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Every nonsignaling channel is common-cause realizable
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In this work we show that the set of nonsignaling resources of a locally tomographic generalized probabilistic
theory (GPT), such as quantum and classical theory, coincides with its set of GPT-common-cause realizable
resources, where the common causes come from an associated GPT. From a causal perspective, this result
provides a reason for, in the study of resource theories of common-cause processes, taking the nonsignaling
channels as the resources of the enveloping theory. This answers a critical open question in Schmidt et al.
[Quantum 5, 419 (2021)]. An immediate corollary of our result is that every nonsignaling assemblage is
realizable in a GPT, answering in the affirmative the question posed in Cavalcanti et al. [npj Quantum Inf.
8, 76 (2022)].
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I. INTRODUCTION

There has been a great deal of recent interest in the
study of resource theories [1] in which the free operations
are either local operations and shared randomness (LOSR)
[2–7], for the purposes of studying nonlocality and entangle-
ment, or local operations and shared entanglement (LOSE)
[8], for the purposes of studying postquantum nonlocality.
In particular, it has been shown that these can be studied
in a type-independent manner [8–10] such that resources of
various types (entangled states, nonlocal boxes, steerable as-
semblages, etc.) can be treated in a uniform and unified way.
These resource theories are motivated by the idea that the best
way to understand Bell’s theorem is from the perspective of
causal models [4,11], and that the lesson to be learnt from
Bell’s theorem is that we need an intrinsically quantum notion
of causality and of common causes [4,12].

Defining a resource theory requires a specification of both
a free and an enveloping theory [1]. The free theory specifies
the things that can be done effectively without cost, while
the enveloping theory specifies the things that can be done
irrespective of cost. While in the study of LOSE and LOSR it
is clear how the free theory should be defined, it is not clear
how the enveloping theory should be defined [8]. There are
two options for this, each of which has pros and cons. On the
one hand, we have the choice which is typically made, which
is to use the enveloping theory which describes nonsignaling
resources. The benefit of this choice is that it is mathemati-
cally simple to characterize, since in the cases of interest so far
the set of such resources can often be expressed in a computa-
tionally easy way (polytope or semidefinite program) [13,14].
Its downside, however, is that this enveloping theory is not so
well motivated from a causal perspective—it makes sense to
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say that resources should be nonsignaling, but why should all
nonsignaling resources be considered? On the other hand, we
can take the enveloping theory to describe arbitrary common
cause resources, typically described using the framework of
generalized probabilistic theories (GPTs) subsuming classical
and quantum common causes as special cases. The benefit
of this approach is that it is conceptually well motivated,
from the causal perspective [4]. Its downside, however, is
that providing a clean mathematical characterization of this
enveloping theory is an open problem. The characterization
and the relationship between these two options were cleanly
articulated as an open question in Ref. [8, Open Question 1].

In this paper we resolve the tension between these two
choices, by showing that these two options actually coin-
cide. This means that we get the benefits of both approaches
with none of the downsides. It is well established that every
common-cause realizable resource is nonsignaling, so here we
just focus on the converse direction. In particular, we show
that there exists a GPT in which all nonsignaling resources
of a target locally tomographic GPT, such as quantum theory,
can be realized in a common-cause setting. On the one hand,
we can view this result as providing a clear characterization
of the set of GPT-realizable resources. On the other hand,
we can also view it as providing a principled justification,
backed by the causal perspective, for choosing the set of
nonsignaling resources as the enveloping theory in resource
theories of common-cause processes. We moreover show that
this result holds not only in the bipartite case, which has
so far dominated the literature, but also in the general mul-
tipartite scenario, thereby setting the stage for explorations
of multipartite generalizations of LOSR and LOSE resource
theories. A corollary of this result answers one of the open
questions posed in Ref. [15]; namely, it shows that indeed any
nonsignaling assemblage can be given a GPT-common-cause
explanation.

The scheme by which we build the GPT where all
nonsignaling resources can be realized in a common-
cause setting differs from the standard approach to GPT
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construction in the literature. Usually GPTs are constructed
by making reference to the geometry of their states, effects,
and transformations spaces, requiring, for example, that they
are convex subsets of linear spaces (see, e.g., Ref. [16]).
Here, instead of putting emphasis on the geometry, we focus
our attention on compositionality, that is, we take a process-
theoretic [17–20] approach to constructing one GPT from
another. By focusing on the compositional properties of the
theory, our method also has the potential to be applied to other
problems.

To be more formal, let us define a common-cause com-
pletion of a given GPT G as an supertheory of G which can
realize all of the nonsignaling resources G in a common-cause
scenario. If some theory is the common-cause completion of
itself, then we call it common-cause complete, in contrast
to quantum and classical theory, which have nonsignaling
resources which cannot be realized in common cause sce-
narios, being therefore common-cause incomplete. In this
paper, we define a common-cause completion map, C, which
takes an arbitrary tomographically local GPT G as an in-
put, and gives a common-cause completion of it, C[G], as
output. Specifically, this means that G is a full subtheory
of C[G] and that every nonsignaling resource in G can be
realized with only common-cause resources in C[G]. Prov-
ing the existence of such a common-cause completion map
demonstrates the main claims of this paper: (1) all nonsignal-
ing resources in G are common-cause realizable in the GPT
C[G], and so the nonsignaling resources in G coincide with
its GPT-common-cause realizable processes and (2) every
nonsignaling assemblage in G is realizable in an EPR scenario
in C[G].

II. GENERALIZED PROBABILISTIC THEORIES (GPTs)

In this section we provide a concise overview of gen-
eralized probabilistic theories (GPTs) [16,21], emphasizing
their compositional attributes. We provide a brief introduction
here, and refer readers to, for example, Refs. [22,23] for
more details. Specifically, we are following the formalism of
Refs. [19,20].

Conceptually, a GPT is a theory about experiments that
assigns probabilities to observation events, equipped with a
compositional structure that mirrors the possibility we have to
perform actions sequentially or in parallel. Formally speaking,
the compositional aspects of the theory are captured by the
fact that a GPT is a (strict) symmetric monoidal category
(SMC) (see Appendix A). The probabilistic aspects are cap-
tured by the fact that we have a classical (stochastic) interface
with the full theory in order to represent outcomes and control
variables; formally, this means that we have the SMC Stoch
(Sec. II B) as a full subtheory. This leads to a convex struc-
ture (Sec. II C 2) on the sets of processes with a given input
and output, and allows us to define a notion of tomography
(Sec. II C 3). Finally, we capture the requirement that the
theory interact well with relativistic causal structure, by de-
manding the existence of unique discarding maps (Sec. II C 4).

In the rest of this section, we will introduce the diagram-
matic notation used throughout this work, and discuss the
defining features of a GPT that we mentioned above.

