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Shortest evolution path between two mixed states and its realization
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In a quantum unitary system, an initial state may have different paths to evolve to a target state, and the only
requirement is that the initial and target states share the same eigenvalue spectrum. We focus on the evolution
between two nondegenerate mixed states in this paper, and investigate the shortest evolution path between them.
By minimizing the path distance contained in the unitary operator connecting the initial and target states over a
series of phases, the shortest evolution path could be figured out. This minimum path distance has an analytical
form in the single-qubit dynamical system, and its solution in the three- or higher-dimensional dynamical system
could be obtained numerically. Based on the unitary operator associated with the shortest evolution path, a
general form for the Hamiltonian to realize it is presented. Here we present another way to study quantum
optimal control, which is based on the path distance between the initial state and its evolution state, rather than
the state distance between them.
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I. INTRODUCTION

The issue of quantum evolution attracts much attention
in recent years owing to its important role in quantum
information processing, which takes effect on the computa-
tional capacity of quantum computation [1,2], transferring
rate of information [3–5], measurement precision in quantum
metrology [6–8], entropy production rate in nonequilibrium
quantum processes [9,10], charging power of quantum bat-
teries [11,12], and so on. How to evolve a quantum state to
a target state as fast as possible becomes a hot topic in this
field. Several techniques are developed with this aim, such as
the Krotov algorithm [13,14], a numerical recursive method
based on the Lagrange multiplier problem [15,16], and the
variational method based on the quantum brachistochrone
problem [17]. Whether there exists a geodesic evolution be-
tween two given states is another interesting question. If a pure
state |ψ0〉 is to evolve to another pure state |ψτ 〉 in a unitary
system, a geodesic evolution between them could be realized
by imposing the Hamiltonian H = g|ψ0〉〈ψτ | + H.c. onto the
system, where the coupling strength g determines the time
required to accomplish this evolution, and the evolution state
is always in the plane spanned by |ψ0〉 and |ψτ 〉. However,
it seems hard to define the geodesic evolution between two
mixed states. Although we have no answer for the geodesic
evolution between two mixed states, a related question attracts
our attention recently: what is the shortest evolution path
between two mixed states?

In a quantum unitary system, an initial mixed state ρ0

turns to its evolution state ρt through the transformation ρt =
Utρ0U

†
t . Here the unitary operator Ut is determined by the

Hamiltonian through the relation Ut = T exp{−i
∫ t

0 H (t ′)dt ′},
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where we set the constant h̄ = 1 hereafter, and T is the
time-ordering operator. The unitary operator Ut represents one
evolution path from the initial state ρ0 to the evolution state ρt

in the following. In Ref. [18], the path distance contained in
an N th-order unitary operator Ut is defined as

d (Ut ) = π − 1
2 max{Dj}, (1a)

with

Dj =
{

φ j+1 − φ j, for j = 1, 2, . . . , N − 1

2π + φ1 − φN , for j = N.
(1b)

Here {Dj} is the set of phase differences between neighboring
eigenvalues of Ut , which are aligned based on their principal
argument (phase) in ascending order, φ j � φ j+1. The prin-
cipal argument of every eigenvalue is confined in the range
(−π, π ]. The path distance defined in this way is actually
the minimum rotation angle of a state vector in the Hilbert
space under the action of this unitary operator, which satisfies
three requirements for a good measure of distance: positivity,
symmetry, and triangle inequality [19,20]. It is proven that
the path distance contained in Ut is an upper bound of the
Bures distance between any two quantum states connected by
Ut , i.e., d (Ut ) � dB(ρ0, ρt ), if ρt = Utρ0U

†
t . The Bures dis-

tance [21] between two quantum states ρ0 and ρt is defined as
the arccosine of the Uhlmann fidelity between them [22,23]:

dB(ρ0, ρt ) = arccosF (ρ0, ρt ), (2a)

with

F (ρ0, ρt ) = Tr
[√√

ρ0ρt
√

ρ0
]
. (2b)

If two mixed states share the same eigenvalue spectrum,
they could evolve to each other via different evolution paths,
and each path contains its own path distance. For example,
under the action of the Hamiltonian H1 = (0 0

0 1), a mixed

state ρ0 = 1
4 (2 1

1 2) turns to a target state ρτ = 1
4 ( 2 i

−i 2) at
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time t = π/2. The corresponding unitary evolution opera-

tor is U1 = exp{−i
∫ π

2
0 H1dt} = (1 0

0 −i) with path distance
d (U1) = π/4. On the other hand, the evolution from ρ0 to
ρτ could also be realized through the unitary evolution oper-
ator U2 = 1√

2
ei(2

√
3+3)π/36( eiπ/6 e−iπ/3

−eiπ/6 e−iπ/3 ), which contains path
distance d (U2) = π/3. The unitary operator U2 describes the
action of the Hamiltonian H2 = 1√

11
(−3/2 1 + i

1 − i 1/2 ) with the

interaction time t = √
33/9, i.e., U2 = exp{−i

∫ √
33/9

0 H2dt}.
The path distance contained in U1 is different from that in U2,
which are both larger than the Bures distance between the two
states ρ0 and ρτ with dB(ρ0, ρτ ) = arccos(

√
14/4).

