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We introduce entanglement witnesses for spin ensembles which detect genuine multipartite entanglement
using only measurements of the total angular momentum. States that are missed by most other angular-
momentum-based witnesses for spin ensembles, which include Greenberger-Horne-Zeilinger states and certain
superpositions of Dicke states, can be effectively detected by our witness. The protocol involves estimating the
probability that the total angular momentum is positive along equally spaced directions on a plane. Alternatively,
one could measure along a single direction at different times, under the assumption that the total spins undergo a
uniform precession. Genuine multipartite entanglement is detected when the observed score exceeds a separable
bound. Exact analytical expressions for the separable bound are obtained for spin ensembles j1 ⊗ j2 ⊗ · · · ⊗ jN

such that the total spin is a half-integer and numerical results are reported for the other cases. Finally, we
conjecture an expression for the separable bound when the total spin is not known, which is well supported
by the numerical results.
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I. INTRODUCTION

Entanglement is an important resource that enables many
quantum protocols [1–3]. For this reason, the experimen-
tal certification of entanglement in real quantum devices
is extremely important for both practical and foundational
purposes. Consequently, many methods for detecting entan-
glement have been proposed and studied since the early days
of quantum information [4]. Entanglement witnesses can be
constructed analytically or numerically [5,6], and it is even
possible to certify entanglement without full characterization
of the measurement device [7,8].

However, there are some challenges when implement-
ing entanglement witnesses in practice. Each experimental
setup has measurements and operations that are native to that
system. In general, arbitrarily constructed witnesses would
require measurements in bases different from the native ones.
So some operations on the state need to be performed prior
to measurement, which impacts the fidelity of the measure-
ment. Alternatively, full or partial tomography must be done
to extract the expectation value of the witness from the to-
mographic data, but tomography can be intractable for large
systems. As such, when taking pragmatic reasons into ac-
count, witnesses that depend only on measurements native to
the experimental setup might be more suitable in some cases.

In this paper, we focus on the spin ensemble, a collection of
particles labeled by n, each with a fixed spin jn. Experimental
settings in which spin ensembles appear include ultracold
atoms in optical lattices [9], and spin defects [10] and donors
[11] in solid-state materials. Measurements of angular mo-
mentum �J ( jn ) are natural in such systems. We take that any
component (e.g., Jx) or function of �J (e.g., | �J|2) can be easily
measured.

Several novel witnesses that utilize only angular momen-
tum measurements have been introduced for spin ensembles.
A mainstay are the spin-squeezing inequalities [1,12,13],
which are based on variances of different angular momentum
components and are built upon the uncertainty relations of
spin observables. Following the seminal paper by Sørensen
et al. [14], generalized spin-squeezing criteria have also been
proposed to detect the entanglement of two to three spin-half
particles [15,16], approximate many-body singlet states [17],
and symmetric Dicke states [18]. Families of such multipartite
witnesses have also been characterized for spin-half particles
[19,20], and later, for more general spin ensembles [21,22].

Another notable approach involves the energy observable,
which, for spin ensembles, are some function of the an-
gular momentum operators [23]. If the ground state of the
Hamiltonian is known to be entangled, and the measured
energy is below a certain threshold, then the system itself
must be entangled. Energy-based witnesses have been applied
to various spin models, including XY [24–26], XY Z [27],
Heisenberg [24], and more general spin chains [28–30].

Since these witnesses act upon spin ensembles, the wit-
nessed correlations are that of entanglement between many
particles. Such multipartite entanglement takes on a more
complex character in comparison to bipartite entanglement.
First, the entanglement might be dependent on the partition
chosen: For example, ∝ (|↑↓〉1,2 − |↓↑〉1,2) ⊗ |↓〉3 is entan-
gled over the {1}–{2, 3} partition, but separable over the
{1, 2}–{3} partition. As such, the stronger notion of gen-
uine multipartite entanglement (GME) has to be introduced:
The entanglement present in a state is defined to be GME
if it cannot be written as a convex combination of separa-
ble states, where the separability of each state can be over
any bipartition [31]. Second, there are inequivalent types of
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maximally entangled states that cannot be interconverted us-
ing only local operations and classical communication: For
three spin-half particles, these are the W state |W3〉 ∝ |↑↓↓〉 +
|↓↑↓〉 + |↓↓↑〉 and the Greenberger-Horne-Zeilinger (GHZ)
state |GHZ3〉 ∝ |↑〉⊗3 + |↓〉⊗3 [32].

In terms of the different types of multipartite entanglement,
only some of the aforementioned angular-momentum-based
witnesses can detect GME [25,33–36], and those that
do are mostly effective at detecting Dicke states [37], a
generalization of W states. Notably missing are angular-
momentum-based witnesses that can detect N-partite GHZ
states |GHZN 〉 ∝ |↑〉⊗N + |↓〉⊗N beyond the tripartite case.
Since GHZ states are resources for distributed computing
[38], and are also useful in quantum secret-sharing proto-
cols [39], angular-momentum-based witnesses that can detect
GHZ states are desirable.

The primary contribution of this paper is to fill this gap. We
introduce a witness of GME that requires only measurements
of the total angular momentum of the spin ensemble and can
detect states that are missed by existing angular-momentum-
based criteria, in particular, our witness can detect N-partite
GHZ states.

II. PRECESSION PROTOCOL

A. Protocol as a nonclassicality test

We first present the protocol as a nonclassicality test. It
consists of many independent rounds. In each round, one sys-
tem is prepared in some state, then its total angular momentum
is measured along one of the directions

Jk := e−i(2πk/K )Jz/h̄Jxei(2πk/K )Jz/h̄

= cos(2πk/K )Jx + sin(2πk/K )Jy, (1)

where k ∈ {0, 1, . . . , K − 1}, K is a positive integer, and
where the x–y plane of the measurement directions can be
chosen at one’s convenience. After many such rounds, the av-
erage probability that Jk was found to be positive is calculated
as the score

PK := 1

K

K−1∑
k=0

[
Pr(Jk > 0) + 1

2
Pr(Jk = 0)

]
. (2)

The protocol does not specify, as conditions for its validity,
that the state be the same in each round (of course, if the
preparation is not under good control, the score will be low);
nor does it matter that the measurement k be chosen in any
particular order or at random. However, the preparation of the
state and the choice of direction k for the measurement must
be uncorrelated (we could say that “the measurement should
be random, i.e., unpredictable, from the point of view of the
system”).

This protocol is based on a test known as the “precession
protocol” or “Tsirelson protocol” [40–42], which is a witness
of nonclassicality for single systems. The first expression
comes from a dynamical assumption in those works that we do
not use here (see Sec. II C 2); however, for the sake of a name,
we shall continue to refer to this protocol as to the precession
protocol.

The upper bound PK � Pc
K predicted by classical theory

is Pc
K = 1/2 for K even and Pc

K = (1 + 1/K )/2 for K odd

[40,41]. Meanwhile, the expected score for a quantum system
in the state ρ is given by PK = tr(ρQK ), with

QK := 1

K

K−1∑
k=0

pos(Jk ). (3)

Here, pos(Jk ) is defined on the eigenstates | j, m〉k of Jk ,
such that Jk| j, m〉k = h̄m| j, m〉k and 2 pos(Jk )| j, m〉k = [1 +
sgn(m)]| j, m〉k , with the usual convention sgn(0) = 0. There
exist quantum states that violate the classical bound. In partic-
ular, the maximal eigenstates of QK (the states that achieve the
largest quantum score) are known in some cases [41]. There-
fore, upon performing the protocol, the observation PK > Pc

K
detects the nonclassicality of the measured system.

B. Protocol as an entanglement witness

We will now apply the precession protocol to the total
angular momentum �J of a composite system. Concretely, let
us consider a spin ensemble consisting of N particles with
fixed spins j1, j2, . . . , jN . With a slight abuse of notation, the
angular momentum along the k direction of the nth spin is
denoted by

J ( jn )
k = 1( j1 ) ⊗ · · · ⊗ 1( jn−1 ) ⊗ J ( jn )

k ⊗ 1( jn+1 ) ⊗ · · · ⊗ 1( jN ),

(4)

such that J ( j)
k for a fixed spin is given by

J ( j)
k =

j∑
m=− j

h̄m| j, m〉k〈 j, m|, (5)

where | j, m〉k is a simultaneous eigenstate of | �J|2 and Jk

with eigenvalues h̄2 j( j + 1) and h̄m, respectively. It is related
to the usual eigenstate | j, m〉 of | �J|2 and Jz by | j, m〉k =
e−i(2πk/K )Jz/h̄e−i(π/2)Jy/h̄| j, m〉.

With this, we can consider an implementation of the pre-
cession protocol with Jk = ∑N

n=1 J ( jn )
k , and ask whether a

composite system performs better in this protocol when the
particles are entangled, in other words, whether we can define
a precession-based entanglement witness (PEW). Previous
works suggest it to be so: for two fixed spins, the state con-
jectured to be maximally violating is always entangled [41];
for two harmonic oscillators, violation by a linear combination
of the original modes implies entanglement of the latter in a
wide parameter range [43].

Indeed, we shall show that a sufficiently large violation
of the classical bound by the spin ensemble implies GME.
Our main results are as follows: an exact analytical bound
when

∑N
n=1 jn = K/2, for all odd K � 3 (Result 1) and a

conjectured bound for all cases (Conjecture 3), with strong
numerical evidence for

∑N
n=1 jn � 15 and K � 21 (Result 4).

C. Remarks on the implementation of the protocol

1. Collective measurements are possible but not necessary

Our PEW belongs to the class of angular-momentum-
based entanglement witnesses. Indeed, it can be implemented
by measuring only collective observables, namely, the suitable
components of the total �J .
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FIG. 1. (a) We consider a spin ensemble of N particles. Each particle has a fixed spin jn with angular momentum �J ( jn ). (b) The protocol is
performed on the total angular momentum �J = ∑N

n=1
�J ( jn ) of the spin ensemble { jn}N

n=1, which is the sum of the individual angular momentum
of each particle. (c) In general, the entanglement of a spin ensemble depends on how the ensemble is partitioned. The system might be entangled
over one bipartition, but separable over another. As such, we are interested in the stronger notion of genuine multipartite entanglement (GME):
a state is GME if it cannot be written as a mixture of separable states, where the separability of the state can be over any bipartition. Our
entanglement witness detects GME if the score of the precession protocol is found to be larger than a separable bound.

That being said, collective measurements are not neces-
sary. Because Jk = ∑N

n=1 J ( jn )
k , any measurement of Jk can

be done by first locally measuring J ( jn )
k for each spin, or∑

n∈{n1,n2,... } J ( jn )
k for a subset of spins then manually adding

up the measurement outcomes afterwards. This feature is
shared with some other witnesses [18,24], but is contrasted
with those that require measurements in a nonlocal basis [17].

2. Measuring along only one direction
under the assumption of dynamics

In the earlier works about the precession protocol as a
nonclassicality test [40–42], the protocol was presented as a
measurement of a single observable at different times, un-
der the assumption that, during the certification process, that
observable undergoes a uniform precession. Specifically, if
�J = (Jx, Jy, Jz ) is known to precess uniformly about the z axis
with period T := 2π/ω as

�J (t ) =

⎛⎜⎝cos(ωt )Jx(0) + sin(ωt )Jy(0)

cos(ωt )Jy(0) − sin(ωt )Jx(0)

Jz(0)

⎞⎟⎠, (6)

then indeed Jk (0) = Jx(tk ) for tk = (k/K )T . In this dynamical
implementation, upon drawing k, one would wait until time
tk and then measure Jx. In some systems, having to measure
only in one direction could be an advantage, coming at the
cost of the assumption on the dynamics. Hence, this offers
another way of performing the precession protocol, rather than
measuring at a fixed time along one among several directions
as we present in this paper.

This alternate method can be useful in witnessing the en-
tanglement of postquench states, which is a common problem
in the study of spin ensembles [26,44]. Here, “quench-
ing” refers to a sudden change of some parameters of the
Hamiltonian. By starting with a highly entangling Hamilto-
nian, then quenching to the free Hamiltonian H = −ωJz, the
dynamical assumption of uniform precession holds, and the
precession protocol can be performed.

This approach fits naturally with recent efforts in
optimal quantum control that seeks to engineer driven
Hamiltonians that achieve target states with GME, like the
GHZ state [45,46]. Our protocol provides a way to certify

the success of the quantum control procedure after it has been
implemented.

III. MAIN RESULTS: SEPARABLE BOUNDS

In this section, we detail the results with which we will
eventually arrive at Results 1 and 4 and Conjecture 3.

