigenvalues that are the “worst offend-
ers” (e.g., from the unencoded case of just using the input |1〉)
and set them to 0.

III. CHAIN EXTENSIONS

The application of this encoding strategy is now clear:
while PST requires engineering a system such that every
eigenvalue satisfies a precise condition, we can forgo fixing M
eigenvalues in exchange for encoding and decoding regions of
size M + 1. We are now tasked with solving this problem: for
a fixed central region, how do we symmetrically extend that
chain such that it has certain eigenvalues of our choosing?

Our strategy is inspired by [24], which showed how to
create a one-sided extension of a chain, fixing some of the
eigenvalues. In the single-excitation subspace, H can be writ-
ten in the form
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where B = SBBSB is the fixed central region (i.e., a uniformly
coupled chain), and A is the output region that we will be able
to select. The symmetry structure of H becomes

Requiring a target eigenvalue λ for H with symmetry σ ∈ ±
imposes that

det(Hσ − λ1) = 0.

This can be expressed in terms of polynomials such as QA(x),
the characteristic polynomial of A, and Pσ

B (x), the characteris-
tic polynomial of the principal submatrix of Bσ , i.e., Bσ with
its first row and column removed:

QA(λ)Qσ
B (λ) = J2PA(λ)Pσ

B (λ). (2)

If A comprises a set of M sites, then QA and PA are monic poly-
nomials of degree M and M − 1 respectively. We don’t know
the coefficients of the polynomials, but there are 2M − 1 of
them, and each instance of a λ in Eq. (2) is just a linear equa-
tion for those coefficients. Given 2M − 1 target eigenvalues,
if a solution exists, PA(x) and QA(x) are uniquely determined.
Moreover, if we know PA(x) and QA(x), we can uniquely
reconstruct A [25] (up to signs in the coupling strengths). In
this argument, we have assumed that J is known. Little change
is required if J is unknown, we just need one more parameter
as, effectively, PA is no longer monic.

Example 2. Starting from chain of four qubits,

we demand a symmetric extension such that eigenvalues of the
overall system include ±1 and ±2, the positive values being
associated with the symmetric subspace:

The symmetric subspace is also equivalent to a chain, but with
a nonzero field on the final spin:

We impose that the symmetric subspace should contain the
eigenvalues 1,2. Dividing this into two sections

A =
(

0 J1

J1 0

)
, B+ =

(
0 1
1 1

)
,

then we can readily evaluate

Q+
B (x)

P+
B (x)

= x(x − 1) − 1

x − 1
,

which must equal

J2PA(x)

QA(x)
= J2x

x2 − J2
1

at x = 1, 2. In this case, we directly solve the two simultane-
ous equations to find J2

1 = 1 and J2 = 3
2 . We thus see that the

chain

has the desired eigenvalues.
In this section, we have shown how to take a fixed central

region contains MB qubits, extending it to have N = 2M + MB

qubits, with the ability to fix 2M eigenvalues (in the J un-
known case). Once we incorporate our conclusions of Sec. II
about the use of encoding, perfect encoded transfer is possible
provided M > MB.

IV. EXAMPLES

For the purposes of numerical examples, it is convenient to
use the field-free case, i.e., where the matrices A and B have 0
on the diagonal, halving the number of parameters we have to
work with. We shall assume that B comprises an even number
of qubits, such that the chain as a whole has an even number
of qubits. As a result, both B and H will have all eigenvalues
occurring in ±λ pairs. Note that |λ〉 and |−λ〉 have opposite
symmetries. Instead of solving Eq. (2) for both, we can build
this feature into the structure of the polynomials that we’re
solving for, specifically that QA(x) comprises only even (odd)
powers if M is even (odd), while PA(x) is the opposite.

Solving the linear equations (2) directly is challenging as
the structures involved closely resemble Vandermonde ma-
trices, including terms such as λM , which rapidly lead to
numerical instabilities. Instead, we recognize that the prob-
lem is that of finding a rational function of specific degrees
which fits known values at specific points. There are several
existing techniques for solving this such as Thiele’s continued
fraction routine [26]. In all our numerical tests, we have used
Algorithm 1 presented in [27] (see also [28]) as a particularly
efficient algorithm whose iterative structure will be familiar
to those who work with tridiagonal matrices or orthogonal
polynomials. However, this works only when J is unknown
[29].

