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As with a Bell inequality, Hardy’s paradox manifests a contradiction between the prediction given by quantum
theory and local hidden-variable theories. In this work, we give two generalizations of Hardy’s arguments
for manifesting such a paradox to an arbitrary, but symmetric, Bell scenario involving two observers. Our
constructions recover that of Meng et al. [Phys. Rev. A 98, 062103 (2018)] and that first discussed by Cabello
[Phys. Rev. A 65, 032108 (2002)] as special cases. Among the two constructions, one can be naturally interpreted
as a demonstration of the failure of the transitivity of implications (FTI). Moreover, one of their special cases is
equivalent to a ladder-proof-type argument for Hardy’s paradox. Through a suitably generalized notion of success
probability called degree of success, we provide evidence showing that the FTI-based formulation exhibits a
higher degree of success compared with all other existing proposals. Moreover, this advantage seems to persist
even if we allow imperfections in realizing the zero-probability constraints in such paradoxes. Explicit quantum
strategies realizing several of these proofs of nonlocality without inequalities are provided.
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I. INTRODUCTION

In the thought-provoking paper by Einstein et al. [1],
the strong correlations between measurement outcomes have
led them to suspect that quantum theory could be somehow
completed (with additional variables). This was eventually
shown to be untenable by Bell [2], who proved that no local
hidden-variable (LHV) models can reproduce all quantum-
mechanical predictions. In particular, he demonstrated how,
with the help of so-called Bell inequalities, one can experi-
mentally falsify the predictions of LHV models. Today, we
know that Bell nonlocality not only opens the door to answer
fundamental questions in physics but also serves as an im-
portant resource for device-independent quantum information
[3,4].

Interestingly, Bell inequalities are not the only way to
manifest Bell nonlocality [3]. Indeed, Greenberger, Horne,
and Zeilinger (GHZ) [5] showed in their seminal work
that a logical contradiction can be demonstrated between
the quantum mechanical prediction on a four-qubit GHZ
state and that of any deterministic LHV model (DLHVM).
Soon after, such a contradiction was also provided for a
three-qubit GHZ state [6] and a two-qubit singlet state [7].
This last construction, in particular, was adapted to give the
well-known Peres-Mermin game [8] for showing quantum
pseudotelepathy.

A common feature of these logical proofs is that they rely
strongly on the perfect correlation of maximally entangled
states. In contrast, Hardy [9] provided a different type of log-
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ical proof of “nonlocality without inequality” for a partially
entangled two-qubit state. In Hardy’s proof, a contradiction
comes about only when a certain event is observed, see Fig. 1.
The probability at which this event occurs is thus commonly
called the success probability, as it facilitates (initiates) the
chain of logical reasoning in Hardy’s arguments.

Hardy’s original proof was soon generalized to cater for
certain bipartite quantum states of arbitrary local Hilbert
space dimension [10], an arbitrary number of qubit sys-
tems [11] (see also [12,13]), an arbitrary partially entangled
two-qubit state [14], and later to an experimental scenario in-
volving an arbitrary number of binary-outcome measurement
settings [15]. In the meantime, Stapp’s reformulation [16] of
Hardy’s argument (which leads to the so-called Hardy para-
dox) made clear [17] that the paradox can also be interpreted
as the failure of the transitivity implications (FTI), thereby
demonstrating Bell nonlocality.

Several years later, relaxations of Hardy’s original formu-
lation were also proposed. For example, motivated by Kar’s
observation [18] that no mixed two-qubit entangled states
exhibit Hardy’s paradox, Liang and Li [19,20] generalized
Hardy’s argument by relaxing one of the equality constraints
to an inequality constraint (see also Ref. [21]). Indeed, their
construction allowed them to demonstrate a Hardy-type log-
ical contradiction for certain mixed two-qubit states via a
generalized notion of success probability, called degree of
success in Ref. [22]. Subsequently, Kunkri et al. [23] showed
that this generalization could give a higher degree of success
compared to the original formulation in Ref. [14]. A brief
discussion of a further generalization from Cabello and that
of Liang-Li to a scenario with an arbitrary number of mea-
surement settings was subsequently given in Ref. [24].
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FIG. 1. Schematic representation of (a) Hardy’s argument and
(b) Stapp’s reformulation [16] for demonstrating the inadequacy
of DLHVMs in reproducing quantum predictions. Here, Ax and By