Quantum evolution would result in the change of the dis-
tance between the initial state and its evolution state, and
the path distance could then be regarded as one property
of the evolution itself. If we replace state distance by path
distance in some issues, different conclusions might be made.
For example, if we define the evolution speed of a quantum
system as the changing rate of the path distance, rather than
the changing rate of the state distance, then the instantaneous
evolution speed depends on the Hamiltonian only [24].

In this paper, we present the general form of the unitary
operator for connecting two given mixed states, and minimize
the path distance contained in the general unitary operator to
figure out the shortest evolution path. The analytical solution
for the minimum path distance could be obtained in a single-
qubit system. We also use a single-qutrit example to illustrate
how to minimize the path distance in a higher-dimensional
system numerically. Based on the unitary operator associated
with the shortest evolution path, we present the Hamiltonian
to realize it finally.

II. SHORTEST EVOLUTION PATH

A. General form of the unitary operator for the evolution
between two mixed states

We start the analysis on the shortest evolution path be-
tween two mixed states with the eigenvalue decomposition
of a mixed state, ρ0 = V0�V †

0 . Here � is a diagonal matrix
composed of the eigenvalues of ρ0, �kk = λk . For simplicity,
we only consider the nondegenerate mixed state, and assume
that the eigenvalues {λk} are arranged in ascending order,
λk < λk+1. The eigenvectors of ρ0 compose the matrix V0 with
V0 = (|ψ1〉 |ψ2〉 · · · |ψN 〉), where the kth eigenvector |ψk〉 is
associated with the kth eigenvalue λk . In fact, the matrix V0 is
not unique for a mixed state, because the overall phase of each
eigenvector could not be confirmed from ρ0. So we rewrite the
eigenvalue decomposition of ρ0 as

ρ0 = V0Mϕ�M†
ϕV †

0 , (3)

where the diagonal matrix Mϕ is composed of the overall
phase {ϕk} of the eigenvectors of ρ0:

Mϕ =

⎛
⎜⎜⎜⎝

eiϕ1 0 0 0
0 eiϕ2 0 0

0 0 . . . 0
0 0 0 eiϕN

⎞
⎟⎟⎟⎠. (4)

Since the matrix Mϕ is a unitary matrix, we call it the phase
operator hereafter. In fact, the equality Mϕ�M†

ϕ = � holds for
arbitrary Mϕ , no matter what values the overall phases {ϕk}
are.

Since the eigenvalues of a mixed state keep invariant during
a unitary evolution, the evolution state ρt has the following
eigenvalue decomposition:

ρt = Vt Mϕ′�M†
ϕ′V †

t , (5)

where Vt is composed of the eigenvectors of ρt , Vt =
(|ψ ′

1〉 |ψ ′
2〉 · · · |ψ ′

N 〉). The phase operator Mϕ′ has a similar
form as Mϕ in Eq. (4), which contains the overall phase of the
eigenvectors {|ψ ′

k〉}. At the same time, the evolution state ρt

could also be described through the unitary evolution operator
Ut and the initial state ρ0 as ρt = Utρ0U

†
t . By substituting the

two forms (3) and (5) into this equation, we derive the general
form of the unitary operator Ut for the evolution from ρ0 to ρt :

Ut = Vt Mϕ′M†
ϕV †

0 = Vt Mϕ′′V †
0 , (6)

where Mϕ′′ = Mϕ′M†
ϕ is also a phase operator in the form (4).

B. Shortest evolution path and the corresponding
time-independent Hamiltonian

Now we consider the evolution from the initial state ρ0 =
V0�V †

0 to a target state ρτ = Vτ�V †
τ . By substituting the uni-

tary operator Uτ = Vτ MϕV †
0 in Eq. (6) into the path distance

in Eq. (1) and optimizing it over the set of the phase operators
{Mϕ}, we obtain the minimum path distance of the unitary
evolution from ρ0 to ρτ :

dP(ρ0, ρτ ) = min
{Mϕ}

d (Vτ MϕV †
0 ). (7)

As we mentioned above, V0 and Vτ are composed of the eigen-
vectors of the mixed states ρ0 and ρτ , respectively. The kth
eigenvectors of V0 and Vτ , |ψk〉 and |ψ ′

k〉, are associated with
the same eigenvalue λk . The phases {φk} in the operator Mϕ

are variable. Because the path distance contained in a unitary
operator is determined by the eigenvalues of the operator, and
the matrix Vτ MϕV †