To incorporate the field-free assumption into the rational
interpolation algorithm [27], we need the function f (x) =
P(x)
Q(x) to be antisymmetric in the case of A being of even length.
If we have positive points (target eigenvalues) xi for which the
rational function must have values fi [and hence also values
−xi such that f (−xi ) = − fi], then instead we attempt to find
a rational function g(x) which satisfies {g(x2

i ) = fi/xi}. This
means that we will have determined

g(x) = p(x)

q(x)
,

from which we can construct

f (x) = xp(x2)

q(x2)
= P(x)

Q(x)
. (3)

It is straightforward to verify the required relations

f (xi ) = xig
(
x2

i

) = fi,

f (−xi ) = −xig
(
x2

i

) = − fi.
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FIG. 2. Extending a uniformly coupled chain of 40 qubits to 124
qubits, achieving perfect encoded transfer. We chose certain eigen-
values (circles) to fit the perfect transfer conditions. Even the unfixed
ones (triangles) gave a good approximation to those conditions.

A. Perfect encoded transfer

Consider the example where the central region comprises
40 qubits, uniformly coupled, strength 1. We will introduce
M qubits (even) at either end of the chain, and fix a value δ to
be as large as possible, corresponding to a state transfer time
of t0 = π/δ. We seek couplings of the extension such that the
overall system has eigenvalues

δ
{
M − 2k − 1

2

}M−1

k=0 (4)

in the symmetric subspace. A field-free system must also have
eigenvalues δ{M − 2k − 3

2 } in the antisymmetric subspace.
Setting M = 42 is sufficient to guarantee perfect transfer,
assuming a solution exists. While we have no guarantee about
the existence of a solution (which is beyond the scope of
this paper; see [18]), this particular model is quite forgiving.
Recall that the spectrum for a uniformly coupled chain of N
qubits is

2 cos

(
πn

N + 1

)
.

In the central region n ∼ N+1
2 , the spectrum is near-linear.

Thus, imposing that it should be exactly linear in its central
region is not a big deviation. What value should be chosen for
the gradient, δ? Two extremes yield a tight range to numeri-
cally search within for the optimal:

(1) A uniformly coupled system has gradient 2π
N+1 in the

central region of its spectrum, and this has the fastest possible
group velocity (i.e., transfer speed) of any system with max-
imum coupling strength Jmax = 1. Given that we are fixing
about two-thirds of the eigenvalues, which is much more than
the typical linear region, it seems unlikely that we will be able
to match this gradient.

(2) The fastest perfect transfer system [5] has gradient 4
N

throughout its spectrum (and is approximately uniform in the
central region). A solution matching this gradient should exist.
This extreme may suggest the possibility of even getting the
eigenvalues that we don’t choose close to the linear pattern as
well. See Fig. 2 for an example.

Figure 3(a) depicts our chosen example where we have
focused on fixing the eigenvalues in the central region, as
specified by Eq. (4). The code used to produce this example
can be found at [30], including the explicit solutions for the
coupling strengths. This achieves perfect encoded transfer in
time 94.5 (as compared to the PST gradient giving transfer
time ∼99). However, by using the optimal encoding [15],
we see in Fig. 3(b) that extremely high-fidelity transfer is
achieved in a much shorter time, essentially coinciding with
the first arrival peak of a wave packet traveling at the max-
imum group velocity of the system, i.e., as fast as transfer
could possibly occur. We comment on why this is the case in
Sec. IV C.

We should compare this solution to the best known previ-
ous solution, in which one simply extends the uniform chain
with another uniform chain and uses the optimal encoding,
which is inspired by creating wavepackets that travel through
the system at the group velocity [10,11]. Visual inspection
reveals that the solutions are comparable. For the uniform
chain, however, transfer is never perfect, and as soon as the
central region is not uniformly coupled, we don’t know how to
proceed. Nevertheless, this comparison suggests that it might
be interesting to reduce the size of the controlled regions.
In Fig. 4 we see that even modestly sized extensions, sup-
plemented by encoding, are extremely effective in improving
transfer fidelity [31], indeed, far more effective than uniform
extensions.

B. Imperfect state transfer families without encoding

Figure 3 shows one further striking feature. It plots the
weight of each eigenvector on the first site, and this is strongly
weighted in the central region where the eigenvalues have
been tuned to have the linear relation required of perfect
transfer. Thus, high-quality transfer will result without any
encoding.