Since we are interested in detecting GME states, we have
to consider every possible bipartition of the spin ensemble,
as illustrated in Fig. 1. Let us therefore formalize the notion
of a bipartition of a spin ensemble { jn}N

n=1. When partitioning
the spin ensemble into two subsets, if the first subset is J =
{ jn1 , jn2 , . . . , jnL } containing 1 � L < N spins, then the sec-
ond subset will contain the remaining spins J� := { jn}N

n=1 \ J.
Meanwhile, for all possible bipartitions, the first subset can be
any J ∈ 2{ jn}N

n=1 \ {∅, { jn}N
n=1}, where 2{ jn}N

n=1 is the power set
of { jn}N

n=1, and we exclude ∅ and its complement to ensure
that at least one spin is present in each partition.

In addition, H( jn ) denotes the Hilbert space spanned by
{| jn, m〉} jn

m=− jn
. We will also loosely call both

∑
m ψm| jn, m〉

and
∑

m,m′ ρm,m′ | jn, m〉〈 jn, m′| � 0, pure and mixed states, re-
spectively, as “states that belong in H( jn )”.

With these notations, a state ρJ,J� of a spin ensemble is sep-

arable over the J-J� bipartition if ρJ,J� = ∑
k pkρJ,k ⊗ ρJ�,k ,

where ρJ,k (or ρJ�,k) is a state within the subspace
⊗

j∈J H( j)

(or
⊗

j′∈J� H( j′ )). Conversely, ρGME is GME if it is not a
convex combination of states separable over any bipartition
J: that is, ρGME �= ∑

J pJρJ,J� .
Finally, we define the separable bound Psep

K ({ jn}N
n=1) as the

maximum score achieved by a non-GME state of the spin
ensemble { jn}N

n=1, upon performing the precession protocol on
the total angular momentum of the spin ensemble

Psep
K

({ jn}N
n=1

)
:= max

{pJ,ρJ,J� }
tr

⎡⎣⎛⎝∑
J

pJρJ,J�

⎞⎠QK

⎤⎦
= max

J
max
ρ

J,J�
tr(ρJ,J�QK ). (7)

Here, convexity was used in the first line, QK is as defined in
Eq. (3) with �J = ∑N

n=1
�J ( jn ), while the maximizations are over
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all J ∈ 2{ jn}N
n=1 \ {∅, { jn}N

n=1} and ρJ,J� = ∑
k pkρJ,k ⊗ ρJ�,k ,

where J� = 2{ jn}N
n=1 \ J.

By definition, every non-GME state must achieve the score
PK � Psep

K ({ jn}N
n=1). The negation of this statement implies

that if the separable bound is violated, the system must be
GME. Therefore, our PEW detects GME states if the score
PK > Psep

K ({ jn}N
n=1) is achieved when performing the preces-

sion protocol on the total angular momentum of the spin
ensemble { jn}N

n=1.

A. Relation between the multipartite and bipartite
separable bounds

By taking advantage of the decomposition of QK in terms
of the irreducible blocks of the angular momentum observ-
able, the separable bounds of large spin ensembles can be
related to separable bounds of two-spin systems.

For a particular bipartition J := { jnl }L
l=1, the usual rules for

the addition of angular momentum applied to the total angular
momentum �J = ∑N

n=1
�J ( jn ) results in the decomposition [47]

�J =
L∑

l=1

�J ( jnl ) +
N∑

l ′=L+1

�J ( jnl′ )

=
jn1 + jn2⊕

j̃1=| jn1 − jn2 |

j̃1+ jn3⊕
j̃2=|j̃1− jn3 |

· · ·
j̃L−2+ jnL⊕

j̃=|j̃L−2− jnL |
�J (j̃ )

+
jnL+1 + jnL+2⊕

j̃ ′
1=| jnL+1 − jnL+2 |

· · ·
j̃N−L−2+ jnN⊕

j̃ ′=|j̃ ′
N−L−2− jnN |

�J (j̃ ′ )

=:
⊕

j̃∈J (J)

⊕
j̃ ′∈J (J� )

[ �J (j̃ ) ⊗ 1(j̃ ′ ) + 1(j̃ ) ⊗ �J (j̃ ′ )], (8)

where J ({ jn1 , jn2 , . . . , jnL }) := {j̃ : |j̃L−2 − jnL | � j̃ � j̃L−2

+ jnL , |j̃L−3 − jnL−1 | � j̃L−2 � j̃L−3 + jnL−1 , . . . , | jn1 − jn2

| � j̃1 � jn1 + jn2} is the set of irreducible spins of the block
decomposition of

∑L
l=1

�J ( jnl ), which does not depend on

the order of the elements of { jnl }L
l=1 in its definition. The

implicit tensor product with the identity has been made
visible in Eq. (8), which makes explicit that each term in the
square brackets has nonzero support only in the H(j̃ ) ⊗ H(j̃ ′ )

subspace.
It follows that, for an observable f ( �J ) that is a function of

the total angular momentum,

tr[ρJ,J� f ( �J )] =
∑

j̃∈J (J),
j̃ ′∈J (J� )

tr[ρJ,J� f (1(j̃ ) ⊗ �J (j̃ ′ ) + �J (j̃ ) ⊗ 1(j̃ ′ ) )].

(9)

In addition, using the convexity of the set {ρJ,J�},
max
ρ

J,J�
tr[ρJ,J� f ( �J )] = max

|�J,�J� 〉
〈�J, �J� | f ( �J )|�J, �J�〉, (10)

where the maximization is over |�J, �J�〉 = |�J〉 ⊗ |�J�〉,
with |�J〉 ∈ ⊗

j∈J H( j) and |�J�〉 ∈ ⊗
j′∈J� H( j′ ), which are

pure states separable over the J-J� bipartition.
In relation to

⊗
j∈J H( j) = ⊕

j̃∈J (J) H(j̃ ), |�J〉 can be
rewritten as |�J〉 = ⊕

j̃∈J (J)
√

pj̃ |ψj̃ 〉 with independent pa-

rameters �p = (pj̃ )j̃∈J (J) and {|ψj̃ 〉}j̃∈J (J), where 0 � pj̃ � 1,∑
j̃∈J (J) pj̃ = 1, and |ψj̃ 〉 ∈ H(j̃ ).

Similarly with |�J�〉 = ⊕
j̃ ′∈J (J� )

√
p′

j̃ ′ |ψj̃ ′ 〉, we have

|�J, �J�〉 =
⊕

j̃∈J (J),j̃ ′∈J (J� )

√
pj̃ p′

j̃ ′ |ψj̃ , ψj̃ ′ 〉, (11)

where |ψj̃ , ψj̃ ′ 〉 = |ψj̃ 〉 ⊗ |ψj̃ ′ 〉. Therefore,

〈�J, �J� | f (1(j̃ ) ⊗ �J (j̃ ′ ) + �J (j̃ ) ⊗ 1(j̃ ′ ) )|�J, �J�〉
= pj̃ p′

j̃ ′ 〈ψj̃ , ψj̃ ′ | f (1(j̃ ) ⊗ �J (j̃ ′ ) + �J (j̃ ) ⊗ 1(j̃ ′ ) )|ψj̃ , ψj̃ ′ 〉.
(12)

This parametrization of |�J, �J�〉 in terms of �p, �p′,
{|ψj̃ 〉}j̃∈J (J), and {|ψj̃ ′ 〉}j̃ ′∈J (J� ) simplifies Eq. (10) to

max
ρ

J,J�
tr
[
ρJ,J� f ( �J )

] = max
�p, �p′

∑
j̃∈J (J),j̃ ′∈J (J� )

pj̃ p′
j̃ ′

[
max

|ψj̃ ,ψj̃ ′ 〉
〈ψj̃ , ψj̃ ′ | f (1(j̃ ) ⊗ �J (j̃ ′ ) + �J (j̃ ) ⊗ 1(j̃ ′ ) )|ψj̃ , ψj̃ ′ 〉

]
= max

j̃∈J (J),j̃ ′∈J (J� )

[
max

|ψj̃ ,ψj̃ ′ 〉
〈ψj̃ , ψj̃ ′ | f (1(j̃ ) ⊗ �J (j̃ ′ ) + �J (j̃ ) ⊗ 1(j̃ ′ ) )|ψj̃ , ψj̃ ′ 〉

]

∴ max
ρ

J,J�
tr

⎡⎣ρJ,J� f

⎛⎝ ∑
j∈J∪J�

�J ( j)

⎞⎠⎤⎦ = max
j̃∈J (J),j̃ ′∈J (J� )

⎧⎨⎩max
ρ{j̃},{j̃ ′ }

tr

⎡⎣ρ{j̃},{j̃ ′} f

⎛⎝ ∑
j∈{j̃}∪{j̃ ′}

�J (j̃ )

⎞⎠⎤⎦⎫⎬⎭, (13)

where the second line follows from the maximization of the
convex sum in the first, and the last line similarly follows
from the convexity of separable states ρ{j̃},{j̃ ′} in the subspace
H(j̃ ) ⊗ H(j̃ ′ ).

Notably, each term in the braces in Eq. (13) is a maximiza-
tion over separable states on the subspace of the tensor product
of just the two fixed spins j̃ and j̃ ′, and the observable is itself
defined within that subspace. With f ( �J ) = QK in Eq. (13) sub-
stituted into Eq. (7), the GME and bipartite separable bounds

can be related as follows:

Psep
K

({ jn}N
n=1

) = max
J

max
j̃∈J (J),
j̃ ′∈J (J� )

Psep
K ({j̃ , j̃ ′}), (14)

with J ∈ 2{ jn}N
n=1 \ {∅, { jn}N

n=1}.
To evaluate Psep

K ({ jn}N
n=1), one first identifies the spins j̃

and j̃ ′ that appear in Eq. (14), evaluate Psep
k ({j̃ , j̃ ′}) for each

pair, and pick out the maximum value. This simplifies the
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process of calculating the multipartite separable bound, as
it reduces it to the calculation of several bipartite separable
bounds.

A possible hassle might come from iterating over the pos-
sible subsets J, or from the tedium of working out the set
of irreducible spins J (J). Closed-form expressions of J and
J (J) are known, and can be worked out algorithmically with
a computer [48]. Alternatively, from the necessity that j̃ , j̃ ′

must be nonnegative, and that j̃ + j̃ ′ � ∑N
n=1 jn since they

arise from the block decomposition of
∑N

n=1
�J ( jn ), a conve-

nient upper bound is

Psep
K

({ jn}N
n=1

)
� max

0�j̃+j̃ ′�∑N
n=1 jn,

j̃ ,j̃ ′∈ 1
2Z

+
0

Psep
K ({j̃ , j̃ ′}), (15)

where 1
2Z

+
0 is the set of positive integers and half-integers.

B. Trivial separable bounds for
∑N

n=1 jn < K/2

For the special case
∑N

n=1 jn < K/2, the separable bound
can be calculated directly. By performing a similar block
decomposition to Eq. (8), the total angular momentum of the
spin ensemble is

�J =
N∑

n=1

�J ( jn ) =
∑N

n=1 jn⊕
j∈J

(
{ jn}N

n=1

) �J ( j). (16)

As before, the observable QK , which describes the precession
protocol performed on the total angular momentum, will also
inherit this block diagonal structure

QK =
∑N

n=1 jn⊕
j∈J

({ jn}N
n=1

)
1

K

K−1∑
k=0

pos
[
J ( j)

k

]
︸ ︷︷ ︸

=:Q( j)
K

. (17)

The eigendecomposition of Q( j)
K is known for some values of

j [41]. In particular,

Q( j<K/2)
K = 1

21
( j). (18)

Since it must be that j � ∑N
n=1 jn for every j ∈ J ({ jn}N

n=1),

QK =
∑N

n=1 jn<K/2⊕
j∈J

({ jn}N
n=1

)
1

2
1( j) = 1

2
1. (19)

Hence, for a spin ensemble such that
∑N

n=1 jn < K/2, PK =
1/2 for every state of the system. This also trivially gives
Psep

K ({ jn}N
n=1) = 1/2, but since there are no states that can vio-

late this separable bound, performing the precession protocol
in this case does not reveal anything about the entanglement
of the system.

C. Separable bounds for
∑N

n=1 jn = K/2

For
∑N

n=1 jn = K/2, the upper bound in Eq. (15) requires
the values of Psep

K ({j̃ , j̃ ′}) for every j̃ and j̃ ′ such that j̃ +
j̃ ′ � K/2. Since the separable bounds for j̃ + j̃ ′ < K/2 have
already been evaluated in the previous section, we would only
need to additionally work out Psep

K ({j̃ , j̃ ′}) for j̃ + j̃ ′ = K/2.

