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Quantum battery with non-Hermitian charging
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We propose a design of a quantum battery exploiting the non-Hermitian Hamiltonian as a charger. In particular,
starting with the ground or the thermal state of the interacting (noninteracting) Hamiltonian as the battery, the
charging of the battery is performed via parity-time (PT )- and rotational-time (RT )-symmetric Hamiltonians
to store energy. We report that such a quenching with a non-Hermitian Hamiltonian leads to an enhanced power
output compared to a battery with a Hermitian charger. We identify the region in the parameter space which
provides the gain in performance. We also demonstrate that the improvements persist with the increase of
system size for batteries with both PT - and RT -symmetric chargers. In the PT -symmetric case, although
the anisotropy of the XY model does not help in the performance, we show that the XXZ model as a battery with
a non-Hermitian charger performs better than that of the XX model having certain interaction strengths. We also
exhibit that the advantage of non-Hermiticity remains valid even at finite temperatures in the initial states.
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I. INTRODUCTION

Miniaturization of technology with the usage of quantum-
mechanical principles has become an intensive field of
research in recent times. Notable achievements exhibiting
quantum advantage over their classical analogs, thereby
revolutionizing the arena of modern technologies, include
quantum key distribution [1], quantum communication, [2,3],
quantum computers [4], and devices for metrology [5] like
quantum sensors [6] to name a few. In this respect, designing
quantum thermal machines like the quantum refrigerator [7,8],
quantum battery (QB) [9,10] and thermal transistor [11] has
two motivations—it is important to understand, on one hand,
the concepts of heat, work, and temperature in the microscopic
limit, thereby developing the laws of quantum thermodynam-
ics [12–14] and, on the other hand, how to achieve the optimal
performance from the machines even when there is a com-
petition between thermal and quantum fluctuations. It is also
an interdisciplinary field lying at the crossroads of quantum
optics, nonequilibrium statistical mechanics, and quantum in-
formation theory. Moreover, with the increase of control on
quantum systems, several experiments have been performed
to verify quantum thermodynamical laws like the Jarzynski
equality [15–17] and thermal machines like quantum batteries
[18,19] and quantum refrigerators [20] in several physical
substrates like trapped ions, nuclear magnetic resonances,
solid state systems, organic microcavity, and cold atoms.

The original proposal for the QB considers the initial
battery state as the ground state of a noninteracting Hamilto-
nian which can then be charged by global unitary operations
[9,10,18,21,22]. The main goal of such construction is to show
that the work output or power stored (extracted) in (from)
the battery gets enhanced in presence of quantum-mechanical
systems or quantum operations. Instead of a noninteracting
Hamiltonian, the ground or the thermal state of an interacting
Hamiltonian can also be used as the battery [23,24] while the
local magnetic field in a suitable direction is applied at each

site to maximize the energy storage of the battery. Such a
design turns out to be appropriate even in presence of deco-
herence and disorder [24–26] as well as in higher dimensions
[27].

The evolution of a quantum system is described by a
Hamiltonian which is typically a Hermitian operator. It was
shown that, relaxing the Hermiticity condition, if one consid-
ers non-Hermitian systems with parity-time (PT ) symmetry
[28,29] (with P being the reflection operator in space and
T being the time-reversal operator) or rotation-time (RT )
symmetry (with R being the rotation operator along a fixed
axis) [30], the energy eigenvalues can be real depending on
the system parameters, thereby maintaining all the proper-
ties of standard quantum mechanics and describing natural
processes. However, such a system undergoes a transition
from a broken to an unbroken phase where the energy
spectrum becomes real from imaginary values, known as ex-
ceptional points [28,29]. Several counterintuitive results are
also reported in this framework—when a local PT -symmetric
Hamiltonian acts on a part of an entangled state, it was shown
that there is a violation of the no-signaling principle [31]
which was later settled by Naimark’s dilation [32]. On the
other hand, interesting phases in the ground state of the RT -
symmetric Hamiltonian are also reported [30,33,34] in which
the broken-unbroken transition is found to be connected with
the factorization surface of the corresponding Hermitian mod-
els [35]. Over time, it has been realized that such systems
can have great influences in different branches of physics
ranging from optics [36,37] to electronics [38], Bose-Einstein
condensates [39], and many-body physics [30,33,34,40–43].
Further, it was shown that the performance of quantum sen-
sors can also be improved with non-Hermiticity [44–49].
Interestingly, the optimal time required to evolve the initial
state to an orthogonal one can be made arbitrarily smaller with
the non-Hermitian Hamiltonian [50] while the time scaling
technique can also enhance the quantum control protocol in
non-Hermitian systems [51].
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Motivated by the advantages provided by non-Hermitian
systems, we utilize non-Hermiticity to propose a setup of a
quantum battery. In particular, when the initial state of the
battery is the ground states of the interacting and noninter-
acting Hamiltonian, we use PT - as well as RT -symmetric
Hamiltonians to charge the battery. In both cases, we show
that the power of the battery gets enhanced with the help
of non-Hermitian charging Hamiltonians compared to their
Hermitian counterparts. In particular, we identify a parameter
region where such a beneficial role can be found. We demon-
strate that the maximum power decreases with the anisotropy
parameter of the XY model as a battery in the PT -symmetric
case and as a charger in the RT -symmetric scenarios al-
though, for a fixed anisotropy, non-Hermiticity still provides
a benefit over the Hermitian setup. We also observe that the
energy that can be extracted, measured via ergotropy [9],
coincides with the work output in the evolution and hence the
power computed here quantifies both the storage as well as
extractable power of the QB.

Moreover, the trend of the maximum power saturates to a
finite value for a moderate system size for batteries with both
PT - and RT -symmetric chargers. When the initial state is the
thermal state of the system, the maximum power decreases
with the increase of temperature although some distinct be-
havior due to non-Hermitian evolution is observed in the limit
of infinite temperature.

The implementation of the non-Hermitian quantum bat-
tery proposed here, especially the PT -symmetric charging,
can be carried out by embedding the charging Hamiltonian
in a higher-dimensional space with a suitable modifications.
The original idea [52] suggests that the higher-dimensional
system whose subsystem’s dynamics is governed by the
PT -symmetric Hamiltonian evolves under a unitary opera-
tion, thereby raising a possibility to simulate in experiments
[32]. The caveat is that this way of simulating the PT -
symmetric Hamiltonian should be in the unbroken region. It
was recently shown that the efficiency in measuring a pa-
rameter can be enhanced around the exceptional point of a
PT -symmetric Hamiltonian [44]. A very similar idea of em-
bedding the Hamiltonian in a higher-dimensional system was
also proposed to design a non-Hermitian sensor where weak
measurements are performed in order to get the results in the
broken region [53] (see also Ref. [54]). All these proposals
as well as implementations indicate that the advantage at the
unbroken-broken transition point, i.e., at the exceptional point
reported here, can also be obtained while realizing quantum
batteries in a non-Hermitian domain. In our work, we also
show that the non-Hermitian charger can be realized as an
effective Hamiltonian of a quantum system interacting with
the environment. Specifically, if the quantum jumps are ig-
nored in the master equation, the state undergoes an evolution
corresponding to a non-Hermitian Hamiltonian or a charger in
our case.

