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We study many-body entanglements and spectra of the extended bosonic Hatano-Nelson model in the hard-
core limit. We show that the system undergoes a phase transition from a gapless phase to a charge-density-wave
phase accompanied by a parity-time transition in the first-excited state. The phase transition is characterized by
the crossing of the ground-state biorthogonal-order parameter and the sudden change of the first-excited-state
entanglement entropy. The gapless phase is verified by the logarithmic scaling of the ground-state entanglement
entropy with the central charge c = 1. Furthermore, we show that all energy spectral clusters would form ellipses
in strong nearest-neighbor interactions, for which we establish a universal scaling law. The lengths of the major
and minor axes are shown to obey power laws with respect to the nearest-neighbor interaction. The exact
expressions are derived for the numbers of energy levels on the outermost elliptic ring of each clusters.
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I. INTRODUCTION

Quantum entanglement, which is a central concept of
quantum mechanics, has broad potential applications, such
as quantum teleportation [1], quantum computation [2,3], and
quantum sensing [4] in quantum technology and quantum in-
formation science [2,5]. A notable application of the quantum
entanglement for a many-body system is to characterize the
equilibrium phase transition [6,7], where the entanglement
entropy has been shown to display a logarithmic divergence
in a one-dimensional model [8]. Quantum entanglement is a
crucial tool in understanding quantum phases of Hermitian
many-body systems.

Non-Hermitian systems are of particular interest because
of many unique phenomena that have no counterparts in
Hermitian systems [9,10]. It is known that non-Hermitian
skin effects [11–25] and exceptional points [26–37] are
two fascinating phenomena in non-Hermitian systems. Re-
cently, the entanglement entropy has been generalized to
non-Hermitian systems for understanding phase transitions.
For instance, the biorthogonal entanglement entropy has
been introduced to describe the equilibrium phase transitions
[38–44], where the central charge has been found to be neg-
ative at an exceptional point from the entanglement entropy
under specific treatments [38,41,42]. The negative central
charge has been argued to be described by the nonunitary
conformal field theory [38,41]. The understanding of the en-
tanglement entropy at an exceptional point remains an open
question.

Many-body physics of non-Hermitain systems is another
interesting topic, in which rich unique phenomena such as
many-body skin effects [45–52], many-body edge bursts
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[53], and entanglement phase transitions [54–57] have been
explored in recent years. Concerns for many-body spectra
[48,49,52] might be at the core of the researches as a direct ex-
tension of the single-particle physics. Recently, studies show
that interactions can induce parity-time (PT ) transitions [49]
and spectral structures [48,49] in the interacting fermionic
Hatano-Nelson (FHN) model under periodic boundary
conditions (PBCs).

In order to further understand phase transitions and spectral
structures induced by the interaction, we instead study the
extended interacting bosonic Hatano-Nelson (BHN) model
with a hard-core constraint, which is inequivalent to the FHN
model under PBCs even in the thermodynamic limit [52].
We show that the BHN model undergoes a phase transition
in the ground state accompanied by a PT transition in the
first-excited state. The ground-state phase transition can be
described by the biorthogonal-order parameter. The central
charge c = 1 for the gapless phase is derived from both the
biorthogonal entanglement entropy and the self-norm entan-
glement entropy. For the first-excited phase transition, we find
that the biorthogonal and self-norm entanglement entropies
display a sudden change near the critical point. In addition,
we study the many-body energy spectra by increasing the
interaction, where we find that the energy spectral clusters
form ellipses in strong nearest-neighbor interactions. We es-
tablish the universal laws of spectral clusters and show that
the structure of an ellipse is dependent on the interaction, the
filling, and the number of clusters.

This paper is organized as follows. In Sec. II, we introduce
the bosonic Hatano-Nelson model. In Sec. III, we study the
entanglement entropy of the ground state and the first-excited
state. In Sec. IV, we discuss the properties of spectral clusters
in strong nearest-neighbor interactions. In Sec. V, we summa-
rize our results.
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II. MODEL

In this paper, we study the one-dimensional extended BHN
model, which is a non-Hermitian system with a nearest-
neighbor nonreciprocal hopping. The Hamiltonian of the
extended BHN model can be written as

H =
L∑

l=1

[
(t + γ )b†

l bl+1 + (t − γ )b†
l+1bl

+ U

2
nl (nl − 1) + V nlnl+1

]
, (1)

where b†
l (bl ) is the creation (annihilation) operator of a boson

at the lattice site l , and nl = b†
l bl is the bosonic number oper-

ator. L is the length of the chain. The real parameters t and γ

denote the reciprocal and nonreciprocal hopping coefficients
of bosons between two nearest-neighboring sites, respectively.
The coupling coefficient U is the on-site interaction, and V
is the nearest-neighbor interaction between two bosons in
adjacent lattice sites. The PBCs are imposed by bL+1 = b1.