0 has the same eigenvalue spectrum as the
matrix V †

0 Vτ Mϕ , the minimum path distance of the evolution
from ρ0 to ρτ could also be written as

dP(ρ0, ρτ ) = min
{Mϕ}

d (V †
0 Vτ Mϕ ). (8)

Once the unitary operator associated with the shortest evo-
lution path is ready, the Hamiltonian H (t ) to realize it should
satisfy Uτ = T exp{−i

∫ τ

0 H (t )dt}. For the sake of simplicity,
we only consider the time-independent Hamiltonian here, and
this relation is simplified as Uτ = exp(−iHτ ). The Hamilto-
nian could then be figured out:

H = i

τ
ln Uτ + R. (9)

Here the real parameter τ could be used to control the en-
ergy spread of the system, which is also the interaction time
required to realize the unitary operator Uτ . The real number
R, which only induces an overall phase to the evolution state,
could be used to control the average energy of the system. The
above equation (9) presents a general solution of the time-
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independent Hamiltonian for realizing the unitary operator
Uτ , no matter what values τ and R are.

III. SHORTEST EVOLUTION PATH BETWEEN TWO
SINGLE-QUBIT STATES

In this section, we use a single-qubit example to illustrate
the optimization of path distance. Here we aim at an analytical
solution of minimizing the path distance contained in a gen-
eral second-order evolution operator, which could be derived
by driving a fix state to a parametrized state. Since any mixed
state has a diagonal form in the basis composed of its own
eigenvectors, we assume the initial state of this single-qubit
system has a diagonal form for simplicity:

ρ0 = 1

4

(
1 0
0 3

)
. (10)

According to Eq. (6), a general evolution operator between
two mixed states is determined by their eigenvectors, com-
bined with a phase operator, and the eigenvalues play no role
in the quantification of path distance. In a quantum unitary
system, the target state should have the same spectrum as the
initial one, so we assume the parametrized target state has the
following form:

ρτ = 1

4

(
1 + 2 sin2 θ − sin 2θeiα

− sin 2θe−iα 1 + 2 cos2 θ

)
,

[
θ ∈

(
0,

π

2

)]
.

(11)
The decomposition of the two mixed states is ρ0 = V0�V †

0
and ρτ = Vτ�V †

τ with � = ρ0. V0 and Vτ are composed of
the eigenvectors of ρ0 and ρτ , respectively. In fact, V0 is the
second-order identity matrix, and

Vτ =
(

cos θ sin θeiα

sin θe−iα − cos θ

)
. (12)

According to Eq. (6), the general form of the unitary operator
Uτ describing the evolution from ρ0 to ρτ is Uτ = Vτ MϕV †

0 ,
with Mϕ being the phase operator in the form (4), so we have

Uτ =
(

cos θeiϕ1 sin θei(ϕ2+α)

sin θei(ϕ1−α) − cos θeiϕ2

)
. (13)

Please note that this is a general form of the second-order
unitary operator, which has four variable parameters: θ , α, ϕ1,
and ϕ2.

In order to obtain the analytical result of the
path distance contained in Uτ , we need write out
its eigenvalues, λ1 = eiφ1 and λ2 = eiφ2 , with the
arguments φ1 = ϕ1+ϕ2

2 + arcsin[cos θ sin( ϕ1−ϕ2

2 )] and
φ2 = ϕ1+ϕ2

2 + π − arcsin[cos θ sin( ϕ1−ϕ2

2 )]. Based on the
definition in Eq. (1), the path distance of the unitary operator
Uτ is

d (Uτ ) = π

2
− arcsin

∣∣∣∣ cos θ sin

(
ϕ1 − ϕ2

2

)∣∣∣∣
= arccos

∣∣∣∣ cos θ sin

(
ϕ1 − ϕ2

2

)∣∣∣∣. (14)

By substituting this result into the minimum path distance in
Eq. (7) and optimizing it over the two phases ϕ1 and ϕ2, we

obtain the minimum path distance of the evolution from ρ0 to
ρτ :

dP(ρ0, ρτ ) = min
{Mϕ}

d (Uτ )

= min
{ϕ1,ϕ2}

arccos

∣∣∣∣ cos θ sin

(
ϕ1 − ϕ2

2

)∣∣∣∣. (15)

The path distance reaches its minimum value dP(ρ0, ρτ ) = θ

when sin( ϕ1−ϕ2

2 ) = 1. If we set ϕ1 = 0 and ϕ2 = −π for sim-
plicity, the unitary operator Uτ is

Uτ = Vτ MϕV †
0 =

(
cos θ − sin θeiα

sin θe−iα cos θ

)
. (16)

This unitary operator Uτ describes the shortest evolution
path from ρ0 and ρτ , and the minimum path distance is
dP(ρ0, ρτ ) = θ .