A. Diagrammatic notation

An interesting feature of SMCs is that they have a dia-
grammatic representation with which we can perform every
calculation that we could using their axiomatic definition
[24–26]. In the context of GPTs, we can represent their pro-
cesses as boxes with input and output wires, and encode
the composition of these processes by how they are wired
together.

In the diagrammatic notation, each wire is named to repre-
sent a system type, and we follow the convention where those
connected to the bottom of the boxes represent the input types
of the process, while those at the top are the outputs. Note
that this means that, in our convention, “time” in the diagrams
flows from the bottom up. In this way we can represent a
process f : A → B, that takes a system of type A to a system
of type B, as follows:

(1)

where we are using
.= to indicate the translation from one

notation into another.
We often omit wire labels for simplicity and/or use col-

ors to encode certain information about the system type. For
instance, in this paper we will use

(2)

where, for example, the first of these represents a classical
system of unspecified dimension, and the meaning of the
others will be explained in Sec. IV. To represent composite
types such as A ⊗ B, we just put their wires side by side, as in

(3)

Using this notation for composite systems, a process with
composite input or output wires is depicted as having multiple
input and output wires, e.g.,

(4)

One system type that every GPT must contain is the trivial
system, which corresponds to having no system at all. We
refer to it in text as I . Since the trivial system is the unit for
parallel composition (i.e., the monoidal unit of the symmetric
monoidal category), we have A ⊗ I = A = I ⊗ A, diagram-
matically, and I is represented by empty space:

(5)

States and effects can be seen as preparation and observation
procedures, respectively, which are processes that start and
end in the trivial system, i.e., they must not have input or
output wires respectively. For example, if s is a state and e
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an effect, then we denote them as

(6)

There can also be processes with both input and output as the
trivial system, p : I → I , which are represented by diagrams
without open wires. The compositional properties of the SMC
imply that diagrams of this kind can be composed together
with a multiplicative structure, and hence can be called num-
bers. For instance, we could have

(7)

Finally, we represent the parallel composition ⊗ of pro-
cesses by drawing their boxes side by side, and their
sequential composition ◦ by connecting the input and out-
put wires of matching types. That is, for f : A → B and
g : C → D,

(8)

and for f : A → B and g : B → C,

(9)

One example of a more complex diagram is

(10)

where we omit the labels of the wires, but it should be under-
stood that connections are allowed only when types match.

This notation and the rules for composing diagrams are
common to all (strict) symmetric monoidal categories. Now
it remains to discuss features that are shared only by those
who can be considered as GPTs. Since one of the ingredients
of a GPT is that they contain Stoch as a full subtheory, we start
from the definition of that theory.

B. Example: Classical stochastic maps

As we mentioned, any GPT must have Stoch as a full
subtheory. The simplest possible GPT then is the one that
contains nothing else (if the other properties are satisfied, of
course, which is the case).

In order to define Stoch, all we have to do is to define what
concrete mathematical objects correspond to its system types,

TABLE I. Elements in the definition of Stoch.

Element Definition Example

System types Real vector spaces R2

States Probability column
vectors

(
1/2
1/2

)

Effects Row vectors whose all
entries are equal to 1

(
1 1

)

Transformations Stochastic matrices

(
1/2 1/3
1/2 2/3

)

Sequential
composition

Matrix multiplication

(
1/2 1/3
1/2 2/3

)(
1/2
1/2

)

Parallel
composition

Kronecker product (or
tensor product)

(
1/2
2/3

)
⊗

(
1/2
1/2

)

states, effects, transformations, and composition rules (paral-
lel and sequential composition). We organize this information
in Table I.

Because we require that GPTs have this theory as a full
subtheory, it will act as an interface to provide the GPT with
the probabilistic interpretation that we need. For example, in
this framework we describe a measurement as a process from
a general system to a system in Stoch.

C. Defining properties of causal GPTs

Not every SMC can be considered as being a hypothetical
theory of physics. In this section we characterize those that
can. In particular, what we are looking for with this character-
ization is to use Stoch as an interface to the theory that enables
us to make statistical predictions in a manner coherent with its
compositional structure, and where we can characterize the
objects by the statistics that they can generate.

The additional features that an SMC has to satisfy in order
to be a causal GPT are the following:

(1) The SMC contains Stoch as a full subtheory.
(2) There is a convex structure compatible with the one

from Stoch.
(3) There is a notion of tomography.
(4) There is a unique effect associated with each system

type.
In this paper we further focus on GPTs that satisfy the

following additional property:
(5) The theory is locally tomographic.
We now discuss each of those points in turn.

1. Stoch is a full subtheory

This means that all of the systems from Stoch and all of the
processes from Stoch are also in the GPT, and, moreover, that
when we compose these systems and processes in the GPT
this matches the composition in Stoch [19]. Moreover, if we
have a process in the GPT which has only inputs and out-
puts coming from Stoch, then this must be a process coming
from Stoch.

The importance of that, is that inside a GPT, we can
take the maps that go from a classical system (i.e., a system
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interpreted as a system of Stoch) to another one as a stochastic
process. Then these processes, with all their internal proba-
bilities, provide a probabilistic interpretation to the diagrams.
Note that if it were not a full subtheory, then there would
necessarily be situations in which the theory failed to make
sensible probabilistic predictions, for example, giving nega-
tive probabilities for measurement outcomes.

For example, suppose we have a state of some general
system in the GPT, A, then a (destructive) measurement for
A would be a process with A as an input and some system X
in Stoch as an output, when we compose these we are left with
a process which must be a state in Stoch, namely, a probabil-
ity distribution. It is precisely these probability distributions
which encode the probabilistic predictions of the GPT.

We denote the systems coming from the subtheory
Stoch as

(11)

where we use a thin gray wire to distinguish the systems in
the subtheory from generic systems in the GPT.

Note that in many other approaches to GPTs, the proba-
bilities are encoded as scalars in the theory. In the approach
we take here this is not the case, as, in particular, we find
here that there is a unique scalar, the number 1. Instead, we
obtain probability distributions over measurement outcomes
via the states of the subtheory, Stoch. For example, this is
what we obtain when we compose a state of a generic system
in sequence with a measurement on that system.

2. Convex structure

In order to naturally express statistical mixtures in the
GPTs, we require them to be closed under convex mixtures
of processes of matching input and output types. We require
further that this composition is consistent with the convex
composition from Stoch [19]. To start illustrating that, note
that if we have f : A → B and g : A → B, there must exist
some p f + (1 − p)g : A → B in the theory where we denote
this as

(12)

Note that these combinations are allowed only when the
input-output systems are the same for each of the combined
processes. Moreover, these must distribute over diagrams; i.e.,
they must satisfy, for example:

(13)

Finally, these convex combinations must match up with the
standard notion of convex-combinations when specialized to
the subtheory Stoch. This ensures that we can consistently
view these convex combinations as describing our classical
uncertainty about which process is happening.