The paper is organized in the following manner. In Sec. II,
we set the stage by introducing the quantities which quantify
the performance of the battery. The design of the battery and
its performance when it is charged with the PT -symmetric
Hamiltonian are presented in Sec. III. The results obtained
when the charger has RT symmetry are discussed in Sec. IV.
The concluding remarks are given in the last section, Sec. V.

II. MODELING THE QUANTUM BATTERY
AND ITS FIGURES OF MERITS

A design of a quantum battery has two components: (1) the
battery Hamiltonian and (2) a charger. In this paper, we choose
both ground and the thermal states of interacting as well as
noninteracting Hamiltonians, HB, as the initial state of the
battery. The details of these Hamiltonians will be discussed
in succeeding sections.

A. Non-Hermitian realization of charger
in open-system framework

In general, a charging Hamiltonian is used to excite the
particles to a higher-energy state so that the high amount of
energy gets stored in the QB which can be extracted from
the battery in a suitable time by a unitary operation. In this
paper, instead of a Hermitian Hamiltonian, two non-Hermitian
Hamiltonians having parity-time (rotation-time) symmetry,
HPT (RT )

charging , are used independently as chargers of the battery.
Specifically, we use the well-known quantum PT -symmetric
Hamiltonian [31] and RT -symmetric XY model [30] for the
purpose of charging (for details, see Secs. III and IV). Let
us now describe how the non-Hermitian evolution can be
observed in the dynamics of open quantum systems. When a
system Hamiltonian, denoted as HS , is coupled to an external
environment with a decay rate γ , the dynamics is described by
the Gorini-Kossakowski-Lindblad-Sudarshan (GKLS) master
equation [55] as

dρ

dt
= −i[HS, ρ] + γ

[
LρL† − 1

2
{L†L, ρ}

]

= −i(Heffρ − ρH†
eff ) + γLρL†, (1)

where Heff = (HS − i γ

2 L†L) is the effective Hamiltonian
which is non-Hermitian due to the dissipative processes. It
incorporates the original system Hamiltonian while account-
ing for the decay induced by the environment. Additionally,
the term 1

2LρL† in the GKLS master equation is referred to
as the jump operation. It represents the contribution to the
system dynamics caused by quantum jumps, which occur due
to the environment. However, in the semiclassical limit, it is
often permissible to neglect the effects of the jump operation.
Consequently, the evolution of the system is governed by
the non-Hermitian effective Hamiltonian Heff [56]. Within
the semiclassical approximation, we can focus on the non-
Hermitian evolution of the system, which is given as

dρ

dt
= −i(Heffρ − ρH†

eff ), ρ(t ) = ρ(t )

Tr[ρ(t )]
. (2)

More specifically, in our case, the evolution is governed by

dρ

dt
= −i

[
HPT (RT )

charging ρ − ρ
(
HPT (RT )

charging

)†]
, (3)

such that the dynamical state ρ(t ) is obtained after evolv-
ing the system with a non-Hermitian Hamiltonian as ρ(t ) =
(1/N ) exp(−iHPT (RT )

charging t )ρ(0) exp(iHPT (RT )
charging t ) with N =

Tr[exp(−iHPT (RT )
charging t )ρ(0) exp(iHPT (RT )

charging t )]. Notice that un-
like unitary dynamics governed by a Hermitian Hamiltonian,
we need to normalize the evolved state at each time interval
in the non-Hermitian domain. In the succeeding sections, we
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will explicitly discuss the specific form of the system and bath
Hamiltonian from which the effective non-Hermitian Hamil-
tonian as charger considered in this paper emerges.

The performance of a quantum battery is decided by the
amount of generated power. In order to describe that, we need
the thermodynamic definition of work.

B. Performance quantifiers: Work and power

The work output at a given time instance can be measured
as [9,10] W (t ) = tr{HB[ρ(t ) − ρ(0)]}, where ρ(0) is the ini-
tial state of the battery Hamiltonian, which is taken to be the
ground or the thermal state of HB. The maximal power can be
computed by performing maximization over time as

Pmax = max
t

W (t )

t
= max

t
P(t ), (4)

where P(t ) denotes the average power at some time,
t > 0. In our case, even in presence of non-Hermiticity, P(t )
is always found to be real. In our paper, our primary objective
is to design a battery that maximizes energy storage capacity
by using a non-Hermitian charger. To achieve the maximum
energy storage, we commence the charging process from the
ground state of the Hamiltonian. This choice is motivated by
the fact that the ground state exhibits the maximum separation
from the highest excited state. However, when it comes to
the maximum power in terms of charging, it also optimizes
the time required to reach the highest excited state and hence
the excited state may provide a higher Pmax than that of the
ground state.

In general, when the value of a parameter, e.g., the applied
magnetic field, increases, the amount of power generated triv-
ially increases. In order to maintain a fair comparison between
different situations, we normalize the battery Hamiltonian as

1

Emax − Emin
[2HB − (Emax + Emin)I] → HB, (5)

where the minimum and maximum eigenenergies are denoted
by Emin and Emax respectively. Thus, the spectrum is bounded
between [−1, 1] which ensures that the advantage is not an
artifact of the parameters.

As mentioned, the energy stored in the battery can be
represented as W (t ) although the entire energy may not be
extractable. In other words, the energy that can be extracted
from the battery may not always coincide with the work output
in several scenarios including when the battery is in contact
with the environment [25,26]. The extractable energy, known
as ergotropy, from the battery at some time instance t can be
quantified as [9,25,57]

E = EB(t ) − min
U

tr[HBUρ(0)U †], (6)

where EB(t ) = tr[HBρ(t )] is the average energy at some time
instant and the minimization is over all possible charging
unitary operators. We will later show that the ergotropy is the
same as the energy stored in the situation considered here.