represent, respectively, the outcome (0 or 1) observed by Alice and
Bob when she performs the xth measurement and he performs the
yth measurement. In a DLHVM, the implications (black arrows) and
the forbidden event (red) imply that the event A1 = B1 = 1 is also
forbidden, yet quantum theory defies this implication.

Indeed, a noticeably higher success probability (or degree
of success) can be obtained if we are willing to consider a
Bell scenario with more measurement settings [15,24], out-
comes [25], or both [26]. As with Ref. [26], in this work, we
propose two generalizations of Hardy’s arguments applicable
to an arbitrary (symmetric) bipartite Bell scenario, which
recovers, respectively, that of Ref. [26] and that discussed
by Refs. [20,23,24] as a special case. We provide evidence
showing that the one that can be interpreted as a demonstration
of FTI leads to a degree of success higher than all those
offered by other existing proposals, even in the presence of
imperfections.

II. HARDY’S PARADOX AND ITS GENERALIZATION IN
THE SIMPLEST BELL SCENARIO

A. Hardy’s original formulation

Consider the simplest Clauser-Horne-Shimony-Holt
(CHSH) Bell scenario, i.e., one in which two observers
each perform two binary-outcome measurements. Let x
and y represent, respectively, Alice’s and Bob’s settings
(also called inputs) while a and b are their outcomes (also
called outputs). Moreover, let Ax(By) = 0, 1 denotes the
outcome of Alice (Bob) when given input x (y) = 0, 1. The
probability distribution {P(a, b|x, y) = P(Ax, By)} admissible
in LHV models can be described by convex mixtures of local
deterministic strategies {Ax = fA(x, λ), By = fB(y, λ)}, where
fA ( fB) is a deterministic function of the input x (y) and LHV
λ. The Hardy paradox of Ref. [14] is encapsulated by

P(0, 0|0, 0) = 0, P(1, 1|0, 1) = 0,

P(1, 1|1, 0) = 0, P(1, 1|1, 1) = q > 0. (1)

For DLHVMs, the equality constraints of Eq. (1) imply
P(1, 1|1, 1) = 0, which contradicts the inequality constraint
of Eq. (1). In other words, together with the equality con-
straints, the occurrence of the event x = y = a = b = 1
contradicts the prediction of any DLHVM. Consequently,
the quantity q ≡ P(1, 1|1, 1) is also known as the success
probability. In quantum theory, it is known [27] that the
maximal attainable success probability is 5

√
5−11
2 ≈ 9.02%.

Finally, note that a general LHV model can always be seen
mathematically as a convex mixture of DLHVM. Thus, the
observation of Eq. (1) also rules out a general LHV model.

B. Generalization due to Cabello-Liang-Li

Cabello’s [21] relaxation of Hardy’s argument, originally
proposed for a tripartite scenario and subsequently applied in
the bipartite scenario by Liang and Li [20], takes the form

P(0, 0|0, 0) = p, P(1, 1|0, 1) = 0,

P(1, 1|1, 0) = 0, P(1, 1|1, 1) = q. (2)

Hereafter, we refer to this as the Cabello-Liang-Li (CLL) ar-
gument. Compared with Eq. (1), we see that in this argument,
P(0, 0|0, 0) is allowed to take a nonzero value. From Fig. 1(a),
we see that for any DLHVM, if the event x = y = a = b =
1 occurs, so must the event x = y = a = b = 0. However,
there exist other local deterministic strategies (e.g., one where
a = b = 0 regardless of x and y) where the latter event oc-
curs while the former does not. Thus, for the prediction of
a general LHV model, we must have p ≡ P(0, 0|0, 0) � q ≡
P(1, 1|1, 1). In other words, one may take the positive value
of the quantity

q − p = P(1, 1|1, 1) − P(0, 0|0, 0) (3)

as a witness for successfully demonstrating a logical contra-
diction based on such an argument. In Ref. [23], the authors
refer to q − p as the success probability of such an argument.
However, since q − p is the difference between two condi-
tional probabilities, we shall follow Ref. [22] and refer to
q − p instead as the degree of success (DS). In Ref. [23], the
authors showed that this DS can reach ∼10.79%.