3. Tomography

The next requirement that a GPT must satisfy is to have
a notion of tomography [27]. What that means is that we
should be able to characterize its elements, i.e., the states,
effects, and transformations, by the statistics that they are
capable of generating. In this way, an experimentalist would
be able to characterize the theoretical objects describing their
experiment by connecting the statistics to the probabilities that
the theory predicts.

To have a notion of tomography of processes, we need to
always be able to establish equalities between them by looking
at the statistics that they can generate. In a GPT, this means
the following: we require that if it is the case that whenever
we swap the process f : A → B by the process g : A → B in
any diagram that represents a stochastic map, that map is kept
unchanged, then it must be that f = g, i.e.,

(14)

Here we are using τ to represent an arbitrary diagram that, af-
ter inserting f in some specific spot thereof, has only classical
inputs and outputs left, and so is a process in Stoch. Note that
this includes the case where any of the input-output wires of τ

are the trivial system, because the trivial system is a classical
(that is, Stoch) system. This condition can be phrased in the
following way: two processes f and g from A to B are equal
[left-hand side of Eq. (14)] if and only if they are operationally
equivalent [right-hand side of Eq. (14)].

4. Causality

In this work we are interested in GPTs that are causal
[28,29]. By that, we mean that for each system type A, there
is a unique effect that we can think of as discarding, or simply
ignoring, a given system. This property is called causality be-
cause it can be used to impose compatibility of the GPT with
a relativistic causal structure [30]. When the theory satisfies
causality, we use a special diagram to denote the unique (for
each system A) discarding effect:

(15)

Note that the uniqueness of the discarding effects is given
for each fixed system type. In particular, this means that for
composite systems the discarding is obtained by parallel com-
position of the discarding of the subsystems:

(16)

The discarding effects will be used in the next section to define
nonsignaling channels for a general GPT, just like the trace is
in quantum theory.

The fact that there is a unique effect immediately means
that all of the processes are discard-preserving [29].
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Definition II.1 (Deterministic, or Discard-Preserving,
Process). A process f : A → B is deterministic if it is discard
preserving, that is,

(17)

In quantum theory, since discarding is the trace operation,
this corresponds to the trace-preserving property. That is, the
formalism that we are using here is the analog of working
with only CPTP maps rather than working with CPTNI maps.
Typically, CPTNI maps are used to describe the potential
outcomes of some measurement, and we can instead equally
well work only with CPTP maps, by instead considering all
possible outcomes at once, and keeping track of which out-
come occurred by means of an auxiliary classical system.

5. Local tomography

In this work, we are interested in GPTs that satisfy a stricter
notion of tomography. We require that the tomography of the
processes can be done by evaluating the probabilities pro-
duced by local effects, that is, we require our GPT to satisfy
local tomography [21]. This is expressed diagrammatically by
the following:

(18)

where s is an arbitrary state of A, Y is an arbitrary classical
system, and M is an arbitrary measurement of B. Note that this
is taking a particular, less general, shape for τ in the definition
of tomography.

Remark II.2. A very convenient fact about locally tomo-
graphic GPTs is that they are all subtheories of RLinear
[31–33] (Example in Appendix A), in the sense that all of the
processes of the former are in the latter (or more rigorously,
there is an injective map between their processes and system
types), and they compose according to RLinear composi-
tional rules. This will come in handy, as in our construction we
will use the fact that our GPT is one of RLinear’s subtheories
to write its processes in a mathematically concrete way. In
particular, both classical and quantum theory satisfy local
tomography, and therefore are also subtheories of RLinear.

Now that we are done discussing the structure of the
generalized probabilistic theories, we can proceed and focus
on the properties of the processes that we are interested in
investigating inside those theories. Namely, we can talk about
the nonsignaling channels.

III. CHANNELS IN GENERALIZED
PROBABILISTIC THEORIES

In this section we discuss, in the context of generalized
probabilistic theories, the two classes of channels of interest
for this paper: the nonsignaling channels, and the common-

cause channels (which form a subset of the nonsignaling
channels, as we will see).

A. Nonsignaling channels

A practical starting point to understand what nonsignaling
channels in GPTs are is to remind ourselves of what they are
in quantum or classical theory.

Quantum channels are formally completely positive trace-
preserving maps on density matrices, and specify ways in
which quantum systems can be transformed. The properties
of quantum channels are widely studied in the literature [34],
and of particular interest are the quantum channels that satisfy
a form of the nonsignaling principle [35], introduced first
by Beckman et al. [36] in bipartite setups. These nonsignal-
ing quantum channels are sometimes referred to as “causal
channels” [37] and do not permit superluminal quantum (nor
classical) communication between two parties, i.e., two wings
of the experiment. Nonsignaling channels were discussed in
the context of multipartite setups by Schumacher and West-
moreland [37].

In general theories—not necessarily quantum or
classical—one can also define the concept of a channel
as a transformation in the theory that is discard-preserving
(Definition II.1), that is, one that preserves, on any state,
the result of the application of the discarding process. In
this context, we can talk about the property of a channel
being nonsignaling. In this section we present a convenient
definition of nonsignaling channels in the diagrammatic
language that we presented in Sec. II. Specifically, we want to
diagrammatically represent the idea that no information can
flow between the parties. Consider, for example, a bipartite
process � : A ⊗ B → C ⊗ D. If by discarding system C
the resulting process A ⊗ B → D is such that changing
system A does not produce any changes in system D, then
� cannot signal from the AC wing of the experiment to the
BD wing of the experiment. In other words, we say that
� : A ⊗ B → C ⊗ D is nonsignaling from AC to BD if and
only if

(19)

where �b : B → D is a valid channel within the theory [29].
Note, in particular, that this implies that the application of any
deterministic process (Definition II.1) in the AC wing does not
change the marginal channel �b:

(20)

hence, no information can flow from the AC wing to the
BD wing of the experiment. A channel is then said to be
nonsignaling when it satisfies that property in both directions
between the wings of the experiment.
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So far we have presented the case of bipartite nonsignaling
channels, but the notion of a multipartite nonsignaling channel
has also been defined in the literature [37]. Here we present a
convenient diagrammatic definition of multipartite nonsignal-
ing channels. In order to define the multipartite generalization
of this condition we need a convenient way to represent dis-
carding an arbitrary subset of the outputs. To see why, suppose
that � is a tripartite channel. If we want to guarantee that no
information can flow from any of the subsystems to any other,
we need to have that

(21)

(22)

(23)

(24)

and so on. It is easy to see that this can become quite complex
quickly as we increase the number of parties. In order to cap-
ture this in a succinct diagrammatic form, we need a notation
which allows us to describe discarding an arbitrary subset of
the outputs (or inputs), and for this purpose we first introduce
a bipartitioning processes as follows.

