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We prove rigorous bounds on the growth of α-Rényi entropies Sα (t ) (the von Neumann entropy being the
special case α = 1) associated with any subsystem A of a general lattice quantum many-body system with finite
on-site Hilbert space dimension. For completely nonlocal Hamiltonians, we show that the instantaneous growth
rates |S′

α (t )| (with α �= 1) can be exponentially larger than |S′
1(t )| as a function of the subsystem size |A|. For

D-dimensional systems with geometric locality, we prove bounds on |S′
α (t )| that depend on the decay rate of

interactions with distance. When α = 1, the bound is |A| independent for all power-law decaying interactions
V (r) ∼ r−w with w > 2D + 1. However, for α > 1, the bound is |A| independent only when the interactions
are finite-range or decay faster than V (r) ∼ e−c rD

for some c depending on the local Hilbert space dimension.
Using similar arguments, we also prove bounds on k-local systems with or without geometric locality. A central
theme of this work is that the value of α strongly influences the interplay between locality and instantaneous
entanglement growth. In other words, the von Neumann entropy and the α-Rényi entropies cannot be regarded
as proxies for each other in studies of entanglement dynamics. We compare these bounds with analytic and
numerical results on Hamiltonians with varying degrees of locality and find concrete examples that almost
saturate the bound for nonlocal dynamics.

DOI: 10.1103/PhysRevA.109.042404

I. INTRODUCTION

Spatial locality is a basic property of most physical models
for many-body quantum dynamics. Attempts to quantify the
spread of quantum information under spatially local inter-
actions have motivated many breakthroughs in the field. An
influential example is the Lieb-Robinson bound, a rigorous
speed limit vLR for the ballistic spread of local disturbances,
as measured by the increasing norm of commutators between
spatially distant operators under Heisenberg evolution [1–5].
In addition to its conceptual elegance, this speed limit also
plays an essential role in applications ranging from correlation
decay in many-body ground states and stability of topological
order to efficient quantum simulation and bounds on diffusive
transport [6–10].

The universal nature of Lieb-Robinson bounds comes at a
price: because the velocity scale vLR only depends on the mi-
croscopic couplings, it does not distinguish between different
physical processes and different initial states. Hence, to under-
stand more refined consequences of locality, it is important
to consider proxies of information propagation beyond the
commutator norm. The information measure that we consider
in this paper is the dynamics of entanglement entropy between
complementary subsystems. For a wide class of models, in
the absence of many-body localization, the growth of von
Neumann entropy across any cut has been found to follow
a linear profile until saturating to the equilibrium value if the
system is initialized in an unentangled state. In the pioneering
work of Calabrese and Cardy in [11], this phenomenon was
first proven analytically for the integrable one-dimensional
transverse-field Ising model and for 1 + 1D conformal field
theories more generally. This initial work was extended to
arbitrary rational conformal field theories (CFTs) in [12],

to higher-dimensional free scalar field theories in [13], and
to generic integrable systems in [14]. Meanwhile, numerical
studies have found a similar linear growth for nonintegrable
systems including the random field XXZ Heisenberg spin
chain and the mixed-field Ising model [15,16]. Exact analytic
calculations for nonintegrable systems have been mostly out
of reach, with the exception of strongly interacting holo-
graphic theories analyzed in [17–25] and local random unitary
circuits studied in [26–28]. The linear growth of von Neumann
entropy appears to be a robust feature across this wide range
of models.

Two orthogonal approaches to understanding this universal
linear growth have emerged. The first approach is to prove
universal upper bounds on the rate of entanglement growth.
Such bounds do not constrain the functional form of the
growth curve, but they guarantee that starting from an ini-
tial weakly entangled state, the time it takes to increase the
entanglement entropies for any bipartition of the system by
δS is at least linear in δS. If the intuition of ballistic infor-
mation propagation is correct, then for a subsystem A with
size |A|, the growth rate should be proportional to the size
of the boundary |∂A| for geometrically local Hamiltonians,
and at most O(|A|) for nonlocal Hamiltonians. As shown in
[29–31], these expectations are indeed correct for the growth
of von Neumann entropies. However, very little is known
about analogous bounds for Rényi entropies. A recent work
by Vershynina [32] proved some bounds on Rényi entropy
growth rates in the context of nonlocal Hamiltonian dynamics.
However, these bounds depend sensitively on the spectrum of
the reduced density matrix ρA(t ) and are hence nonuniversal.
As we will discuss in Sec. III, this state dependence also
makes it difficult to extend these bounds to Hamiltonians with
geometric quasilocality (infinite-range interactions that decay
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with distance) or k locality (each interaction term only couples
k degrees of freedom that are arbitrarily far apart).

A complementary approach is to directly derive the func-
tional form of the entropy growth curve from a coarse-grained
effective theory of entanglement dynamics. Such a theory
was developed in [26,27,33,34] using the concept of “entan-
glement membranes” abstracted from calculations in random
unitary circuits (RUC). In a local RUC, the computation
of time-evolved Rényi entropies S(A)

α (t ) associated with a
subsystem A can be mapped to the statistical mechanics of
a field σ (x, τ ) valued in the permutation group SN where
N is some integer multiple of α. In this dual formulation,
“entanglement membranes” correspond to domain walls of
σ (x, τ ) in the spacetime lattice, and α-Rényi entropies map
to the average (α dependent) free energies of these fluctu-
ating domain walls which grow linearly with time [26,27].
The authors of [33,34] provided strong physical arguments
that a coarse-grained version of “entanglement membranes”
generalizes to generic chaotic local Hamiltonians. This con-
ceptual framework suggests that different α-Rényi entropies
merely correspond to different domain wall structures and ef-
fective interactions which do not modify the universal linear t
dependence.

We are, therefore, confronted with a conundrum. On the
one hand, the membrane picture of entanglement growth
developed in [26,27,33,34] suggests that Sα>1(t ) and S1(t )
should be qualitatively similar under generic nonintegrable
local Hamiltonian evolution. On the other hand, existing rig-
orous mathematical results place much stronger constraints on
|S′

1(t )| than on S′
α>1(t ). A natural question thus arises: Is there

any intrinsic difference between the dynamics of these two
types of entropy measures in arbitrary many-body systems?
In this work, we prove a series of upper bounds on |S′

α (t )|
in favor of such a distinction. These bounds remove the state
dependence of the bounds in [32] and generalize easily to
Hamiltonians with varying degrees of locality, as we now
sketch.

Main result (sketch). Take an arbitrary initial state ρ

on a Hilbert space (CD0 )⊗V where V is the size of the
D-dimensional lattice and D0 is the on-site Hilbert space
dimension. Given any bipartition of the lattice into A, Ā with
|A| + |Ā| = V , let Vmin = min(|A|, |Ā|), and let Sα (t ) be the
Rényi entropy of the reduced density matrix TrĀρ(t ) under
time evolution generated by a Hamiltonian H .

(1) (Lemma 2.2 + Lemma 2.3) If H is arbitrary, then
|S′

α>1(t )| � Poly(‖H‖DVmin
0 ). This is to be contrasted with

the small incremental entanglement conjecture for the von
Neumann entropy |S′

1(t )| � O(‖H‖Vmin ln D0) put forth in
[29] and proven in [30]. The exponential separation between
S′

α>1(t ) and S′
1(t ) can be saturated.

(2) (Theorem 3.1) If H is geometrically quasilocal with
power-law decaying interactions V (r) ∼ r−w satisfying w >

2D + 1, then |S′
1(t )| � c h̄ |∂A| ln D0 where c is a constant, h̄

measures the norm of local terms in the Hamiltonian, and |∂A|
is the size of the boundary of A. We could not prove a bound
on |S′

α>1(t )|.
(3) (Theorem 3.1) If H is geometrically local (i.e., the

interaction range R is finite), then |S′
α>1(t )| � bα (R) h̄ |∂A|

where b1(R) ∝ RD+1 and bα>1(R) ∼ R DO(RD )
0 .

(4) (Corollary 3.3) If H is k local (i.e., each interaction
term only couples k degrees of freedom), then |S′

α>1(t )| �
bα (k)‖H∂‖ where b1(k) ∝ k, bα>1(k) ∼ Dk−1

0 , and H∂ is the
part of the Hamiltonian that couples A and Ā.