Because it is extremely difficult to diagonalize a huge non-
Hermitian matrix, numerical simulations of soft-core bosons
are beyond the scope of the exact-diagonalization method.
In the following, we study the system with the exact diag-
onalization in PBCs and merely consider the system with a
hard-core constraint (U → ∞). The extended BHN model in
the hard-core limit is given by

H =
∑

l

[
(t + γ )b†

l bl+1 + (t − γ )b†
l+1bl + V nlnl+1

]
, (2)

with the constraint nl = {0, 1}. The BHN model in the hard-
core limit is equivalent to the FHN model in open boundary
conditions (OBCs) [49], but is different from the FHN model
in PBCs [52]. The eigenvalues of the BHN model in Eq. (2)
are always real for γ < t in OBCs as the Hamiltonian can be
mapped to a Hermitian Hamiltonian under a site-dependent
similarity transform [52]. In the following, we set t = 1 during
the simulations and study the extended hard-core BHN model
in Eq. (2) under PBCs as we are interested in the properties of
the complex-valued energy spectra.

III. ENTANGLEMENT ENTROPY

In the half filling, the extended hard-core BHN can be
mapped to the spin-1/2 chain,

Ĥ =
∑

l

[
t

2

(
σ x

l σ x
l+1 + σ

y
l σ

y
l+1

) + V

4
σ z

l σ z
l+1

+ i
γ

2

(
σ x

l σ
y
l+1 − σ

y
l σ x

l+1

) − V

2
σ z

l + V

4

]
, (3)

by performing the following transformations between the
bosonic operators and the spin operators,

σ+
l = bl , (4)

σ−
l = b†

l , (5)

σ z
l = 1 − 2b†

l bl , (6)

where σ+
l = (σ x

l + iσ y
l )/2 and σ−

l = (σ x
l − iσ y

l )/2 are the
raising and lowering operators, and σ x

l , σ
y
l , and σ z

l are Pauli
matrices.

In the case of γ = 0, the model in Eq. (3) is the
well-known (Hermitian) XXZ model, which undergoes the
Berezinskii-Kosterlitz-Thouless transition between the dou-
bly degenerated antiferromagnetic phase and the gapless XY
phase. In the bosonic language, two such ground states are
named the charge-density-wave (CDW) phase and the gapless
phase. In order to describe the phase transition, we introduce
the entanglement entropy between a part A and a part B,

SA = −TrA(ρA ln ρA), (7)

where ρA = TrB(|ψ j〉〈ψ j |), and |ψ j〉 is the jth eigenstate of
the BHN model. In the following, we choose the subsystems
A = {1, . . . , L/2} and B = {L/2 + 1, . . . , L}. For a Hermitian
system under PBCs, it is shown that the entanglement entropy
scales logarithmically as [58],

SL/2 ∝ c

3
ln(L) (8)

at the critical point of a finite-size chain. The central charge
c = 1 for the XXZ model that can be described by the confor-
mal field theory (CFT) [58].

When γ �= 0, the model in Eq. (3) is the generalized
XXZ model with a complex Dzyaloshinskii-Moriya interac-
tion (DMI), which is a non-Hermitian system. Although the
Hamiltonian in Eq. (3) is non-Hermitian, the ground-state en-
ergy (the state with the lowest real part of eigenvalues) is real
for any γ . To verify whether the entanglement can describe
the phase transition of the non-Hermitian XXZ chain, we
compute both the biorthogonal entanglement entropy SRL