III. ENHANCEMENT OF POWER WITH
PT -SYMMETRIC CHARGER

Let us describe briefly the setup of a quantum battery and
the charger in the non-Hermitian framework. The ground or

the thermal state of the XY Z Hamiltonian in presence of an
external magnetic field, given by

HB = J

4

N∑
r=1

[
(1 + γ )σ x

r σ x
r+1 + (1 − γ )σ y

r σ
y
r+1

]

+ �

4

N∑
r=1

σ z
r σ z

r+1 + h

2

N∑
r=1

σ z
r , (7)

acts as the battery. Here σ i, i ∈ {x, y, z} matrices represent
the Pauli matrices, γ corresponds to the anisotropy in the xy
plane, J and � are the coupling constants in the xy plane
and z direction respectively, and h is the strength of the mag-
netic field. We consider the open-boundary condition. Notice
that with available technologies, the above Hamiltonian can
be controlled and manipulated using physical systems like
cold atoms, trapped ions, and nuclear magnetic resonances
[58–61].

A. PT -symmetric Hamiltonian as a charger

The quantum battery is charged by using a local PT -
symmetric Hamiltonian which can be simulated in the
laboratory [32,62] as a dilation of higher-dimensional Hilbert
space [52,53,63]. It is expressed as

HPT
charging =

N∑
j=1

σ x
j + i sin αiσ

z
j , (8)

where the Hamiltonian possesses parity symmetry, i.e.,
P acts on the Hamiltonian, PHPT

chargingP = H∗PT
charging, where

P = σ x while T is a complex conjugation in finite di-
mension, T iT −1 = −i, where i = √−1. Here αi is the
PT -symmetry (non-Hermiticity) parameter of HPT

charging and
αi = π/2 represents the exceptional point where eigenvectors
and eigenvalues of the local charging Hamiltonian coalesce.

Let us now describe how the charging Hamiltonian in
Eq. (8) can be obtained from the open quantum system for-
malism. We first consider a single spin interacting with a
continuum mode of the electromagnetic field acting as a bath
where the spontaneous emission takes place. The Hamiltonian
of the single spin is represented as HS = σ x

S and the evolution
of the system is governed by the GKLS master equation [56]:

dρ

dt
= −i

[
σ x

S , ρ
] + γ

(
σ−ρσ+ − 1

2
{σ+σ−, ρ}

)
, (9)

for which the effective Hamiltonian can be written as

Heff = σ x − iγ

2
σ+σ−

= σ x − iγ

4
σ z. (10)

Here σ± = σ x ± iσ y are the Lindblad operators due to the
environment where the constant imaginary shift is ignored
[64,65]. In our calculations, instead of using the dissipa-
tion term γ

4 , we choose the non-Hermiticity parameter sin αi

[66]. At αi = 0, the Hamiltonian reduces to the Hermitian
one. Instead of taking αi = 0 which changes the magnetic
field only in the z direction, we can consider the Hermitian
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charger as

HHerm
charging =

N∑
j=1

σ x
j + sin αrσ

z
j , (11)

where αr parameterizes the Hermitian Hamiltonian and the
corresponding average power of the QB is denoted by
PHerm(t, αr ) while PPT (t, αi ) represents the same with the
PT -symmetric charger (see the Appendix). Before proceed-
ing to compute the maximal power produced from the battery,
let us first establish a relation between the ergotropy and the
work output.

Proposition 1. The ergotropy or the extractable work coin-
cides with the energy stored in the system when the initial
state is the ground state of the battery Hamiltonian and it
does not depend on whether the evolution is governed by the
Hermitian or non-Hermitian Hamiltonian.

Proof. The ergotropy (E) is defined as E = Tr[ρ(t )HB] −
min

U
(UρU †HB), which is the maximum amount of energy

extractable from the system. If the initial state of the system is
written in the spectral decomposition as ρ = ∑N

k=1 rk|rk〉〈rk|,
where ris are arranged in the ascending order, it has been
shown [67] that the minimization in the second term of E
occurs for a specific state called the passive state (ρp) associ-
ated with the Hamiltonian HB. The passive state in the energy
eigenbasis can be expressed as

ρp =
N∑

k=1

rN−k|εk〉〈εk|, (12)

where rks represent the eigenvalues of the state and |εi〉s
denote the eigenspectrum of the battery Hamiltonian which
are arranged in the ascending order. Therefore, ergotropy
expression becomes E = Tr[ρ(t )HB] − Tr(ρpHB) = EB(t ) −∑

k rN−kEk , where Ek is the ordered eigenenergy of H . Note
that if the initial state is pure, the final state after the uni-
tary evolution also remains pure. Suppose, the decomposition
contains only a single term, i.e., r1 = 1 and ∀ k 	= 1, rk = 0,
ρp = |ε1〉〈ε1|, representing the ground state of the battery
Hamiltonian. Thus, if the initial state is in the ground state,
the corresponding energy stored is W (t ) = Tr[ρ(t )HB] −
Tr[ρ(0)HB] which coincides with E . Let us now argue that
the above proposition also holds for a non-Hermitian charger.
The non-Hermitian system can be described as an effective
Hamiltonian of a Hermitian system, interacting with the bath,
without the jump operators, as shown in Eq. (10). The evo-
lution can then be seen as |ψ (t )〉 = e−iHeff t |ψ (0)〉, where Heff

is a non-Hermitian Hamiltonian [68]. Thus in the semiclas-
sical limit, if the initial state is pure, it remains so, even
after undergoing evolution corresponding to a non-Hermitian
Hamiltonian [69]. Thus, if the initial state is the ground
state which is the case considered in this paper, the above
proof holds for the non-Hermitian Hamiltonian for all values
of αi. �

Before considering the general battery Hamiltonian, let us
first illustrate the effects of non-Hermiticity on the perfor-
mance of the QB when the initial state is the ground state of
the XX model, i.e., HB with γ = 0 and � = 0. Let us now
analyze Pmax obtained from the PT -symmetric and Hermi-
tian chargers. In these scenarios, when there are two sites,

0.0 0.2 0.4 0.6 0.8 1.0
α/π

−5

0

J
/
|h

|

0.00

0.50

1.00

1.50

δPT
Pmax

FIG. 1. (Color online.) Advantage of non-Hermitian charging
over Hermitian ones in terms of the maximum power. Map plot
of δPT

Pmax
, defined in Eq. (11), with respect to the parameters, α/π

(x axis) and J/|h| (y axis). In the entire parameter regime considered
here, a nonvanishing advantage is obtained, thereby establishing the
benefit of a non-Hermitian PT charger in Eq. (8) over the Hermitian
one [Eq. (11)]. The initial state is the ground state of the battery
Hamiltonian. Note that for the non-Hermitian charger, α = αi while
α = αr for the Hermitian one. All the axes are dimensionless.

we obtain the following proposition on enhancement due to
non-Hermiticity.