(5) (Corollary 3.5) If H is both k local and geometrically
quasilocal with power-law decaying interactions V (r) ∼ r−w

satisfying w > Dk, then for all α > 1, |S′
α (t )| � bα (k)h̄|∂A|

where bα (k) has the same scaling as in part 4.
The structure of these bounds highlights conceptual dis-

tinctions between α-Rényi entropies and von Neumann
entropy: despite the fact that they follow similar growth pro-
files in most examples known to date, the general bounds that
we are able to prove for S′

α�1(t ) are much weaker than the
corresponding bounds for S′

1(t ) under identical locality as-
sumptions. We emphasize, however, that with the exception of
(1), it is not known whether these bounds can be saturated. The
question of saturation deserves a more extensive treatment in
the future. It is also important to note that our bounds concern
the instantaneous growth rates S′

α (t ) rather than the cumu-
lative entropy growth Sα (t ). A bound on the instantaneous
growth rate implies a bound on the cumulative growth upon
time integration, but not the other way around. This is why
S′

α>1(t ) can be much larger than S′
1(t ) instantaneously, despite

the fact that Sα (t ) � S1(t ) at all times.
The rest of the paper will be organized as follows.

Section II A provides a summary of known theorems on
entanglement growth bounds for general (potentially nonlo-
cal) Hamiltonians [29,30,35]. We will not discuss the proofs
of these theorems but instead introduce a family of opera-
tor norm inequalities (first conjectured in [36] and partially
proven in [32]) that play an essential role in the proofs
[30,32,36,37]. These operator norm inequalities directly give
rise to state-dependent bounds on |S′

α�1(t )| that appeared in
[32]. We continue to work with nonlocal Hamiltonians in
Sec. II B and show how to improve the bounds in [32] by
removing their state dependence (this is part 1 of the main
result). In Sec. II C, these bounds are then shown to be almost
saturated by a random Hamiltonian in the Gaussian unitary
ensemble (GUE).1 Starting from Sec. III, we add additional
structures to the Hamiltonian and prove bounds on |S′

α (t )| for
systems with geometric and/or k locality (parts 2 to 5 of the
main result), emphasizing the interplay between locality and
Rényi index α. This abstract discussion is complemented by
a direct comparison of the bounds with a few examples in
Sec. IV. We conclude in Sec. V with a conceptual summary
and some open questions.

II. ENTANGLEMENT GROWTH BOUNDS
FOR NONLOCAL HAMILTONIANS

Consider a many-body system decomposed into four dis-
tinct parts aABb and a Hamiltonian H = Ia ⊗ HAB ⊗ Ib acting
on the full Hilbert space. For any initial density matrix ρ(0),
we consider the family of α-Rényi entropies Sα and q-Tsallis
entropies Tq associated with the subsystem aA (since the state
is pure, this is equivalent to the entropy associated with the

1The meaning of “almost saturated” will be made precise later
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subsystem Bb)

Sα (t ) = 1

1 − α
ln TraA[TrBbρ(t )]α,

Tq(t ) = 1

q − 1
(1 − TraA[TrBbρ(t )]q). (2.1)

The basic goal is to bound |S′
α (t )| and |T ′

q (t )|. From now
on, we refer to AB as the interacting subsystem and ab as
ancillas. A concrete realization of this situation would be a
quantum processor aA interacting with its environment Bb.
AB contain the degrees of freedom near the environment-
processor interface, and ab contain the degrees of freedom
farther away. The spread of entanglement can then be viewed
as the spread of quantum noise from the environment into the
computational qubits. With this setup in mind, we turn to a
brief summary of existing bounds in the literature. We focus
on α-Rényi entropies, anticipating that analogous results for
q-Tsallis entropies follow as simple corollaries.

A. Brief history of entanglement growth bounds

The earliest works on this subject considered the simplest
scenario where ab = ∅, and A, B are two qubits. For an arbi-
trary Hamiltonian acting on AB, [38,39] showed that |S′

1(t )| �
β‖H‖ where β ≈ 1.9123 is a system-independent constant
and ‖ · ‖ is the operator norm. This result was soon gener-
alized to qudit systems by Bravyi, giving a bound |S′

1(t )| �
c‖H‖ ln D where D = min{DA, DB} and DA, DB are the local
Hilbert space dimensions of A, B, respectively [29].

In the presence of ancillas, the story is richer. Since H does
not couple AB to ab, one might expect at first that the bound
should not depend on the properties of the ancillas. However,
one may worry that the intrinsic entanglement between a, A
and between B, b present in the initial density matrix ρ(0)
could affect the entanglement growth across the boundary
between aA and Bb. Despite this potential concern, ancilla-
independent bounds have been established and improved upon
over the past decade. The arguments in [29] already implied
the loose bound |S′

1(t )| � c‖H‖d4. The right-hand side (RHS)
of the bound was subsequently improved to c‖H‖d in [37]
and to c‖H‖ ln d in [30]. Though the ln d scaling is known to
be optimal, the constant prefactor has been improved from 18
to 2 by [40,41]. Up to this point, all the bounds are for von
Neumann entropies in closed quantum systems. One natural
question to ask is the existence and scaling of such bounds for
more general entropy measures, such as the α-Rényi entropies
and q-Tsallis entropies introduced before. This question was
taken up and partially resolved by Vershynina in [32]. To get
a concrete understanding of this work, we first simplify S′

α (t )
as

S′
α (t ) = − αi

α − 1

TraAρaA(t )α−1TrBb[H, ρ(t )]

TraAρaA(t )α

= − αi

α − 1

TraABbH[ρ(t ), ρaA(t )α−1 ⊗ IBb]

TraAρaA(t )α

= − αi

α − 1

TraABH[ρaAB(t ), ρaA(t )α−1 ⊗ IB]

TraAρaA(t )α
, (2.2)

where in the last line, we used the fact that H = Ia ⊗
HAB ⊗ Ib to trace out the ancilla subsystem b. If we rescale

H by its operator norm ‖H‖, then the numerator of the
above expression becomes bounded by the Schatten 1-norm
‖[ρaAB(t ), ρaA(t )α−1 ⊗ IB]‖1 of an operator on the full Hilbert
space.2 Therefore, bounding entanglement growth is essen-
tially equivalent to bounding this Schatten 1-norm under
suitable assumptions on the density matrices. We now state the
most general version of such a bound proven by Vershynina in
[32].

Lemma 2.1. (Vershynina 2019): Consider a general func-
tion f : [0, 1] → R satisfying the properties below.

(1) f increases monotonically.
(2) For 0 < y < x � 1 and for some particular 0 < p < 1,

x−1/2y1/2[ f (x) − f (y)] � p1/2[ f (1) − f (p)]

if f (x) − f (y) > f (1) − f (p). (2.3)

Then the following bound holds:

‖[X, f (Y )]‖1 � 9 min{p[ f (1) − f (p)],

(1 − p)[ f (1) − f (1 − p)]}. (2.4)

As pointed out in [32], the conditions in Lemma 2.1 are
satisfied by the functions f (y) = ln y and f (y) = yβ for β �
0. In the special case f (y) = ln y, Lemma 2.1 implies the
inequality of [30] which is useful for bounding von Neumann
entropies

‖[X, ln Y ]‖1

� 9 min

{
p ln

(
1

p

)
, (1 − p) ln

(
1

1 − p

)}
. (2.5)

Similarly, plugging in f (y) = yα−1 for 1 < α gives bounds for
S′

α (t ). For α �= 1, there is no logarithmic factor in p and the
bound becomes stronger in the limit p → 0.

(1) For 1 < α < 2, we have ‖[X,Y α − 1]‖1 � 9(1 −
p)[1 − (1 − p)α−1] = 9(α − 1)p + O(p2).

(2) For 2 � α, we have ‖[X,Y α−1]‖1 � 9p(1 − pα−1).
For α < 1 on the other hand, since f (y) = yα−1 does not

fulfill the assumptions of Lemma 2.1, there is no obvious
bound.

To constrain entanglement growth, we start with Eq. (2.2)
and trace out the ancilla subsystem b. Applying the norm
inequalities in Lemma 2.1 with X = ρaAB/D2

B, Y = ρaA ⊗
IB/DB and p = D−2

B where IB is the identity operator acting
on the B subsystem Hilbert space with dimension DB, we find
that for DB larger than some O(1) threshold.

(1) For 1 < α < 2, |S′
α (t )|� 9α

α − 1‖H‖D1 +α
B [TraAρaA(t )α]−1

(1 − D−2
B )[1 − (1 − D−2

B )α−1].
(2) For 2 � α, |S′

α (t )| � 9α
α−1‖H‖D1+α

B [TraAρaA(t )α]−1

(D−2
B − D−2α

B ).
We now make a physical observation. Although the bound

for von Neumann entropy is completely state independent, the
bounds for α-Rényi entropies depend sensitively on the state
via the factor of TraAρaA(t )α in the denominator. For α > 1,
we have the inequality TraAρaA(t )α � 1 and thus 1

TrρaA(t )α � 1.
However, this is not helpful because the inequality goes in

2The Schatten 1-norm is sometimes also referred to as the nuclear
norm or trace norm.
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the wrong direction. In fact, under generic dynamics, Sα (t )
vanishes at t = 0 and saturates to an equilibrium value that is
extensive in the size |aA| of the subsystem aA. This means that
for large aA, TraAρaA(t )α = e(1−α)Sα (t ) can be exponentially
small in |aA|, implying that the bound is exponentially looser
than the bound for α = 1 which is independent of |aA|.