L/2 and
the self-norm entanglement entropy SRR

L/2 of the ground state.
The biorthogonal and self-norm reduced density matriices
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FIG. 1. Many-body phase diagram of the half-filled hard-core
BHN model with respect to γ and V at t = 1 up to L = 24 lattice
sites in PBCs. (a) The phase diagram obtained from the change of the
first-excited energy as shown in panels (c) and (d), in which the red
solid line denotes critical points in the thermodynamic limit derived
by extrapolations. (b) The biorthogonal correlation function C1,L/2 at
γ = 0.6, where the crossing point denotes the critical point. (c) The
four lowest real parts of eigenenergies at γ = 0.6. (d) The imaginary
parts of the four eigenenergies shown in panel (c).
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FIG. 2. Half-chain entanglement entropy of the BHN model at
t = 1 and γ = 0.6 in PBCs. (a)–(c) The biorthogonal entanglement
entropy in the half filling, the self-norm entanglement entropy in the
half filling, and the biorthogonal entanglement entropy of the ground
states with a quarter of the filling as the function of V . (d)–(f) The
scaling of the biorthogonal entanglement entropy from panel (a), the
self-norm entanglement entropy from panel (b) at V = 2 and V = 4,
and the biorthogonal entanglement entropy from panel (c) at V = 2
and V = 7.

are defined by the combination of the biorthogonal eigen-
states ρRL

A = TrB(|ψR
0 〉〈ψL

0 |) and only the right density matrix
ρRR

A = TrB(|ψR
0 〉〈ψR

0 |), respectively [38,44]. The global phase
diagram of the non-Hermitian XXZ that is obtained by the
sudden change of the first-excited energy from a real value
to a complex value [cf. Figs. 1(c) and 1(d)] is demonstrated
in Fig. 1(a), where we find that the complex DMI enlarges
the gapless regime compared to the original Hermitian XXZ
model (The critical value Vc > 2 for a nonzero γ ). The CDW
phase is characterized by the CDW order parameter OCDW =
limr→∞ C1,r , where C1,r = (1 − 2n1)(1 − 2nr ) [see Fig. 1(b)].
The gapless phase is described by both the biorthogonal en-
tanglement entropy and the self-norm entanglement entropy
of the ground state [see Figs. 2(a), 2(b), 2(d), and 2(e)], with
a central charge c = 1 as in the Hermitian XXZ model.

The BHN model shown in Eq. (2) [or in Eq. (3)] has a PT
symmetry, the system thus exists either real eigenenergies or
complex eigenenergies in conjugated pairs. Consequently, the
BHN model can in principle exhibit a PT transition between
the PT symmetric phase and the PT broken phase. A PT
transition in the first-excited state has recently been discussed
in Ref. [49] for the FHN model. The PT transition in the
first-excited state in the BHN model is confirmed and pre-
sented in Fig. 1(a). In the following, we instead investigate the
properties of quantum entanglement in the first-excited state
for such a PT transition.
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FIG. 3. Entanglement entropy of the first-excited states at L =
24 at t = 1 and γ = 0.6 in PBCs. (a) The biorthogonal entanglement
entropy with respect to V . (b) The self-norm entanglement entropy
as the function of V .

To achieve it, we calculate both the biorthogonal entan-
glement entropy SRL

L/2 and the self-norm entanglement entropy
SRR

L/2 for the first-excited states. We note that the first-excited
states are doubly degenerated in the PT broken regime, which
seems to bring additional problems to compute the entan-
glement entropy. However, thanks to the PT symmetry, the
first-excited states can be distinguished according to the imag-
inary part of the eigenvalues. In the following, we perform the
calculations based on the first-excited state with the negative
imaginary part of the energy. We find that both SRL

L/2 and
SRR

L/2 exhibit a sudden change when varying the interaction as
shown in Fig. 3, indicating a phase transition happens. We
point out that it is impossible to extract the critical exponents
using either SRL

L/2 or SRR
L/2. The study of exceptional points using

the finite-size scaling theory of the entanglement entropy is
open. Our results indicate that the entanglement entropy can
serve as a valid quantity for finding critical points.

Finally, we briefly discuss the properties of the entangle-
ment entropy when the system is away from the half filling. In
the case of the non-half filling, the ground phases in the whole
regime of γ are gapless as the system cannot form a CDW
phase. Consequently, the entanglement entropy of the ground
phases should exhibit a logarithmic scaling with the central
charge c = 1. We verify this argument by the performing
scaling of the biorthogonal entanglement entropy as shown
in Figs. 2(e) and 2(f).