IV. OPTIMAL CONTROL BETWEEN TWO MIXED
SINGLE-QUTRIT STATES

The minimization of path distance contained in a uni-
tary operator is made over a phase matrix in Eq. (4). In
an N-dimensional quantum system, this matrix contains N
independent phases. Since an overall phase plays no role
in the measurement of a physical quantity, we can fix one
phase and consider the rest (N − 1) independent phases in
the optimization. So only one variable needs to be considered
in the optimization of path distance in a single-qubit system,
which could be solved analytically. However, the situation
becomes complicated when the dimensionality of the system
increases, where more variables have to be considered in
the optimization and the eigenvalues of a general third- or
higher-order unitary operator could hardly be solved analyt-
ically. In a word, the minimum evolution path in a three- or
higher-dimensional system needs be solved numerically, and
(N − 1) variables are to be considered in the optimization of
path distance in an N-dimensional system.

In this section, we investigate the shortest evolution of a
single-qutrit state numerically. Two rules are obeyed for the
choice of the initial and target states.

(i) The initial and target states have to be described by two
nondegenerate full-rank matrices to avoid trivial results.

(2) An analytical Hamiltonian could be used to drive the
initial state to the target state.

Just as done in the above single-qubit example, we study
the evolution of a mixed single-qutrit state ρ0 in the basis
composed of its own eigenvectors, and assume it has the
following diagonal form:

ρ0 = 1

6

⎛
⎝1 0 0

0 2 0
0 0 3

⎞
⎠, (17)

where the eigenvalues in the diagonal elements play no role
in the quantification of path distance. The target state is set as
follows:

ρτ = 1

36

⎛
⎝ 13 4 + i 2 − 2i

4 − i 13 2 + 2i
2 + 2i 2 − 2i 10

⎞
⎠. (18)
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This target state could be achieved by imposing the Hamilto-
nian,

H1 =
⎛
⎝ 1 7 − 4

7 1 − 4
−4 −4 4

⎞
⎠, (19)

onto the system with the interaction time τ = π/12, the ma-
trix elements of which are all integers. The evolution under
this action could be described by the following unitary opera-
tor:

Uτ = exp{−i
∫ π

12

0
H1dt} = 1

6

⎛
⎝−1 + 3i −1 − 3i 4

−1 − 3i −1 + 3i 4
4 4 2

⎞
⎠,

(20)

which satisfies ρτ = Uτ ρ0U †
τ .

The three eigenvalues of the above Uτ are λ1 = 1, λ2 = i,
and λ3 = −1, with principal arguments φ1 = 0, φ2 = π/2,
and φ3 = π , respectively. Based on the definition in Eq. (1),
the path distance contained in Uτ is d (Uτ ) = π/2, which
is larger than the Bures distance between ρ0 and ρτ with
dB(ρ0, ρτ ) ≈ 0.3313.

We want to know whether the evolution path represented
by the above unitary operator (20) is the shortest one among
all potential evolution paths from the initial state (17) to the
target state (18), and how to find out the shortest evolution if
the answer is “no.”Following the steps introduced in Eqs. (6)–
(8), we first write out the eigenvalue decomposition of the
initial and target states as ρ0 = V0�V †

0 and ρτ = Uτ�U †
τ with

� = ρ0 and V0 being the third-order identity matrix here. Ac-
cording to Eq. (6), a general form for describing the evolution
from ρ0 to ρτ is

U{ϕ} =Uτ MϕV †
0 = 1

6

⎛
⎜⎜⎝

√
10ei(ϕ1+θ0 )

√
10ei(ϕ2−θ0 ) 4eiϕ3

√
10ei(ϕ1−θ0 )

√
10ei(ϕ2+θ0 ) 4eiϕ3

4eiϕ1 4eiϕ2 2eiϕ3

⎞
⎟⎟⎠,

(21)

where θ0 is the argument of the complex number θ0 =
arg(−1 + 3i). Then the shortest evolution path between ρ0

and ρτ could be obtained by minimizing its path distance over
all involved phases:

dP(ρ0, ρτ ) = min
{ϕ1,ϕ2,ϕ3}

d[U{ϕ}]. (22)

Since an overall phase of a unitary operator plays no role in
the quantification of the path distance contained in it, the op-
timization of the above path distance (22) could be simplified
as

dP(ρ0, ρτ ) = min
{δφ1,δφ2}

d[U{δφ}], (23)

with

U{δφ} = e−iϕ3U{ϕ} = 1

6

⎛
⎜⎜⎝

√
10ei(δφ1+θ0 )

√
10ei(δφ2−θ0 ) 4√

10ei(δφ1−θ0 )
√

10ei(δφ2+θ0 ) 4

4eiδφ1 4eiδφ2 2

⎞
⎟⎟⎠.