B. Improvement of Vershynina’s bounds

The preceding discussion leaves open an important ques-
tion: can we tweak Vershynina’s bounds to remove the
dependence of the entropy growth rate |S′

aA,α (t )| on the sub-
system density matrix ρaA(t )? In this section, we answer this
question in the affirmative via a simple operator norm inequal-
ity formulated as follows.

Lemma 2.2. Suppose that 0 � X � Y � I and 1 < α, then

‖XY α−1‖1 � ‖Y α‖1 = TrY α. (2.6)

Proof. We apply the Hölder inequality for Schatten
p-norms:

‖XY α−1‖1 � ‖X‖p‖Y α−1‖q ∀ 1

p
+ 1

q
= 1, p, q � 1.

(2.7)

Choosing p = α, q = α
α−1 � 1 and using the fact that

X α,Y α−1 are both positive semi-definite, we arrive at

‖XY α−1‖1 � (TrX α )
1
α (TrY α )

α−1
α . (2.8)

Finally, since Tr f (X ) is monotonically increasing whenever
f : R → R is monotonically increasing, we obtain the desired
inequality

‖XY α−1‖1 � (TrY α )
1
α
+ α−1

α = TrY α = ‖Y α‖1. (2.9)

�
We remark that the same inequality fails to hold when

α < 1. The basic problem is that when α < 1, Y α−1 can have
very large eigenvalues yα−1

i whenever Y has eigenvalues yi

close to 0. When X,Y commute, every large eigenvalue yα−1
i

is balanced by a small eigenvalue xi � yi and the inequality
continues to hold

‖XY α−1‖1 =
∑

i

xiy
α−1
i �

∑
i

yα
i = ‖Y α‖1. (2.10)

However, in the general case where X and Y do not commute,
the above argument fails. Even though X � Y as operators,
the eigenvectors |yi〉 of Y can overlap with many eigenvectors
|x j〉 of X with x j > yi. As a result, the left-hand side (LHS) of
the bound could receive large contributions from |yi〉 while
the RHS only receives small contributions since α > 0. In
the physical cases of interest to us, Y is proportional to the
reduced density matrix of a subsystem whose spectrum nec-
essarily contains many eigenvalues close to 0. Therefore, we
expect the bound to be violated in general. This violation was
verified numerically in random samples of operators satisfy-
ing 0 < X � Y � I .

With the above discussion in mind, we focus on the α > 1
case. Using Lemma 2.2 in Eq. (2.2), we see that

|S′
α (t )| � α‖H‖

|α − 1|
‖[ρaAB(t ), ρaA(t )α−1 ⊗ IB]‖1

TraAρaA(t )α

� 2α‖H‖
|α − 1|

D1−α
B D1+α

B

TrY α
‖XY α−1‖1

� 2α

|α − 1|
‖H‖ D2

B

TrY α
TrY α = 2α

|α − 1| ‖H‖D2
B, (2.11)

where we again define X = ρaAB/D2
B and Y = ρaA ⊗ IB/DB.

Note that the cancellation of TrY α in the numerator and de-
nominator leads to a final bound which is independent of
the reduced density matrix ρaA(t ). This bound is ideal when
the size of aA is much larger than B. However, when aA is
comparable to B in size, the bound can be improved further.
We now state and prove the optimal inequality that we could
find the following.

Lemma 2.3. If α > 1, 0 � X � Y � I , and ‖X‖1 = p,
then

‖XY α−1‖1 � p(TrY α )
α−1
α . (2.12)

Proof. Using Hölder’s inequality with p = 1, q = ∞, we
have

‖XY α−1‖1 � ‖X‖1‖Y α−1‖∞ = p‖Y α−1‖∞. (2.13)

Since Schatten p-norms are decreasing in p (i.e., p1 � p2

implies ‖A‖p1 � ‖A‖p2 ), we conclude that

‖XY α−1‖1 � p‖Y α−1‖ α
α−1

= p(TrY α )
α−1
α , (2.14)

which is the desired inequality. �
The inequality in Lemma 2.3 implies a bound on the en-

tropy

|S′
α (t )| � 2α

|α − 1|
‖H‖ D2

B

TrY α
D−2

B (TrY α )
α−1
α

= 2α

|α − 1| ‖H‖ (TrY α )−1/α. (2.15)

If we rewrite TrY α in terms of the subsystem density matrix
ρaA(t ) as

TrY α = D1−α
B TraAρaA(t )α � D1−α

B D1−α
aA , (2.16)

we find a new bound

|S′
α (t )| � 2α‖H‖

|α − 1|
(
D1−α

B D1−α
aA

)−1/α

� 2α

|α − 1| ‖H‖(DaADB)
α−1
α . (2.17)

When DaA, DB are comparable, the above bound scales as

D
2(α−1)

α

B , which is much smaller than the RHS of Eq. (2.11) for
all α > 1, though the two bounds become identical in the limit
α → ∞. We will compare this later bound against explicit
examples in Sec. II C.

In summary, by extending the results of [32], we can place
useful bounds on the time derivatives of α-Rényi entropies
Sα (t ) for all α > 1. Surprisingly, our bounds for α > 1 scale
very differently from the existing bounds for α = 1. In fact,
for a subsystem A of size |A|, the bound for |S′

1(t )| is linear
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in |A| while the bound for |S′
α (t )| is exponentially large in

|A| for all α �= 1. A saturation of these bounds would imply
a fundamental difference between the dynamics of Rényi en-
tropies and Von Neumann entropies. This will be the focus of
Sec. II C.

C. Random GUE dynamics: Example of exponential separation
between Rényi entropy and von Neumann entropy derivatives

The preceding discussion raises a natural question: Is the
exponential separation between the maximal growth rate of
different α-Rényi entropies merely an artifact of the existing
proof techniques? We give a negative answer to this question
by analyzing a concrete model of random Hamiltonian evo-
lution that shows exponentially large Rényi entropy growth
rates [42].

Consider a bipartite qudit system AB with total size V such
that V/2 = |A| = |B|. Define a GUE ensemble of Hamilto-
nians acting on the Hilbert space AB with total dimension
D = dV :

P(H ) ∼ e− D
2 TrH2

, H† = H. (2.18)

For each Hamiltonian H , define the time-evolved density
matrix ρ (H )(t ) and the reduced density matrix ρ

(H )
A (t ) =

TrBρ (H )(t ). The quantities to study are the ensemble-averaged
von Neumann entropy and Rényi entropies

S̄1(t ) =
∫

dHP(H )
[−Trρ (H )

A (t ) ln ρ
(H )
A (t )

]
,

S̄α>1(t ) =
∫

dHP(H )

[
1

1 − α
ln Trρ (H )

A (t )α
]
. (2.19)

To apply the entropy growth bounds in the previous section to
this model, we need to estimate the norm of a GUE ran-
dom Hamiltonian. It is well known that the GUE eigenvalue
distribution converges almost surely to a Wigner semicircle
supported on [−2, 2]. This provides a lower bound on the
operator norm ‖H‖ � 2 − o(1). The complementary upper
bound is provided by a general theorem.

Theorem 2.1. [43]: Let Mi j be a rank-D random matrix
with independent mean-zero entries obeying the second-
moment bounds

sup
i

D∑
j=1

〈|Mi j |2〉, sup
j

D∑
i=1

〈|Mi j |2〉 � K2, (2.20)

and the fourth moment bounds
D∑

i, j=1

〈|Mi j |4〉 � ∞ (2.21)

for some K > 0. Then 〈‖M‖〉 � K + o(1).

For the case of GUE random matrices, the fourth moment
bound is indeed satisfied and the second moment bounds hold
with K = 2. Combining the upper bound with the lower bound
from semicircle law gives ‖H‖ = 2 + o(1). By measure con-
centration results in random matrix theory, sample to sample
variations from ‖H‖ = 2 decay exponentially with the rank
of the matrix and hence doubly exponentially with V [44,45].
This means that the bounds on ensemble-averaged entropies
apply also to the entropy of a single realization with errors
that vanish as V → ∞. Hence, we can plug ‖H‖ = 2 into the
entropy bounds in Sec. II B:

|S′
α (t )| �

⎧⎪⎨
⎪⎩

c‖H‖ ln DB α = 1,

2α
|α−1| ‖H‖D

2(α−1)
α

B α > 1.