To study this in greater detail, let us assume that a family
of solutions of the form described in Figs. 3 and Eq. (4) exist.
Let |ψ〉 = ∑

n an|λn〉 be our encoding, giving a decoding of
|φ〉 = ∑

n an(−1)n+1|λn〉. Now let �P̄ be the set of indices n
for which the λn do not satisfy the PST conditions. At worst
case, the transfer fidelity would be

Fmin = 1 − 2
∑
n∈�P̄

|an|2.

In Fig. 3 the spectrum is very close to linear throughout its
range (and exactly linear in the central region). The energy
gap must be approximately δ = 4J/(N − 1), giving a transfer
time of π/δ. Since the spectrum entirely determines the values
an on a symmetric chain, this conveys that the an will be
extremely close to those of the perfect transfer chain [5,32],
so we can take the analytic solutions for those eigenvec-
tors as excellent approximations. Thus, for a chain of total
length N ,

|an|2 = 1

2N−1

(
N − 1

n − 1

)
.

We take the large N limit, so the summation for Fmin becomes
an integral. With �P̄ being all those eigenvalues apart from the
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FIG. 3. (a) Eigenvalues of a chain extended from 40 qubits to give PST. The central eigenvalues satisfy the linear condition (circles), with
the others (triangles) being uncontrolled. The continuous (blue) line depicts the weight of each eigenvector on the first site of the chain. (b) Plot
of the encoded state transfer fidelity of the extended perfect transfer chain (dashed) compared to original chain (continuous). A plot of the
encoded state transfer fidelity using a 124-qubit uniformly coupled chain is indistinguishable from the perfect transfer case at the resolution of
this image (Fig. 4 shows how this disparity changes with extension length).

central 2N/3 of them, we get an error of

1 − F PST
min = 8√

2π

∫ −√
N/6

−∞
e−2θ2

dθ <
12√
2Nπ

e−N/18.

This yields asymptotically perfect transfer between opposite
ends of the chain. This is an exponential improvement in
approach compared to [19]. It might be considered to be
taking the studies of [12,13] to their ultimate limit, demon-
strating how many couplings it is sufficient to fix in order to
get asymptotically perfect transfer with a uniformly coupled
central region and end-to-end transfer, not just a fidelity over
some finite threshold.

From our proof of end-to-end transfer, it is also clear that
for any (N − |�P̄|)/2 that grows faster than ∼√

N , the integral

FIG. 4. For a central region of 40 qubits, we find symmetric ex-
tensions and assess the transfer error at t = π/δ where δ is fixed. We
compare end-to-end transfer (triangles) and optimal encoding over
the entire encoding and decoding region (circles). We also include
the time-optimized transfer error of a uniformly coupled chain of the
same length (diamonds) using encoding over the entire encoding and
decoding region.

will also vanish. So perhaps we only need to fix O(
√

N ) eigen-
values? This is a different proposition as, with control over
fewer eigenvalues, it is less likely that we approximate the
linear spectrum for its full range. The spectrum will be much
closer to that of the uniform chain, more of whose eigenvec-
tors have non-negligible support on the first site. One might
expect to compensate with encoding. Figure 4 shows how
the transfer fidelity varies with the length of the extension,
with the error dropping exponentially. For example if we have
extended by only eight spins, rather than the ∼40 required to
achieve perfect transfer, we still achieve a transfer with error
approximately 2 × 10−9, while the uniformly extended chain
achieves only an error of 10−4.

C. Time for encoded transfer

The fact that these chains permit extremely high quality
end-to-end transfer, being closely related to a PST chain,
yields some insight about the speed of the high accuracy
encoded state transfer, observed in Fig. 3(b). Consider a
PST chain of length N such as in [5], with a state trans-
fer time t0 (which grows linearly in N if we scale the
system such that its maximum coupling strength is 1).
Starting localized at the first site, the motion is essen-
tially the ballistic motion of a wave packet, centered on
the position

(N − 1) sin 2

(
πt

2t0

)
+ 1

with a spread

σ =
√

N − 1

2
sin

(
πt

t0

)
.