Hence, it is adequate to first restrict ourselves to the H(j̃ ) ⊗
H(j̃ ′ ) subspace. A block decomposition similar to the one in
Eq. (17) gives

QK =
j̃+j̃ ′=K/2⊕
j=|j̃−j̃ ′|

Q( j)
K = 1

2
(1 − 1( j=K/2)) ⊕ Q( j=K/2)

K , (20)

where we used Q( j<K/2)
K = 1( j<K/2)/2. However, the eigende-

composition of Q( j=K/2)
K is [41]

Q( j=K/2)
K = 1

2
1( j=K/2) + 2−(K−1)

2

(
K − 1

K−1
2

)
× (|P+K〉〈P+K | − |P−K〉〈P−K |), (21)

where |P±K 〉 = (|K
2 , K

2 〉 ± (−1)(K−1)/2|K
2 ,−K

2 〉)/
√

2. Placing
this back into Eq. (20),

QK = 1

2
1 + 2−(K−1)

2

(
K − 1

K−1
2

)
× (|P+K〉〈P+K | − |P−K 〉〈P−K |). (22)

Meanwhile, observing that the only way for −j̃ � m̃ � j̃

and −j̃ ′ � m̃′ � j̃ ′ to satisfy m̃ + m̃′ = ±K/2 is to have
m̃ = ±j̃ and m̃′ = ±j̃ ′, |P±K 〉 is expressed in the {|j̃ , m̃〉 ⊗
|j̃ ′, m̃′〉}j̃ ,j̃ ′

m̃,m̃′=−j̃ ,−j̃ ′ basis as

|P±K〉 = 1√
2

(|j̃ , j̃ 〉 ⊗ |j̃ ′, j̃ ′〉

± (−1)(K−1)/2|j̃ ,−j̃ 〉 ⊗ |j̃ ′,−j̃ ′〉). (23)

With this, we are now able to evaluate

Psep
K ({j̃ , j̃ ′}) = max

|ψj̃ ,ψj̃ ′ 〉
〈ψj̃ , ψj̃ ′ |QK |ψj̃ , ψj̃ ′ 〉, (24)

where |ψj̃ , ψj̃ ′ 〉 = |ψj̃ 〉 ⊗ |ψj̃ ′ 〉 with |ψj̃ 〉 ∈ H(j̃ ) and |ψj̃ ′ 〉 ∈
H(j̃ ′ ). Let us first parametrize the latter state as |ψj̃ ′ 〉 =∑j̃ ′

m̃′=−j̃ ′ cm̃′ |j̃ ′, m̃′〉. Then,

(1(j̃ ) ⊗ 〈ψj̃ ′ |(QK (1(j̃ ) ⊗ |ψj̃ ′ 〉)

=̂1

2
1(j̃ ) + (−1)

K−1
2

2−(K−1)

4

(
K − 1

K−1
2

)

×

⎛⎜⎜⎜⎜⎜⎜⎜⎝

|c− j |2 0 . . . 0 c∗
− jc+ j

0 0 . . . 0 0
...

. . .
...

0 0 . . . 0 0

c− jc∗
+ j 0 . . . 0 |c+ j |2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (25)

where the operator is represented as a matrix in the
{|j̃ , m̃〉}j̃m̃=−j̃ basis. Since max|ψj̃ 〉〈ψj̃ , ψj̃ ′ |QK |ψj̃ , ψj̃ ′ 〉 for a
fixed |ψj̃ ′ 〉 is the largest eigenvalue of the operator in Eq. (25),
Eq. (24) can be evaluated by first diagonalizing Eq. (25) us-
ing standard analytical methods, then maximizing over |ψj̃ ′ 〉.

042402-5



HUYNH-VU, ZAW, AND SCARANI PHYSICAL REVIEW A 109, 042402 (2024)

Therefore,

PK-sep
K :=Psep

K ({j̃ , j̃ ′}) for j̃ + j̃ ′ = K/2

= max
|ψj̃ ′ 〉

(
max
|ψj̃ 〉

〈ψj̃ , ψj̃ ′ |QK |ψj̃ , ψj̃ ′ 〉)
= max

{cm̃′ }m̃′

[
1
2 + 2−(K−1)

4

(
K − 1

K−1
2

)
(|c−j̃ ′ |2 + |c+j̃ ′ |2)

]
= 1

2

[
1 + 2−K

(
K − 1

K−1
2

)]
. (26)

Turning our attention back to the spin ensemble { jn}N
n=1 such

that
∑N

n=1 jn = K/2, Eq. (15) gives

Psep
K

({ jn}N
n=1

)
� max

{
1/2, PK-sep

K

} = PK-sep
K , (27)

where 1/2 appears in the maximization from the contribution
of Psep

K (j̃ , j̃ ′) for the case j̃ + j̃ ′ < K/2, while PK-sep
K covers

the j̃ + j̃ ′ = K/2 case.
From Eq. (27), Result 1 follows immediately.
Result 1. Consider an N-partite spin ensemble { jn}N

n=1

such that
∑N

n=1 jn = K/2 for odd K � 3. Perform the pre-
cession protocol with K measurements on the total angular
momentum of the system. If the score PK > PK-sep

K is obtained,
where

PK-sep
K = 1

2

[
1 + 2−K

(
K − 1

K−1
2

)]
, (28)

the spin ensemble is GME.
Note that PK-sep

K�5 < Pc
K and PK-sep

K>5 > Pc
K . That is, violating

the classical bound is sufficient for detecting entanglement
when

∑N
n=1 jn � 5/2, while a larger violation is required

when
∑N

n=1 jn > 5/2. Regardless, the violation only needs to
be, at most, ∼3.9% larger than the classical bound in the latter
case: a loose upper bound is PK-sep

K < 1.0391Pc
K for all K .

D. Separable bounds for general
∑N

n=1 jn, fixed K

For spin ensembles with general
∑N

n=1 jn, the values
of Psep

K ({j̃ , j̃ ′}) for j̃ + j̃ ′ > K/2 also come into play in
Eq. (14). However, these bipartite separable bounds cannot be
solved analytically, and we have to instead rely on numerical
methods.

Two numerical methods were used to evaluate the bipar-
tite separable bounds: the first is a variant of separability
power iteration, which provides lower bounds [6]; the second
is semi-definite programming, whose global convergence is
guaranteed, which provides conservative upper bounds [49].
Note that the latter is found by maximizing over a superset of
the set of separable states that includes bound entangled states
[50,51], so the upper bounds might be loose in general.

Implementation of the numerical methods are detailed in
Appendix D, while the scripts and generated data are available
in Ref. [52]. By using both techniques, we are able to ascertain
that the true value Psep∗

K falls within a range Psep
K − δPsep

K �
Psep∗

K � Psep
K + δPsep

K . The numerical errors δPsep
K are plotted

in Appendix A.

FIG. 2. Heatmap of Psep
K ({j̃ , j̃ ′}) against j̃ and j̃ ′, for (a) K = 3

and (b) K = 5. Note that the values Psep
K ({j̃ , j̃ ′}) = 1/2 for j̃ + j̃ ′ <

K/2 are neither plotted here nor for the subsequent figures. The sep-
arable bounds are large when min(j̃ , j̃ ′) is small, and Psep

K decreases
as min(j̃ , j̃ ′) increases. The maximum value of Psep

K in these cases
occur at {j̃ , j̃ ′} = {1/2, (K + 1)/2}. The colored arrows mark out
the direction along which the line cuts in Fig. 4 are taken.

1. Numerical results for general {j̃ , j̃ ′}, fixed K

The plots of Psep
K ({j̃ , j̃ ′}) against j̃ and j̃ ′ are shown in

Fig. 2 for K = 3 and K = 5. Notice that the separable bound
is large for min(j̃ , j̃ ′) < 2, and takes on smaller values as
min(j̃ , j̃ ′) increases.

This behavior [that the separable bound is large when
min(j̃ , j̃ ′) is small] can be found not just for K = 7 and
K = 9, as plotted in Fig. 3, but up to K = 21, as plotted in
Fig. 9. From the numerical results, we can find the values of
{j̃ , j̃ ′} where the maximum occurs. As the gap between the
largest and second largest value is larger than the numerical
error, we can be certain that the largest computed value is
indeed the maximum, leading us to the following result.
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FIG. 3. Heatmap of Psep
K ({j̃ , j̃ ′}) against j̃ and j̃ ′, for (a) K = 7

and (b) K = 9. Similarly to Fig. 2, the separable bounds are large
for small values of min(j̃ , j̃ ′). For K = 7, Psep

K is maximal at both
{j̃ , j̃ ′} = {1/2, (K + 1)/2} and {1, K/2}. For K = 9, the maximum
value occurs at {j̃ , j̃ ′} = {1, K/2}. The colored arrows mark out the
line cuts plotted in Fig. 5.

Result 2. The maximum separable bound over 0 � j̃ , j̃ ′ �
15 for fixed 3 � K � 21 occurs at

argmax
{j̃ ,j̃ ′}

Psep
K ({j̃ , j̃ ′}) =

{{
1
2 , K+1

2

}
for K � 7,{

1, K
2

}
for K � 7,

(29)

where argmaxx f (x) = x such that f (x) = maxx f (x).
Equation (29) is multivalued for K = 7 because, up to

numerical precision, Psep
7 ({1/2, 4}) = Psep

7 ({1, 7/2}).
The numerical results for various values of K , especially

when placed side-by-side as in Fig. 9, strongly suggest that
these behaviors should hold for any value of K . As such, for a
given K , it is worth identifying some trends about the values
of {j̃ , j̃ ′} at which the maximum separable bound occurs.

For K = 3, 5, and 7, the maximum values of Psep
K that

appear in Figs. 2 and 3(a) occur at {j̃ , j̃ ′} = {1/2, (K + 1)/2}.

FIG. 4. Line cuts from Fig. 2 of (a) Psep
3 ({j̃ , j̃ ′}) and (b)

Psep
5 ({j̃ , j̃ ′}) along fixed values of j̃ ′, plotted against a larger range

of j̃ . For this and subsequent line cuts, separable bounds for j̃ < j̃ ′

are not shown; they can be obtained by swapping j̃ ↔ j̃ ′. Note also
that error bars ±δPsep

K ({j̃ , j̃ ′}) have been drawn for every point, but
most are too small to be visible. As j̃ increases, Psep

K clusters around a
range of values that are strictly smaller than Psep

K ({1/2, (K + 1)/2}).
Due to this converging behavior for large j̃ , we conjecture that
the maximum value of Psep

K ({j̃ , j̃ ′}) over 0 � j̃ , j̃ ′ � ∞ occurs at
{j̃ , j̃ ′} = {1/2, (K + 1)/2} for K = 3 and K = 5.

For a closer inspection, line cuts taken along j̃ ′ < 2 are shown
in Figs. 4 and 5. We find that, for large j̃ , the values of Psep

K
cluster around a range of values that are strictly smaller than
the previously identified maximum score. As such, we can be
reasonably sure that the maximum of Psep

K over 0 � j̃ , j̃ ′ � ∞
occurs at {j̃ , j̃ ′} = {1/2, (K + 1)/2} for K = 3, 5, and 7.

FIG. 5. Line cuts from Fig. 3(a) of Psep
7 ({j̃ , j̃ ′}) along fixed

values of j̃ ′. Error bars ±δPsep
7 ({j̃ , j̃ ′}) are drawn for every point,

but most are too small to be visible. Up to numerical preci-
sion, Psep

7 ({1/2, 4}) = Psep
7 ({1, 7/2}), and Psep

7 clusters around a
range strictly smaller than Psep

7 ({1/2, (K + 1)/2}) = Psep
7 ({1, K/2}).

We conjecture that the Psep
7 ({j̃ , j̃ ′}) is maximal at both {j̃ , j̃ ′} =

{1/2, (K + 1)/2} and {1, K/2}.
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FIG. 6. The conjectured and numerically calculated separable
bounds for {j̃ , j̃ ′} = {1, K/2}. The numerical error δPsep

K < 10−11 is
too small to be plotted. This is in excellent agreement with Eq. (32)
for all plotted values of 7 � K � 101.

Meanwhile, for 7 � K � 21, Figs. 3 and 9 clearly show
that the maximums occur at {j̃ , j̃ ′} = {1, K/2}, and the sep-
arable bound decreases sharply as j̃ and j̃ ′ increases. We
conjecture that this pattern also holds for larger values of K ,
and in conjunction with the previous conjecture, we have the
following.

Conjecture 1. The maximum separable bound over 0 �
j̃ , j̃ ′ � ∞ for fixed K occurs at

argmax
{j̃ ,j̃ ′}

Psep
K ({j̃ , j̃ ′}) =

{{
1
2 , K+1

2

}
for K � 7,{

1, K
2

}
for K � 7.