IV. SPECTRAL CLUSTERS

In this section, we turn to the energy spectra to investigate
the effects of the interaction. It is easy to show that the single-
particle energy spectrum which can be exactly obtained for
the BHN model is a closed curve in the case of noninter-
actions [49,52]. However, the spectral structure of the BHN
model is too complicated to study under finite interactions.
Recently, it was found interestingly that the energy spectrum
of the FHN model away from the half filling is separated
into spectral clusters [cf. Figs. 4(a)–4(c)] when the interaction
strength V is larger than the range of each cluster [49]. It is
worthwhile to note that energy spectra can also form clusters
even in the half filling, which is not discussed in Ref. [49].
The spectral clusters in the half filling would be located only
in the real-energy axis as energies are always real under strong
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FIG. 4. The spectral clusters of the BHN model with L = 10 and
N = 3 at t = 1 and γ = 0.2. (a)–(c) Spectral clusters for ns = 1, 2,
and 3 and V = 20. (d)–(f) Spectral clusters for ns = 1, 2, and 3 and
V = 200.

interactions [cf. Figs. 1(c) and 1(d)]. In the following, we
study the BHN model for arbitrary filling under strong inter-
actions to investigate universal properties of energy spectral
structures.

It can be seen from Figs. 4(a)–4(c) that the energy spectrum
is symmetrically distributed in the complex plane [49]. As-
sume the system has N particle numbers, the energy spectrum
would form N clusters. The central position of each cluster Ec

is around (ns − 1)V . Here, we use ns, with ns = 1, . . . , N , to
label these clusters individually. As the system has a particle-
hole symmetry, the properties of clusters for L − N particles
are the same as those for N particles. Let us first study the
properties of the central positions Ec of these energy clusters.
We show that the central positions of these clusters are not
exactly located at (ns − 1)V . Instead, they are [49] at

Ec = (ns − 1)V + ε, (9)

with

ε ≈ C(t2 − γ 2). (10)

It was shown that C = 2/V for the cluster ns = N in Ref. [49].
However, we argue that this coefficient is not always valid
for other clusters. For example, we find that C = 2/V for the
cluster ns = N , but C = −L/V for the cluster ns = 1 in half
filling [cf. Figs. 5(a) and 5(b)]. Moreover, we find that C is
indeed a quadratic function with respect to ns for other cases.
The coefficient C and the relation ns − N is found to satisfy
the following quadratic function,

C = − 4

V (L/2 − 1)
(ns − L/2)2

− 2(L/2 − 3)

V (L/2 − 1)
(ns − L/2) + 2

V
, (11)

in half filling. This argument is verified by numerical simu-
lation using L = 12 at V = 40 and V = 200 [cf. Figs. 5(c)
and 5(d)]. For instance, we find that C = 0.05 = 2/V when
ns = N = L/2 and that C = −0.3 = −L/V when ns = 1 at
V = 40, which are consistent with Eq. (11).

Next, we turn to study the shapes of clusters. Interestingly,
we find that all spectral clusters will form perfect ellipses if the
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FIG. 5. The energy shift in the half-filled BHN model with L =
12 at t = 1 in PBCs. (a) and (b) The energy shift ε for the cluster
ns = N and ns = 1 with respect to γ at V = 40, respectively. (c) and
(d) The coefficients C in ε as the function of ns for V = 40 and
V = 200 at γ = 0.2, respectively.

interaction V is strong enough [cf. Figs. 4(d)–4(f)]. Let us first
discuss the rightmost cluster (ns = N) which is the simplest
case as shown in Fig. 4(f). We fit the data in Fig. 4(f), finding
that the function is an elliptic curve,

(x − x0)2

a2
+ y2

b2
= 1, (12)

with the fitting parameters x0 ≈ 400.0096, a ≈ 5.6001 ×
10−5, and b ≈ 3.0401 × 10−5. Here, 2a and 2b are the lengths
of the major and minor axes of the ellipse, and x0 = Ec is
the position of the center of the ellipse, which satisfies x0 ≈
(ns − 1)V + 2(t2 − γ 2)/V .