Definition III.1 (Bipartitioning processes B(K )). Given a
set M = {1, . . . , m} take a labeled subset K = {k1, . . . , kn} ⊂
M and its complement K = {k1, . . . , kn′ } = M \ K , where
n + n′ = m. Then the bipartitioning process B(K ) is the per-
mutation which takes (1, . . . , m) to (k1, . . . , kn, k1, . . . , kn′ ).
Diagrammatically we represent this by

(25)

where we are using numbers, instead of system type names,
to refer to the wires for the sake of clarity.

For example, if we take M = {1, 2, 3} and K = {2, 3}, or
M ′ = {1, 2, 3, 4} and K ′ = {1, 4} then we have, respectively,

(26)

We can then use this bipartitioning operation to concisely
notate discarding some subset K of the outputs M of a
channel �,

(27)

which in quantum theory would represent the partial trace
trK (�), up to a permutation of the surviving systems. For
example, in the tripartite case we can represent discarding the
second and third outputs by

(28)

We can now present the definition of multipartite
nonsignaling channels in a succinct diagrammatic form.

Definition III.2 (Nonsignaling channel). An m-partite
channel � : ⊗m

i=1i → ⊗m
i′=1i′ is nonsignaling iff for all

labeled subsets K ⊂ {1, . . . , m}, there exists a channel
�K : ⊗n′

i=1ki → ⊗n′
i=1k

′
i, with K = {1, . . . , m} \ K , such that

(29)
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To illustrate this, one of the conditions that this definition
would impose on the tripartite case (M = {1, 2, 3}) would be
for K = {2, 3}, which would give

(30)

(31)

(32)

that is, we can see explicitly how our condition gives us no sig-
naling from 2 ⊗ 3 to 1. It is straightforward to similarly verify
that the other conditions in the tripartite case are recovered by
varying over the subsets K ⊆ M.

Notice that this definition of a nonsignaling channel treats
each pair of input-output systems (i, i′) as a different wing of
the experiment. Therefore, when specifying the experimental
scenario and the channel � the systems should be represented
via “one wire per wing.” As an example, consider the case
where one wing of the experiment consists of two qubits form-
ing a four-dimensional quantum system as an input: then this
must be represented by one four-dimensional system—rather
than by two wires representing two qubits—when Definition
III.2 is applied, since signaling is allowed between the wing’s
internal two qubits.

B. Common cause channels

To formally state the question tackled in this paper, we first
need to specify the notion of a common-cause channel that we
use in this paper. Broadly speaking, the common-cause chan-
nels are a subset of the nonsignaling channels. Namely, we
say that a channel is common cause if, in the GPT of interest,
it can be constructed by the parties via the application of some
local operations to a shared multipartite state. A good example
of such a channel is the one obtained in a Bell experiment,
where, for example, Alice and Bob each make measurements
on their shares of a Bell state. One can view the result of the
Bell experiment as being a bipartite classical channel which is
realized by local operations on a shared quantum state, i.e., a
quantum common cause.

Based on this example, we can define the notion of a
common-cause decomposition within a given GPT G.

Definition III.3 (Common-cause decomposition). Let � be
a channel in a given GPT G. � admits of a common-cause
decomposition if there are N systems {1′′, . . . , N ′′} from G, a
state s in the state space of the multipartite system 1′′, . . . , N ′′
and a collection {Ti}i=1...N of transformations in G, such that

(33)

One can compare this formal diagrammatic definition to
the conceptual definition to see that indeed the idea of con-
struction by local operations (the transformations Ti) on a
shared common cause (the state s) is indeed captured by this
diagram.

Now, the idea of common-cause decomposition within a
GPT might not be enough if one is considering the possi-
ble existence of some hypothetical cause that might not be
modeled by the GPT under consideration. In particular, this
is precisely the kind of situation that is considered in the
resource theories of Refs. [4,8]. In such cases, the more ap-
propriate question is not whether � can be realized with a
common cause in G, but whether or not there exists a theory G′
in which it can be realized with a common cause. Going back
to our example of the Bell experiment, if we violate a Bell
inequality, then we know that the resulting channel cannot be
realized via common case within Stoch, but it can be realized
via a quantum common cause, that is, within the quantum
GPT, Quant.

For that purpose, we define the notion of GPT-common-
cause realizable, by asking whether the common-cause
decomposition of � exists in any GPT.

Definition III.4 (GPT-Common-cause realizable channel).
Let � be a channel in a given GPT G. � is GPT-common-
cause realizable if there exists a GPT G′ which contains G as
a full subtheory, N systems {1′′, . . . , N ′′} from G′, a state s
in the state space of the multipartite system 1′′, . . . , N ′′ in G′,
and a collection {Ti}i=1...N of transformations in G′, such that

(34)

where we changed the colors of the i′′ wires to stress the fact
that they can be present only in the hypothetical GPT G′,
while the wires i and i′ are required to live in the original
subtheory G.

Common-cause realizable channels are well known to be
nonsignaling; here we present this result using the diagram-
matic notation that we have set up so far.

Proposition III.5. Any GPT-common-cause realizable
channel is nonsignaling.

Proof. Consider a fixed but arbitrary channel � in a GPT
G. Let G′ be the GPT that provides the common-cause realiza-
tion of �. First, notice that, because in Eq. (29) the Ti channels
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are discard-preserving, if we take � to be decomposed as in
Eq. (34), we get

(35)

(36)

(37)

(38)

where �K , the channel defined by combining the elements
within the dashed box, must be a valid channel from G be-
cause all of its inputs and outputs are from G, and G is
assumed to be a full subtheory of G′. �

The main aim of the paper is hence to explore the converse
direction to Proposition III.5, namely, whether nonsignaling
channels can in general be common-cause realizable. The first
observation to make is the well-known fact that the nonsignal-
ing classical channel known [35] as a Popescu-Rohrlich (PR)
box [38] does not have a common-cause realization within
classical theory [39], but it does have one such realization
within the GPT known as Boxworld [16]. In this sense, hence,
we say that the classical GPT is common-cause incomplete.
Moreover, we further view Boxworld as adding extra common
causes to classical theory, and so can be thought of as a
common-cause completion of classical theory. This discussion
motivates the following definition:

Definition III.6 (Common-cause complete GPT). A GPT
is said to be common-cause complete if a common-cause
decomposition can be found for each of its nonsignaling chan-
nels within the theory. That is, given a nonsignaling channel �

in the GPT, we can decompose it as in Definition III.4 taking
G′ = G.