(30)

Having found the probable spins at which the maximum oc-
curs, we shall now attempt to find the maximum separable
bounds themselves. For {j̃ , j̃ ′} = {1/2, (K + 1)/2}, the sepa-
rable bound can be exactly solved to be

Psep
K

({
1
2 , K+1

2

})
=

⎧⎪⎨⎪⎩
23
32 if K = 3, otherwise

1
2

[
1 + 2−(K+1)

K+1

(
K − 1

K−1
2

)(
K+√

3K2+18K+16
)]

.
(31)

The derivation of Eq. (31) is given in Appendix C.
We were unable to apply the same analytical methods to

{j̃ , j̃ ′} = {1, K/2}, but we have a guess for the expression of
the separable bound in that case.

Conjecture 2. The separable bound for {j̃ , j̃ ′} = {1, K/2}
with K � 7 is

Psep
K

({
1, K

2

}) = 1

2

[
1 + 2−(K−1)

(
K − 1

K−1
2

)
K − 1

K + 1

]
. (32)

Note that Psep
K ({1, K

2 }) = 1/2 for K = 3 and 5, hence their
exclusion from the conjecture. While we were unable to prove
Eq. (32), it is in excellent agreement with the numerics up
to K = 101, as shown in Fig. 6. Furthermore, Eqs. (31) and
(32) are equal for K = 7, which is consistent with the two
maximums in Fig. 5.

Additionally, by taking the numerical precision into ac-
count, Eq. (32) can be turned into a reliable upper bound for
Fig. 6.

Result 3. The separable bound for {j̃ , j̃ ′} = {1, K/2}
with 7 � K � 101 is upper bounded by Psep

K ({1, K
2 }) +

δPsep
K ({1, K

2 }), where δPsep
K < 10−11 and

Psep
K

({
1, K

2

}) = 1

2

[
1 + 2−(K−1)

(
K − 1

K−1
2

)
K − 1

K + 1

]
. (33)

We emphasize that Result 3, while numerical, is a definite
result, as the global convergence of semi-definite programs
guarantees that the computed values are reliable upper
bounds.

2. Results and conjectures on separable bounds
for general

∑N
n=1 jn, fixed K

Finally, we can assemble the results and conjectures from
the preceding sections to find a separable bound for a spin
ensemble { jn}N

n=1 with general
∑N

n=1 jn and fixed K . Using the
upper bounds on the bipartite separable bounds from Results
2 and 3, an upper bound on the multipartite separable bound
can be found with Eq. (15).

Result 4. Consider an N-partite spin ensemble { jn}N
n=1

such that
∑N

n=1 jn � 15. Perform the precession protocol with
odd 3 � K � 21 on the total angular momentum of the sys-
tem. If the score PK > Pconj

K + 10−11 is obtained, where

Pconj
K :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
23
32 if K = 3,

69+√
181

128 if K = 5,

1
2

[
1 + 2−(K−1)

(
K − 1

K−1
2

)
K−1
K+1

]
otherwise,

the spin ensemble is GME.
Meanwhile, when the makeup of the spin ensemble is

completely unknown, the only possible bound for the total
spin is

∑N
n=1 jn � ∞, and the maximization in Eq. (15) would

be over all possible 0 � j̃ , j̃ ′ � ∞. While there are no ana-
lytical results in this case, Conjectures 1 and 2 can likewise
be extended into a conjecture about the multipartite separable
bound.

Conjecture 3. Consider a spin ensemble. Perform the
precession protocol with odd K � 3 on the total angular mo-
mentum of the system. If the score PK > Pconj

K is obtained,
then the spin ensemble is GME.

IV. COMPARISON TO OTHER PROTOCOLS

A. Precession protocol as a quantum circuit

As the precession protocol can be performed with local
spin measurements and classical postprocessing, our PEW
can also be implemented as a quantum circuit as shown in
Fig. 7(a). In this context, it is interesting to point out the
similarities with the fidelity-based witness that is commonly
used in the field of quantum computation [53], as is shown in
Fig. 7(b).

(1) Both witnesses involve K equally distributed
measurement settings: σθk for our PEW and σθk/2 for
the fidelity-based witness, where σθ = cos θσx + sin θσy,
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FIG. 7. The detection of GHZ entanglement as a quantum circuit
for (a) the precession protocol and (b) the fidelity-based witness.
Here, θk = 2πk/K , Rz(θ ) = exp(−iθσz/2) is a z-rotation gate, H =
(σx + σz )/

√
2 is the Hadamard gate, and zn is the outcome of σz on

the nth qubit. For both witnesses, a measurement is performed for
each θk with k ∈ {1, 2, . . . , K}, a collective quantity is calculated
based on the outcomes {zn}K

n=1, and entanglement is detected when
the average of this quantity over k violates some separable bound.
Our PEW requires K measurement settings while the fidelity-based
witness requires K + 1 settings, and as such the former does not
provide a significant improvement over the latter. Therefore, one
might be better off using the fidelity-based witness in the context
of quantum computation.

σs = J ( j=1/2)
s /2h̄ are the usual Pauli operators, and

θk = 2πk/K for k ∈ {1, 2, . . . , K}.
(2) For each measurement setting k, a collective quantity is

calculated from {zn}K
n=1, where zn is the measurement outcome

of σθ for the nth qubit. This is the majority 
k := maj({zn}K
n=1)

for our PEW, where maj(S) returns the most commonly occur-
ring value of the set S, and the parity 
̃k := (−1)k

∏N
n=1 zn for

the fidelity-based witness.
(3) Finally, entanglement is detected in both witnesses

when the average of the collective quantity over all mea-
surement settings violates some separable bound. This
is (1 + 1

K

∑K
k=1 
k )/2 > PK-sep

K for our PEW, and (1 −
1
K

∑K
k=1 
̃k )/2 < 
̃0/2 for the fidelity-based witness, which

requires an additional quantity 
̃0 := 〈(|K
2 , K

2 〉〈K
2 , K

2 | +
|K

2 ,−K
2 〉〈K

2 ,−K
2 |)〉 that can be computed by measuring all

qubits in the σz basis.
As such, our PEW, which requires measuring in K different

local bases, does not offer a significant improvement over the
fidelity-based witness, which requires K + 1 different local
bases. Therefore, the fidelity-based witness might be a better
choice if only individual addressing is available, as is usual in
quantum computation.

B. Nondetection of highly symmetric states

A π rotation around the z axis, which acts as a parity oper-
ator for the eigenstates of Jz, has the action e−iπJz/h̄JkeiπJz/h̄ =
−Jk on the x–y plane, which implies e−iπJz/h̄QK eiπJz/h̄ = 1 −
QK . Hence, for any state ρ such that [eiπJz/h̄, ρ] = 0,

tr(ρQK ) = tr(e−iπJz/h̄ρeiπJz/h̄QK ) = 1 − tr(ρQK ). (34)

As such, tr(ρQK ) = 1/2 < PK-sep
K < Pconj

K for any odd and
finite K , so ρ does not violate the separable bound.

If [eiπJn̂/h̄, ρ] �= 0 for another direction n̂, the protocol can
be performed with measurements in the plane perpendicular
to n̂, where there might possibly still be a violation of the
separable bound.

However, if ρ commutes with the parity operator along
every direction, then it will certainly not be detected by our
witness. Hence, an important family of states that is missed
by our protocol are the Werner states and their multipartite
extensions [54,55].

C. Nondetection of Dicke states

Another well-studied family of entangled states are the
Dicke states∣∣Dn

l

〉
:=

(
n

l

)− 1
2 ∑

|P|
P (|↑〉⊗l ⊗ |↓〉⊗(n−l ) ), (35)

where the sum is over all permutations P of the n spin-
half states, with |↑〉 := | 1

2 , 1
2 〉 and |↓〉 := | 1

2 ,− 1
2 〉. These

include W states as members, and can be detected ef-
fectively using just spin-angular momentum measurements
[16,18,20,22,56–58]. Any of the referenced witnesses would
be a better choice for detecting the entanglement of such
states, as our witness is unable to detect the entanglement of
Dicke states in general.

We note an exception: the tripartite Dicke or W state

|W3〉 := ∣∣D3
1

〉 = 1√
3

(|↑↓↓〉 + |↓↑↓〉 + |↓↓↑〉) (36)

achieves 〈W3|Q3|W3〉 = 11/16 > Pconj
3 > P3-sep

3 when per-
forming the precession protocol with measurements in the y–z
plane. Hence, |W3〉 is detected by our PEW, although this does
not work beyond the tripartite case.

D. Detection of GHZ states

It follows directly from Eq. (22) that the precession
protocol with K measurements can be used to detect the
entanglement of the K-partite GHZ state, defined as

|GHZK〉 := 1√
2

(|↑〉⊗K + (−1)
K−1

2 |↓〉⊗K ). (37)

In fact, any GHZ state ∝ |↑〉⊗K + eiφ |↓〉⊗K with any phase eiφ

can be detected by the protocol with the replacement Jk →
e−iθiJz/h̄JkeiθiJz/h̄, where θi = [(K − 1)π − 2φ]/(2K ).

Meanwhile, a GHZ state in the presence of global depolar-
izing noise is given by

ρ
(pG )
GHZ,K := pG

1

tr(1)
+ (1 − pG)|GHZK〉〈GHZK |, (38)
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which is GME if and only if pG < 1/[2(1 − 2−K )] [59]. This
state achieves the score

tr
(
ρ

(pG )
GHZ,K QK

) = 1
2 + 2(1 − pG)

(
PK-sep

K − 1
2

)
. (39)

If the total spin of the system is known to be K/2, our witness
certifies GME when tr(ρ (pG )

GHZ,K QK ) > PK-sep
K , and hence is de-

tected for the range pG < 1/2. Therefore, our PEW can detect
noisy GHZ states close to the theoretical limit.

As mentioned in the Introduction, GHZ states fail to be
detected by almost every other angular-momentum-based wit-
ness mentioned in this paper [17,19–22,24,35,36]. The only
exception is |GHZ3〉 whose detection using angular momen-
tum measurements is described in both Refs. [15,35]; but the
reported methods do not work beyond the tripartite case.

E. Other states detected by our PEW

GHZ states are just one family of several that our PEW can
detect, while possessing certain symmetries that prevent their
detection by previous angular-momentum-based witness.

For a spin ensemble { jn}N
n=1 such that

∑N
n=1 jn is a half-

integer and
∑N

n=1 jn > K/2, the j = K/2 subspace will be in
general degenerate. Hence, the space of states that are eigen-
values of Q( j=K/2)

K with the same eigenvalue as |GHZK〉 will
have a dimension larger than one, and any state that lives in
this subspace will violate the separable bound and hence will
be detected. A specific example for a spin-half ensemble with
N = 7 particles that is detected by the precession protocol
with K = 5 is

|�5〉 := 1

2

√
7

3
(|↑〉 ⊗ |↓〉⊗6 − |↓〉 ⊗ |↑〉⊗6)

− 1

2
√

3

(∣∣D7
1

〉 − ∣∣D7
6

〉)
. (40)

More generally, any state that lives in the subspace spanned
by the eigenstates of QK whose eigenvalues are larger than the
separable bound will be detected by our PEW. An example of
this is

|�3〉 :=
√

3

2
|GHZ9〉 − 1

2
√

2

(∣∣D9
3

〉 + ∣∣D9
6

〉)
, (41)

which is also an eigenstate of Q3 with an eigenvalue that
is different from 〈GHZ3|Q3|GHZ3〉, but which nonetheless
satisfies 〈�3|Q3|�3〉 > Pconj

3 . Hence |�3〉, and indeed any
superposition of |GHZ3〉 and |�3〉, will be detected by the
precession protocol with K = 3. We show in Appendix E that
all of the discussed states (|GHZK〉, |�5〉, and |�3〉) are missed
by all the other previously reported angular-momentum-based
criteria, so these states can be detected only by our PEW.

The complete characterization of detectable states is still
an open problem. This is partly because the eigendecom-
position of each block Q( j)

K is only known analytically for
certain values of j, and partly because the space of detectable
states depends on the degeneracy of each j, which, in turn,
depends on the exact makeup of the ensemble. Regardless,
with the above sufficient conditions, QK can be constructed
numerically to find the subspace of states that will be detected
by our PEW.

V. VARIATIONS ON THE PROTOCOL

A. Improved separable bound in the presence
of more information

The reported results and conjectures heavily utilizes
Eq. (14), which only takes into account the value of

∑N
n=1 jn

and the score achieved when performing the precession proto-
col on the total angular momentum of the spin ensemble. No
specific makeup of the spin ensemble { jn}N

n=1 was assumed.
Of course, more information can be obtained by charac-

terizing the system in more detail or by performing other
measurements. For example, if the system is a collection of
bosons, the ensemble will be one of integer spins, and any
fixed spin j̃ that appears in the block decomposition of the
total angular momentum must be a positive integer j̃ ∈ Z+

0 .
Another example would be if the magnitude | �J|2 of the total
angular momentum is measured in addition to performing the
precession protocol, and was found take on possible values
j( j + 1) for some j ∈ { jmin, . . . , jmax}. Then, the only spins
j̃ and j̃ ′ that are compatible with the observed measurements
of | �J|2 = | �J (j̃ ) + �J (j̃ ′ )|2 are those such that |j̃ − j̃ ′| � jmin and
j̃ + j̃ ′ � jmax.