Proposition 2. The maximum power output of the battery
made out of two lattice sites in the presence of the PT -
symmetric charger, PPT

max , is higher than that of a QB which is
charged by the Hermitian Hamiltonian, when the initial state
is the ground state of the XX model.

Proof. The ground state |ψ (0)〉 as the initial state of the
XX model takes the form |0001〉 in the computational ba-
sis when J ∈ {−2h, 2h − 0.1}. After evolution with the local
PT -symmetric charging Hamiltonian, the evolved state at
time t , |ψ (t )〉, can be expressed (see the Appendix) as a
function of non-Hermitian parameter, αi, and system parame-
ters, J , h, and time t . We can then straightforwardly compute
the maximal power both for Hermitian and non-Hermitian
cases (see the Appendix for the expressions). To prove the en-
hancement due to the non-Hermitian charger, we consider the
quantity, called as the difference in maximum power between
non-Hermitian and Hermitian domains, given by

δPT
Pmax

= max
t

[PPT (t )] − max
t

[PHerm(t )] = PPT
max − Pherm

max ,

(13)

which is also a function of αi and αr . We provide the analytical
form of the average power P(t ) for non-Hermitian as well as
Hermitian scenarios with respect to the other parameters of
the system in the Appendix [Eqs. (A2) and (A4)]. However,
as it is apparent from those expressions, maximizing with
respect to time and finding the difference between powers
with non-Hermitian and Hermitian chargers would be cum-
bersome and it cannot take a compact form. Instead, we plot
the difference between the maximum power generated via
non-Hermitian and Hermitian chargers, δPT

Pmax
, in Fig. 1. For

the entire region of the interaction strength J/|h| and the
range of interactions, αi(αr ) ∈ [0, π ], we find that δPT

Pmax
> 0,

thereby demonstrating the advantage of non-Hermiticity over
the Hermitian Hamiltonian. �

Let us now illustrate that the advantage persists even with
the increase of system sizes, in presence of anisotropy in the
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0 1 2 3 4 5 6

αi

1.0

1.5

2.0

2.5

3.0
P

m
a
x

N = 5

N = 6

N = 7

FIG. 2. Role of non-Hermiticity. Maximum power output, Pmax

vs non-Hermiticity parameter αi in the charger. The effect of increase
in system size is also depicted by taking different N values. The
initial state of the QB is again taken to be the ground state of the
battery. Here J/|h| = 1 and � = 0 in the battery Hamiltonian, HB in
Eq. (7). All the axes are dimensionless.

battery Hamiltonian and exchange interaction in the z direc-
tion, i.e., with the XXZ model. Proposition 2 shows that for a
given αi, δPT

Pmax
is nonvanishing.

B. Effects of non-Hermiticity and interactions on the QB

We first examine the pattern of maximal extractable power
Pmax from the QB with the variation of αi and the interaction
strength in the xy plane. A few observations immediately
emerge from Figs. 2 and 3. Since the charging Hamiltonian
involves sin αi, the maximal power also shows a periodic
nature with αi as depicted in Fig. 2. In order to compare the
power generated by the charging Hamiltonian possessing PT
symmetry in Eq. (8) with αi 	= 0 and by the Hermitian charger,

−3 −2 −1 0 1 2 3

J/ h

0.5

1.0

1.5

2.0

2.5

3.0

P
m

a
x

αr = π/6

αi = π/6

αr = π/2

αi = π/2

αr = 2π/3

αi = 2π/3

FIG. 3. Interaction dependence. Pmax (ordinate) against J/|h| (ab-
scissa). Different curves represent different non-Hermiticity and
Hermiticity parameters, αi, and αr in Eqs. (8) and (11) respectively.
The PT -symmetric local charger, given in Eq. (8), is applied at each
site of the battery in the non-Hermitian case while the Hermitian
charging Hamiltonian in Eq. (11) is used in the Hermitian scenario.
In both the situations, the XX model acts as the QB. Solid lines
represent Pmax via non-Hermitian chargers, having higher power than
that of the Hermitian ones (the dashed lines). Here N = 8. All the
axes are dimensionless.

2 4 6 8 10 12 14

N

2.2

2.3

2.4

2.5

P
m

a
x

α = π/6

FIG. 4. Scaling: Pmax (ordinate) as a function of N (abscissa). All
other specifications are the same as in Fig. 2. Fitting the data shows
that Pmax ∝ √

N . Both the axes are dimensionless.

given in Eq. (11), we find that

PHerm
max < PPT

max for (0 < αi, αr < π ), (14)

and we drop the superscripts PT and “Herm” in the analy-
sis as it will be evident from the context. Note that in this
region, the charging via PT -symmetric Hamiltonian has a
real energy spectrum [31]. Pmax reaches its maximum value
with the charging Hamiltonian having αi = π/2 which is
the exceptional point, thereby establishing the dependency
of power on non-Hermiticity. Furthermore, we notice that
the optimal state obtained during the maximization of time
required to reach the orthogonal state from the initial one
[50,51] may not always be the excited state from which
Pmax is achieved. To achieve the maximum power output,
the energy stored (i.e., the numerator of Pmax) is higher in
the non-Hermitian case than that of the Hermitian one while
the time in Pmax may not be smaller in the former case than in
the latter one.

The performance of the battery remains almost invariant
with the increase of system size N of the QB Hamiltonian
although the scaling analysis of the QB requires much more
careful investigation which we will do next. It was shown that
the QB can show quantum advantage (i.e., a battery is said
to provide quantum advantage when Pmax is higher for the
battery Hamiltonian having nonvanishing interaction strength
J/|h| 	= 0 than that of the battery with vanishing interaction
strength, i.e., J/|h| = 0), when the initial state of the battery
is the ground state of the XX model [24]. We observe in
Fig. 3 that the non-Hermitian charging Hamiltonian can also
furnish quantum advantage for different values of αi. More-
over, unlike the Hermitian charger, the quantum advantage in
the non-Hermitian framework is observed both in the positive
and negative regions of J/|h| although the sharp continuous
increase in the positive domain is not visible in the negative
domain.

C. Scaling analysis of the QB

We now explore the quantum advantage in our model with
the increase of sites in the lattice. For a fixed αi > 0, we find
that Pmax increases monotonically with N as depicted in Fig. 4.
More careful analysis reveals that Pmax scales not linearly with
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P
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a
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αi = π/2

αi = 2π/3

FIG. 5. Dependence on anisotropy. Pmax (vertical axis) with γ

(horizontal axis) of the QB Hamiltonian for different values of αi.
αi = 0 represents the battery with a Hermitian charger. Other speci-
fications are the same as in Fig. 2. All the axes are dimensionless.

the system size. Specifically, we find

Pmax ∝
√

N,

when the initial state of the QB is the ground state of the
XX model with open boundary condition and the maximum
power saturates slowly with system size. Upon considering a
periodic boundary condition, however, we find that no such
scaling occurs, i.e., we find that Pmax remains constant as the
system size increases.