The previous observation shows that there are some
GPTs—such as classical and quantum theory—which are not
common-cause complete. However, classical theory does have
a common-cause completion. The question we therefore ask is
whether or not this is generic? That is,

Given some GPT G, can we find a common-cause comple-
tion G′ such that all of the nonsignaling channels of G have a
GPT common-cause realization in G′ (Def. III.4)?

Formally, we defined the common-cause completion as
follows:

Definition III.7 (Common-cause completion). A GPT G′
is a common-cause completion of a GPT G if G is a subtheory
of G′, and G′ contains a common-cause decomposition (as per
Definition III.4) of all of the nonsignaling channels of G. Note
that this definition does not require G′ to be common-cause
complete itself.

In the following section we show that any tomographically
local GPT does indeed have a common-cause completion.

IV. COMMON-CAUSE COMPLETION

In this section we provide a construction C which takes
an arbitrary locally tomographic causal GPT G into a
common-cause completion thereof, C[G]. The starting point
of our construction relies on the following lemma, proven in
Ref. [40].

Lemma IV.1. (Affine common-cause decomposition of
nonsignaling channels [40]) In a locally tomographic GPT G,
any m-partite nonsignaling channel, �, can be written as

(39)

where η̃�
i are discard-preserving processes in G, and ξ̃� is an

affine combination of states from G (e.g., when G is quantum
theory, ξ̃� is a unit trace Hermitian operator). Note that we
have drawn ξ̃� as a black box to indicate that, while it is a
mathematically valid object, it is not necessarily a physical
process within the GPT G [41].

Proof. Theorem 5.1 of Ref. [40]. �
This lemma, at first glance, provides a common-cause re-

alization of any nonsignaling channel. However, these affine
combinations of states ξ̃� are not (in general) going to be
valid states in the GPT. One route to a solution could therefore
be to define a common-cause completion by enlarging the
state space so that it now includes these nonphysical states.
The problem with this approach, however, is that it does not
necessarily yield a well-defined GPT, since this procedure will
often lead to negative probabilities for measurement outcomes
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when we start composing these states in ways other than the
diagram described in Eq. (39).

In order to prevent negative numbers from arising, then,
one can by fiat forbid certain “undesired” compositions. That
is, one needs to equip the produced theory with restrictions on
how the processes may be composed—type-matching condi-
tions would no longer be a sufficient compositional criterion.
Such a theory is, in the language of Ref. [42], called a “non-
free” GPT as one is not free to compose processes solely based
on their system types. While mathematically consistent, we
find it difficult to justify such restrictions on physical grounds,
and hence we will not pursue its study further in this paper.
In what follows, we instead provide a construction of a valid
common-cause completion map, which, given a causal tomo-
graphically local GPT, will always build a valid GPT, where
composition precisely follows the GPT rules as per Sec. II.

A. Constructing the C map

Here we define a common-cause completion map, C which
takes an arbitrary tomographically local GPT, G, as an input
and then constructs a common-cause completion of it, C[G],
which is its output. The basic idea of this construction is to
include all the nonphysical states ξ̃� and η̃�

i from Lemma
IV.1, but now with the caveat that the output systems of each
ξ̃� (and consequently the inputs to the η̃�

i ) are taken to be
new system types which are added to the theory. It will then
be the type-matching constraints (which are part of the basic
definition of a GPT) which will prevent negative probabilities
from arising when freely composing processes. It is not imme-
diately clear, however, whether having done so we satisfy all
of the other conditions of a GPT, and indeed this turns out not
to be the case. Therefore, some extra steps are needed in the
construction, in particular, to ensure that the theory is convex
and tomographic.

In more detail, the steps followed in the construction, along
with what they aim to achieve and how we denote them, are
the following:

(1) Take the nonsignaling channels in G and decompose
them as per Lemma IV.1. Take each output system of each
ξ̃� and promote it to a new primitive system type. Collect all
these new system types and, together with the system types
from G, define a new set of system types including them
all. Moreover, include as processes within the theory all of
the processes from G together with all processes which are
required such that these new systems can realize the common-
cause channels as per Lemma IV.1.

Aim: To ensure that the common-cause decompositions
for nonsignaling channels of G exist in C[G].

Notation: G �→ G 	 η.
(2) Take the closure of those systems and processes under

composition and of the processes under convex combina-
tions.

Aim: To ensure the compositionality and convexity rules
are obeyed.

Notation: G 	 η �→ Conv[G 	 η]
(3) Quotient the theory Conv[G 	 η] via operational

equivalence.
Aim: To ensure the theory satisfies tomography.
Notation: Conv[G 	 η] �→ Conv[G 	 η]/ ∼.

It is this theory that we will define as our common-cause
completion, i.e., C[G] := Conv[G 	 η]/ ∼.

As we progress through the steps, we will show that they
do indeed achieve the stated aim. In the end, we will therefore
see that the outcome C[G] of this construction is a valid causal
GPT (in particular, that there are no extra restrictions on com-
posing systems and processes) and that it is a common-cause
completion of G.

In this section we will be dealing with many system types
from different GPTs (due to the nature of the problem of
extending a theory), and therefore we shall use colors to differ-
entiate the wires corresponding to different theories’ system
types. The convention we follow is given by the following
table:

System type Wire type

System from the classical subtheory, Stoch

Generic system from the target GPT, G

Extra system to be added to G

Generic system in the new GPT

Step 1: Add generating system types and processes

Starting from G, for each � in G decomposed as in
Eq. (39), let us define a vector space A�

i which is isomorphic
to ĩ� with isomorphism ι�i : ĩ� → A�

i . Then we define the
following linear maps:

(40)

and

(41)

Note that the isomorphisms ι�i and their inverses are not taken
to be physically realizable processes within the theory that we
are constructing, hence, we denote them, as above, with black
boxes. We will, however, take the above composites of them
with the η̃�

i and ξ̃�, to give η�
i and ξ�, to be valid processes

in the theory we are defining, hence why the left-hand side of
Eqs. (40) and (41) are white boxes.

We therefore obtain the following straightforward corol-
lary of Lemma IV.1.
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Corollary IV.2. Any m-partite nonsignaling channel, N ,
can be written as

(42)

Proof. This immediately follows from the definition of the
η�

i and the ξ� [Eqs. (40) and (41)] together with the fact that
the ι�i are isomorphisms. �

We include these extra systems A�
i and processes ξ�, η�

i
within the GPT we are building, thereby extending G and
enabling the realization of arbitrary nonsignaling channels
from G within the common-cause scenario.