Just like the above two examples, any additional informa-
tion about the system can restrict the possible spin pairs that
appear in the maximization of Eq. (14). As this results in a
maximization over a restricted range of arguments, the sepa-
rable bound can be possibly lowered, requiring less violation
to detect entanglement.

B. Constructing other witnesses using Sec. III A

A relation between the multipartite and bipartite separa-
ble bounds derived in Sec. III A was used in the process
of constructing our PEW. This relation can be used to con-
struct other entanglement witnesses. For example, consider
performing the precession protocol with K measurements on
a spin ensemble with total spin K/2 for K odd, but with the re-
placement pos(Jk ) → f01 + fodd(Jk ) with some odd function
fodd(−x) = − fodd(x). A similar analysis to Sec. III C gives the
separable bound

min
ρsep

tr

{
ρsep

1

K

K−1∑
k=0

[ f01 + fodd(Jk )]

}

= f0 + 1

2

∣∣〈K
2 , K

2

∣∣ fodd(Jx )
∣∣K

2 ,−K
2

〉∣∣, (42)

when minimized over separable states ρsep. This means that
GHZ states will be detected by this modified witness as long
as fK > 0, which requires dK+2L

dxK+2L fodd(x)|x=0 �= 0 for some in-
teger L � 0. Of course, by choosing fodd(x) ∝ 2 pos(x) − 1
as we do here, the magnitudes of the angular momentum
measurements do not need to be resolved, which is a benefit
that might be lost with other choices of fodd(x).

On closer inspection, the relation derived in Sec. III A is
not specific to our PEW, and is in fact, applicable to any
function f ( �J ) of angular momentum.

To illustrate this, consider the commonly used witness
| �J|2: given gsep := minρsep tr(ρsep| �J|2) minimized over sepa-
rable states ρsep, 〈| �J|2〉 < gsep implies entanglement [17,24].
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This witness corresponds to setting f ( �J ) = −| �J|2 in Eq. (13),
and the bipartite separable bound can be worked out to be

gsep({ j1, j2})

= min
|ψ j1 ,ψ j2 〉

〈ψ j1 , ψ j2 |
∣∣ �J ( j1 ) + �J ( j2 )

∣∣2|ψ j1 , ψ j2〉

= min
|ψ j1 ,ψ j2 〉

( h̄2( j2
1 + j1 )︷ ︸︸ ︷

〈ψ j1 || �J ( j1 )|2|ψ j1〉 +
h̄2( j2

2 + j2 )︷ ︸︸ ︷
〈ψ j2 || �J ( j2 )|2|ψ j2〉

+ 2 〈ψ j1 | �J ( j1 )|ψ j1〉 · 〈ψ j2 | �J ( j2 )|ψ j2〉︸ ︷︷ ︸
�−

√
|〈ψ j1 | �J ( j1 )|ψ j1 〉|2|〈ψ j2 | �J ( j2 )|ψ j2 〉|2

=−h̄2 j1 j2

)

� h̄2[( j1 − j2)2 + ( j1 + j2)], (43)

with equality gsep({ j1, j2}) = h̄2[( j1 − j2)2 + ( j1 + j2)] as
setting |ψ jn〉 = | jn, (−1)n jn〉 saturates Eq. (43). Substituting
this into Eq. (13) gives gsep({ jn}N

n=1) = h̄2 minj̃ ,j̃ ′ [(j̃ − j̃ ′)2 +
(j̃ + j̃ ′)] for all bipartitions J-J�, j̃ ∈ J (J), and j̃ ′ ∈ J (J�).

As long as the singlet subspace of the chosen spin en-
semble is nondegenerate, at least one of j̃ or j̃ ′ will be
larger than zero, so gsep({ jn}N

n=1) > 0. Meanwhile, if the sin-
glet subspace exists, the corresponding singlet state achieves
〈| �J|2〉 = 0 < gsep({ jn}N

n=1), and hence will be detected to be
GME. This method is particularly useful for witnessing GME
of unequal spins with the observable | �J|2, which, to the best
of our knowledge, has yet to be explored. As an example,
take { jn}4

n=1 = { 1
2 , 1

2 , 1, 2}. Minimizing over all possible pairs
{j̃ , j̃ ′} that arise, we find that gsep({ jn}n) = 1. At the same
time, the chosen spins permit a singlet subspace for j =
|( j1 + j2 + j3) − j4| = | 1

2 + 1
2 + 1 − 2| = 0, so the GME of

the corresponding singlet state can be detected.
More generally, Eq. (13) can be used to construct other

GME witnesses by choosing other functions of f ( �J ). As
demonstrated here, this approach allows us to extend existing
bipartite witnesses into GME witnesses, which is especially
convenient if an analytical form of the bipartite separable
bound is known.

C. Bipartite separable bounds when j̃ = j̃ ′ for fixed K

An interesting observation can be made about the behavior
of the separable bound along the j̃ = j̃ ′ diagonal. In Figs. 2,
3, and 9, the separable bounds along these diagonals are
smaller in magnitude than the surrounding values and seem
to stabilize to a limit for large j̃ .

Indeed, isolating these diagonals in Fig. 8 reveals that
Psep

K ({j̃ , j̃ ′ = j̃}) approaches the classical bound Pc
K from be-

low as j̃ increases.
This behavior is in accordance with two previously

known results. First, the observable pos(J ( j)
x ) has the limit

lim j→∞ pos(J ( j)
x ) = pos(a + a†) for the annihilation operator

a of a harmonic oscillator. Second, for two harmonic oscil-
lators with annihilation operators a1 and a2, respectively, if
the precession protocol is performed on the normal mode
a+ ∝ a1 + a2, Pc

K is the maximum score achievable by a state
separable over the {a1, a2} modes.

FIG. 8. Line cuts along the diagonals j̃ = j̃ ′ along Figs. 2, 3, and
9. The vertical axis his scaled to fit every case, and the dashed lines
are the classical bounds Pc

K . The unfilled points mark those where
only the lower bound Psep

K − δPsep
K could be computed. For the filled

points, the error bars δPsep
K are smaller than the marker size. We find

that Psep
K ({j̃ , j̃ ′}) approaches Pc

K from below as j̃ increases.

Therefore, as Jx = J (j̃ )
x + J (j̃ ′ )

x for j̃ = j̃ ′ appears
analogous to a+ ∝ a1 + a2, it would be expected that

limj̃→∞ pos(Jx )
?= pos(a+ + a†

+). If so, the separable bound

should similarly have the limit limj̃→∞ Psep
K ({j̃ , j̃ ′ = j̃})

?=
Pc

K . We have not managed to prove this, but Fig. 8 certainly
supports this expectation, and suggests the following.

Conjecture 4. Consider a bipartite spin ensemble {j̃ , j̃ ′},
where j̃ = j̃ ′. Perform the precession protocol with odd K �
3 on the total angular momentum of the system. If the classical
bound Pc

K is violated, then the two spins are entangled.
While this conjecture is limited to the bipartite witness, it

hints at a possible link between the classical bound of the pre-
cession protocol, entanglement, and the harmonic oscillator
limit.

VI. CONCLUSION

In this work, we introduced entanglement witnesses that
detect genuine multipartite entanglement of a spin ensemble,
which require only measurements of the total angular mo-
mentum along several equally spaced directions. We reported
analytical expressions for the separable bound when the total
spin is a half-integer. For the other cases, reliable numerical
values and a conjectured expression is reported for the sepa-
rable bound, where the latter is well supported by the former.

Of similar angular-momentum-based witnesses, only some
detect genuine multipartite entanglement; of those that do,
most are effective at detecting Dicke-like states, but none can
detect Greenberger-Horne-Zeilinger states beyond the tripar-
tite case. This gap is filled by our PEW, which is effective
at detecting precisely those states. We also showed that our
witness can detect other GME states, which share similar
symmetries to the GHZ state, that are missed by existing
criteria.

A possible extension would be to consider the effects
of anharmonicities when performing the precession protocol
under the assumption of dynamics. A popular experimental
platform where spin ensembles naturally arise are spin defects
or donors in solid-state materials [10,11], where quadrupole
interactions are present in the Hamiltonian as terms quadratic
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FIG. 9. Heatmap of Psep
K ({j̃ , j̃ ′}) against j̃ and j̃ ′, for (a) K = 11, (b) K = 13, (c) K = 15, (d) K = 17, (e) K = 19, and (f) K = 21. The

values Psep
K ({j̃ , j̃ ′}) = 1/2 for j̃ + j̃ ′ < K/2 are not plotted here. The separable bounds are large when min(j̃ , j̃ ′) is small and Psep

K decreases
as min(j̃ , j̃ ′) increases. The maximum value of Psep

K in these cases occur at {j̃ , j̃ ′} = {1, K/2}.

in angular momentum, which perturbs the dynamics of the
system away from a perfectly uniform precession. Such an-
harmonic effects have been studied for continuous variable
systems [42], and many of those findings could be extended
to the case of spin angular momentum.

Finally, we once again highlight the generality of the result
in Sec. III A. By choosing different functions of angular mo-
mentum to be used with Eq. (13), it provides a generic recipe
for constructing witnesses of genuine multipartite entangle-
ment out of witnesses of bipartite entanglement. This can be
applicable to many other entanglement witnesses completely
unrelated to the precession protocol, as we showed with an
example in the previous section. This provides another avenue
for future study: Since our PEW is mostly effective when
the total spin is a half-integer, and cannot witness inseparable
states with positive partial transpose, these techniques might
allow us to construct a similar witness that will also be effec-
tive for integral total spin or bound entangled states.
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APPENDIX A: ADDITIONAL FIGURES

Some additional figures are gathered in this Appendix.
Figure 9 plots Psep

K for 11 � K � 21, which complements

Figs. 2 and 3; Fig. 10 plots the discrepancy δPsep
K between

the numerically computed lower and upper bounds of Psep
K , as

detailed in Appendix D; Fig. 11 plots the lower bound of Psep
K

for a wider range of j̃ and j̃ ′, demonstrating that the expected
behavior of Psep

K appears to hold for larger values of j̃ and j̃ ′,
providing further support for Conjecture 3.

APPENDIX B: KEY TECHNICAL ASPECTS
OF THE PRECESSION PROTOCOL

We review some key technical aspects of the precession
protocol used in this paper. For the full study with details and
derivations, refer to Ref. [42].

Consider the protocol performed with a single fixed spin
j such that the expected score for the state ρ given by PK =
tr(ρQ( j)

K ), where

Q( j)
K = 1

K

K−1∑
k=0

pos
(
J ( j)

k

)
= 1

2

[
1 + 1

K

K−1∑
k=0

e−i(2πk/K )J ( j)
z /h̄ sgn(J ( j)

x )ei(2πk/K )J ( j)
z /h̄

]
.

(B1)

Here, 2 pos (J ( j)
k )| j, m〉k = | j, m〉k + sgn(m)| j, m〉k and

J ( j)
k = e−i(2πk/K )J ( j)

z /h̄J ( j)
x ei(2πk/K )J ( j)

z /h̄ were used. Some key
properties of QK follow.

(1) Q( j)
K is block diagonal. Define the projector


( j,m̄)
K :=

�( j−m̄)/K�∑
k=0

| j, m̄ + kK〉〈 j, m̄ + kK|, (B2)
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FIG. 10. (a)–(j) Heatmap of δPsep
K ({j̃ , j̃ ′}), the deviations between the lower and upper bounds of Psep

K computed using SPI and SDP,
respectively, for different values of K . The errors are worse for large j as we used larger tolerances in those cases. This is because the value
of Psep

K is small, so the lower bounds for small j is larger than the upper bound of large j even with the larger tolerances for the latter. (k) Box
plots of the errors against the number of measurements. The worstcase errors are of order 10−3, but most lie within δPsep

K � 10−5. Since the
upper bound also includes positive-partial-transpose states (see Appendix D 2), this implies that bound-entangled states cannot be detected by
our witness.

which projects onto the subspace of the eigenstates of J ( j)
z

whose eigenvalues are m̄ modulo K . Then, Q( j)
K has the block

decomposition

Q( j)
K = 1

2

[
1 +

min( j,− j+K−1)⊕
m̄=− j


( j,m̄)
K sgn(J ( j)

x )( j,m̄)
K

]
. (B3)

Consequently, if j < K/2, then m̄ � K/2 − 1 and hence
�( j − m̄)/K� = 0, which implies that 2Q( j<K/2)

K = 1 +∑ j
m=− j | j, m〉〈 j, m| sgn(J ( j)

x )| j, m〉〈 j, m| is diagonal with re-
spect to the eigenstates of Jz.