FIG. 6. The scaling parameters of the major and minor axes at
t = 1 and γ = 0.2. (a) The scaling of major and minor axes of the
ellipse for the cluster ns = 3 in the BHN model with L = 10 and N =
3 particles. (b) and (c) The exponent pa and coefficients Ca and Cb

with respect to N for cluster ns = N up to L = 14. (d) The exponent
pa as the function L for cluster ns = 1. The star symbols in panels
(a)–(c) denote the data in the half filling N = L/2.
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We are surprised to find that the major axis 2a and the
minor axis 2b obey a universal scaling law [cf. Fig. 6], which
is given by

2a = CaV
pa + V0a, (13)

2b = CbV
pb + V0b, (14)

where Ca, Cb, pa, pb, V0a, and V0b are fitting parameters.
To obtain the accurate values of Ca, Cb, pa, and pb, we
fit the major and minor axes 2a and 2b with respect to V of
the rightmost cluster for L = 8, 10, 12, and 14 and ns = N .
The results are shown in Figs. 6(a)–6(c) and Table I [see the
Appendix for details], where we find that, when the system is
away from the half filling, Ca, Cb, pa, and pb are given as

Ca = 2[(t + γ )N + (t − γ )N ], pa = 1 − N, (15)

Cb = 2[(t + γ )N − (t − γ )N ], pb = 1 − N. (16)

The above scaling exponents can be obtained from the pertur-
bation theory [49]. When the system is in the half filling, the
eigenenergies are alway real for large interactions [49], and
thus only Ca and pa need to be derived, which are given by

Ca = 4[(t + γ )N + (t − γ )N ], pa = 1 − L/2. (17)

We note that V0a = V0b = 0 for an arbitrary filling.
To verify whether the above scaling exponents pa and pb

obtained for ns = N are also valid for other clusters, we study
the spectral properties of the first cluster (ns = 1). It can be
seen from Fig. 4(d) that the energy spectrum forms parallel
ellipses for the first cluster. The major axis 2a and the minor
axis 2b of the outermost ellipse are numerically fitted by using
Eqs. (13) and (14). The parameters Ca, Cb, pa, pb, V0a, and V0b

are shown in Table II [see the Appendix for details], where we
find that pa and pb remain,

pa = pb = 1 − L/2, (18)

for the half-filled system. While if the system is away from
the half filling, pa and pb satisfy

pa = pb = −2 (19)

for all N and ns, except for the single-particle case (N = 1),
where the interaction is useless [cf. Fig. 6(d)].

For more general cases, that is, 2 � ns � N − 1, it seems
that the exponents pa and pb satisfy

pa = pb = 1 − ns (20)

for arbitrary fillings. However, we have to note that there are
several exceptions where pa and pb are not consistent with
this scaling rule in Eq. (20). The reason for this may be that
the clusters for 2 � ns � N − 1 have complex structures [see
Figs. 4(b) and 4(e)], and one has to increase the interaction
V to have a perfect ellipse. However, when V is too large,
the fitting functions V pa and V pb become exponential small,
which we think may lead to the instability of the fitting.
We note that other possible relations between pa, pb, and ns

cannot be ruled out. This problem is left for future study.
Finally, we investigate the numbers of energy levels on a

single elliptic ring. It is found that the energy levels distribute

symmetrically in the elliptic lines, in which the number of
levels Nq is related to the chain length L. Strictly speaking,
we find that the number of levels Nq on the outermost elliptic
ring is

Nq = L, (21)

for the clusters ns = 1 and ns = N [see Figs. 4(d) and 4(f)].
For other clusters 2 � ns � N − 1, the number of energy lev-
els Nq is given by

Nq = (ns + L/2 − N − 1)L, (22)

dependent on L, N , and ns. For example, Nq = 30 for L = 10,
N = 3, and ns = 2 as shown in Fig. 4(e). Besides, the energy
values E on the outermost ellipse can be derived as

E (q) = Ec + a cos(q) + ib sin(q), (23)

with q = 2nπ/Nq, and n = 0, 1, . . . , Nq − 1. The energy
spectrum in Eq. (23) is similar to the single-particle energy
spectrum, indicating that one may analyze the many-body
physics using the concepts or techniques from the single-
particle picture. In addition, universal properties of many-
body systems under intermediate interactions are completely
unknown so far, which is beyond the scope of this work and
left for future research.

V. CONCLUSION

We have studied the entanglement entropy and spectral
clusters of the extended hard-core BHN model in PBCs. We
show that the extended hard-core BHN model undergoes a
phase transition in the ground state that is accompanied by
a PT transition in the first-excited state discussed in the FHN
model [49]. The phase transition can be described by the
CDW order parameter of the ground state and the biorthog-
onal and self-norm entanglement entropies of the first-excited
state.