Step 2: Take closure under compositions and convex combinations

For the second step, let us denote by |G| the collection
of systems of G, and (with slight abuse of notation) by G
the collection of its processes. In order to define the closure
properties that we want, we will note that we can view all of
the processes that we have defined as living within the process
theory of real linear maps, RLinear. To see this, recall that
G is, by assumption, tomographically local, and hence is a
subtheory of RLinear, and that the new systems and processes
that we have added are all, by definition, real linear maps.

We therefore define another subtheory of RLinear which
is, by construction, closed under composition as follows.

Definition IV.3. We denote by G 	 η the subtheory of
RLinear whose objects (system types) are the closure of
|G| 	 {A�

i }�,i under ⊗, and whose morphisms (processes) are
the closure of G 	 {η�

i , ξ�}�,i under ◦ and ⊗ as the operations
in RLinear.

Note that, even though we did not explicitly mention the
states of the A�

i systems, these are implicitly defined by the
above closure to obtain G 	 η. For example, by varying over
ρ in the following diagram, we can obtain many states of A�

1 :

(43)

In the same way, effects and other general processes on the
new system types A�

i can also be defined. The fact that we
have only an implicit definition of the state and effect space
is in stark contrast to traditional ways of constructing GPTs,
in which the convex geometry of the state and effect spaces
is typically the first thing to be defined and then the composi-
tional structure is built on top of this. Here we invert this, first

starting with the compositional structure and then defining the
geometry of the states and effects which this provides.

Next we will check whether G 	 η leads to sensible prob-
abilistic predictions, namely, whether it contains Stoch as a
full subtheory. To answer this we note that Stoch is a full
subtheory of G and show that G is a full subtheory of G 	 η,
hence, by transitivity, that Stoch is a full subtheory of G 	 η.

Specifically, what we need to show is that any process with
all inputs and outputs in |G|, such as

(44)

yields a valid process from G. Note that this is not guaranteed
a priori, due to the fact that the new systems A�

i appear in the
interior of the diagram. However, in our case it turns out that
this is true as is proven in the following lemma.

Lemma IV.4. Any process in G 	 η with only input and
output system types in |G| is a valid process in G.

Proof. The proof can be found in Appendix B 1. �
Next we show that G 	 η is compatible with relativistic

causal structure, in the sense that there is a unique effect for
each system [29,30].

Lemma IV.5. There is a unique effect for each system in
G 	 η.

Proof. The proof can be found in Appendix B 2. �
A GPT must also be closed under convex combinations so

as to model probabilistic mixtures of processes, and so far we
have not proven that this is the case for G 	 η. Indeed, it is
conceivable that this property has been lost when adding in
the new systems and processes and arbitrary diagrams thereof.
Hence, we take the convex closure of G 	 η, via the convex
combinations of linear maps provided by the supertheory
RLinear.

Definition IV.6. We denote by Conv[G 	 η] the convex clo-
sure of G 	 η under convex combinations of processes taken
as linear combinations of linear maps from RLinear.

Notice that the properties of “has Stoch as a full subtheory”
and “is causal” that we proved for G 	 η are properties which
must hold in any GPT, hence we next show they also hold for
Conv[G 	 η]:

Lemma IV.7. (1) Any process in Conv[G 	 η] with only
input and output system types in |G| is a valid process in
G. (2) There is a unique discarding effect for each system in
Conv[G 	 η].

Proof. The proof can be found in Appendix B 3. �

Step 3: Quotient the theory

There is one final property which must be satisfied in order
to have a GPT on our hands, that is, tomography. That means
that we need to be able to establish the equality between
two processes when the probabilities that they can produce
are the same. At this point, however, we do not know that
Conv[G 	 η] satisfies this property. Hence, we need a way to
“merge” any two differently labeled but operationally equiva-
lent processes (defined shortly) into a single one.
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To enforce this, we simply take the quotient Conv[G 	 η]
under operational equivalence. That amounts to defining pro-
cesses to be equivalence classes and also the operations of
sequential, parallel, and convex compositions thereof. For
this, let us first formally specify what we mean by “operational
equivalence.”

Definition IV.8. Processes f and f ′ (with the same in-
put systems and the same output systems) are operationally
equivalent if they give the same statistical predictions when
composed with any circuit fragment τ such that the resulting
process has only classical inputs and outputs:

(45)

Note that we are using green wires to denote arbitrary
systems which may be G-type, the new systems A�

i , or even
systems of the quotiented theory, because operational equiva-
lence is a concept defined independently of the theory. In any
case, we will apply this here only to Conv[G 	 η] in order
to construct the quotiented theory. We denote the equivalence
classes defined by this by square brackets, hence we can write
that f ∼ f ′ ⇐⇒ [ f ] = [ f ′], and moreover think of some
f ′ ∈ [ f ] as providing a representative for the equivalence
class of operations that f ′ belongs to.

In order to build a theory in which processes are labeled by
equivalence classes of processes, we must first define a notion
of composition for the equivalence classes.

Definition IV.9. The equivalence classes of processes com-
pose sequentially as

(46)

and compose in parallel as

(47)

For these to be valid operations between equiva-
lence classes, they must not depend on the choices of
representatives.

Lemma IV.10. Composition as defined in Definition IV.9 is
independent of the choices of representatives, i.e.,

(48)

Proof. The proof can be found in Appendix B 4.

In a similar way we can define convex combinations of
equivalence classes as follows:

Definition IV.11. Convex mixtures of equivalence classes
of processes are given by the following:

(49)

It is easy to see that the relevant properties of convex com-
binations, for example distributivity over ◦ and ⊗, are imme-
diately inherited from the analogous property in the prequo-
tiented theory. Again, for consistency, we prove the following:

Lemma IV.12. Convex mixtures as defined in Definition
IV.11 are independent of the choice of representative, i.e.,

(50)

Proof. The proof can be found in Appendix B 5. �
These operations allow us to define the quotiented theory

as follows:
Definition IV.13. We denote the theory whose processes

are operational equivalence classes of the processes in
Conv[G 	 η], with composition and convex mixtures given by
Definitions IV.9 and IV.11, by Conv[G 	 η]/ ∼.

Note that, as G is a GPT, and hence satisfies tomography,
for a valid process f in G, we have [ f ] = { f }, that is, each
equivalence class of processes in G contains a single element.
It is then clear that Lemma IV.4 also holds for our quotiented
theory. Moreover, it is also clear that Lemma IV.5 continues
to hold even in our quotiented theory, as quotienting could
identify effects only for a particular system with one another,
and as we have only a unique effect for a given system in the
first place we have a unique effect after quotienting.

The theory Conv[G 	 η]/ ∼ therefore satisfies all of the
desired properties to be considered a causal GPT.