C. Our generalization based on FTI

Now, let us revisit Eq. (1) and see how a nonzero value of
q can be understood as a failure of the transitivity of implica-
tions (FTI), thanks to Stapp’s formulation of Hardy’s paradox
in Ref. [16]. To this end, note from the two zero constraints
on the left of Eq. (1) that they entail not only the inferences of
Fig. 1(a), but also those of Fig. 1(b), i.e.,

A1 = 1 ⇒ B0 = 0 ⇒ A0 = 1. (4)

Thus, if q > 0, meaning that the event A1 = 1 and B1 = 1 can
simultaneously occur with some nonzero probability, and if
implications are transitive (as in classical logic), it must be
the case that, at least sometimes, B1 = 1 ⇒ A0 = 1. However,
this contradicts the remaining zero constraint in Eq. (1), thus
manifesting an FTI.

Using this reformulation, we now provide a different relax-
ation of Hardy’s paradox via

P(0, 0|0, 0) = 0, P(1, 1|0, 1) = r,

P(1, 1|1, 0) = 0, P(1, 1|1, 1) = q. (5)
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From Fig. 1(b), we see that for any DLHVMs, if the event
x = y = a = b = 1 occurs, so must the event for x = 0 and
y = a = b = 1. However, there are local deterministic strate-
gies where the converse does not hold. Thus, for a general
LHV model (obtained by averaging the deterministic ones),
we must have r ≡ P(1, 1|0, 1) � q ≡ P(1, 1|1, 1). Hence, in
analogy with the CLL argument, we refer to

q − r = P(1, 1|1, 1) − P(1, 1|0, 1) (6)

as the DS of such an argument. In Ref. [28], it was shown that
in quantum theory, the largest value of q − r is 1

8 = 12.5%,
attainable by performing projective measurements on a two-
qubit pure state and higher than that achievable with Eq. (2).

1. Maximal degree of success for two-qubit pure states

In fact, the general two-qubit pure state and observables
satisfying the zero-probability constraints of Eq. (5) are [28]

|ψ〉 = sin θ (cos α |0〉 − sin α |1〉)|1〉 + cos θ |1〉|0〉 , (7a)

A0 = σz, A1 = cos 2α σz − sin 2α σx,

B0 = σz, B1 = cos 2β σz − sin 2β σx, (7b)

where θ, α, β ∈ [0, π ]. From here, the corresponding DS of
Eqs. (6) and (7), as a function of the parameters θ , α, and β,
can be shown to be

Psucc(θ, α, β ) = 1
2 sin α[(cos 2β cos 2θ − 1) sin α

+ sin 2β sin 2θ ]. (8)

Naturally, one may wonder which entangled two-qubit pure
state gives the largest value of Psucc. To this end, note that the
entanglement of the two-qubit state of Eq. (7a), as measured
according to the concurrence [29], is

C(|ψ〉) = | sin 2θ cos α|. (9)

Using variational techniques, the largest DS that we have
found for given concurrence C is

P∗
succ(C) =

√
1 − C2

2
(1 −

√
1 − C2), (10)

for which θ = β ∈ {π
4 , 3π

4 }. From Fig. 2, it is clear that for
any given concurrence, this DS is always larger than that from
the CLL argument, which, in turn, is larger than that from
Hardy’s original formulation. For completeness, we include
in Appendix A the parametric form of the maximal DS as
a function of the concurrence for the CLL argument and
Hardy’s original formulation.