(2.22)

In this random Hamiltonian model, we are not able to com-
pute the von Neumann entropy analytically. However, the
ensemble-averaged Rényi entropies are accessible in the large
D limit. To illustrate our point, it is sufficient to consider the
ensemble-averaged second Rényi entropy, which was com-
puted analytically in [42] to be

S̄2(t ) = − ln

[
R(t ) + [1 − R(t )]

(
1

DA
+ 1

DB

)]

= − ln

(
R(t ) + [1 − R(t )]

2

dV/2

)
, (2.23)

where R(t ) = J1(2t )4/t4 and Ja is the order-a Bessel function
of the first kind. As a sanity check, S̄2(0) = − ln(1 + 0) = 0
and S̄2(∞) = − ln(2d−V/2) = V

2 ln d − ln 2, consistent with
the expected equilibrium value for the second Rényi en-
tropy. However, unlike in local random unitary circuits, S̄2(t )
reaches the saturation value whenever R(t ) ∝ J1(2t ) = 0. The
earliest time at which this happens is t∗ = O(1) independent
of the system size. Therefore, in the large V limit, S̄2(t )
has to reach an O(V ) value in O(1) time, implying that
maxt | d

dt S̄2(t )| → ∞ as V → ∞. To understand the scaling
of this diverging derivative with V , we explicitly compute the
derivative

dS̄2(t )

dt
= 8(dV/2 − 2)J1(2t )3J2(2t )

2t4 + (dV/2 − 2)J1(2t )4
. (2.24)

In the limit of large V , the maximum of the derivative
is achieved near t = t∗ where J1(2t∗) = 0 and J2(2t∗) �= 0.
This allows us to approximate J1(2t ) ≈ 2J ′

1(2t∗)(t − t∗) and
J2(2t ) ≈ J2(2t∗) and simplify the second derivative to

d2S̄2(t )

dt2
≈ 8(dV/2 − 2)J ′

1(2t∗)3J2(2t∗) · 23 d

dt

(t − t∗)3

2t4∗ + (dV/2 − 2)J ′
1(2t∗)24(t − t∗)4

∝ 3(t − t∗)2[2t4
∗ + (dV/2 − 2)J ′

1(2t∗)24(t − t∗)4] − 4(dV/2 − 2)J ′
1(2t∗)24(t − t∗)6

[2t4∗ + (dV/2 − 2)J ′
1(2t∗)24(t − t∗)4]2

. (2.25)

Setting the second derivative to zero gives an asymptotic identity

6(t − t∗)2t4
∗ = 4(dV/2 − 2)J ′

1(2t∗)24(t − t∗)6 → (t − t∗)−1 ∼ (dV/2)1/4 = D1/8 ∼ e
ln d

8 V , (2.26)
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which implies that

max
t

|S̄′
2(t )| ≈

∣∣∣∣8J ′
1(2t∗)323(t − t∗)3J2(2t∗)

J ′
1(2t∗)424(t − t∗)4

∣∣∣∣
≈

∣∣∣∣4J2(2t∗)

J ′
1(2t∗)

(t − t∗)−1

∣∣∣∣ ∼ e
ln d

8 V . (2.27)

Recalling that D = dV is the total Hilbert space dimension,
this computation demonstrates that max |S̄′

2(t )| � D1/8 =
e

ln d
8 V � V as V → ∞. Hence the bound on |S′

2(t )| and the
value of max |S̄′

2(t )| realized in this random GUE Hamiltonian
model are both exponentially larger than the bound on |S′

1(t )|.
It is important to emphasize that this exponential separation
only occurs over a tiny time interval around t∗. This is how
S1(t ) manages to be greater than Sα>1(t ) at all t despite the fact
that maxt |S′

α (t )| is exponentially larger than maxt |S′
1(t )|. We

say that max |S̄′
2(t )| ∼ D1/8 almost saturates the bound D1/2,

in the sense that they both scale as ecV , but with different val-
ues of c. It is an open question whether D1/2 is asymptotically
tight at large D.

III. HAMILTONIANS WITH MORE STRUCTURE: BOUNDS
FOR SYSTEMS WITH GEOMETRIC LOCALITY

AND k LOCALITY

A. Bounds for systems with geometric locality

The entropy bounds in previous sections are applicable
to systems that can be partitioned into aABb so that the
Hamiltonian H only acts on the subsystem AB. This is very
different from typical many-body quantum systems where
H acts on the entire Hilbert space aABb. If we apply the
existing bounds directly to such systems, the von Neumann
and Rényi entropy growth rates for the subsystem aA scale
as ‖H‖ ln DBb, ‖H‖Poly(DBb), respectively. Both bounds di-
verge as DBb = dV/2 → ∞, making them too loose to be
useful. In this section, we show using elementary arguments
that the bounds can, in fact, be strengthened to give a finite rate
for both S1(t ) and Sα �=1(t ) assuming the Hamiltonian is local
in an appropriate sense. In the case of von Neumann entropies,
the optimal bound is already obtained in Proposition 4 of [31]
and we only review a sketch of the proof. Our focus will be
on several new bounds which apply to |S′

α (t )| and highlight
the distinct locality assumptions needed for different values
of α. In what follows, we formulate the part of our argument
that applies to all α as Lemma 3.1 and then introduce the
main result Theorem 3.1 that differentiates α �= 1 from α = 1.
Our strategy is a direct adaptation of the techniques used in
the proof of Proposition 4 in [31], augmented (in the case of
α �= 1) by the new operator inequalities in Lemma 2.2.

Consider a D-dimensional lattice 	 equipped with a metric
d and let Bi(R) denote a ball of radius R around site i ∈ 	. The
most general Hamiltonian on the lattice can be written as

H =
∑

i∈	,r∈N
hi(r), (3.1)

where hi(r) is a sum of interaction terms that satisfy

supp[hi(r)] �⊂ Bi(r), supp[hi(r)] ⊂ Bi(r + 1). (3.2)

To study entropy growth, we choose a bipartition of the lattice
	 into A, Ā, and define H∂ to be the restricted sum over all
hi(r) with support intersecting both A and Ā. With this basic
setup in mind, we can simplify the entropy growth rate using
elementary manipulations that apply for all α.

Lemma 3.1. For any choice of bipartition, the Rényi en-
tropy growth rates can be written in the following form:

∣∣S′
α (t )

∣∣ = α

|α − 1|
∣∣∣∣Tr(H∂ [ρ(t ), ρA(t )α−1 ⊗ IĀ])

TrAρA(t )α

∣∣∣∣. (3.3)

Taking the α → 1 limit, we have a corresponding formula for
the von Neumann entropy

|S′
1(t )| = |Tr(H∂ [ρ(t ), ln ρA(t ) ⊗ IĀ])|. (3.4)

Proof. From Eq. (2.2), we know that

S′
α (t ) = − αi

α − 1

TrAĀH[ρ(t ), ρA(t )α−1 ⊗ IĀ]

TrAρA(t )α
. (3.5)

Fixing ρ(t ), we see that the RHS is linear in H and we can
consider the effect of each term hi(r) separately. When hi(r) is
completely supported in A, we can factorize hi(r) = hi,A(r) ⊗
IĀ so that

TrĀhi(r)[ρ(t ), ρA(t )α−1 ⊗ IĀ] = hi,A(r)[ρA(t ), ρA(t )α−1] = 0.

(3.6)

On the other hand, when hi(r) is completely supported in Ā,
by the cyclicity of the trace, we have

TrĀhi(r)[ρ(t ), ρA(t )α−1 ⊗ IĀ]

= TrĀρ(t )[IA ⊗ hi,Ā(r), ρA(t )α−1 ⊗ IĀ] = 0. (3.7)

Hence, terms in H that are completely supported in A or Ā do
not contribute to the entropy derivative and we can replace H
with H∂ inside the trace. This directly implies

|S′
α (t )| = α

|α − 1|
∣∣∣∣Tr(H∂ [ρ(t ), ρA(t )α−1 ⊗ IĀ])

TrAρA(t )α

∣∣∣∣. (3.8)

The α → 1 limit follows immediately.
Before stating the bounds, we need to define two notions of

locality for qudit Hamiltonians, given a metric g on the lattice
	.

(1) Power-law local with decay exponent w if ‖hi(r)‖ �
h̄

rw for some constant h̄.
(2) Stretched-exponentially local with decay exponent

w > 0 and decay length ξ if there is a finite constant h̄ such
that ‖hi(r)‖ � h̄e−( r

ξ
)w . We will often refer to the cases 0 <

w < 1,w = 1,w > 1 as subexponential, exponential, and su-
perexponential, respectively.