(24)

Here only two variables δφ1 ≡ ϕ1 − ϕ3 and δφ2 ≡ ϕ2 − ϕ3

are involved in the minimization, which is equivalent to the
minimization of the path distance contained in U{ϕ} in Eq. (21)
by fixing one phase, ϕ3 = 0. The two phase differences δφ1

and δφ2 are both confined in the range (−π, π ], so the nu-
merical result of the minimum path distance, based on the
definition (1), could be obtained through the steepest descent
method or Newton’s method.

In Fig. 1, we plot the path distance contained in the unitary
operator (24) as a function of the two variables δφ1 and δφ2.
Each point in the curved surface has a projection point in
the δφ1-δφ2 plane, and thus corresponds to a unitary operator
U{δφ} in Eq. (24), which turns the initial state ρ0 to the target
state ρτ . The function value of each point in the curved sur-
face means the path distance contained in the corresponding
unitary operator. The path distance of the unitary operator (24)
is evaluated in the range about [1.2490, 2.0944], and the
precision of our numerical results is of the order of 10−7. In
principle, the path distance of an N th-order unitary operator
is no larger than (N − 1)π/N [18], so the value range of the
path distance contained in a third-order unitary operator is
[0, 2π/3]. It is shown that the path distance of the evolution
between ρ0 and ρτ is larger than the Bures distance between
ρ0 and ρτ with dB(ρ0, ρτ ) ≈ 0.3313, no matter which evolu-
tion path is chosen.

Since the minimum path distance contained in the above
unitary operator U{δφ} (24) is about 1.2490 over all allowed
δφ1 and δφ2, then the minimum path distance between ρ0

and ρτ is 1.2490 according to its definition in Eq. (7),
i.e., dP(ρ0, ρτ ) 	 1.2490. This minimum path distance corre-
sponds to the phase difference δφ1 = δφ2 	 −2.4981 in our
numerical results. The shortest evolution path between ρ0 and
ρτ is then described by the following unitary operator:

Us 	

⎛
⎜⎝

0.4333 − 0.3i −0.1667 + 0.5i 0.6667

−0.1667 + 0.5i 0.4333 − 0.3i 0.6667

−0.5333 − 0.4i −0.5333 − 0.4i 0.3333

⎞
⎟⎠.

(25)
The following question is how to realize the above unitary

operator Us for the shortest evolution. By substituting this
unitary operator into the Hamiltonian in Eq. (9), we obtain
the Hamiltonian corresponding to this shortest evolution path:

H 	 1

τ

⎛
⎝ 0.2334 −0.6939 0.2776 + 0.8327i

−0.6939 0.2334 0.2776 + 0.8327i
0.2776 − 0.8327i 0.2776 − 0.8327i −0.1830

⎞
⎠ + R. (26)

Here the parameter τ indicates the evolution time required to
realize the unitary operator Us in Eq. (25) under the action
of the above Hamiltonian, which could be used to control

the energy variance of the system. The constant R in the
Hamiltonian, which induces an overall phase to the evolution
state, could be used to control the average energy. Although
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FIG. 1. Numerical results of the path distance contained in the unitary operator (24) as a function of the two parameters δφ1 and δφ2. The
maximum path distance d (U{δφ}) 	 2.0944 occurs at δφ1 = 0 and δφ2 	 2.4981, and the minimum path distance d (U{δφ}) 	 1.2490 occurs at
δφ1 = δφ2 	 −2.4981. Each point in the curved surface corresponds to a unitary operator turning the initial state ρ0 (17) to the target state
ρτ (18), thus describes an evolution path from ρ0 to ρτ . Although these paths connect the same pair of states, they may contain different path
distances.

different values of τ and R in the above Hamiltonian would
result in different evolution speeds of the system, as well as
different overall phases to the evolution state, they in fact
correspond to the same evolution path, because every Hamil-
tonian in Eq. (26) governs the system from ρ0 (17) to ρτ (18)

along the shortest evolution path, no matter what values τ and
R are.