2. FTI argument with imperfections

Evidently, imperfections in any realistic experimental
scenario make it essentially impossible to realize the zero-
probability equality constraints in all these different formu-
lations. To understand the impact of these imperfections, we
now relax Eq. (5) and consider

P(0, 0|0, 0) � ε, P(1, 1|0, 1) = r,

P(1, 1|1, 0) � ε, P(1, 1|1, 1) = q, (11)

FIG. 2. The maximal DS (which reduces to the success probabil-
ity in the Hardy argument) in demonstrating a proof of nonlocality
without inequality for given concurrence [29]. From top to bottom,
we plot q − r of Eq. (5) for our FTI argument (red, solid), q − p of
Eq. (2) for CLL’s argument (green, dashed, see Ref. [23]), and q of
Eq. (1) for Hardy’s argument (blue, dashed-dotted, see Ref. [14]).
Note that the entangled state that gives the largest DS differs from
one formulation to the other.

where ε is the tolerance from a deviation of the zero-
probability equality constraints.1 Then, the maximal DS
allowed in an LHV theory satisfies

q − r − 2ε = P(1, 1|1, 1) − P(1, 1|0, 1) − 2ε
L
� 0, (12)

which follows from the following rewriting [22,27] of the
Clauser-Horne Bell inequality [30]:

P(1, 1|1, 1) − P(1, 1|1, 0) − P(1, 1|0, 1) − P(0, 0|0, 0)
L
� 0.

(13)

From Eq. (12), we see that when an ε deviation from the zero-
probability constraints is allowed, it is expedient to consider,
instead, q − r − 2ε as the generalized DS. That is, whenever
this quantity is nonzero, we again find a contradiction with the
prediction given by all LHV theories.

For the CLL argument, a similar discussion has been made
in Ref. [22], giving rise to a generalized DS of q − p − 2ε,
see Eq. (2). In Fig. 3, we show the corresponding maximal
generalized DS (MGDS), i.e., the largest value of q − r − 2ε

from Eq. (11) and q − p − 2ε from Eq. (2) when the tolerance
ε ∈ (0, 0.5). Our results clearly show that for any amount of
tolerance in this range, the FTI argument generally gives a
somewhat higher MGDS compared to the CLL one. More-
over, as we see from Fig. 3, the MGDS for both arguments
increases when ε increases from zero up to some critical
value. Qualitatively, we can appreciate this by noting that
when the zero-probability constraints are slightly relaxed, the

1Note that ε should not be understood as an uncertainty in the
estimation of the conditional probability; otherwise, similar toler-
ance should also be included in the expression for P(1, 1|0, 1) and
P(1, 1|1, 1).
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FIG. 3. MGDS as a function of the deviation ε from the zero-
probability constraints. The top curve (red, solid) shows a lower
bound on the MGDS for our FTI argument (obtained by optimizing
over two-qubit states and projective measurements); the middle curve
(green, dashed) shows an upper bound on the MGDS for CLL’s
argument (see also Ref. [22]) obtained using level 3 of the SDP
hierarchy described in Ref. [31]. The inset highlights the difference
between the two MGDS (provided by FTI’s MGDS less the CLL’s),
which is always positive within a numerical precision of 10−7. Note
that two probabilities coincide when ε ≈ 0.0730.

range of available nonlocal quantum strategies also increases.
Nonetheless, when ε is sufficiently large, we see from Eq. (12)
that a nonzero generalized DS must involve a P(1, 1|1, 1)
close to unity and a P(1, 1|0, 1) close to 0, i.e., the correspond-
ing 
P must become close to that producible by a DLHVM,
thereby resulting in a decrease in MGDS.