With this definition in mind, and combining Lemma 3.1
with existing results quoted in the previous section, we have
the following theorem:

Theorem 3.1. Consider the same setup as in Lemma 3.1
and in the ensuing discussion of locality. Let the spatial di-
mension of the lattice be d . Then the following bounds on
entropy growth hold:

(1) If the Hamiltonian H is at least power-law local with
decay exponent w > 2d + 1, then the von Neumann entropy
growth rate |S′

1(t )| � c|∂A|h̄ ln D0.
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FIG. 1. The red rectangle marks the boundary of the full lattice
	, which we partition into A, Ā subsystems. For each lattice site i,
the support of the interaction term hi(r) is contained in a ball of
radius r + 1 around i. �A, �Ā are the intersections of the support
with A, Ā, respectively. Note that the interaction only contributes to
the entanglement rate when �A, �Ā are both nonempty. Moreover,
the number of sites contained in the support is bounded by O(rd ).

(2) If the Hamiltonian H is superexponentially or ex-
ponentially local with w = d � 1 and ξ < ξc = ( 1

c1 ln D0
)1/d ,

then |S′
α �=1(t )| � c′|∂A|h̄.

(3) If the Hamiltonian H is finite-range with range R, and
the norm of interaction terms that act nontrivially on any site
is upper-bounded by h̄, then |S′

α (t )| � bα (R)|∂A|h̄ ln D0 with

b1(R) ∼ Rd+1, bα (R) ∼ α

|α − 1| R D2c1Rd

0 . (3.9)

For all three claims, D0 is the local Hilbert space dimen-
sion; c, c′, c1 are constants independent of H and D0; and |∂A|
is the area of the boundary between A, Ā.

Proof. By Lemma 3.1, we only need to bound the contri-
butions from hi(r) with support intersecting both A and Ā.
Take any such term, and let � = supp[hi(r)]. To make use
of the existing bounds on entanglement capacity, we intro-
duce the notation �A + �Ā = � and �A + �Ā = 	 \ � so
that �A + �A = A and �Ā + �Ā = Ā (see Fig. 1 for a visual
representation of this decomposition). First we specialize to
the case of von Neumann entropy and review the argument of
[31]. For fix i, r we need to bound

Trhi(r)[ρ, ln ρA ⊗ IĀ]

= TrA+�Ā
hi(r)

[
ρA+�Ā

, ln ρA ⊗ I�Ā

]
= p−1TrA+�Ā

hi(r)[X, ln Y ], (3.10)

where p = D−2
�Ā

, X = pρA+�Ā
, and Y = √

pρA ⊗ I�Ā
. By def-

inition of density matrices, TrA+�Ā
X = p and TrA+�Ā

Y = 1.
Furthermore, since ρA+B � DBρA ⊗ IB where DB is the di-
mension of the B Hilbert space, we have 0 � X � Y � I . This
allows us to directly apply the operator inequalities in Lemma

2.1 and obtain3

|TrA+�Ā
hi(r)[X, ln Y ]| � ‖hi(r)‖ · ‖[X, ln Y ]‖1

� 9‖hi(r)‖p ln

(
1

p

)
, (3.11)

where we use the fact that p � 1
2 for all nontrivial �Ā. This

inequality implies that

|Trhi(r)[ρ, ln ρA ⊗ IĀ]| � 9‖hi(r)‖ ln

(
1

p

)

= 18‖hi(r)‖ ln D�Ā
� 18c1‖hi(r)‖ ln D0rd , (3.12)

where d is the spatial dimension of the lattice and c1 is chosen
so that the number of sites i satisfying g(i, ∂A) � r is upper
bounded by c1rd .4 Summing over all contributing hi(r), we
get∣∣∣∣dS1(t )

dt

∣∣∣∣ � 18c1 ln D0

∑
i

∑
r�g(i,∂A)

‖hi(r)‖ rd

� 18c1 ln D0

∑
r

rd
∑

i,r�g(i,∂A)

h̄

rw

� 18c2
1h̄ ln D0|∂A|

∑
r

r2d−w � c h̄ |∂A| ln D0.

(3.13)

The final sum over r converges whenever w > 2D + 1, which
is the assumption we made. In the end, c is a finite constant
that depends on the lattice structure and the degree of locality,
but independent of D0, h̄.

Next, we generalize to α-Rényi entropies. Following the
same steps as before, it is easy to see that

Trhi(r)
[
ρ, ρα−1

A ⊗ IĀ

] = TrA+�Ā
hi(r)

[
ρA+�Ā

, ρα−1
A ⊗ I�Ā

]
= D1+α

�Ā
TrA+�Ā

hi(r)[X,Y α−1],
(3.14)

with the same definitions p = D−2
�Ā

, X = pρA+�Ā
and Y =√

pρA ⊗ I�Ā
. Similarly, the denominator has the structure

TrAρα
A = TrA+�Ā

Y αDα−1
�Ā

. Hence, we obtain

∣∣∣∣dSα (t )

dt

∣∣∣∣ �
∣∣∣∣ α

α − 1

∣∣∣∣
∣∣∣∣∣∣
∑

i

∑
r�g(i,∂A)

p−1 TrA+�Ā
hi(r)[X,Y α−1]

TrY α

∣∣∣∣∣∣.
(3.15)

Note that the existing operator inequalities in Lemma 2.1
(proven in [32]) are not useful anymore. This is because the
denominator in |S′

α �=1(t )| scales as TrY α � TrY = 1. Directly
inverting this inequality gives a lower bound on |S′

α �=1(t )|

3The optimal constant in this inequality is actually 2 instead of 9,
but since we are not concerned with numerical prefactors at this level
of generality, we will not aim for the optimal bound here and in the
rest of this section.

4This also implies that the number of sites in �Ā is bounded by
c1rd for every �Ā that does not contain sites farther than r apart. See
Fig. 1 for a visual guide.
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rather than an upper bound. If we leave TrY α untouched, then
the bound would be proportional to [TrY α]−1 ∼ e(α−1)Sα (t )

which can become exponentially large in the size of sub-
system A when the α-Rényi entropy Sα (t ) has grown to be
extensive.

To remove the factor of [TrY α]−1, we invoke Lemma 2.2
and obtain the stronger inequality

|TrA+�Ā
hi(r)[X,Y α−1]| � 2‖hi(r)‖TrY α. (3.16)

Part of this bound precisely cancels TrY α in the denominator.
The remaining parts combine with some prefactors to give

|S′
α �=1(t )| � 2α

|α − 1|
∑

r

∑
i,g(i,∂A)�r

D2
�Ā

‖hi(r)‖

� 2α

|α − 1| |∂A|
∑

r

c1rdD2c1rd

0 ‖hi(r)‖, (3.17)

where c1 is chosen in the same way as before. Now, in order
for the RHS to converge to a finite constant independent of
L, the Hamiltonian must be at least superexponentially or
exponentially local with

w = d, ξ < ξc =
(

1

2c1 ln D0

)1/d

. (3.18)

When this decay condition is satisfied, we have

|S′
α �=1(t )| � 2α

|α − 1| |∂A|ch̄, (3.19)

for some constant c. Redefining c′ = 2α/(|α − 1|)c gives part
2 of the theorem.

Finally, for interactions with a finite range R, we can write

|S′
1(t )| �

∑
i

∑
g(i,∂A)�R

18‖hi(r)‖ ln D�Ā
,

|S′
α �=1(t )| � 2α

|α − 1|
∑

i

∑
g(i,∂A)�R

D2
�Ā

‖hi(r)‖,
(3.20)

where

‖hi(r)‖
{= 0 r > R,

� h̄ r � R.
(3.21)

Given the finite range of interactions, we know that |�Ā| �
c1Rd . On the other hand, for sufficiently large ∂A, the number
of sites i satisfying g(i, ∂A) � R is bounded by c2|∂A|R for
some constant c2 independent of the spatial dimension d .
Given this stronger inequality, we conclude that

|S′
1(t )| � 18(c2|∂A|R h̄)(c1Rd ln D0),

|S′
α �=1(t )| � 2α

|α − 1| (c2|∂A|R h̄)
(
D2c1Rd

0

)
. (3.22)

Part 3 of the theorem is recovered when we set

b1(R) = 18 c1 c2 Rd+1,

bα (R) = 2α

|α − 1|c2 R D2c1Rd

0 . (3.23)

�
It is easy to generalize Theorem 3.1 to lattice fermion

Hamiltonians. For any bipartition of the lattice into A + Ā,

the Fock space factorizes as HF = H(A)
F ⊗ H(Ā)

F . The reduced
density matrices and Rényi entropies can be defined relative to
this tensor factorization. Although the fermion creation oper-
ators anticommute, terms in the Hamiltonian always involve
an even number of fermion operators, which commute at
spatially separated regions. Therefore, Lemma 3.1 continues
to hold. The operator inequalities invoked in Theorem 3.1 are
also agnostic to the precise choice of Hilbert space. Therefore,
with the same assumptions on the locality of interactions, the
analog of Theorem 3.1 holds for fermions as well. The story
for bosons is more complicated because local operators on
the bosonic Hilbert space do not have a well-defined operator
norm. However, recent works have shown that for physically
reasonable Hamiltonians and for states with low boson oc-
cupation numbers, the effective local Hilbert space can be
truncated to a finite-dimensional space up to small errors [46].
Operator norms of bosonic operators in these reduced Hilbert
spaces are bounded and we expect the analog of Theorem 3.1
to hold.