Particularly, if we set the evolution time as τ = 0.1684 and
the constant R = 2.3503, then the above Hamiltonian has an
explicit form:

H2 =

⎛
⎜⎝ 3.7360 −4.1199 1.6479 + 4.9439i

−4.1199 3.7360 1.6479 + 4.9439i
1.6479 − 4.9439i 1.6479 − 4.9439i 1.2640

⎞
⎟⎠. (27)

It is found that the expectation value and variance of this
Hamiltonian H2, imposed onto the initial state ρ0, are equal to
the expectation value and variance of the above Hamiltonian
H1 in Eq. (19) imposed on the same state, i.e., Ē1 = Ē2 =
2.5 and 
2E1 = 
2E2 = 50.75 with Ēi = 〈Hi〉 and 
2Ei =
〈H2

i 〉 − Ēi
2 (i = 1, 2). Please note that the average energy and

its variance remain unchanged during a unitary evolution in a
time-independent quantum system. Here we see that the two
forms of Hamiltonian, H1 in Eq. (19) and H2 in Eq. (27), both
drive the initial state ρ0 (17) to the target state ρτ (18), with
the same average energy and energy variance, but the time
required for accomplishing the evolution is difference. The
required evolution time for H1 is τ1 = π/12, which is longer
than the evolution time τ2 = 0.1684 for H2. That is to say, the
average energy and the energy spread of a quantum system
are not the only factors to determine the evolution speed of
the system, and maybe other moments of the energy spectra
should be taken into account [25].

V. CONCLUSIONS

To summarize, the evolution path connecting two given
mixed states is not unique, and a general unitary operator
for describing such an evolution could be represented by
the production of three matrices including unitary operators

composed of the eigenvectors of the initial and target states
and a diagonal phase operator. The path distance contained
in a unitary operator could be considered as the minimum
rotation angle imposed on a quantum state. The path distance
defined in this way depends on the unitary operator itself, and
is independent of the state. As a matter of fact, the length of
a path connecting two points is no smaller than the distance
between the two points in the classical kinematics. Its quan-
tum analog is also valid, i.e., the path distance contained in a
unitary operator in a quantum dynamics is no smaller than the
state distance between any pair of states connected through
this unitary operator. The shortest evolution path between two
mixed states could be derived through the optimization of
the path distance over (N − 1) independent phases in an N-
dimensional system, the solution of which could be obtained
in a single-qubit system analytically, or in a single-qutrit sys-
tem numerically. Once the unitary operator associated with
the shortest evolution path is figured out, the general form
of the time-independent Hamiltonian for realizing it is pre-
sented with two controllable parameters. Different from the
usual way by minimizing the evolution time, here we provide
another way to study quantum optimal control based on the
path distance.

Besides quantum optimal control, path distance has
some other potential applications in quantum information
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processing. For example, the path distance of a unitary opera-
tor is an upper bound of the distance between two quantum
states connected through it, which could be used for esti-
mating the fidelity between two unknown states, given the
evolution operator between them. Furthermore, the evolution
speed of a quantum system, usually defined as the changing
rate of the distance between the initial state and its evolution
state, has a limit so that the evolution time from the initial
state to the target state has a lower bound [26–30] and the
quantum speed limit is extended in open systems [31,32],
thermal states [33], and others cases [34–37]. The quantum
speed limit is usually ascribed to the energy spectra of the
quantum system. However, if we define the evolution speed
as the changing rate of path distance, rather than the state
distance, then the quantum speed limit could be interpreted
in another way, which is determined by the Hamiltonian,
rather than the energy spectra of the system, because the path
distance is determined by the evolution operator only and

independent of the quantum state. Since the path distance is
in fact a map from the set of unitary operators to the set
of non-negative numbers, it could be used potentially in the
issues where certain magnitude information contained in a
unitary operator is under consideration. For example, quantum
complexity provides an operational definition for quantifying
the “cost” of simulating a unitary operator [38–41], which is
widely used in several topics such as distinguishing chaotic
systems from integrable ones [42], studying black holes [43],
and quantifying state complexity in continuous many-body
quantum systems [44].

ACKNOWLEDGMENTS

This work was supported by National Natural Science
Foundation of China (NSFC) Projects No. 11664018, No.
12174247, and No. U2031145.

[1] S. Lloyd, Ultimate physical limits to computation, Nature
(London) 406, 1047 (2000).

[2] S. Lloyd, Computational capacity of the universe, Phys. Rev.
Lett. 88, 237901 (2002).

[3] J. D. Bekenstein, Energy cost of information transfer, Phys. Rev.
Lett. 46, 623 (1981).

[4] M. Murphy, S. Montangero, V. Giovannetti, and T. Calarco,
Communication at the quantum speed limit along a spin chain,
Phys. Rev. A 82, 022318 (2010).

[5] B. Mohan, S. Das, and A. K. Pati, Quantum speed limits for
information and coherence, New J. Phys. 24, 065003 (2022).

[6] V. Giovannetti, S. Lloyd, and L. Maccone, Quantum metrology,
Phys. Rev. Lett. 96, 010401 (2006).