Note that for our relaxed FTI argument of Eq. (11), upper
bounds on the MGDS (from level 3 of the semidefinite pro-
gramming (SDP) hierarchy introduced in Ref. [31]) coincide
with the lower bounds (based on a two-qubit pure state with
rank-1 projective measurements) to within a numerical preci-
sion of 10−7. However, for the CLL argument, if we consider
only qubit strategies, then as already noted in Ref. [22, Fig. 1],
there appears to be a gap between the MGDS achievable with
such strategies and the SDP upper bound (for ε1 � ε < ε2,
where ε1 = 0.158, ε2 = 0.5). Upon closer inspection, we find
that for every ε in this interval, the SDP upper bound on
MGDS is attainable to within the same precision by consid-
ering an appropriate convex mixture of the qubit strategy for
ε = ε1 and ε = ε2, or equivalently, a ququart strategy obtained
from their direct sum. That is, we can saturate the SDP upper
bound for ε = pε1 + (1 − p)ε2 by mixing the quantum strate-
gies for ε = ε1 and ε = ε2, respectively, with weight p and
1 − p while fulfilling all other constraints, cf. Eq. (2) with
tolerance ε.

III. GENERALIZATION OF HARDY’S PROOF BEYOND
THE SIMPLEST BELL SCENARIO

Having understood how Hardy and Hardy-type paradoxes
work in the simplest Bell scenario, the time is now ripe to
discuss their generalization to more complex Bell scenarios.

In this section, we propose, respectively, a generalization of
both the Hardy-type paradox of CLL, Eq. (2), and that based
on FTI, Eq. (5), to an arbitrary bipartite k-input d-output Bell
scenario, i.e., one in which both parties have a choice over k
alternative d-outcome measurements.

A. Generalization of CLL Hardy-type paradox

Specifically, for the CLL Hardy-type paradox, the follow-
ing conditions on the joint conditional probabilities:

P(Ak−1 < Bk−1) = q, if k ∈ odd,

P(Ak−1 > Bk−1) = q, if k ∈ even, (14a)

P(Ai > Bi−1) = 0, ∀ i ∈ odd ∩ {1, . . . , k − 1}, (14b)

P(Ai < Bi−1) = 0, ∀ i ∈ even ∩ {1, . . . , k − 1}, (14c)

P(Ai−1 > Bi ) = 0, ∀ i ∈ odd ∩ {1, . . . , k − 1}, (14d)

P(Ai−1 < Bi ) = 0, ∀ i ∈ even ∩ {1, . . . , k − 1}, (14e)

P(A0 < B0) = p, (14f)

together with q > p define our generalization of this paradox,
where the outcomes Ax, By may take d possible values, say,
from {0, 1, . . . , d − 1}. For the special case of p = 0, one
obtains a generalization of the original Hardy paradox to an
arbitrary bipartite k-input d-output Bell scenario. If we fur-
ther set d = 2, then the construction reduces to one equivalent
(under relabeling of inputs and outputs) to the ladder proof of
nonlocality [15]. If, instead, we take d = 2 in Eq. (14) without
setting p = 0, one obtains the argument briefly discussed in
Ref. [24]. All these relations are summarized in Fig. 4.

To see that the constraints of Eq. (14) with q − p > 0
indeed constitute a proof of nonlocality without inequality,
we begin by restricting our attention to a DLHVM where
the measurement outcomes take definite values, denoted by
{Ai = sA

i } and {Bi = sB
i }, where i ∈ {0, 1, . . . , k − 1}. We de-

pict the logical structure behind this argument schematically
in Fig. 5. Let us now consider the case of even and odd
k separately, starting with odd k. Then, in order for a DL-
HVM to reproduce Eq. (14a), i.e., P(Ak−1 < Bk−1) = q > 0,
the model must produce events {Ai = sA

i } and {Bi = sB
i } such

that sA
k−1 < sB

k−1. Similarly, the other constraints of Eq. (14)
imply constraints on the relationship between {sA

i } and {sB
i },

where i ∈ {0, 1, . . . , k − 1}. For example, together with the
conditions of Eq. (14c) and Eq. (14e) for i = k − 1, i.e.,
P(Ak−1 < Bk−2) = 0 and P(Ak−2 < Bk−1) = 0, we get

sB
k−2 � sA

k−1 < sB
k−1 � sA

k−2. (15)

By considering the other zero-probability constraints one at a
time for the remaining i, we arrive at

sA
0 � · · · � sB

k−2 � sA
k−1 < sB

k−1 � sA
k−2 � · · · � sB

0 . (16)

This means that for any DLHVMs that give sA
k−1 < sB

k−1, the
constraints of Eq. (16) imply that they must also give sA

0 < sB
0 .