(2) The matrix elements 〈 j, m| sgn(J ( j)
x )| j, m′〉 are

〈 j, m| sgn
(
J ( j)

x

)| j, m′〉 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if (m − m′) mod 2 = 0,

(−1)(m′−m−1)/22−(2 j−1)

m′−m

√√√√(
2
⌊ j+m

2

⌋⌊ j+m
2

⌋ )(2
⌊ j−m

2

⌋⌊ j−m
2

⌋ )

×
√√√√(

2
⌊ j+m′

2

⌋⌊ j+m′
2

⌋ )(2
⌊ j−m′

2

⌋⌊ j−m′
2

⌋ ) otherwise.

×
√

( j + m)( j+m) mod 2( j + m′)( j+m′ ) mod 2

×
√

( j − m)( j−m) mod 2( j − m′)( j−m′ ) mod 2

(B4)

In particular, the diagonal elements of sgn(J ( j)
x ) are zero. From the previous result for j < K/2, we therefore have 2Q( j<K/2)

K =
1( j<K/2).

With the above two properties, Q( j)
K can be constructed for any given j, and its eigenvectors and eigenvalues can be found

using standard numerical techniques. For some cases, this can even be done analytically. A special case we use in this paper is
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FIG. 11. Heatmap of PSPI
K ({j̃ , j̃ ′}) = Psep

K ({j̃ , j̃ ′}) − δPsep
K ({j̃ , j̃ ′}), the lower bound of Psep

K , computed for larger values of j̃ and j̃ ′. We
were unable to compute the upper bounds for j̃ , j̃ ′ > 15 due to constraints of computational resources. However, from the small deviations
between the upper and lower bounds for j̃ , j̃ ′ � 15 as seen in Fig. 10, we expect that PSPI

K should also be rather close to the actual value
Psep

K . We find that the behavior of PSPI
K continues as expected, which is that is reduces in magnitude as j̃ and j̃ ′ increases, which lends further

credence to Conjecture 3.

K/2 � j < K , where


( j,m̄)
K sgn

(
J ( j)

x

)


( j,m̄)
K =

{
0 if j + m̄ � � j − K/2�,

� ( j,m̄)(|� ( j,m̄)
+ 〉〈� ( j,m̄)

+ | − |� ( j,m̄)
− 〉〈� ( j,m̄)

− |) otherwise;
(B5)

with � ( j,m̄) = |〈 j, m̄| sgn(J ( j)
x )| j, m̄ + K〉| and |�±m̄〉 = (| j, m̄〉 ± (−1)(K−1)/2| j, m̄ + K〉)/

√
2.

APPENDIX C: SEPARABLE BOUND FOR {j̃ , j̃ ′} = {1/2, (K + 1)/2}
Given two spins with { j1, j2} = {1/2, (K + 1)/2}, their total angular momentum can take values of j ∈ {K/2, K/2 + 1}.

Therefore, defining 
QK := 1 − 2QK = 1
K

∑K−1
k=0 sgn(Jk ) for concision,


QK =
[


(
K
2 ,−K

2

)
K sgn(Jx )

(
K
2 ,−K

2

)
K

]
⊕
[


(
K
2 + 1,−K

2

)
K sgn(Jx )

(
K
2 + 1,−K

2

)
K

]

⊕
[


(
K
2 + 1,−K

2 − 1
)

K sgn(Jx )

(
K
2 + 1,−K

2 − 1
)

K

]
⊕
[


(
K
2 + 1,−K

2 + 1
)

K sgn(Jx )

(
K
2 + 1,−K

2 + 1
)

K

]
. (C1)

With 
( j,m̄)
K sgn(Jx )( j,m̄)

K = � ( j,m̄)(|� ( j,m̄)
+ 〉〈� ( j,m̄)

+ | − |� ( j,m̄)
− 〉〈� ( j,m̄)

− |) from Eq. (B5) and direct computation of � ( j,m̄) from
Eq. (B4), we obtain

� ( K
2 ,− K

2 ) = 2−(K−1)

(
K − 1

K−1
2

)
, � ( K

2 +1,− K
2 ) = � ( K

2 ,− K
2 )

K + 1
, � ( K

2 +1,− K
2 ∓1) =

√
K + 2

2(K + 1)
� ( K

2 ,− K
2 ). (C2)
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We are interested in finding the separable bound

Psep
K ({ j1, j2}) =max

|ψ j1 〉,|ψ j2 〉
(〈ψ j1 | ⊗ 〈ψ j2 |)QK (|ψ j1〉 ⊗ |ψ j2〉)

= 1
2 + 1

2 max
|ψ j1 〉

{max
|ψ j2 〉

〈ψ j2 |[(〈ψ j1 | ⊗ 1( j2 ) )
QK (|ψ j1〉 ⊗ 1( j2 ) )]|ψ j2〉}. (C3)

By rewriting it as above, the maximization can be thought of as a two-step process: we first find the maximum eigenvalue of
(〈ψ j1 | ⊗ 1( j2 ) )
QK (|ψ j1〉 ⊗ 1( j2 ) ) for a fixed |ψ j1〉, then maximize this eigenvalue over all states |ψ j1〉. Parameterizing a generic
state in H( j1 ) as |ψ j1〉 := cos( θ

2 )| 1
2 ,− 1

2 〉 + eiφ sin( θ
2 )| 1

2 , 1
2 〉, and using the Clebsch-Gordan coefficients, we find

(〈ψ j1 | ⊗ 1( j2 )
)∣∣� ( K

2 ,− K
2 )

±
〉 = cos

(
θ

2

)√
K + 1

2(K + 2)

∣∣K+1
2 ,−K+1

2

〉 − e−iφ sin
(

θ
2

)
√

2(K + 2)

∣∣K+1
2 ,−K−1

2

〉
± (−1)

K−1
2

(
cos
(

θ
2

)
√

2(K+2)

∣∣K+1
2 , K−1

2

〉 − e−iφ sin

(
θ

2

)√
K+1

2(K+2)

∣∣K+1
2 , K+1

2

〉)
, (C4a)

(〈ψ j1 | ⊗ 1( j2 )
)∣∣� ( K

2 +1,− K
2 )

±
〉 =

cos

(
θ
2

)
√

2(K + 2)

∣∣K+1
2 , K+1

2

〉 + e−iφ sin

(
θ

2

)√
K + 1

2(K + 2)

∣∣K+1
2 , K−1

2

〉
± (−1)

K−1
2

(
cos

(θ
2

)√
K+1

2(K+2)

∣∣K+1
2 ,−K−1

2

〉 + e−iφ sin
(

θ
2

)
√

2(K+2)

∣∣K+1
2 ,−K+1

2

〉)
, (C4b)

(〈ψ j1 | ⊗ 1( j2 )
)∣∣� ( K

2 +1,− K
2 −1)

±
〉 = cos

(
θ

2

)√
K

2(K + 2)

∣∣K+1
2 , K−3

2

〉 + e−iφ sin
(

θ
2

)
√

K + 2

∣∣K+1
2 , K−1

2

〉
± (−1)

K−1
2

e−iφ sin
(

θ
2

)
√

2

∣∣K+1
2 ,−K+1

2

〉
, (C4c)

(〈ψ j1 | ⊗ 1( j2 )
)∣∣� ( K

2 +1,− K
2 +1)

±
〉 = cos

(
θ
2

)
√

K + 2

∣∣K+1
2 ,−K−1

2

〉 + e−iφ sin

(
θ

2

)√
K

2(K + 2)

∣∣K+1
2 ,−K−3

2

〉
± (−1)

K−1
2

cos
(

θ
2

)
√

2

∣∣K+1
2 , K+1

2

〉
. (C4d)

Notice, therefore, that (〈ψ j1 | ⊗ 1( j2 ) )
QK (|ψ j1〉 ⊗ 1( j2 ) ) has support only in the subspace spanned by {|K+1
2 ,−K+1

2 〉,
|K+1

2 ,−K−1
2 〉, |K+1

2 ,−K−3
2 〉, |K+1

2 , K−3
2 〉, |K+1

2 , K−1
2 〉, |K+1

2 , K+1
2 〉}. For K > 3, in this six-dimensional subspace,

(〈ψ j1 | ⊗ 1( j2 ) )
QK (|ψ j1〉 ⊗ 1( j2 ) )

� ( K
2 ,− K

2 )
=̂
√

K/2

K + 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 e−iφ sin(θ ) 1 −
√

K/2
K+1 eiφ sin(θ )

0 0 0 0 0 1
0 0 0 0 0 e−iφ sin(θ )

eiφ sin(θ ) 0 0 0 0 0
1 0 0 0 0 0

−
√

K/2
K+1 eiφ sin(θ ) 1 eiφ sin(θ ) 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(C5)

This matrix is highly sparse and its eigenvalues can be found by directly solving the characteristic equation det[(〈ψ j1 | ⊗
1( j2 ) )
QK (|ψ j1〉 ⊗ 1( j2 ) ) − λ1] = 0, which is given by(

λ

�

(
K
2 ,− K

2

) )2
{(

λ

�

(
K
2 ,− K

2

) )4
(K + 1)2 −

(
λ

�

(
K
2 ,− K

2

) )2
[

2K + 1

4
K sin2(θ ) + 2(K + 1)

]
+
(

K sin2(θ )

8
+ 1

)2
}

= 0. (C6)

Removing the λ = 0 solutions, this equation is quadratic in λ2, with the solutions(
λ(θ )

�

(
K
2 ,− K

2

) )2

=
(

K sin(θ )±
√

(3K+1)K sin2(θ )+16(K+1)
4(K+1)

)2
. (C7)

Among the four solutions for λ(θ ), whose dependence on |ψ j1〉 that is present through θ is now made explicit, we clearly have

λmax(θ )

�

(
K
2 ,− K

2

) = K|sin(θ )| +
√

(3K + 1)K sin2(θ ) + 16(K + 1)

4(K + 1)
. (C8)
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To maximize this over θ , we only need to consider the range θ ∈ [0, π/2], as λmax(θ ) repeats outside this range. Furthermore,
since λmax(θ ) is monotonically increasing with θ in this range, we arrive at

max
θ

λmax(θ ) = 2−(K+1)

K + 1

(
K − 1

K−1
2

)(
K + √

3K2 + 18K + 16
)
. (C9)

Note that the above is true only for K > 3. When K = 3, K−3
2 = −K−3

2 = 0, so the subspace is only five-dimensional.
Nonetheless, repeating the above steps lead to a similar characteristic equation quadratic in λ2, with

max
θ

λmax(θ ) = max
θ

3|sin(θ )| +
√

57 sin2(θ ) + 64

32
= 7

16
. (C10)

As such, recalling that maxθ λmax(θ ) is the separability bound for 
QK and QK = (1 + 
QK )/2, we arrive at

Psep
K

({
1
2 , K+1

2

}) = 1

2
(1 + λK ), where λK =

⎧⎪⎪⎨⎪⎪⎩
7

16
if K = 3,

2−(K+1)

K + 1

(
K − 1

K−1
2

)
(K +

√
3K2 + 18K + 16) otherwise.

(C11)

APPENDIX D: NUMERICAL METHODS

Two numerical methods were used to find the lower and
upper bounds of Psep

K ({ j1, j2}) for general j1, j2, which allows
us to obtain reliable values of the separable bound to within
numerical precision. We use a variant of the separability
power iteration (SPI) [6] to obtain a lower bound PSPI

K , and
semi-definite programming (SDP) [49] to obtain an upper
bound PSDP

K . Note that the methods, while numerical, return
reliable lower and upper bounds, respectively. The scripts
used and generated data are available in Ref. [52], while the
implementation details of these two numerical techniques will
be covered in the following sections.

After obtaining the two values, we can further define
Psep

K := (PSDP
K + PSPI

K )/2 and δPsep
K := (PSDP

K − PSPI
K )/2. It is

guaranteed that the actual value of the separability bound lies
within the range [Psep

K − δPsep
K , Psep

K + δPsep
K ]: henceforth, we

will treat Psep
K as an estimate for the true value of the separable

bound, while δPsep
K will be treated as a numerical error due

to numerical precision and possible gaps between the two
bounds.

For all studied cases, the gaps between the results obtained
through these two numerical methods are small, where the
largest deviation is of the order δPsep

K ∼ 10−3. These devia-
tions are plotted for odd K � 21 in Fig. 10.