In fact, the distribution of probabilities per site is exactly
that of an (N − 1)-sample Bernoulli distribution with p(t ) =
sin2( πt

2t0
). Thus, the wave packet is almost entirely restricted

to the encoding region until a time tin [such that p(tin ) ∼ 1
3 ]
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and almost entirely restricted to the decoding region after a
time t0 − tin. When the wave packet is in those regions, we can
recreate it with encoding and decoding. The resulting error for
encoding may be bounded by a Chernoff bound as

ε � e−(N−1)p(3p−1)2/(21−9p)

with a symmetric equivalent for the decoding error. Hence, we
need a transfer time of only approximately 0.22t0 + O(1/

√
N )

with an error that is exponentially small in N . This time,
0.17N , compares extremely well with the limit of N/6 im-
posed by the maximum group velocity being 2 [33]. While
this strategy may not be optimal, it provides a lower bound
for the performance. We should note, however, that the spread
of the wave packet, O(N1/2), is broader than the optimal wave
packet for the equivalent uniformly extended chain, O(N1/3)
[11].

V. SIMULATING EXTENSIONS WITH TIME CONTROL

The work of [15] contains two useful strategies. We have
made extensive use of one here: the encoding and decoding
of the state, giving it a new interpretation for how it can
be used to achieve perfect transfer. The second, how certain
sections of a spin system can be replaced by time control,
is just as useful. It can be used directly, without alteration.
Instead of adding many qubits to the initial fixed system, we
just control (varying in time) two of the coupling strengths.
This is depicted conceptually in Fig. 1. Transfer at fidelity
F between encoding and decoding regions translates directly
to transfer between the two extremal sites in the virtualized
system at fidelity F .

Specifically, if we have a system for which there’s a chain
that we want to simulate, let the qubits of the chain be indexed
1 to M, where M is the end of the chain, and 1 is connected to
the rest of the system. The evolution of the single excitation
that we want to simulate has amplitudes ψn(t ) at site n. We
can assume that ψ2(t ) is real. We can remove all the qubits 3
to M, and replace the coupling J1,2 with

�(t ) = J1,2ψ2(t )√∑M
n=2 |ψn(t )|2

.

Example 3. Consider the following chain from example 1:

We have already determined an encoding

3
√

7|1〉 + 8
√

10|3〉
and decoding

−i(3
√

7|8〉 + 8
√

10|6〉)

after time t0 = π/(4
√

185) that achieve perfect encoded trans-
fer. We can calculate how each of the amplitudes evolves in
time. For example,

ψ1(t ) = 3

√
7

703
cos5(2

√
185t ).

Hence, we can replace the extensions with time controls

with

�1(t ) = 2
√

555[29 − 45 cos(4
√

185t )]√
535 − 702 cos(4

√
185t ) + 243 cos(8

√
185t )

,

�N (t ) = 2
√

555[29 + 45 cos(4
√

185t )]√
535 + 702 cos(4

√
185t ) + 243 cos(8

√
185t )

.

Using this, one excitation transfers from the first qubit to the
last in time t0. Moreover, any initial state α|0〉 + β|1〉 transfers
between those two spins in the same time.

There are a few features of the above example which are
worth noting: (1) the symmetry in the time control, �N (t ) =
�1(t0 − t ), (2) the boundedness of the control fields, |�| � J ,
and (3) the smoothness of the control fields.

Creation of states

In fact, the ability of the virtualization technique of [15]
to simulate a perfect transfer chain in which every site per-
fectly transfers to its mirror site in the perfect transfer time
t0 has some extremely powerful consequences. We will now
use this to produce arbitrary states of a single excitation on
a chain.

Imagine that we’re given a uniformly coupled chain of MB

qubits. Before appending engineered chains for the purpose of
tuning the spectrum, we add a further MB uniformly coupled
qubits. We will refer to these as the “mirror system.” Then
we add the extra chains at both ends to tune the spectrum.
The longer the chains, the more accurate the protocol that
we’ll realize, at the cost of longer time. Once we’ve solved
for that system, we will virtualize everything that we’ve
added.

Note that the virtualization procedure is state dependent,
being derived from the amplitudes {ψn(t )} of the single ex-
citation’s evolution in the original system: it depends on the
system’s initial state. It is this dependence on the initial state
that we will now utilize. In particular, if we create any single-
excitation state that we like in the mirror system, then in the
PST time, it arrives perfectly on the original system, while the
virtualization procedure will just reduce the initial state to a
single excitation on the qubit that replaces the chain section. A
numerical example is explicitly given in [30]. Translated into
the virtualized system, you start with a single excitation on
one of the two extremal spins, and the time control determines
any single-excitation output state that you desire on the bulk
system!