However, there can be other DLHVMs where sA
0 < sB

0 holds
even though sA

k−1 < sB
k−1. Thus, for a general LHV model,

the conditions of Eq. (16) imply that p � q. In other words,
a nonzero value of the DS q − p witness Bell nonlocality
without resorting to a Bell inequality.
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FIG. 4. Summary of the relationships between the various Hardy-type paradoxes discussed in this work. Our new constructions are printed
in boldface.

Similarly, for even k, starting from P(Ak−1 > Bk−1) = q >

0 and considering the other zero-probability constraints leads
to, for any DLHVMs,

sA
0 � · · · � sA

k−2 � sB
k−1 < sA

k−1 � sB
k−2 � · · · � sB

0 . (17)

Again, this observation implies that p � q ⇔ p − q � 0 for
any LHV model for all k � 2 and d � 2.

FIG. 5. Logical structure of the generalized CLL arguments in
the k-input d-output Bell scenario. The generalization of Hardy’s
original argument to these cases is recovered by setting p = 0.

B. Generalization of the FTI-based Hardy-type paradox

Next, let us describe our generalization of the FTI-based
Hardy-type paradox from Eq. (5), which consists of the fol-
lowing conditions:

P(Ak−1 < Bk−1) = q, (18a)

P(Ai < Bi−1) = 0, ∀ i ∈ {1, . . . , k − 1}, (18b)

P(Bi−1 < Ai−1) = 0, ∀ i ∈ {1, . . . , k − 1}, (18c)

P(A0 < Bk−1) = r, (18d)

and the requirement of q > r. The special case of r = 0,
which can be seen as a generalization of Stapp’s argument
[16], has been proposed and discussed in Ref. [26]. To recover
Eq. (5) from Eq. (18), one sets k = d = 2 and applies the
relabeling Ai = 0 ↔ Ai = 1 for all i ∈ {0, 1}. In Fig. 6, we
depict schematically the logical structure of this paradox.

As with our explanation to Eq. (14), for any DLHVM
satisfying P(Ak−1 < Bk−1) = q > 0, the model must produce
events {Ai = sA

i } and {Bi = sB
i } such that sA

k−1 < sB
k−1. At the

same time, the other inequality constraints from Eq. (18)
imply sB

k−2 � sA
k−1, sA

k−2 � sB
k−2, etc., leading to

sA
0 � sB

0 � · · · � sA
k−2 � sB

k−2 � sA
k−1 < sB

k−1, (19)

which implies sA
0 < sB

k−1. This means that with the zero-
probability constraints, a DLHVM equipped with a strategy
giving sA

k−1 < sB
k−1 must also give sA

0 < sB
k−1. Again, other

DLHVMs may give sA
0 < sB

k−1 even though sA
k−1 < sB

k−1. Thus,
from Eq. (18d), we conclude that for a general LHV model
(obtained by averaging over local deterministic strategies), we
must have r � q ⇔ r − q � 0 for all k, d � 2.
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FIG. 6. Logical structure of our FTI arguments in the k-input d-
output Bell scenario. Generalized Stapp’s arguments as introduced in
Ref. [26] are recovered by setting r = 0.

C. Proof of equivalence of generalized Stapp’s proof and
generalized ladder proof of nonlocality

Interestingly, the authors of Ref. [26] proved that in the
k-input 2-output scenario, the generalized Stapp’s argument,
Eq. (18) with r = 0, and the ladder proof of nonlocality, cf.
Eq. (14) with p = 0, are equivalent. In other words, these two
sets of conditions can be obtained from each other via an ap-
propriate relabeling of inputs and outputs. In what follows, we
show that this equivalence also holds for arbitrary k, d � 2.

Theorem III.1. For any symmetric bipartite Bell scenario,
the set of conditions given in Eq. (14) with p = 0 is equivalent
to the set of conditions of Eq. (18) with r = 0.