D. Role of anisotropy and coupling in the z direction

Up to now, the entire analysis is carried out when the
initial battery Hamiltonian is the XX model. As shown in the
Hermitian case [24,27], the presence of anisotropy in the QB
Hamiltonian typically suppresses the performance, i.e., Pmax

decreases with γ for a fixed αi and J/|h| which are chosen
in the region where quantum advantage is seen (see Fig. 5).
However, for nonvanishing αi, we find that the rate of decrease
in Pmax after a certain anisotropy parameter diminishes with γ ;
i.e., after a decrease with γ , Pmax almost saturates for γ > 0.5
which was absent in the Hermitian counterpart as shown with
αi = 0.

The introduction of interaction in the z direction also leads
to a nontrivial effect on the QB’s power extraction—for a
fixed J/|h|, we find that with the decrease of �/|h|(< 0), Pmax

increases for different values of αi and the maximum Pmax is
again obtained with the symmetry-breaking transition point,
i.e., αi = π/2 (as shown in Fig. 6).

E. Thermal state as initial state of QB

It is not possible to achieve the exact ground state of any
Hamiltonian in laboratories. In particular, noise due to ther-
mal fluctuation is unavoidable. To incorporate this imperfect
situation, let us take the thermal state of the form, exp{−β ′HB}

Tr[exp{−β ′HB}]
where β ′ = 1/kBT is inverse temperature (kB being the Boltz-
mann constant and T being the temperature and we take
β = β ′/|J|) as the initial state of the QB. First of all, as one ex-
pects, we obtain the maximum power output from the battery
even in the non-Hermitian framework, when the temperature
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Δ/ h
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P
m

a
x

αi = 0

αi = π/2

αi = 2π/3

FIG. 6. Importance of the XXZ model as battery. Trends of max-
imum power output, Pmax, with respect to the variation of interaction
strength in the z direction, �/|h|, for different values of αi. Clearly,
we observe that the XXZ model as a battery has some beneficial role
over the XX model with J/|h| = 1.0. All other specifications are the
same as in Fig. 2. Both the axes are dimensionless.

of the thermal state is moderately low and Pmax monotoni-
cally decreases with the increase of temperature (the decrease
of β).

At high temperature, a certain abnormality arises in the
non-Hermitian regime. In this respect, notice that with β → 0,
i.e., in presence of infinite temperature, the thermal state of a
Hermitian Hamiltonian, HB, reduces to the maximally mixed
state. When the charging Hamiltonian is Hermitian and when
the initial state is a thermal state with infinite temperature, the
state does not evolve and so trivially the power of the QB van-
ishes. However, with the charging being the PT -symmetric
Hamiltonian, the process is no longer unitary and it is debat-
able whether we can extract power even at high temperature
as seen from Fig. 7. The nonmonotonic behavior of Pmax with
respect to β cannot be observed, when the charging Hamilto-
nian is Hermitian, thereby emphasizing that our selection of a
non-Hermitian charging Hamiltonian introduces a nontrivial
aspect to our paper.

Towards explaining this nonmonotonicity, we compute the
minimum time taken to reach the maximum power, tmin,
during charging. It is motivated by a recent work [70] in which
it was shown that non-Hermitian evolution occurs at a faster
pace compared to its Hermitian counterparts. We observe that
tmin also exhibits a nonmonotonic behavior for small values
of β in the presence of strong non-Hermiticity parameter αi

in the charging Hamiltonian as shown in Fig. 8 [solid (green)
line]. We can argue that along with other system parameters in
the battery Hamiltonian, the nonmonotonic nature of tmin with
β also attributes to the nonmonotonicity in Pmax.

IV. CHARGING BATTERY WITH RT -SYMMETRIC
HAMILTONIAN

Let us reverse the design of the QB and check whether the
benefit due to non-Hermiticity still persists or not. Instead of
an interacting Hamiltonian as the QB, let us take the initial
state as the ground state of the noninteracting Hamiltonian,
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FIG. 7. Temperature dependence of the initial state: Pmax (ordi-
nate) vs β = 1/kBT (abscissa) for different values of αi. The initial
state of the QB is prepared as the canonical equilibrium state of the
XX model while the charger is the PT -symmetric one with αi 	= 0.
Notice that the decreasing behavior of the power with the increase
of temperature is the same as typically observed in the Hermitian
domain. However, close to high temperature, in the framework of
non-Hermitian systems, we find some different behavior than the one
in the Hermitian paradigm. Inset: W (t ) with t for a fixed β = 1.0.
It shows that W (t ) goes negative which is responsible for a non-
monotonic behavior of Pmax at high temperature. All the axes are
dimensionless.

given by

Hnonint
B =

N∑
j=1

σ x
j . (15)

After normalizing the Hamiltonian, the eigenvector corre-
sponding to the eigenvalue −1 is the initial state of the
QB. A charging Hamiltonian in this case is taken to be the
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FIG. 8. Temperature dependence of Pmax and minimum time
taken to achieve Pmax, denoted by tmin. Pmax [dashed line (left ordi-
nate)] and tmin [solid line (right ordinate)] vs β = 1/kBT (abscissa)
for αi = 2π/3. The initial state of the QB is prepared as the canonical
equilibrium state of the XX model while the charger is the PT -
symmetric one with αi = 2π/3. Notice that the decreasing behavior
of the Pmax as well as tmin with the increase of temperature is the
same as typically observed in the Hermitian domain. However, close
to high temperature, in the framework of the non-Hermitian systems,
nonmonotonic behaviors for both the quantities emerge with β. All
the axes are dimensionless.

global non-Hermitian Hamiltonian, an XY model with imag-
inary anisotropy parameter, having RT symmetry, with open
boundary condition, represented as

HRT
charging = J

4

N−1∑
j=1

[
(1 + iγ )σ x

j σ
x
j+1 + (1 − iγ )σ y

j σ
y
j+1

]

+ h′

2

N∑
j=1

σ z
j , (16)

where the operator R rotates the spin by π
2 , i.e., R ≡

e[−i(π/4)
∑N

j=1 σ z
j ] and T is again the complex conjugation.