Corollary III.2. Consider the same setup as in Theorem
3.1. Then if the Hamiltonian is at least power-law local with
decay exponent w > 2d + 1, Sα (t ) � c|∂A|h̄t for all α � 1.

Proof. The α-Rényi entropies satisfy the monotonicity
property: Sα (t ) � Sβ (t ) whenever α � β. By integrating part
1 of Theorem 3.1, we find that S1(t ) � c |∂A|h̄ t for all power-
law local Hamiltonians with w > 2d + 1. Hence Sα (t ) �
c |∂A|h̄ t for all α > 1.

B. Extension to systems with k locality

The entanglement growth bounds in Theorem 3.1 admit a
straightforward generalization to k-local systems which may
or may not have geometric locality. More precisely, consider
a quantum qudit system with V sites and local Hilbert space
dimension D0. We say a Hamiltonian is k local if H =∑

i1,...,ik∈	 hi1,...,ik where the support of hi1,...,ik is contained in
{i1, . . . , ik}. By Lemma 3.1, we have

|S′
α (t )| � α

|α − 1|
∣∣∣∣Tr(H∂ [ρ(t ), ρA(t )α−1 ⊗ IĀ])

TrAρA(t )α

∣∣∣∣, (3.24)

where

H∂ =
∑

{i1,...,ik}∩A�=∅
{i1,...,ik}∩Ā�=∅

hi1,...,ik . (3.25)

Now following the same strategy as in Theorem 3.1, we have
another immediate corollary.

Corollary 3.3. Consider a k-local Hamiltonian H =∑
i1,...ik∈	 hi1,...,ik with ‖hi1,...,ik ‖ � h̄ for every choice of

i1, . . . , ik . Then we have the bounds

|S′
α (t )| � V (H∂ )h̄

{
c(k − 1) ln D0 α = 1,

c′D2(k−1)
0 α �= 1,

(3.26)

where V (H∂ ) is the number of distinct nonvanishing terms
hi1,...,ik with {i1, . . . , ik} ∩ A, {i1, . . . , ik} ∩ Ā �= ∅.
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Proof. The early part of the proof essentially repeats the
argument in Theorem 3.1. The only difference comes from
the analysis of sums over terms in H∂

|S′
α (t )| �

∑
{i1,...,ik}∩A�=∅
{i1,...,ik}∩Ā�=∅

∥∥hi1,...,ik

∥∥

×
⎧⎨
⎩

c ln
(
Dsupp[hi1 ,...,ik ]∩Ā

)
α = 1,

c′ (Dsupp[hi1 ,...,ik ]∩Ā

)2
α �= 1,

(3.27)

where c, c′ are constants. Now for the k-local sys-
tem, at most k − 1 of the sites {i1, . . . , ik} can be in
Ā. Hence Dsupp[hi1 ,...,ik ]∩Ā � Dk−1

0 and the corollary follows
immediately. �

In many interesting physical systems, the interactions
between local degrees of freedom simultaneously satisfy ge-
ometric locality and k locality. One prominent example is
the Hamiltonian for electrons in a solid, where the dominant
Coulomb repulsion is geometrically power-law local and k
local with k = 2. In this scenario, we can combine Corollary
3.3 and Theorem 3.1 to obtain a stronger set of bounds. To
get there, we first define the most general form of a k-local
Hamiltonian with geometric locality.

Definition III.4. For any set of sites {i1, . . . , ik} on the lat-
tice 	 equipped with a metric d , define the diameter of the set
by

diam({i1, . . . , ik}) = max
a, b∈{1, ...,k}

g(ia, ib). (3.28)

We say that a k-local Hamiltonian of the form

H =
∑

i1,...,ik

hi1,...,ik (3.29)

is power-law local with decay exponent w if

∥∥hi1,...,ik

∥∥ � h̄

diam({i1, . . . , ik})w
(3.30)

for some constant h̄.
Given this definition, we can state the bounds as follows.
Corollary 3.5. Consider the same setup as in Theorem 3.1

with ∂A a spatially connected boundary separating A and
Ā. Given a k-local Hamiltonian which is also geometrically
power-law local with decay exponent w > dk, we have the
following bounds:

|S′
α (t )| �

{
c(k − 1) ln D0 h̄|∂A| α = 1,

c′D2(k−1)
0 h̄|∂A| α �= 1.

(3.31)

Proof. Applying the operator inequalities Lemma 2.1 and
Lemma 2.2 directly leads to

|S′
α (t )| �

∑
{i1,...,ik}∩A�=∅
{i1,...,ik}∩Ā�=∅

∥∥hi1,...,ik

∥∥

×
⎧⎨
⎩

c ln
(
Dsupp[hi1 ,...,ik ]∩Ā

)
α = 1,

c′ (Dsupp[hi1 ,...,ik ]∩Ā

)2
α �= 1,

(3.32)

Using Dsupp[hi1 ,...,ik ] � Dk−1
0 , we deduce that

|S′
α (t )| �

∑
{i1,...,ik}∩A�=∅
{i1,...,ik}∩Ā�=∅

∥∥hi1,...,ik

∥∥{
c (k − 1) ln D0 α = 1,

c′ D2(k−1)
0 α �= 1.

(3.33)

We now make a simple geometric observation. Suppose that
{i1, . . . , ik} intersects with both A and Ā and there exists some
a for which g(ia, ∂A) > r. Then there must be some choice
of b such that ia, ib are on opposite sides of ∂A. Hence, any
path between ia, ib must intersect ∂A and we have a chain of
inequalities

diam(i1, . . . , ik ) � g(ia, ib) � g(ia, ∂A) + g(ib, ∂A) > r.
(3.34)

By this observation, we can replace the sum over sites
by a sum over r = diam(i1, . . . , ik ) with the restriction
that g(ia, ∂A) � r for all a. For fix r, the number of
{i1, . . . , ik} satisfying g(ia, ∂A) � r along with the constraint
diam(i1, . . . , ik ) = r is upper bounded by ck |∂A| rdk−1 for
some k-dependent constant ck . Thus,∑

{i1,...,ik}∩A�=∅
{i1,...,ik}∩Ā�=∅

∥∥hi1,...,ik

∥∥

�
∑

r=diam(i1,...,ik )

∑
g(ia,∂A)�r

h̄

diam(i1, . . . , ik )w

� h̄ |∂A|
∑

r

ckrdk−w−1. (3.35)

Demanding convergence of the sum over r, we recover the
constraint w > dk.

The key takeaway from this new bound is that when k
locality is present, power-law geometric locality is sufficient
for proving an |A|-independent bound on |S′

α (t )|. This is in
sharp contrast to the case with only geometric locality (see
Theorem 3.1).

IV. ILLUSTRATING THE BOUNDS IN CONCRETE
MODELS

In this section, we compare the bounds in Theorem 3.1
and Corollaries 3.2, 3.3, and 3.5 with the dynamics of |Sα (t )|
in several concrete models with varying degrees of locality.
More precisely, we want to understand how the asymptotic
scaling of |S′

α (t )| with D0, the interaction range R, and the
system size |A| compares with the scaling of |S′

1(t )|. We
provide both analytic and numerical evidence that all three
models obey our bounds, although none of them comes close
to saturating the bounds. Possible routes to tighter bounds or
saturation examples will be discussed along the way.