[7] V. Giovannetti, S. Lloyd, and L. Maccone, Advances in quan-
tum metrology, Nat. Photonics 5, 222 (2011).

[8] A. W. Chin, S. F. Huelga, and M. B. Plenio, Quantum metrology
in non-Markovian environments, Phys. Rev. Lett. 109, 233601
(2012).

[9] S. Deffner and E. Lutz, Generalized Clausius inequality for
nonequilibrium quantum processes, Phys. Rev. Lett. 105,
170402 (2010).

[10] A. del Campo, J. Goold, and M. Paternostro, More bang for
your buck: Super-adiabatic quantum engines, Sci. Rep. 4, 6208
(2014).

[11] F. C. Binder, S. Vinjanampathy, K. Modi, and J. Goold, Quanta-
cell: Powerful charging of quantum batteries, New J. Phys. 17,
075015 (2015).

[12] F. Campaioli, F. A. Pollock, F. C. Binder, L. Céleri, J. Goold, S.
Vinjanampathy, and K. Modi, Enhancing the charging power of
quantum batteries, Phys. Rev. Lett. 118, 150601 (2017).

[13] V. F. Krotov, Global Methods in Optimal Control Theory
(Marcel Dekker, New York, 1996).

[14] T. Caneva, M. Murphy, T. Calarco, R. Fazio, S. Montangero, V.
Giovannetti, and G. E. Santoro, Optimal control at the quantum
speed limit, Phys. Rev. Lett. 103, 240501 (2009).

[15] A. P. Peirce, M. A. Dahleh, and H. Rabitz, Optimal control
of quantum-mechanical systems: Existence, numerical approx-
imation, and applications, Phys. Rev. A 37, 4950 (1988).

[16] T. Calarco, U. Dorner, P. S. Julienne, C. J. Williams, and P.
Zoller, Quantum computations with atoms in optical lattices:
Marker qubits and molecular interactions, Phys. Rev. A 70,
012306 (2004).

[17] A. Carlini, A. Hosoya, T. Koike, and Y. Okudaira, Time-optimal
quantum evolution, Phys. Rev. Lett. 96, 060503 (2006).

[18] J. H. Huang, S. S. Dong, G. L. Chen, N. R. Zhou, F. Y. Liu, and
L. G. Qin, Path distance of a quantum unitary evolution, Phys.
Rev. A 108, 022204 (2023).

[19] A. Gilchrist, N. K. Langford, and M. A. Nielsen, Distance
measures to compare real and ideal quantum processes, Phys.
Rev. A 71, 062310 (2005).

[20] P. J. Jones and P. Kok, Geometric derivation of the quantum
speed limit, Phys. Rev. A 82, 022107 (2010).

[21] D. Bures, An extension of Kakutani’s theorem on infinite prod-
uct measures to the tensor product of semifinite w*-algebras,
Trans. Amer. Math. Soc. 135, 199 (1969).

[22] W. K. Wootters, Statistical distance and Hilbert space, Phys.
Rev. D 23, 357 (1981).

[23] A. Uhlmann, Groups and Related Topics (Kluwer, New York,
1992), pp. 267–274.

[24] S. S. Dong, L. G. Qin, F. Y. Liu, L. H. Gong, and J. H. Huang,
Quantum evolution speed induced by Hamiltonian, Acta Phys.
Sin. 72, 220301 (2023).

[25] Y. Z. Wu, J. L. Yuan, C. Y. Zhang, J. F. Deng, Z. T. Zhu, Q. J.
Guo, Z. Wang, J. H. Huang, C. Song, H. K. Li, D. W. Wang,
H. Wang, and G. S. Agarwal, Testing the unified bounds of the
quantum speed limit, arXiv:2403.03579.

[26] L. Mandelstam and I. Tamm, The uncertainty relation between
energy and time in non-relativistic quantum mechanics, J. Phys.
(Moscow) 9, 249 (1945).

[27] N. Margolus and L. B. Levitin, The maximum speed of dynam-
ical evolution, Physica D 120, 188 (1998).

[28] D. P. Pires, M. Cianciaruso, L. C. Celeri, G. Adesso, and
D. O. Soares-Pinto, Generalized geometric quantum speed lim-
its, Phys. Rev. X 6, 021031 (2016).

[29] J. H. Huang, L. Y. Hu, and F. Y. Liu, Instantaneous angular ve-
locity of quantum evolution, Phys. Rev. A 102, 062221 (2020).