1. Lower Bounds: Separability Power Iteration

The lower bound can be found by noticing that
Psep

K ({ j1, j2}) is the global maximum of the product
numerical range {〈ψ j1 , ψ j2 |QK |ψ j1 , ψ j2〉 : |ψ j1 , ψ j2〉 =
|ψ j1〉 ⊗ |ψ j2〉, |ψ j〉 ∈ H( j)}. As such, any particular
choice of |ψ j1 , ψ j2〉 must necessarily give a lower bound
〈ψ j1 , ψ j2 |QK |ψ j1 , ψ j2〉 � Psep

K ({ j1, j2}).
By maximizing 〈ψ j1 , ψ j2 |QK |ψ j1 , ψ j2〉 over |ψ j1 , ψ j2〉 us-

ing any method, even if only a local maximum is reached,
we can still obtain a lower bound that is as large as possible.
As mentioned, we use a variant of the separability power
iteration (SPI) [6] to obtain the lower bound PSPI

K . We detail
the technique in Algorithm 1.

Here tr jn is the partial trace over H( jn ), while the steps
requiring argmax are eigenvalue problems that can be solved
with standard numerical libraries.

Algorithm 1 halts when the convergence condition |pcurr −
pprev| < ε for a target precision ε is met. It can be shown
that the algorithm is always convergent, and returns a local
maximum for the given starting vector |a0〉 ∈ H( j1 ). Denote
the vectors obtained in the nth round of Algorithm 1 by |ai〉
and |bi〉, and let pi = 〈ai, bi|QK |ai, bi〉. Then,

pi+1 = 〈ai+1, bi+1|QK |ai+1, bi+1〉
= 〈ai+1|tr j2 [QK (1( j1 ) ⊗ |bi+1〉〈bi+1|)]|ai+1〉
� 〈ai|tr j2 [QK (1( j1 ) ⊗ |bi+1〉〈bi+1|)]|ai〉
= 〈bi+1|tr j1 [QK (|ai〉〈ai| ⊗ 1( j2 ) )]|bi+1〉
� 〈ai, bi|QK |ai, bi〉 = pi. (D1)

This proves that {pi}i�0 is monotonically increasing. More-
over, since QK is an observable that describes a probability
and is therefore bounded from above, the sequence {pi}i�0,
which is a sequence of expectations of QK , is also bounded.
Therefore, the monotonic sequence {pi}i�0 converges, and
hence Algorithm 1 will eventually halt for any starting vector
|a0〉 ∈ H( j1 ).

ALGORITHM 1. Bipartite variant of SPI.
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Since the local maximum p we obtain depends on our
choice of |a0〉, we perform the algorithm with many dif-
ferent starting vectors {|a0〉, |a′

0〉, |a′′
0〉, . . . } to obtain a set

of local maximums {p, p′, p′′, . . . }. Following Ref. [6], we
chose {|a0〉, |a′

0〉, |a′′
0〉, . . . } to be the eigenvectors of general-

ized Gell-Mann matrices of dimension 2 j1 + 1, which spans
the full operator space in H( j1 ). Finally, we define PSPI

K :=
max{p, p′, p′′, . . . }, which provides us with the best lower
bound PSPI

K � Psep
K that was found from the many runs of the

algorithm.

2. Upper Bounds: Semi-Definite Programming

The upper bound is due to the Peres-Horodecki criterion,
which states that the set of separable states {ρSEP : ρSEP =∑

k pkρ j1,k ⊗ ρ j2,k} is a subset of the set of positive-partial-
transpose states {ρPPT : ρ

�2
PPT � 0} [60,61]. Here, ρ

�2
PPT is the

partial transposition of ρPPT whose matrix elements satisfy

〈ψ j1 , ψ j2

∣∣ρ�2
PPT

∣∣φ j1 , φ j2〉 = 〈ψ j1 , φ j2 |ρPPT|φ j1 , ψ j2〉. (D2)

As Psep
K involves a maximization over a subset of the positive-

partial-tranpose states, maxρPTT tr(ρPTTQK ) is an upper bound
for Psep

K . Note that this would be a loose upper bound in gen-
eral: there exists bound entangled states with positive partial
transpose which are nonetheless inseparable [50,51]. In turn,
a reliable upper bound on maxρPTT tr(ρPTTQK ) can be obtained
using semi-definite programming (SDP) [49], which we shall
denote as PSDP

K . Being an upper bound of the upper bound for
Psep

K , it is of course the case that PSDP
K � Psep

K .
Semidefinite programs are linear optimization problems of

the form

max
X�0

tr(CX )

subject to tr(AlX ) = bl for l = 1, 2, . . . ,

X � 0,

(D3)

where C and Al are Hermitian operators. We refer to the above
as the primal problem, and there is a related dual problem
given by

min
y1,y2,...

∑
l blyl =: �b · �y

subject to
∑

l ylAl � C.
(D4)

The weak duality theorem states that the dual objective always
upper bounds the primal one: that is, �b · �y � tr(CX ). Weak
duality therefore ensures that the global optimum of both the
primal and dual problems are guaranteed to be between the
gap given by the two objectives. As such, this is used as a
convergence condition when numerically solving SDPs: local
optimizations of the primal and dual problems are performed
until |�b · �y − tr(CX )| < ε for a target precision ε.

For our purposes, we are interested in the optimization

max
ρPPT

tr(ρPPTQK )

subject to ρPPT � 0
ρ

�2
PPT � 0.

(D5)

By setting X = ρPPT ⊕ ρ
�2
PPT, C = QK ⊕ 0, and, for a Hermi-

tian operator basis {Ol}l of H( j1 ) ⊗ H( j2 ), Al = Ol ⊕ (−O�2
l ),

Eq. (D5) can be rewritten into the form given in Eq. (D3).
As such, our problem is an SDP, which can be solved by

any SDP solver (we used JUMP [62] and COSMO [63] for
the reported results). The objective value of the solution to
the dual problem gives us a reliable upper bound PSDP

K �
maxρPPT tr(ρPPTQK ) � Psep

K .

APPENDIX E: COMPARISON TO OTHER CRITERIA

In this Appendix, we explicitly show that the states given
as examples in Sec. IV E cannot be detected by other angular-
momentum-based criteria. For reference, these are

|GHZK 〉 = 1√
2

(⊗N
n=1 | jn, jn〉 + (−1)

K−1
2
⊗N

n=1 | jn,− jn〉
)
,

|�5〉 = 1

2

√
7

3
(|↑〉 ⊗ |↓〉⊗6 − |↓〉 ⊗ |↑〉⊗6)

− 1

2
√

3

(∣∣D7
1

〉 − ∣∣D7
6

〉)
,

|�3〉 =
√

3

2
|GHZ9〉 − 1

2
√

2

(∣∣D9
3

〉 + ∣∣D9
6

〉)
. (E1)

The subscript in the label denotes the number of measure-
ments K with which to perform the precession protocol.

It can be verified that these example states are, by construc-
tion, eigenstates of Q( j)

K , where QK = ⊕
j Q( j)

K and Q( j)
K acts

on an irreducible subspace of | �J|2.
In the rest of this section, we will use |�K〉 ∈

{|GHZK〉, |�3〉, |�5〉} to discuss properties common to all
three states. As we will be discussing them in some generality,
these discussions will also hold true for similar states with the
same properties, for example, other simultaneous eigenstates
of QK and | �J|2.

1. Some Properties of These Example States

To derive some general properties of |�K〉, we high-
light two symmetries of QK : e−i2πJz/h̄K QK ei2πJz/h̄K = QK and
e−iπJx/h̄QK eiπJx/h̄ = QK .

These can be verified with direct calculation, but also seen
more intuitively: the chosen rotations applied on QK merely
reshuffles, up to the modulus of T , the times {tk}K−1

k=0 over
which the average of pos(Jk ) is calculated, which leaves QK

invariant.

a. All example states have 〈∑ j∈J
�J ( j)〉 = 0

From the previous discussion, we know that QK commutes
with both eiπJx/h̄, and therefore the two observables can be
simultaneously diagonalized. Indeed, the given example states
can be verified to also be eigenstates of e−iπJx/h̄ with eigenval-
ues ±(−1) j .

This leads us to

〈�K |J ( jn )
z |�K〉 = 〈�K |e−iπJx/h̄J ( jn )

z eiπJx/h̄|�K〉
= −〈�K |J ( jn )

z |�K〉, (E2)

which implies 〈J ( jn )
z 〉 = 0, and hence 〈∑ j∈J J ( j)

z 〉 = 0. Replac-

ing Jz → Jy also gives 〈∑ j∈J J ( j)
y 〉 = 0.
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Meanwhile, the commutation and hence simultaneous di-
agonalizability of QK and ei2πJz/h̄K similarly lets us choose the
example states to be eigenstates of e−i2πJz/K with eigenvalue
e−i2πm/K for some m. Then, for any integer k,

〈�K |J ( jn )
x |�K〉

= 〈�K |(ei2πJz/Kh̄)kJ ( jn )
x (e−i2πJz/Kh̄)k|�K〉

= cos

(
2πk

K

)〈
J ( jn )

x

〉 + sin

(
2πk

K

)〈
J ( jn )

y

〉
. (E3)

Taking the sum over k ∈ {0, 1, . . . , K − 1} and j ∈ J on both
sides gives 〈∑ j∈J J ( j)

x 〉 = 0.

Since e−i2πJz/h̄K commutes with J ( jn )
z , we also have

0 = 〈�K |J ( jn−1 )
z J ( jn )

x J ( jn+1 )
z |�K〉

= 〈�K |J ( jn )
x J ( jn+1 )

z |�K〉
= 〈�K |J ( jn−1 )

z J ( jn )
x |�K〉 (E4)

for the example states.
Relatedly, with ei2πJz/h̄K J±e−i2π/h̄K = e∓i2π/K J± for J± :=

Jx ± iJy, similar steps imply

〈�K |J2
±|�K〉 = 0. (E5)

These properties will be useful in later sections.

b. Variances of total angular momentum of example states

The variance (
Js)2 := 〈J2
s 〉 − 〈Js〉2 for s ∈ {x, y, z} are all

related to the quantity 〈J2
z 〉 for these example states. Starting

with (
Js)2 = 〈J2
s 〉 from 〈Js〉 = 0, and using J+J− + J−J+ =

2| �J|2 − 2J2
z , we have

J2
x = 1

4 (J+ + J−)2 = 1
4

(
J2
+ + J2

− + 2| �J|2 − 2J2
z

)
,

J2
y = − 1

4 (J+ − J−)2 = 1
4

( − J2
+ − J2

− + 2| �J|2 − 2J2
z

)
. (E6)

Since 〈J2
±〉 = 0, we end up with〈

J2
x

〉 = 〈
J2

y

〉 = 1
2

〈| �J|2〉 − 1
2

〈
J2

z

〉
(E7)

for these states.

2. Nondetection by Other Criteria

Given the above properties, we can now systematically
apply each criteria to the example states.

a. Spin-squeezing inequalities

Spin-squeezing inequalities are GME witnesses that can be
expressed in terms of the sum or product of variances of spin
operators [35]. For a spin ensemble { jn}N

n=1, these inequalities
take the general form

(
u)2 + (
v)2 � h̄ min SB, (E8)


u
v � h̄

2
min SB, (E9)

where u := ∑N
n=1 hnJ ( jn )

x , v := ∑N
n=1 gnJ ( jn )

y , and hn and gn are
real numbers. Meanwhile, the set SB is defined as

SB :=
{∣∣∣∣∣∑

jα∈J

hαgα

〈
J ( jα )

z

〉∣∣∣∣∣ +
∣∣∣∣∣ ∑

jβ∈J�

hβgβ

〈
J ( jβ )

z
〉∣∣∣∣∣

: J-J� is a bipartition of { jn}N
n=1

}
. (E10)

For the tripartite case, the authors also derived a spin version
of an inequality first introduced for continuous variable sys-
tems [64]

min

{
3∑

n=1

Bn,

3∑
n=1

Sn

}
� h̄

∣∣∣∣∣
3∑

n=1

〈
J ( jn )

z

〉∣∣∣∣∣, (E11)

where

Bn := [


(
J ( jn′ )

y + J ( jn′′ )
y + gnJ ( jn )

y

)]2 + [


(
J ( jn′ )

x − J ( jn′′ )
x

)]2
,

(E12)

Sn := 2

(
J ( jn′ )

y + J ( jn′′ )
y + gnJ ( jn )

y

)


(
J ( jn′ )

x − J ( jn′′ )
x

)
, (E13)

and (n, n′, n′′) is a permutation of (1, 2, 3). Violating any of
Eqs. (E8), (E9), or (E11) witnesses GME.

From Appendix E 1 a, we know that 〈J ( jn )
z 〉 = 0 for all

states in Eq. (E1), so all inequalities mentioned above become
trivial and no violation occurs. Hence, these inequalities can-
not certify the GME of our example states.