Note that the charging Hamiltonian does not individually
commute with either of the operators, [HRT

charging,R] 	= 0 or
[HRT

charging, T ] 	= 0 although [HRT
charging,RT ] = 0, thereby mak-

ing it a pseudo-Hermitian Hamiltonian. It has been shown
that in the symmetry-unbroken phase, the Hamiltonian has
real eigenvalues while it contains complex conjugated imag-
inary eigenvalues in the broken phase [30] and the transition
occurs when h ≡ h′/|J| =

√
1 + γ 2. Notice that in this sce-

nario, when the initial battery Hamiltonian is noninteracting,
the interacting Hamiltonian is necessary to charge the bat-
tery for obtaining the quantum advantage (quadratic scaling
of power) which cannot be generated by the noninteracting
charger [71]. When the charging Hamiltonian is Hermitian,
iγ is replaced by γ and is denoted by HHerm

charging. Moreover,
the magnetic fields of non-Hermitian and Hermitian charging
Hamiltonians, HRT

charging and HHerm
charging, are denoted as hi and hr

respectively.
This type of Hamiltonian in Eq. (16) can be realized when

a spin chain with XX interaction is influenced by an envi-
ronment. A dissipative coupling between neighboring sites
can be introduced through reservoir engineering, which has
recently been explored, revealing nonreciprocal photon trans-
mission, persistent currents, and other intriguing phenomena
[56,66,72]. The evolution of the system, in this situation, is
governed by the GKLS master equation due to the presence
of the environment as

dρ

dt
= −[HS, ρ] + κ

∑
j

L[σ−
j ](ρ) +

∑
j

L[g j ({σ })](ρ).

(17)

Here L[A] represents the Lindblad operators associated with
environmental effects such that the second term denotes the
local dissipation, and the third term corresponds to the non-
local dissipation between the sites. The Lindblad operator is
defined as L[A] = AρA† − 1

2 {A†A, ρ}, and the expression for
g j ({σ }) is given by

g j ({σ }) = pσ−
j + qσ+

j + rσ−
j+1 + sσ+

j+1, (18)

where p, q, r, and s represent suitable coupling parame-
ters with the correlated environment, which can be complex,
in general. To produce an RT -symmetric Hamiltonian, we
set p and s to be zero, while q = −γ /

√
2, and r = γ /

√
2.
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Therefore, the resulting effective Hamiltonian can be written
as

Heff = HS − i

2

∑
j

L[g j ({σ })]†L[g j ({σ })]

= HS − iγ

4

∑
j

(σ+
j − σ−

j+1)(σ−
j − σ+

j+1)

=
∑

j

(
h + iγ

4

)
σ z

j + 1

4

[
(1 + iγ )σ x

j σ
x
j+1

+ (1 − iγ )σ y
j σ

y
j+1

]
. (19)

In this Hamiltonian, there are two dissipative terms—one
represents dissipative coupling between subsystems, and the
other one is a local dissipative term represented as (h + iγ

4 )
which can independently be modified by tuning the local
dissipative environment. By neglecting the local dissipative
terms, the effective Hamiltonian reduces to HiXY , given in
Eq. (16).

We will first demonstrate that the non-Hermitian charg-
ing Hamiltonian can produce more power than its Hermitian
counterparts from a QB having two lattice sites.

Proposition 3. The maximum power stored (PRT
max ) of a two-

site quantum battery due to the RT -symmetric XY charger
with transverse magnetic field is greater than that of the
Hermitian XY model provided the strength of the applied
magnetic field is small and is strictly less than unity.

Proof. To prove it, we compare the cases when the
charging is Hermitian, i.e., γ = −iγ ′, and when it is non-
Hermitian, γ = γ ′. We take the ground state of the normalized
Hamiltonian, Hnonint

B , |ψ (0)〉 = 1√
2
[1 −1 −1 1]T , with

eigenvalue = −1 as the initial state of the QB. After applying
the evolution due to the charging, the evolved state is |ψ (t )〉 =

e
−iHRT

chargingt |ψ (0)〉
tr[e

−iHRT
chargingt |ψ (0)〉]

= |ψ (t )〉 = 1√
N [A B B C]T , where

the expressions for A, B, C, and N are given in the Appendix.
It is possible to compute PRT (t ) and the corresponding
PHerm(t ) (see the Appendix) and hence again we compute the
difference, given by:

δRT
Pmax

= max
t

[PRT (t )] − max
t

[PHerm(t )] = PRT
max − PHerm

max

(20)

for γ ′ ∈ {0, 1} and h ∈ {0, 2}. As shown in Fig. 9, there exists
a region of h, i.e., when h < 0.8, δRT

Pmax
> 0. It implies that

the non-Hermitian charger clearly gives some benefit over the
Hermitian ones. �

Remark. The upper bound on h shown in Proposition 2
which is not unity is possibly due to the finite-size effect.
We will also show that with a moderate system size, the
battery with a non-Hermitian charger provides a higher max-
imal power than that of the Hermitian ones when h < 1.0,
irrespective of the values of γ which controls its non-
Hermiticity in the later part of the section (see Fig. 11) (we
drop the superscripts RT and “Herm” in the analysis as it
will be evident from the context).

0.0 0.2 0.4 0.6 0.8 1.0
γ′

0

1

2

h

−0.12

0.00

0.12

0.24

0.36

δRT
Pmax

FIG. 9. Non-Hermitian effects on the QB. Map plot of δRT
Pmax

with
the variation of parameters in the charging Hamiltonian, γ ′ (hori-
zontal axis) and h (vertical axis). The initial state is the ground state
of the noninteracting battery Hamiltonian, Hnonint

B given in Eq. (15).
Note that in Fig. 1, the difference was plotted with respect to the bat-
tery Hamiltonian. However, both the plots manifest some advantage
in presence of the non-Hermitian charger over the Hermitian one.
Here N = 2. Both the axes are dimensionless.

A. Effect of the RT -symmetric charger on power

We compare the maximum power generated via the non-
Hermitian model corresponding to applied magnetic field,
denoted with hi and Pmax produced by the Hermitian model
having applied field hr with the variation of γ ′ in Fig. 10.
It is evident that the difference between generated power by
non-Hermitian and Hermitian chargers, δRT

Pmax
, is maximum

when hi(r) is small, decreases with the increase of hi(r), and
finally becomes negative for high values of hi(r), i.e., when
hi(r) > 1. More precisely, the observations can be listed as
follows.

(1) When hi(r) ≈ 0.5 < 1.0, the non-Hermitian charging
admits higher Pmax compared to the Hermitian ones ∀ γ ′. For
high γ ′, e.g., for γ ′ � 0.6, the maximum generated power,
Pmax, is small for the Hermitian case and in this regime non-
Hermitian advantage is more pronounced than that of low γ ′.