042405-6

https://doi.org/10.1038/35023282
https://doi.org/10.1103/PhysRevLett.88.237901
https://doi.org/10.1103/PhysRevLett.46.623
https://doi.org/10.1103/PhysRevA.82.022318
https://doi.org/10.1088/1367-2630/ac753c
https://doi.org/10.1103/PhysRevLett.96.010401
https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1103/PhysRevLett.109.233601
https://doi.org/10.1103/PhysRevLett.105.170402
https://doi.org/10.1038/srep06208
https://doi.org/10.1088/1367-2630/17/7/075015
https://doi.org/10.1103/PhysRevLett.118.150601
https://doi.org/10.1103/PhysRevLett.103.240501
https://doi.org/10.1103/PhysRevA.37.4950
https://doi.org/10.1103/PhysRevA.70.012306
https://doi.org/10.1103/PhysRevLett.96.060503
https://doi.org/10.1103/PhysRevA.108.022204
https://doi.org/10.1103/PhysRevA.71.062310
https://doi.org/10.1103/PhysRevA.82.022107
https://doi.org/10.2307/1995012
https://doi.org/10.1103/PhysRevD.23.357
https://doi.org/10.7498/aps.72.20231009
https://arxiv.org/abs/2403.03579
https://daarb.narod.ru/mandtamm/mt-eng.pdf
https://doi.org/10.1016/S0167-2789(98)00054-2
https://doi.org/10.1103/PhysRevX.6.021031
https://doi.org/10.1103/PhysRevA.102.062221


SHORTEST EVOLUTION PATH BETWEEN TWO MIXED … PHYSICAL REVIEW A 109, 042405 (2024)

[30] N. Hörnedal, D. Allan, and O. Sönnerborn, Extensions of the
Mandelstam-Tamm quantum speed limit to systems in mixed
states, New J. Phys. 24, 055004 (2022).

[31] K. Funo, N. Shiraishi, and K. Saito, Speed limit for open quan-
tum systems, New J. Phys. 21, 013006 (2019).

[32] F. Q. Dou, M. P. Han, and C. C. Shu, Quantum speed limit under
brachistochrone evolution, Phys. Rev. Appl. 20, 014031 (2023).

[33] N. Il’in and O. Lychkovskiy, Quantum speed limit for thermal
states, Phys. Rev. A 103, 062204 (2021).

[34] G. Ness, A. Alberti, and Y. Sagi, Quantum speed limit for states
with a bounded energy spectrum, Phys. Rev. Lett. 129, 140403
(2022).

[35] T. V. Vu and K. Saito, Topological speed limit, Phys. Rev. Lett.
130, 010402 (2023).

[36] W. Wu and J. H. An, Quantum speed limit from a quantum-
state-diffusion method, Phys. Rev. A 108, 012204 (2023).

[37] W. Wu and J. H. An, Quantum speed limit of a noisy
continuous-variable system, Phys. Rev. A 106, 062438 (2022).

[38] N. Khaneja, S. J. Glaser, and R. Brockett, Sub-Riemannian
geometry and time optimal control of three spin systems: Quan-
tum gates and coherence transfer, Phys. Rev. A 65, 032301
(2002).

[39] M. A. Nielsen, A geometric approach to quantum circuit lower
bounds, Quantum Info. Comput. 6, 213 (2006).

[40] M. A. Nielsen, M. R. Dowling, M. Gu, and A. C. Doherty,
Quantum computation as geometry, Science 311, 1133 (2006).

[41] V. B. Bulchandani and S. L. Sondhi, How smooth is quantum
complexity? J. High Energy Phys. 10 (2021) 230.

[42] V. Balasubramanian, M. DeCross, A. Kar, Y. Li, and O.
Parrikar, Complexity growth in integrable and chaotic models,
J. High Energy Phys. 07 (2021) 011.

[43] J. M. Magán, Black holes, complexity and quantum chaos,
J. High Energy Phys. 09 (2018) 043.

[44] S. Chapman, M. P. Heller, H. Marrochio, and F. Pastawski,
Toward a definition of complexity for quantum field theory
states, Phys. Rev. Lett. 120, 121602 (2018).

042405-7

https://doi.org/10.1088/1367-2630/ac688a
https://doi.org/10.1088/1367-2630/aaf9f5
https://doi.org/10.1103/PhysRevApplied.20.014031
https://doi.org/10.1103/PhysRevA.103.062204
https://doi.org/10.1103/PhysRevLett.129.140403
https://doi.org/10.1103/PhysRevLett.130.010402
https://doi.org/10.1103/PhysRevA.108.012204
https://doi.org/10.1103/PhysRevA.106.062438
https://doi.org/10.1103/PhysRevA.65.032301
https://doi.org/10.26421/QIC6.3-2
https://doi.org/10.1126/science.1121541
https://doi.org/10.1007/JHEP10(2021)230
https://doi.org/10.1007/JHEP07(2021)011
https://doi.org/10.1007/JHEP09(2018)043
https://doi.org/10.1103/PhysRevLett.120.121602