A. SYK model

We first consider the Sachdev–Ye–Kitaev (SYK) model,
which is a k local but spatially nonlocal system described by
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the Hamiltonian

HSYK =
N∑

i, j,k,l=1

Ji jklχiχ jχkχl . (4.1)

Here, χi are N flavors of Majorana fermions and Ji jkl are a
set of Gaussian i.i.d. random variables with mean zero and
variance 3!J2/N3. Since each interaction term in the Hamil-
tonian only involves four fermion operators, this model is k
local with k = 4. To study entanglement growth, we divide
the N Majorana fermions into two groups with M, N − M
fermions, respectively. For analytic calculations, it is conve-
nient to choose Kourkoulou-Maldacena (KM) pure states. To
define this class of states, we first build N/2 complex fermions
out of N Majorana fermions via the mapping c j = χ2 j−1+iχ2 j

2
and then define a set of basis states that simultaneously diag-
onalize the commuting number operators {nj = c†

j c j}
(2n j − 1)|{s}〉 = s j |{s}〉, s j = ±1. (4.2)

For every inverse temperature β and every string {s}, the
corresponding KM state is then

|KM({s}, β )〉 = e−βHSYK/2|{s}〉. (4.3)

Starting from such an initial state, we expect the α-Rényi en-
tropies to grow rapidly and eventually saturate to the thermal
entropy associated with the energy density of |KM({s}, β )〉.
The detailed dynamics of the α-Rényi entropies have been
worked out both analytically and numerically in [47], with the
general conclusion that

Sα (t ) ≈ cNJt ∀α, ∀t � tsaturation. (4.4)

From Eq. (4.4), we see that the entanglement growth rate is
linear in both N and J . We now ask how this linear scaling
compares with the general bounds. Consider for simplicity a
bipartition where M = N/2. Let H∂ be the part of the Hamil-
tonian that acts on both subsystems. To apply Corollary 3.3,
we need to sum up the norms of individual terms that act on
the finite-dimensional Hilbert space for k Majorana fermions.
Given the random coupling distribution 〈J2

i jkl〉 ≈ 3!J2

N3 , each
four-fermion term in H∂ has an O(N−3/2) average operator
norm. On the other hand, since H − H∂ contains terms that
have i, j, k, l < N/2 or i, j, k, l > N/2, the total number of
k-local terms contained in H∂ scales as N4 − ( N

2 )42 = O(N4).
Using this estimate in Corollary 3.3, we find

|S′
α (t )| � O(N5/2)J ∀α. (4.5)

Therefore, up to an O(1) multiplicative prefactor, the bound is
tight in terms of J scaling but loose in terms of N scaling. The
looseness of the bound makes sense intuitively. The O(N5/2)
bound assumes complete constructive interference between
all terms that contribute to S′

α (t ). In the SYK model, this
assumption is not valid and there are significant destructive
interferences that reduce the expectation O(N5/2) down to
O(N ). It would be interesting to understand if this destructive
interference is generic for strong quenched randomness in the
couplings. If so, it is likely that our bounds can be improved
with additional assumptions on the statistics of random cou-
plings in the k-local interactions.

B. Mixed-field Ising model

In the previous subsection, we considered entanglement
growth in the SYK model, which preserves k locality but not
spatial locality. Now, we shift gears and consider a paradig-
matic spatially local chaotic system oftened referred to as
the mixed field Ising model (MFIM). With open boundary
conditions, the 1D MFIM Hamiltonian takes the form

HMFIM = g
L∑

i=1

Xi + h
L∑

i=1

Zi + J
L−1∑
i=1

ZiZi+1, (4.6)

where Xi,Yi, Zi are on-site Pauli operators. If we take ∂A to
be the spatial cut between sites i and i + 1, then the only term
in the Hamiltonian that crosses the cut is JZiZi+1. This means
that the Hamiltonian is strictly finite-range with R = 2 and
h̄ = J . Rerunning the proof of Theorem 3.1 with this single
interaction term and using the optimal constants, we obtain
finite bounds

|S′
1(t )| � 2J ln 2, |S′

α (t )| � 8α

|α − 1|J. (4.7)

The important qualitative feature is that both bounds scale lin-
early with the coupling strength J . To compare these bounds
with numerics, we exactly diagonalized a MFIM with L =
16, g = −1.05, h = 0.5 and varying values of J . For each J ,
we sampled 100 random product states (i.e., tensor product
of L single-site states that are independently sampled from
the uniform measure on the Bloch sphere) and computed
the half-chain von Neumann entropy S1(t ) and second Rényi
entropy S2(t ) as a function of time. The ensemble-averaged
entropy growth curves are shown in Fig. 2. After an early-
time nonuniversal transient, both S1(t ) and S2(t ) grow linearly
until saturation. Within the linear growth regime, we can
extract the slope s = |S′

1(t )| and the entanglement velocity
vE = |S′

1(t )|/(h̄ ln D0) = s(J )/(J ln D0) as a function of the
coupling strength J . The comparison plots for S1(t ) are shown
in Fig. 3.

A number of interesting features can be identified. At
small J , the empirical growth rate scales linearly with J , but
with a slope that is smaller than the bound. Some curvature
develops in the range J ∈ [0.5, 0.9]. At even larger J , s(J )
appears to plateau and even begin to trend downward for
J > 1.1. This downward trend is surprising and we do not
have a physical explanation for it. In future works, it would
be interesting to understand whether there exist models for
which the linear scaling s(J ) ∼ J extends to arbitrarily large
values of J in the thermodynamic limit [or more ambitiously,
for which s(J ) asymptotically saturates the bound]. As shown
in Fig. 2, the second Rényi entropy in this model also follows
an approximate linear growth in the accessible range of L with
comparable values of s and vE , though the cumulative growth
at any t is slightly smaller than S1(t ) − S1(0) due to Corollary
3.2. Unlike the case of random GUE Hamiltonians considered
in Sec. II C, we do not find any t for which |S′

α (t )| diverges
exponentially as a function of system size L. This is consistent
with Eq. (4.7).
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FIG. 2. Time dependence of the von Neumann and second Rényi entropy for different values of J . Here, we chose units in which J, t are
both dimensionless. The dynamics are generated by the MFIM with L = 16 and varying values of J . The entanglement entropy is calculated
with respect to the middle cut. For each J , the plotted entropy growth curve is an average over 100 random product states. Note that, after an
initial transient, the entropy grows linearly until saturation. Within the range J ∈ [0.12, 1.1], the slope of these curves grows monotonically
with J .

C. SYK chain

As a final example, we consider a one-dimensional (1D)
chain of doubled SYK models where fermions at different
lattice sites are coupled by nearest-neighbor random interac-
tions. Concretely, the Hamiltonian takes the form

HSYK chain = H↑ + H↓, (4.8)

Ha=↑/↓ =
N∑

i jkl=1

L∑
x=1

Ja
0,i jkl,xχ

a
i,xχ

a
j,xχ

a
k,xχ

a
l,x

+
N∑

i jkl=1

L∑
x=1

Ja
1,i jkl,xχ

a
i,xχ

a
j,xχ

a
k,x+1χ

a
l,x+1, (4.9)

where Ja
0,i jkl,x, Ja

1,i jkl,x are i.i.d. Gaussian random variables
with

〈
Ja

0,i jkl,x

〉 = 〈
Ja

1,i jkl,x

〉 = 0,〈(
Ja

0,i jkl,x

)2
〉
= J2

0

N3
,

〈(
Ja

1,i jkl,x

)2
〉
= J2

1

N3
. (4.10)

Here, x is a label for the spatial sites and N is the total number
of fermion flavors within each site. Importantly, we impose
spatial locality for interactions between different lattice sites,
but only k locality for interactions within a lattice site. This
setup allows us to test the scaling of entanglement growth
rates with the on-site Hilbert space dimension D0 ∼ 2N , the
interaction strength h̄ and the lattice size L.

FIG. 3. J dependence of the Von Neumann entropy growth rate |S′
1(t )| and the entanglement velocity vE . Numerically, we take the curves in

Fig. 2, and fit the intermediate time regime to a line (the early time oscillatory regime and the late time saturation regime are nonlinear and hence
excluded from the fit). The slope of each curve is the growth rate |S′

1(t )| and the entanglement velocity can be extracted as vE = |S′
1(t )|/(J ln 2).

The error bars for the growth rates are on the order of 10−3–10−4 and hence invisible on the scale of the plot.
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Remarkably, the growth of α-Rényi entropies in the above
1D SYK chain has been solved analytically in the large N, L
limit in [48] for a special class of low-entanglement initial
states that we now define. Let |EPR〉x be a maximally entan-
gled state between the fermions in the ↑ and ↓ family on
a fixed spatial site x. Then |I〉 = ⊗L

x=1|EPR〉x is state with
no spatial entanglement across any spatial cut and hence a
good candidate for studying entanglement growth at infinite
temperature. To vary the effective temperature, we can also
generalize this state to a thermofield double state |TFD, β〉 ∝
e− β

4 (H↑+H↓ )|I〉. Since |TFD, β〉 can be obtained from an imag-
inary time evolution of the unentangled state |I〉 by time β

under a spatially local Hamiltonian H↑ + H↓ the entanglement
of |TFD, β〉 satisfies an area law. On the one-dimensional
chain, this means that the entanglement entropy of |TFD, β〉 is
independent of L. Starting from this low-entanglement state,
the authors of [48] computed the α-fold replicated partition
function TrρA(t )α within the perturbative limit J1 � J0√

βJ0
and

then performed an analytic continuation to real values of α.
Keeping only replica-diagonal contributions to TrρA(t )α , the
growth of SA,α (t ) for general α > 1 is found to be

SA,α (t ) ≈ α

α − 1

2π

β

J2
1 N

8πJ2
0

t . (4.11)

The singularity of this functional form as we approach the
von Neumann entropy limit α → 1 is clearly unphysical. To
restore a physical answer for α = 1 and for α < 1, one would
need to include replica off-diagonal contributions that cancel
divergent parts of the diagonal solution. Since a full solution
of SA,1(t ) is not available, we will simply compare our bounds
with the analytic results for α �= 1.