We can illustrate these concepts using a PST chain [5].
Example 4. Consider a PST chain of 6 qubits,

Pick any initial state localized on qubits 4 to 6 (the mir-
ror of qubits 1 to 3), such as (|4〉 − √

10|6〉)/
√

11. In time
t = π/2, this state is perfectly mirrored onto qubits 1 to 3:
i(
√

10|1〉 − |3〉)/
√

11. We can virtualize this using the shorter
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chain

with a time-varying coupling strength

�(t ) = 3
√

2(2 − cos(2t ))√
2 cos(2t ) − cos(4t ) + 21

.

The virtualized system now undergoes the evolution

|4〉 t=π/2−−−→ i(
√

10|1〉 − |3〉)/
√

11.

Any input of the form α|0〉 + β|4〉 evolves, under the same
time control, to

t=π/2−−−→ α|0000〉 + i
β√
11

(
√

10|1〉 − |3〉).

Different time controls, such as

�(t ) = 3
√

10[1 − 2 cos(2t ) + 3 cos(4t )]√
105 − 98 cos(2t ) + 76 cos(4t ) − 54 cos(6t ) + 27 cos(8t )

,

yield different evolutions,

|4〉 t=π/2−−−→ −i(
√

2|1〉 +
√

5|3〉)/
√

7,

for the same initial state.
Of course, our strategy will only ever approximate a perfect

transfer chain. To that end, we take the state |�〉 that we
want to create and run the Hamiltonian evolution backwards
to find the best possible starting state. If �out is the projector
onto the output region, including also the mirror system, then
up to normalization, the best possible starting state is

|�in〉 = �oute
iHt0 |�〉,

and the transfer fidelity is

〈�|e−iHt0�oute
iHt0 |�〉.

In order to understand the efficacy of our system, let us calcu-
late the eigenvalues

�bulke−iHt0�oute
iHt0�bulk.

For the chain specified by Fig. 2, these are plotted in Fig. 5.
We see that there’s a large space from which states can be
created with high fidelity.

FIG. 5. For a 40-qubit chain as specified in Fig. 2, states can be
created on the first 20 qubits of the bulk with a maximum error for a
given dimension of space.

VI. CONCLUSIONS AND FUTURE WORK

We have shown how a uniformly coupled chain can be
symmetrically extended by M qubits on either side, fixing
2M − 1 (or 2M) of the eigenvalues to those that we specify.
By also implementing an encoding and decoding procedure
over the M qubits at either end, we can avoid populating
up to M − 1 eigenvectors whose eigenvalues do not satisfy
the perfect transfer condition. We can thus create a perfect
encoded transfer chain where the central third is fixed to
being uniformly coupled. Operating close to the speed limit
of the system yields a transfer whose error is exponentially
small in the chain length. Moreover, thanks to [15], all the
additional spins can be “virtualized,” i.e., replaced simply by
time control of a single coupling strength at either end of
the uniform chain. We have demonstrated numerically that
even with shorter extensions, extremely high-fidelity trans-
fer can be achieved. Equally, if one wants to dispense with
encoding, high-quality transfer is possible, with an error that
decreases exponentially in the chain length. A small modifica-
tion of the protocol allows for the creation of a wide range of
single-excitation states. The algorithms for computing the ex-
tensions, and corresponding time control in the virtualization,
are extremely efficient.

The formalism developed here is not limited to the ini-
tial system being a uniformly coupled chain. Any coupling
topology and specification of coupling strengths is equally
amenable. However, the challenge is ensuring that solutions
to the set of linear equations (2) exist. That, and the conse-
quences for transfer speed, are topics for a future paper [18].
IBMQ devices of various geometries are thus a promising
avenue for experimental realization: they already use a Hamil-
tonian of the form Eq. (1). Moreover, since we are already
using encodings, these encodings can be optimally updated to
incorporate knowledge of the system noise [16]. As such, this
methodology heralds a new era for quantum state transfer, and
related studies, in which we can adapt to a provided system
rather than having to request specific properties.

That said, there remain limitations. The most obvious ones
are that (1) systems such as IBMQ do not directly pro-
vide access to time control of coupling strengths, only the
local magnetic fields, and (2) if the extended system is a
chain, multiple excitations behave well [7]. However, if the
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virtualization procedure of [15] is used, the single-excitation
subspace no longer provides a good description of the behav-
ior in higher excitation subspaces, and (3) we don’t yet know

how to incorporate the treatment of noise such as [16] into the
virtualization procedure. These are issues that we hope may
be addressed in the future.
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