While the GPT that we constructed is Conv[G 	 η]/ ∼, it
is clear that it is much easier to perform calculations within
Conv[G 	 η] as it is simply a subtheory of RLinear. Luckily
one can always perform calculations in Conv[G 	 η]/ ∼ by
picking suitable representative elements for the equivalence
classes, doing a computation within RLinear, and then requo-
tienting to determine the resultant equivalence class.

Definition IV.14 (Common-cause completion map). The
map C given by C[G] ≡ Conv[G 	 η]/ ∼ is a common-cause
completion map on the set of causal locally tomographic
GPTs.

This is because C[G] is a valid GPT which contains G as
a full subtheory and where every � ∈ G has a common-cause
realization in C[G].

V. RESULTS AND DISCUSSION

The construction we have presented for a common-cause
completion map is useful as it allows us to understand possible
causal explanations of physical phenomena. To elaborate on
this, let us first introduce our main theorem and a useful
corollary.

042211-11



CAVALCANTI, SELBY, AND SAINZ PHYSICAL REVIEW A 109, 042211 (2024)

Theorem V.1. Given a locally tomographic causal GPT G,
its set of multipartite nonsignaling channels (Defition III.2)
is the same as its set of multipartite common-cause realiz-
able (Definition III.4) channels. Notice these common causes
might not be state preparations allowed in G

Proof. Consider the GPT C[G]. By Proposition III.5, the
common-cause realizable channels in G are nonsignaling.
In the other direction, by construction, C[G] can provide a
common-cause realization of any nonsignaling channel of G.

�
Noting that Quant is a locally tomographic causal GPT we

immediately obtain the following corollary.
Corollary V.2. There exists a causal GPT that provides

a common-cause realization of every nonsignaling quantum
channel. Such a GPT is given by C[Quant].

This corollary is important for two reasons. First, it an-
swers in the negative “Open Question 1” posed in Ref. [8]:
Do there exist bipartite nonsignaling quantum channels which
cannot be realized by GPT common causes?

Second, recall the phenomenon of Einstein-Podolski-
Rosen (EPR) inference [43] (a.k.a. steering) where a party
(say, Alice) learns about the state preparation of a physical
system (held by a distant party, herein called Bob) by per-
forming measurements on her share of the bipartite physical
system [44,45]. Here the object of study is the collection of
subnormalized conditional states that Bob’s subsystem may
be prepared in, usually called an assemblage [46]. Similarly
to the case of nonsignaling correlations in Bell experiments,
one may mathematically define general assemblages as those
which comply with the nonsignaling principle. Given the par-
ticular causal structure that underpins these EPR experiments,
then, a crucial foundational question is whether these general
assemblages could be realized within some (beyond quantum)
GPT as a common-cause process. This question can be read-
ily answered in the affirmative by Corollary V.2, given that
assemblages in EPR scenarios can be formalized in terms of
nonsignaling quantum-classical channels [47]. This sets the
foundation stone to be able to study the nonclassicality of EPR
assemblages based on the properties of the common-cause
process within the GPT that may realize them. In particular,
this observation answers in the affirmative the question posed
in Ref. [15]: there exists a causal GPT Q′ that provides a
common-cause realization of every general assemblage.

More generally, our result provides the fundamental
justification of the possibility to assess and quantify the non-
classicality of arbitrary nonsignaling processes by means of
the nonclassicality of the common-cause required to realize
them. This has previously been argued at length for the case
of correlations in Bell scenarios [4], where the existence of
common-cause realizations of nonsignaling boxes had already
been provided by the GPT known as Boxworld [16]. In this
light, hence, our work enables the possibility of extending this
causal reasoning to scenarios beyond Bell experiments, which
involve other local systems types rather than strictly classical
ones.

Looking forward, there are many open research directions
pertaining to the common-cause completion construction that
we defined:

(1) Is C[G] common-cause complete? Intuitively it seems
that this should be the case, but conceivably there may be

nonsignaling channels between the new systems which are not
realizable in common cause scenarios within C[G]. Note that
C[C[G]] may not be well defined because we do not yet know
whether or not:

(a) C[G] is tomographically local or
(b) Whether or not there is a way to extend the

common-cause completion to tomographically nonlocal
GPTs, or to more general kinds of process theories.
(2) One could also ask questions about properties, such

as whether C[G] is the largest or smallest common cause
completion of G in some sense; the natural way to answer this
question would be by trying to characterize C via a universal
property.

(3) It would also be interesting to give a more concrete
definition of C[G] for particular GPTs of interest such as quan-
tum and classical theory. The nature of the construction makes
it nontrival to obtain such representations, and, moreover, it
does not coincide with the known common cause completion
of classical theory known as Boxworld.

While being of technical nature, we expect the answers
to these questions to also help us deepen our understanding
on the possible nonsignaling processes that can be motivated,
understood, and studied from the causal perspective.
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APPENDIX A: (STRICT) SYMMETRIC
MONOIDAL CATEGORIES

Since we define a generalized probabilistic theory (GPT)
in terms of a strict symmetric monoidal category (SMC), we
devote this Appendix to define the latter. We follow that with
a brief commentary on interpreting that structure in terms of
processes, which is key for understanding how to see that
GPTs are SMCs, and end with the most important example
of SMC for this paper.

A (strict) symmetric monoidal category consists of (1) a
collection of objects A, B, . . ., (2) for each pair of objects A, B,
a collection of morphisms f : A → B, and (3) two operations,
◦ and ⊗, under which the category is closed. The first oper-
ation, ◦, maps certain pairs of morphisms to morphisms. In
particular, it combines f : A → B and g : B → C into g ◦ f :
A → C, and can be performed only when the domain of g
matches the codomain of f (in this example, the matching
is given by the object B). Furthermore, ◦ is associative, so it
is similar to function composition. (4) An identity morphism
1A : A → A that is a unit for ◦ is moreover associated with
each object A. The second operation, ⊗, combines arbitrary
pairs of objects, taking A and B to A ⊗ B as well as arbi-
trary pairs of morphisms, taking f : A → B and g : C → D
into f ⊗ g : A ⊗ C → B ⊗ D. Furthermore, ⊗, is associative
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and has a unit object which we denote I , so it is a monoid
operation on the collection of objects, being therefore respon-
sible for the monoidal structure of the category. Finally, the
two operations satisfy a consistency condition, namely, that
(g ◦ f ) ⊗ (g′ ◦ f ′) = (g ⊗ g′) ◦ ( f ⊗ f ′).

An interesting property of the symmetric monoidal cat-
egories is that they feature a diagrammatic calculus, which
provides an intuitive and expressive way to write and perform
mathematical calculations. For a description of that, we refer
the reader to the Sec. II A.