One surprise in this model is that the exact entanglement
velocity scales as J2

1 at small J1 which is much smaller than
the bound proportional to J1. One plausible reason for this
scaling discrepancy is that the analytic result Eq. (4.11) holds
only for initial states with β �= 0, while the rigorous bounds
hold for all β. As β → 0, the analytic result breaks down and
we conjecture that the scaling of entanglement growth rate
would begin to track the linear bound. It would be interesting
to extend the analytic results to these β = 0 states and test this
conjecture.

Another interesting feature is the linear N-scaling of
S′

A,α (t ). In the SYK chain, there are L spatial sites, each host-
ing a large number (N) of fermions. Since we are considering
a spatial cut between x = L/2 and x = L/2 + 1, the local term
in the Hamiltonian that straddles the cut is

HL/2,L/2+1 =
∑

a=↑,↓

N∑
i jkl=1

Ja
1,i jklχ

a
i,L/2χ

a
j,L/2χ

a
k,L/2+1χ

a
l,L/2+1,

(4.12)
which acts on 2N Majorana fermions on sites L/2 and L/2 +
1. Using the notation of Theorem 3.1, the local Hilbert space
dimension D0 is 2N and h̄ is proportional to the operator
norm of HL/2,L/2+1. This is to be contrasted with SYK ex-
ample in Sec. IV A where D0 = 2k/2 is the Hilbert space
dimension of k Majorana fermions and h̄ is the operator
norm of each four-fermion term that appears in the Hamilto-
nian. In the SYK chain setup, although HL/2,L/2+1 is a sum
over N4 terms, each with an O(N−3/2) operator norm, the
interference effects between different terms reduce the total

operator norm ‖HL/2,L/2+1‖ to O(N ) with high probability
[49–52]. With these estimates as input, Theorem 3.1 implies
|S′

α>1(t )| � cN22N , while Corollary 3.2 implies |Sα (t )| �
c′N2t for some O(1) constants c, c′. Up to a multiplica-
tive constant, the analytic cumulative entanglement growth
Sα (t ) − Sα (0) is smaller than the bound in Corollary 3.2 by
a factor of 1/N . However, the incremental entanglement rate

S′
α (t ) = α

α−1
2π
β

J2
1 N

8πJ2
0

is exponentially smaller than the bound

cN22N . This separation of scale leaves us with two very differ-
ent possibilities: (1) the bound for maxt |S′

α>1(t )| in Theorem
3.1 is far from optimal and (2) the bound is tight, but the SYK
chain Hamiltonian is too simple to saturate the bound. One
reason why (2) may be plausible is that the onsite interactions
of the SYK chain are generated by k-local sparse matrices,
in contrast to the fully nonlocal GUE random matrices which
are dense in a generic basis and produce instantaneous Rényi
entropy growth at a nearly maximal rate. To resolve this un-
certainty, it would be useful to replace each SYK dot with a
featureless dense GUE random matrix. For example, one toy
model that one could consider is the 1D GUE chain

HGUE−chain =
L∑

x=1

Mx +
L−1∑
x=1

MxMx+1 + H.c., (4.13)

where each Mx is drawn from an independent rank-N GUE
distribution. Given the solvability of entropy dynamics gen-
erated by a single random GUE Hamiltonian, there is some
hope that certain properties of the GUE chain can also be
determined analytically. It would be interesting to see if
|S′

α �=1(t )| in this model can get closer to saturating the bound in
Theorem 3.1.

V. DISCUSSION

The central motivation of this work is to explore sim-
ilarities and differences between the dynamics of α-Rényi
entropies Sα �=1(t ) and von Neumann entropy S1(t ), two of the
most popular measures of bipartite entanglement in many-
body quantum systems. The approach we take is to prove
universal (state-independent) bounds (Lemma 2.2, Theorem
3.1, Corollaries 3.2, 3.3, and 3.5) on the time derivatives of
these entropy measures and compare how each of the bounds
scales with the subsystem size, the interaction strength, the
degree of locality in the Hamiltonian and so on. The key
observation we make is that this similarity between S1(t ) and
Sα (t ) breaks down in general, although it appears to hold for
many solvable models. Concretely, no matter which notion of
locality we impose on the Hamiltonian, there is always a gap
between the optimal bounds that we could prove for α > 1 and
for α = 1.5 For the bipartite entanglement between comple-
mentary subsystems A and Ā, these gaps can be summarized
as follows.

(1) With no locality assumptions, the bound on |S′
1(t )|

scales linearly with the subsystem volume |A|, while the
bound on |S′

α �=1(t ) scales exponentially with |A|. Moreover,
this exponential separation can be saturated.

5We emphasize that the tightness of these bounds is largely un-
known, except in the case of completely nonlocal dynamics.
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(2) With geometric quasilocality (infinite-range interac-
tions that decay with distance), a finite bound on |S′

α (t )|
requires power-law local interactions for α = 1 but superex-
ponentially local interactions for α �= 1.

(3) With strict geometric locality (finite-range interac-
tions), the bound on |S′

α (t )| scales as a power law of the
interaction range R for α = 1 and as an exponential of RD for
α �= 1.

(4) With k locality (and with or without geometric quasilo-
cality), the bound on |S′

α (t )| scales as a power law of k for
α = 1 and as an exponential of k for α �= 1.

If these bounds are tight, then they imply a qualitative
distinction between the dynamics of Sα (t ) and S1(t ) that
is in tension with the “entanglement membrane” picture
[26,27,33,34]. For example, in the membrane picture, one as-
sociates a natural velocity scale vE to a general entanglement
measure E (t ) via the equation

∣∣∣∣dE (t )

dt

∣∣∣∣ = vE |∂A|sth(ρ0), (5.1)

where |∂A| is the size of the boundary between A, Ā and
sth(ρ0) is the equilibrium entropy density associated with the
initial state ρ0. For generic nonintegrable Hamiltonians with
no global symmetry, this expectation is justified by approxi-
mating the local dynamics generated by the Hamiltonian with
local random unitary circuits. For these circuits, Sα (t ) can be
mapped to the free energy of fluctuating domain walls on
a spacetime lattice with length t in the temporal direction.
As t increases, the free energy of the domain walls (and
hence the entropies) increases linearly with t . Since differ-
ent choices of α only modify the domain wall structures
and their effective interactions, the basic linear-in-t scaling
should be universal, while the entanglement velocities vE (α)
could depend on α [27]. However, if our bounds are tight,
we could design a geometrically quasilocal Hamiltonian for
which |S′

1(t )| is bounded for all initial states but maxt |S′
α �=1(t )|

can be arbitrarily large in the |A| → ∞ limit. Then the notion
of entanglement velocity makes sense for S1(t ) but not for
Sα (t ) (in fact, for von Neumann entropy, Theorem 3.1 imme-
diately implies an upper bound on the entanglement velocity

vE � ch̄). Such a conclusion would challenge the membrane
picture for α-Rényi entropies in general.6

The preceding discussion makes it clear that the tightness
of our bounds is an important open question. In the case of
nonlocal Hamiltonians, we were able to show that our bounds
are almost saturated by random GUE dynamics. However, for
geometrically quasilocal and k-local Hamiltonians, we have
not found solvable models that exhibit the kind of exponen-
tial separation anticipated by the bounds. Can the bound for
|S′

α (t )| be saturated? Or is the bound just an artifact of our
proof techniques? One interesting family of models where
these saturation questions can be explored are GUE chains
where independently random GUE Hamiltonians are placed
on each site of a lattice and coupled by quasilocal interactions
(ranging from power-law local to strictly finite-range). The
solvability of entropy dynamics for a single GUE site may
provide some analytic insights for tackling this more general
family of models. On the flip side, one can ask if the bounds
can be strengthened with additional assumptions on the struc-
ture of local terms or on the ensemble of initial states. In
the proof of Corollary 3.5, we have seen how a combination
of k locality and geometric quasilocality leads to bounds on
|S′

α (t )| that are stronger than Theorem 3.1 for all values of α.
Perhaps this line of thinking can be pushed further with more
sophisticated operator inequalities.
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6In systems with global energy or charge conservation, Sα (t ) ac-
tually scales as

√
t at large times due to energy or charge diffusion

[53,54] and vE (α > 1) cannot be defined. This phenomenon already
requires a modification of the membrane picture. However, since
|S′

α (t )| � |S′
1(t )| at large t , examples in this class are even further

from saturating our bounds.
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