(2) Let us consider the case with hi(r) ≈ 1.005. In this
domain, both non-Hermitian and Hermitian chargings lead to

0.0 0.2 0.4 0.6 0.8 1.0
γ′

0.2

0.4

0.6

0.8

1.0

P
m
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x
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hi = 1.55

hr = 1.55

FIG. 10. Comparison between Hermitian and non-Hermitian
chargers: Pmax (ordinate) vs γ ′ (abscissa). Solid lines represent non-
Hermitian charger in Eq. (16) (γ = γ ′) while dashed lines represent
the Hermitian ones (γ = −iγ ′), representing the XY model. The
ground state of the noninteracting battery Hamiltonian represents
the initial state of the QB as in Fig. 9. Here hi and hr represent the
non-Hermitian and Hermitian chargers respectively. The system size
is taken to be 8, i.e., N = 8. Both the axis are dimensionless.

042207-8



QUANTUM BATTERY WITH NON-HERMITIAN CHARGING PHYSICAL REVIEW A 109, 042207 (2024)

2 4 6 8 10
N

0.1

0.2

0.3

0.4

0.5

0.6
P

m
a
x

γ′ = 0.8

hi = 0.5

hr = 0.5

hi = 0.95

hr = 0.95

hi = 1.1

hr = 1.1

FIG. 11. Scaling of the QB with RT -symmetric charger: Pmax (y
axis) vs N (x axis) for γ ′ = 0.8. All other specifications are the same
as in Fig. 10. Both the axes are dimensionless.

almost the same Pmax value, thereby exhibiting no advantage.
Interestingly, δRT

Pmax
vanishes with the increase of N .

(3) Going beyond hi(r) > 1, e.g., 1.5, the performance of
the QB in terms of Pmax with the Hermitian charger outper-
forms the corresponding non-Hermitian QB.

Therefore, close inspection reveals that like the PT -
symmetric charger, the RT -symmetric charging Hamiltonian
has potential to give benefit provided the charging Hamilto-
nian is tuned in a suitable way. Note that the initial battery
Hamiltonian also plays an important role for obtaining gain
from the non-Hermitian charger. For example, if one chooses
a battery Hamiltonian to be a nearest-neighbor Ising model,
HB = ∑N

i=1 σ x
i σ x

i+1 and the same non-Hermitian charger in
Eq. (16) is used to evolve the ground state of such an inter-
acting Hamiltonian, there exists a region of parameters for
which advantage is absent (δRT

Pmax
< 0) for N � 2 while the

noninteracting battery Hamiltonian in Eq. (15) performs better
(δRT

Pmax
> 0) for the same set of parameters.

B. Effect of system size on power

It is natural to ask whether the improvements remain valid
even when one wants to design a battery with a reasonable
system size. Until now, it has been exhibited for N = 2 and 6.
For a fixed γ ′, we check whether the advantage is just a nu-
merical artifact or not by comparing Pmax with N for different
exemplary values of hi(r). As depicted in Fig. 11, we observe
that Pmax saturates to a fixed value with the system size N ir-
respective of γ ′ values and the strength of the magnetic fields,
hi and hr . Hence Pmax of a QB consisting of a reasonable
number of lattice sites continues to be advantageous in the
non-Hermitian case provided the magnetic field in the charger
is adjusted properly.

C. Temperature dependence of power

We have already observed some nontrivial effects on the
power output of the QB with PT -symmetric charger when
the initial state is the thermal state, ρβ with β = β ′/|J|. It in-
creases with the decrease of temperature (see Fig. 12), thereby
showing detrimental effects on power in presence of thermal
fluctuation. Like the PT -symmetric case, Pmax is close to zero
in the limiting case, i.e., β → 0 although it does not vanish
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FIG. 12. Effects of thermal fluctuations on the non-Hermitian
battery. The maximal power (ordinate) against β = β ′/|J| (abscissa)
where the initial state is prepared as the thermal state of the bat-
tery. The charging is again by the RT -symmetric Hamiltonian with
γ ′ = 0.8. All other specifications are the same as in Fig. 10. Both the
axes are dimensionless.

exactly like the unitary dynamics. Interestingly, however, δRT
Pmax

is small when the temperature is moderately high. In other
words, the superiority of non-Hermitian (Hermitian) systems
over Hermitian (non-Hermitian) ones gets pronounced with a
moderate temperature of the initial state of the QB.

V. CONCLUSION

The dynamics of quantum systems governed by the non-
Hermitian Hamiltonian have attracted lots of attention in
recent times. On the other hand, the evolution of a quantum
system plays an important role to build quantum technolo-
gies, like thermal machines. Among several quantum thermal
devices, a prominent one is the quantum battery which shows
a better storage capacity with the help of quantum mechanics
than the classical models.

We incorporated non-Hermitian evolution in constructing
QBs. Specifically, we used both PT - and RT -symmetric
charging Hamiltonians to charge the ground state of an inter-
acting and noninteracting Hamiltonian respectively. We also
provided possible realizations of such chargers as an effective
description of quantum systems interacting with an environ-
ment. When the battery consists of two sites, we analytically
proved that the maximum power with non-Hermitian charg-
ers gets enhanced compared to their Hermitian counterparts
provided the system parameters are tuned appropriately. In
the case of a local PT -symmetric charger, when the initial
state of the QB is the ground state of the XY model with
the transverse magnetic field having a moderate system size,
we demonstrate that it can produce extractable power which
cannot be obtained with the QB Hamiltonian without inter-
actions, thereby showing quantum advantage. Moreover, we
find that the power scales with

√
system size, thereby exhibit-

ing the persistence of non-Hermitian advantage even in the
macroscopic limit.

Starting with the ground state of the noninteracting Hamil-
tonian, we demonstrated that the interacting RT -symmetric
charger has also potential to generate a higher amount of
power in the QB than that of the corresponding Hermitian
charger provided the magnetic field in the charging is ad-
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justed appropriately. We also observed that the power also
saturates to a nonvanishing finite value both in the Hermi-
tian and non-Hermitian scenarios with the increase of system
size.

Beyond the zero-temperature scenario, if the initial state of
the battery is the thermal state and the charging Hamiltonian
is non-Hermitian, interesting nontrivial results emerge—as
expected, the maximum power decreases with the increase
of temperature although unlike Hermitian systems it does not
vanish at infinite temperature.