Equation (E8) was later improved by replacing SB on the
right-hand side of the inequality with [36]

S̃B :=
{∣∣∣∣∣∑

jα∈J

hαgα

〈
J ( jα )

z

〉∣∣∣∣∣ +
∣∣∣∣∣ ∑

jβ∈J�

hβgβ

〈
J ( jβ )

z
〉∣∣∣∣∣

+ W 2
J,J� : J-J� is a bipartition of { jn}N

n=1

}
, (E14)

where

WJ,J� :=

√√√√√
2uJ + 
2vJ −
∣∣∣∣∣∣
∑
jα∈J

hαgα

〈
J ( jα )

z
〉∣∣∣∣∣∣

−

√√√√√√
2uJ� + 
2vJ� −

∣∣∣∣∣∣∣
∑
jβ∈J�

hβgβ

〈
J ( jβ )

z
〉∣∣∣∣∣∣∣ (E15)

for uJ := ∑
jα∈J hαJ ( jα )

x and vJ := ∑
jα∈J gαJ ( jα )

y , with uJ� and

vJ� similarly defined. Again with 〈J ( jn )
z 〉 = 0, the inequality

becomes

〈(uJ + uJ� )2〉 + 〈(vJ + vJ� )2〉

�
(√〈

u2
J

〉 + 〈
v2

J

〉 − √〈
u2

J�
〉 + 〈

v2
J�
〉)2

, (E16)

which is also trivially true, so the stronger form of this
witness cannot detect the entanglement of the states under
consideration.
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b. Spin-half chain criterion

Another GME witness proposed for an N-partite spin-half
chain involves the violation of the inequalities [17]〈

N∑
n=1

σ̃ ( jn )
x

〉
� N

2
,

N∑
n=1

〈
σ̃ ( jn )

x

〉2 � N

2
(E17)

for σ̃
( jn )
x = σ (n−1)

z σ
( jn )
x σ

( jn+1 )
z and σ

( j0 )
z = σ

jN+1
z = 1, where

σ
( jn )
s := 2J ( jn )

s /h̄.
From Eq. (E4), 〈σ̃ ( jn )

x 〉 = 0 for all states under considera-
tion, so the above inequalities are trivially satisfied. Therefore,
they cannot be detected by these criteria.

c. Generalized spin-squeezing inequalities

Generalized spin-squeezing inequalities were first intro-
duced for spin-half ensembles [19,20], and later extended to
larger spins [21,22]. For an ensemble containing N spin- j
particles, they take the form

D1 = (
Jx )2 + (
Jy)2 + (
Jz )2 − Nh̄2 j, (E18)

D(qrs)
2 = (N − 1)(
̃Js)2 − (〈

J̃2
q

〉 + 〈
J̃2

r

〉) + N (N − 1)h̄2 j2,

(E19)

D(qrs)
3 = (N − 1)[(
̃Jq)2 + (
̃Jr )2] − 〈J̃2

s 〉 + N (N − 1)h̄2 j2,

(E20)

where (q, r, s) is a permutation of (x, y, z), and

〈
J̃2

s

〉
:= 〈

J2
s

〉 − N∑
n=1

〈(
J ( jn )

s

)2〉 = 2
∑
n �=n′

〈
J ( jn )

s J ( jn′ )
s

〉
,

(
̃Js)2 := 〈
J̃2

s

〉 − 〈
Js
〉2
. (E21)

Entanglement is certified by the negativity of any of the fol-
lowing quantities in Eqs. (E18) to (E20).

Since 〈 �J〉 = 0 for the example states, which gives (
Js)2 =
J2

s and (
̃Jk )2 = 〈(J̃k )2〉, we have the simplification

D1 = 〈
J2

x

〉 + 〈
J2

y

〉 + 〈
J2

z

〉 − Nh̄2 j = 〈| �J|2〉 − Nh̄2 j (E22)

D(qrs)
2 = (N − 1)

〈
J̃2

s

〉 − (〈
J̃2

q

〉 + 〈
J̃2

r

〉) + N (N − 1)h̄2 j2

= N
〈
J̃2

s

〉 + N (N − 1)h̄2 j2 −
∑

r∈{x,y,z}

〈
J̃2

r

〉
(E23)

= N
〈
J̃2

s

〉 + N (N − 1)h̄2 j2 − 〈| �J|2〉 +
N∑

n=1

〈| �J ( jn )|2〉︸ ︷︷ ︸
Nh̄2 j( j+1)

= N
〈
J̃2

s

〉 + Nh̄2 j(N j + 1) − 〈| �J|2〉,
D(qrs)

3 = (N − 1)
(〈

J̃2
q

〉 + 〈
J̃2

r

〉) − 〈
J̃2

s

〉 + N (N − 1)h̄2 j2 (E24)

= N
(〈

J̃2
q

〉 + 〈
J̃2

r

〉) + Nh̄2 j(N j + 1) − 〈| �J|2〉,

which depends only on 〈J̃2
s 〉 and | �J|2. Using | �J|2 � Nh̄2 j(N j + 1), we also have convenient lower bounds

D(qrs)
2 � N

〈
J̃2

s

〉
, D(qrs)

3 � N
(〈

J̃2
q

〉 + 〈
J̃2

r

〉)
. (E25)

Hence, the nonnegativity of 〈J̃2
s 〉 for all s ∈ {x, y, z} is sufficient to imply the nonnegativity of D(qrs)

2 and D(qrs)
3 .

We can now compute D(qrs)
2 and D(qrs)

3 for each of our example states. For the GHZ-like state defined in Eq. (E1), which for
the N-partite spin- j chain is written as |GHZK〉 ∝ | j, j〉⊗N + (−1)

K−1
2 | j,− j〉⊗N , we have

〈GHZK || �J|2|GHZK〉 = Nh̄2 j(N j + 1)

〈GHZK |J̃2
s |GHZK〉 =

∑
μ∈{+ j,− j}

⎛⎝∑
m �=n

〈 j, μ|J ( jm )
s | j, μ〉〈 j, μ|J ( jn )

s | j, μ〉
⎞⎠

=
{

0, if s ∈ {x, y}
N (N − 1)h̄2 j2 otherwise.

(E26)

Since 〈GHZK || �J|2|GHZK〉 − Nh̄2 j = N2h̄2 j2 � 0 and 〈GHZK |J̃2
s |GHZK〉 � 0 for all s, none of the quantities in Eqs. (E18) to

(E20) are negative.
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We turn to the example states |�5〉 and |�3〉, which are states of an ensemble of seven and nine spin-half particles, respectively.
Since (J ( jn=1/2)

s )2 = h̄21/4 for all s, we have
∑N

n=1〈(J ( jn=1/2)
s )2〉 = Nh̄2/4. Meanwhile, by direct computation, we also have

〈�5|| �J|2|�5〉 = 35

4
h̄2, 〈�5|J2

z |�5〉 = 25

4
h̄2, 〈�3|| �J|2|�3〉 = 99

4
h̄2, 〈�3|J2

z |�3〉 = 63

4
h̄2. (E27)

From this, we already have 〈�5|| �J|2|�5〉 − 7h̄2/2 � 0 and 〈�3|| �J|2|�3〉 − 9h̄2/2 � 0, hence D1 � 0 for these two states. From
Eq. (E7), we can further work out

〈�5|J2
x |�5〉 = 〈�5|J2

y |�5〉 = h̄2

2

(
35
4 − 25

4

) = 5

4
h̄2, 〈�3|J2

x |�3〉 = 〈�3|J2
y |�3〉 = h̄2

2

(
99
4 − 63

4

) = 18

4
h̄2. (E28)

This gives us

〈�5|J̃2
s |�5〉 =

{
− h̄2

2 if s ∈ {x, y}
9
2 h̄2 otherwise,

〈�3|J̃2
s |�3〉 =

{
11
4 h̄2 if s ∈ {x, y}
27
2 h̄2 otherwise.

(E29)

Since 〈�3|J̃2
s |�3〉 � 0, this already implies that the entan-

glement of |�3〉 cannot be witnessed by this criteria. For
|�5〉, as 〈�5|J̃2

z |�5〉 � 0 and 〈�5|J̃2
z |�5〉 + 〈�5|J̃2

s |�5〉 � 0
for s ∈ {x, y}, it is clear that D(zxy)

2 , D(zxy)
3 , and D(yzx)

3 will be
nonnegative. With further calculations, the other quantities
can be found to be

D(xyz)
2 = D(yzx)

2 = 7
4 h̄2, D(xyz)

3 = 0. (E30)

Therefore, none of the example states can be detected by the
generalized spin inequalities.

d. Energy-based witnesses

For various spin models with a governing Hamiltonian H ,
the minimum energies E sep achievable by separable states are
known [24]. With that separable bound, a spin ensemble is
detected to be entangled when 〈H〉 < E sep.

As an example, we consider two specific spin models from
the cited paper. In both spin models, N spins are arranged
on the vertices of a d-dimensional cubic lattice with periodic
boundary conditions. Every spin pair connected by an edge is
taken to be interacting.

Heisenberg lattice. For an anti-ferromagnetic Heisenberg
Hamiltonian

HH :=
∑

s∈{x,y,z}

∑
〈 jn, jl 〉

σ ( jn )
s σ ( jl )

s + B
N∑

n=1

σ ( jn )
z , (E31)

where 〈 jn, jl〉 are interacting spin pairs and σ
( jn )
s := 2J ( jn )

s /h̄,
the separable bound for the energy is

E sep
H =

⎧⎨⎩−dN
[

1
8

(
B
d

)2 + 1
]

if

∣∣∣∣Bd
∣∣∣∣ � 4,

−dN
(∣∣B

d

∣∣ − 1
)

otherwise.
(E32)

Meanwhile, since 〈 �J〉 = 0 implies 〈�σ 〉 = 0 for all example
states, the last term of Eq. (E31) vanishes. Hence, we are only
left with the

∑
〈 jn, jl 〉〈σ

( jn )
s σ

( jl )
s 〉 terms.

For |GHZK〉 and |�3〉, notice that they are totally sym-
metric under any permutation of the individual spins. So, the
expectation value 〈σ ( jn )

s σ
( jl )
s 〉 is the same for all interacting

spin pairs, and since there are Nd of them

∑
〈 jn, jl 〉

〈�K |σ ( jn )
s σ ( jl )

s |�K〉 = Nd〈�K |σ ( j1 )
s σ ( j2 )

s |�K〉 (E33)

for these two states.
Computing the expectation value 〈σ ( j1 )

s σ
( j2 )
s 〉 gives us

∑
〈 jn, jl 〉

〈GHZK |σ ( jn )
s σ ( jl )

s |GHZK〉 =
{

Nd
2 if s ∈ {x, y},

0 otherwise,

(E34)∑
〈 jn, jl 〉

〈�3|σ ( jn )
s σ ( jl )

s |�3〉 =
{

Nd
8 if s ∈ {x, y},

3Nd
4 otherwise.

(E35)

For the state |�5〉, since the only possible cubic lattice with
seven spins is a spin chain, we only need to consider the d = 1
case. Direct computation gives

∑
〈 jn, jl 〉

〈�5|σ ( jn )
s σ ( jl )

s |�5〉 =
{

− 1
3 if s ∈ {x, y},

3 otherwise.
(E36)

The positivity of the energies for |GHZK〉 and |�3〉 is evident
from Eqs. (E34) and (E35). Meanwhile, Eq. (E36) also gives

〈�5|HH|�5〉 = 7
3 > 0. (E37)

Therefore, since E sep
H < 0 < 〈�K |HH|�K〉, this method is un-

able to detect the entanglement of all example states.
XY model. For the XY Hamiltonian

HXY :=
∑

s∈{x,y}
Is

∑
〈n,l〉

σ ( jn )
s σ ( jl )

s + B
N∑

n=1

σ (k)
z , (E38)
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where 〈 jn, jl〉 are interacting spin pairs and σ
( jn )
s := 2J ( jn )

s /h̄,
the separable bound for the energy is

E sep
XY =

{
−dNI

(
1 + B2

4

)
if b � 2,

−dNIb otherwise,
(E39)

with I = max{|Ix|, |Iy|} and b = |B|/(Id ).
Similar to the case of the Heisenberg lattice, since E sep

XY <

0, Eqs. (E34) and (E35) already rule out the possibility of

detecting the entanglement of |GHZK 〉 and |�3〉 using this
method.

For the remaining state, Eq. (E36) gives

〈�5|HXY|�5〉 = −1

3
(Ix + Iy) � −2I

3
. (E40)

As previously mentioned, the only cubic lattice configu-
ration for seven spins is one-dimensional. Consequently,
Eq. (E39) implies that E sep

XY � −7I < 〈�5|HXY|�5〉. There-
fore, this method also fails to detect the entanglement
of |�5〉.
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