The bare structure of the SMC has a nice interpretation
in terms of processes [17]. We take the objects to represent
system types, and call the monoidal unit, denoted I , the trivial
system. The morphisms f : A → B are interpreted as pro-
cesses that take a system of type A into a system of type B.
The processes that start (but do not end) in the unit object (the
trivial system), i.e., those like s : I → A, are called states, the
ones that end (but do not start) in I , like e : A → I , are called
effects, and the ones who neither start nor end in I , such as f :
A → B, are called transformations. This is intuitive because
s : I → A can be viewed as some preparation procedure of a
system of type A, and e : A → I as a destructive operation.
Next, processes that start and end in I , such as p : I → I ,
are called numbers, or scalars. Now, processes can happen
sequentially or in parallel, and this is captured by the SMC: we
interpret g ◦ f as the sequential composition of the processes
f and g, where f is followed by g (which acts on the output
of f ), and f ⊗ g as the composite process given by f and g
occurring in parallel. This interpretation of ◦ and ⊗ motivates
the consistency condition that they had to satisfy, since that
is the natural relationship between processes happening in
parallel and in sequence.

We now illustrate this abstract definition of an SMC by
means of the key example for this paper.

Example 1 (RLinear). The SMC RLinear takes objects
(system types) to be real vector spaces, and, morphisms (pro-
cesses) to be linear maps between the vector spaces. The
◦ operation is the composition of linear maps, and ⊗ is
the tensor product. The identity morphisms are given by the
identity linear maps, and the monoidal unit is given by the
one-dimensional vector space R.

APPENDIX B: PROOFS

1. Proof of Lemma IV.4

Lemma IV.4. Any process in G 	 η with only input and
output system types in |G| is a valid process in G.

Proof. First note that, by definition, any process in G 	 η

can always be written as a diagram involving only our gener-
ating processes, that is, processes in G, and the processes in
{η�

i , ξ�}�,i.
Now consider an arbitrary process F in G 	 η with input

and output system types in |G|. This process can be written in
terms of the above-mentioned generating processes:

(B1)

where we do not specify the internal structure of the dashed
box as the actual compositional structure of F has no generic
specification, but we assume it is a diagram consisting of
generating processes.

We will now show that this box associated to the process
F can always be rewritten into a diagram which involves only
processes in G. This follows from the fact the we can rewrite
any diagram using only generating processes.

Suppose, for example, that the diagram involves the pro-
cess η�

1 , i.e.,

(B2)

Since A�
1 is not an input to the process F (as we are assuming

that the inputs and outputs system types are in |G|), there must
be a process in the diagram Diag′ for which this system, A�

1 ,
is an output. There is only one generating process which has
A�

1 as an output, namely, ξ�. Hence, we can write diagram
Diag′ as

(B3)
We also know that none of the A�

i are outputs of the process,
hence, they must be the input of some process within the
diagram Diag′′. For each of these there is a single generating
process which has A�

i as an input, namely, η�
i . This means we

can rewrite the diagram Diag′′ as

(B4)
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The explicitly drawn part of the diagram, however, is now
nothing but the nonsignaling channel �, which is a process
that lives in G:

(B5)

Hence, we have shown that we can redraw the diagram asso-
ciated to F so as not to use the generating process η�

1 . This
argument clearly also applies to any other η�

i that may appear
in the specification of F , and a very minor modification of it
applies to any ξ�.

This means that any process in G 	 η whose input and
output system has types in |G| can always be written in a
way that involves only generating processes from G and does
not involve any generating processes from {η�

i , ξ�}. As G
is closed under composition, we have therefore shown that
any process with input and output system types in |G| is
necessarily a valid process in G. �

Notice that, in particular, Lemma IV.4 implies that the
theory G 	 η that we have defined will make sensible prob-
abilistic predictions, since the classical systems are valid
systems in G and any processes with only classical inputs and
outputs is necessarily a stochastic map.

2. Proof of Lemma IV.5

Lemma IV.5. There is a unique discarding effect for each
system in G 	 η.

Proof. Here we show that every generating type has a
unique discarding effect, as the generalization to composite
types is straightforward.

For each generating system i from the GPT G, Lemma IV.4
implies that the discarding effect for i is itself a valid process
G. Since G is causal, this means that the discarding effect for
i in G 	 η is unique.

Now we need to show that the claim also holds for system
types beyond those present in the GPT G, i.e., the systems
{A�

i }.
Since all processes of G 	 η can decomposed in terms of

generating processes, we can write a generic effect for A�
i

as

(B6)

where, due to Lemma B 1, we know that ẽ and σ ′ are neces-
sarily in G. Then, as there is a unique effect for each system
in G, we have that

(B7)

Now, using the definition of η�
i we have that

(B8)

Hence the extra systems in the enlarged theory still satisfy
the property of having an unique effect to each system type.

�

3. Proof of Lemma IV.7

Lemma IV.7. (1) Any process in Conv[G 	 η] with only
input and output system types in |G| is a valid process in
G. (2) There is a unique discarding effect for each system in
Conv[G 	 η].

Proof.
(i) From Lemma IV.4 we know that any process in G 	 η

with only input and output system types in |G| is a valid
process in G. Since processes in G are closed under convex
combinations, this implies that any convex combination of
processes in G 	 η with only input and output system types
in |G| is a valid process in G, which proves the claim.

(ii) That there is a unique discarding effect for each system
immediately follows from Lemma IV.5 together with the fact
that since there is a unique discarding effect for each gener-
ating system type it is impossible to obtain other discarding
effects by composition and convex combinations. �

042211-14



EVERY NONSIGNALING CHANNEL IS COMMON-CAUSE … PHYSICAL REVIEW A 109, 042211 (2024)

4. Proof of Lemma IV.10

Lemma IV.10. Composition as defined in Definition IV.9 is
independent of the choices of representatives, i.e.,

(B9)

Proof. We start by rewriting the assumptions of the theo-
rem using the definition of equivalence:

(B10)

and

(B11)

Hence, for an arbitrary τ , the following holds:

(B12)

(B13)

(B14)

This implies that

(B15)

hence proving the first part of the lemma.
The proof of the second part of the lemma follows in a

similar way: for an arbitrary τ ,

(B16)

(B17)

(B18)

Hence,

(B19)

which completes the proof. �

042211-15



CAVALCANTI, SELBY, AND SAINZ PHYSICAL REVIEW A 109, 042211 (2024)

5. Proof of Lemma IV.12

Lemma IV.12. Convex mixtures as defined in Definition
IV.11 are independent of the choice of representative, i.e.,

(B20)

Proof. The assumptions of the lemma can be equivalently
stated as

(B21)

and

(B22)

In particular, this means that ∀ τ

(B23)

Linearity of τ implies

(B24)

for all τ , which proves the claim. �
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