The construction of a quantum battery proposed in the
framework of non-Hermitian quantum mechanics and the ad-
vantages reported here open up a possibility to design other
quantum technologies including quantum heat engines and re-
frigerators in this paradigm. It will be an interesting direction

to explore the possible implementations of these devices using
currently available technologies.
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APPENDIX: ANALYTICAL EXPRESSION OF POWER IN PT - AND RT -SYMMETRIC CHARGING

1. Battery based on the PT -symmetric charger

The evolved state of a system consisting of two lattice sites at later time t with the evolution operator constructed via HPT
charging

reads as

|ψ (t )〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

− cos2 αi csc2(t cos αi )
cos4(αi+t cos αi ) csc4(t cos αi )+cos2(αi+t cos αi ) csc2(t cos αi )+1

− i cos2(αi ) cos[αi+t cos(αi )] sin[t cos(αi )]
cos4[αi+t cos(αi )]+2 sin2[t cos(αi )] cos2[αi+t cos(αi )]+sin4[t cos(αi )]

− i cos2(αi ) cos[αi+t cos(αi )] sin[t cos(αi )]
cos4[αi+t cos(αi )]+2 sin2[t cos(αi )] cos2[αi+t cos(αi )]+sin4[t cos(αi )]

cos2(αi )
sec2[αi+t cos(αi )] sin4[t cos(αi )]+sin2[t cos(αi )]+cos2[αi+t cos(αi )]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A1)

where the initial state |ψ (0)〉 = |0001〉 is the ground state of the Hamiltonian, HB, when J ∈ [−2h, 2h − 0.1]. We can express
the form of the power which depends on the parameter of the system, given by

PPT (t, h, J, αi ) = −h cos4[αi + t cos(αi )] + h sin4[t cos(αi)] + J cos2[αi + t cos(αi )] sin2[t cos(αi )]

ht{cos4[αi + t cos(αi)] + 2 cos2[αi + t cos(αi )] sin2[t cos(αi )] + sin4[t cos(αi)]}
+ 1

t
. (A2)

We calculate the power generated when the HPT
charging is replaced with its Hermitian counterpart as

HHerm
charging =

N∑
j=1

σ x
j + sin αrσ

z
j . (A3)

In the Hermitian domain, the average power takes the form

PHerm(t, h, J, αr )

= −h cos 4αr + cos 2αr (8h − 2J )+ cos(t
√

6−2 cos 2αr )(cos 2αr (4h+2J )−12h−2J )−7h−J cos(2t
√

6−2 cos 2αr )+3J

ht (−6 cos 2αr +0.5 cos 4αr + 9.5)

+ 1

t
. (A4)

Comparing PPT (t, h, J, αi ) and PHerm(t, h, J, αr ), and optimizing over time, we can find that the difference δPT
Pmax

is positive in
J ∈ [−2h, 2h − 0.1], thereby establishing non-Hermitian enhancement.

2. QB with RT -symmetric charger

The ground state of the normalized Hamiltonian, Hnonint
B which is the initial state of the QB reads as

|ψ (0)〉 = 1

2

⎛
⎜⎜⎜⎜⎜⎝

1

−1

−1

1

⎞
⎟⎟⎟⎟⎟⎠, (A5)
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with eigenvalue = −1. The evolution operator based on HRT
charging acts on the initial state and produces the evolved state, given by

|ψ (t )〉 = 1

tr
[
e−iHRT

chargingt |ψ (0)〉]e−iHRT
chargingt |ψ (0)〉, (A6)

which reduces to

|ψ (t )〉 = 1√
N

⎛
⎜⎜⎜⎜⎜⎝

A

B

B

C

⎞
⎟⎟⎟⎟⎟⎠. (A7)

Here

A = γ sinh
(

1
2 t

√
γ 2 − 4h2

)
2
√

γ 2 − 4h2
+ 1

2

(
cosh

(
1

2
t
√

γ 2 − 4h2

)
− 2ih sinh

(
1
2 t

√
γ 2 − 4h2

)
√

γ 2 − 4h2

)
,

B = −cos(t/2)

2
+ i sin(t/2)

2
,

C = γ sinh
(

1
2 t

√
γ 2 − 4h2

)
2
√

γ 2 − 4h2
+ 1

2

(
cosh

(
1

2
t
√

γ 2 − 4h2

)
+ 2ih sinh

(
1
2 t

√
γ 2 − 4h2

)
√

γ 2 − 4h2

)
,

N = γ
√

γ 2 − 4h2 sinh(t
√

γ 2 − 4h2) + γ 2 cosh(t
√

γ 2 − 4h2) + γ 2 − 8h2

2γ 2 − 8h2
.

We compute the power in Eq. (4), when the charging is performed by HRT
charging with γ = γ ′, given by

PRT (t ) = 2 cos
(

t
2

)[
(γ ′2 − 4h2) cos

(
t
2

√
4h2 − γ ′2) − γ ′√4h2 − γ ′2 sin

(
t
2

√
4h2 − γ ′2)]

t | cos(
√

4h2 − γ ′2t )γ ′2 + γ ′2 −
√

4h2 − γ ′2 sin(
√

4h2 − γ ′2t )g − 8h2|
+ 1

t
, when γ ′2 < 4h2, (A8)

and

PRT (t ) = 1 − 2 cos
(

t
2

)[
γ ′√γ ′2 − 4h2 sinh

(
1
2 t

√
γ ′2 − 4h2

) + (γ ′2 − 4h2) cosh
(

1
2 t

√
γ ′2 − 4h2

)]
t | cosh(

√
γ ′2 − 4h2t )γ ′2 + γ ′2 +

√
γ ′2 − 4h2 sinh(

√
γ ′2 − 4h2t )γ ′ − 8h2|

, when γ ′2 > 4h2. (A9)

When the charger is Hermitian, HHerm
charging with γ = −iγ ′, the generated power can be computed as

Pherm(t ) = 1 −
γ ′ sin ( t

2 ) sin ( 1
2 t
√

γ ′2+4h2 )√
γ ′2+4h2

+ cos
(

t
2

)
cos

(
1
2 t

√
γ ′2 + 4h2

)
t

, when γ ′2 + 4h2 	= 0. (A10)

To demonstrate the benefit of the non-Hermitian charger, we introduce a quantity, δPT (RT )
max , which represents the difference

between the maximum power achieved through non-Hermitian and Hermitian charging processes, as given in Eqs. (13) and (20).
A positive value of δPT (RT )

max signifies the advantageous role played by non-Hermiticity. Consequently, our paper focuses on
identifying regions within the parameter space where δPT (RT )

max > 0, and we highlight regions in Figs. 1 and 9. Our paper reveals
that the presence of PT (RT ) symmetry within the charging Hamiltonian yields favorable effects on energy storage within the
quantum battery, surpassing those of the Hermitian counterpart.
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