Furthermore, we study the properties of the energy eigen-
values of each cluster led by the nearest-neighbor interaction,
showing that the shape of each cluster is an elliptic function
when the interaction is strong enough. We explore the univer-
sal scaling laws for the size of the ellipses with respect to the
interactions and derive the corresponding scaling exponents.
Finally, we analyze the number of energy levels of each ellipse
and find a universal expression for the number of levels in the
outermost circles of clusters.
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APPENDIX: NUMERICAL DATA FOR ns = N AND ns = 1

In this Appendix, we display the data for ns = N in Table I
and the data for ns = 1 in Table II, respectively. Please see
below for details.
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TABLE I. The fitting parameters of the major and minor axes 2a and 2b with respect to V from V = 40 to V = 100 with the step dV = 5
for the cluster ns = N , with L = 8, 10, 12, and 14, t = 1, and γ = 0.2. We note that V = 20 to V = 60 with the step dV = 5 is used for L = 14
and N = 7 to fit as V pa is too small when V is large.

L N 1 − N Ca pa Cb pb

8 1 −0 4.000 −0.000 0.800 −0.000
8 2 −1 4.160 −1.000 1.600 −1.000
8 3 −2 4.505 −2.001 2.427 −2.000
8 4 −3 9.981 −3.001 – –
10 1 −0 4.000 −0.000 0.800 −0.000
10 2 −1 4.160 −1.000 1.600 −1.000
10 3 −2 4.491 −2.001 2.438 −2.001
10 4 −3 5.007 −3.002 3.334 −3.001
10 5 −4 11.35 −4.002 – –
12 1 −0 4.000 −0.000 0.800 −0.000
12 2 −1 4.160 −1.000 1.600 −1.000
12 3 −2 4.491 −2.001 2.438 −2.001
12 4 −3 4.991 −3.001 3.344 −3.001
12 5 −4 5.692 −4.002 4.335 −4.001
12 6 −5 13.13 −5.002 – –
14 1 −0 4.000 −0.000 0.807 −0.000
14 2 −1 4.160 −1.000 1.600 −1.000
14 3 −2 4.491 −2.001 2.438 −2.001
14 4 −3 5.991 −3.001 3.344 −3.001
14 5 −4 5.673 −4.002 4.353 −4.002
14 6 −5 6.587 −5.003 5.507 −5.002
14 7 −6 15.70 −6.008 – –

TABLE II. The fitting parameters of the major and minor axes 2a and 2b with respect to V from V = 40 to V = 100 with the step dV = 5
for the cluster ns = 1, with L = 8, 10, 12, and 14, t = 1, and γ = 0.2.

L N 1 − N Ca pa V0a Cb pb V0b

8 1 −0 0.000 −0.000 4.000 0.0000 0.000 0.800
8 2 −1 −3.539 −2.005 6.928 0.0277 −2.000 1.386
8 3 −2 −11.07 −1.989 6.472 −2.9880 −2.002 1.294
8 4 −3 95.66 −2.992 0.000 – – –
10 1 −0 0.000 0.000 4.000 0.000 0.000 0.800
10 2 −1 −1.527 −2.006 7.391 0.0119 −2.000 1.478
10 3 −2 −8.934 −1.999 8.988 −0.5884 −2.001 1.798
10 4 −3 −11.56 −1.999 6.928 −5.605 −2.007 1.386
10 5 −4 376.57 −3.990 0.000 – – –
12 1 −0 −0.000 −0.000 4.000 0.000 −0.000 0.800
12 2 −1 −0.7764 −2.007 7.608 0.006 −2.000 1.522
12 3 −2 −5.260 −2.003 10.13 −0.1479 −2.000 2.026
12 4 −3 −13.84 −1.996 10.45 −1.995 −2.006 2.091
12 5 −4 −11.05 −2.000 7.208 −7.248 −1.999 1.442
12 6 −5 1551.37 −4.989 0.000 – – –
14 1 −0 −0.000 −0.000 4.000 −0.000 −0.000 0.800
14 2 −1 −0.4431 −2.007 7.727 0.00345 −2.000 1.545
14 3 −2 −3.137 −2.005 10.73 −0.0434 −1.999 2.146
14 4 −3 −10.23 −2.000 12.31 −0.706 −2.003 2.462
14 5 −4 −17.46 −1.995 11.52 −3.876 −2.005 2.304
14 6 −5 −10.41 −2.001 7.391 −8.433 −1.993 1.478
14 7 −6 6591.26 −5.987 0.000 – – –
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