Proof. Let us rewrite Alice’s and Bob’s measurement out-
comes in Eq. (14), respectively, as A′

x′ and B′
y′ , and let

L1k− := {
1, 2, . . . ,

⌊
k
2

⌋ − 1
}
, L1k := L1k− ∪ {⌊

k
2

⌋}
,

L0k− := {0} ∪ L1k−, L0k := L0k− ∪ {⌊
k
2

⌋}
. (20)

For odd k, one may verify that the following relabeling,

A′
x′ =

{
A
−1, x′ = k − 2
 ∧ 
 ∈ L1k

Ak−1−
, x′ = k − 1 − 2
 ∧ 
 ∈ L0k
,

B′
y′ =

⎧⎨
⎩

Bk−1, y′ = k − 1
Bk−1−
, y′ = k − 2
 ∧ 
 ∈ L1k

B
−1, y′ = k − 1 − 2
 ∧ 
 ∈ L1k

, (21)

transforms the 2k conditions of Eq. (14) to those of Eq. (18).
To see this, note that under this transformation, the condition
of Eq. (14a) stays as

P(A′
k−1 < B′

k−1) = P(Ak−1 < Bk−1) = q, (22)

which is Eq. (18a). With the transformation, the conditions of
Eq. (14b), Eq. (14d), Eq. (14c), and Eq. (14f) with p = 0, re-
spectively, become the requirements that each of the following
probabilities vanish:

P(A′
k−2
 > B′

k−2
−1) = P(A
−1 > B
−1), 
 ∈ L1k,

P(A′
k−2
−1 > B′

k−2
) = P(Ak−1−
 > Bk−1−
), 
 ∈ L1k ;

P(A′
k−2
−1 < B′

k−2
−2) = P(Ak−1−
 < Bk−2−
), 
 ∈ L0k−;

P(A′
0 < B′

0) = P(A k−1
2

< B k−1
2 −1). (23)

In addition, the conditions of Eq. (14e) become

P(A′
k−2
−2 < B′

k−2
−1) = P(A
 < B
−1), 
 ∈ L1k− and

P(A′
k−2 < B′

k−1) = P(A0 < Bk−1), (24)

To summarize, the requirement that the probabilities in the
first two lines of Eq. (23) vanish is identical to the condition
of Eq. (18b), the requirement that the probabilities in the last
two lines of Eq. (23) and the first line of Eq. (24) vanish is
identical to the condition of Eq. (18c), and the requirement
that the probability in the last line of Eq. (24) vanishes is
identical to the condition of Eq. (18d).

Similarly, for even k, one can verify that the following
relabeling,

A′
x′ =

{
d − 1 − A
−1, x′ = k − 2
 ∧ 
 ∈ L1k

d − 1 − Ak−1−
, x′ = k − 1 − 2
 ∧ 
 ∈ L0k
,

B′
y′ =

⎧⎨
⎩

d − 1 − Bk−1, y′ = k − 1
d − 1 − Bk−1−
, y′ = k − 2
 ∧ 
 ∈ L1k

d − 1 − B
−1, y′ = k − 1 − 2
 ∧ 
 ∈ L1k

,

(25)

transforms the 2k conditions of Eq. (14) to those of
Eq. (18). �

For completeness, we show in Table I bounds on the max-
imal DS found for different Hardy-type paradoxes in several
k-input 2-output and k-input 3-output Bell scenarios; analo-
gous results for a larger number of outputs but with k set to 2
are shown in Table II. One thing worth noticing is that for all
these numerical results, we observe that the DS from our FTI
arguments is always higher than that obtained from all these
other proposals.

IV. DISCUSSION

Hardy and Hardy-type paradoxes are fascinating proofs of
Bell nonlocality without resorting to Bell inequalities. Aside
from fundamental interests (see, e.g., Refs. [28,35–37]), they
are also known to be relevant in the task of randomness
amplification [38] (see, e.g., Refs. [39,40]). In this work, we
propose a Hardy-type paradox that can be naturally under-
stood via the FTI, cf. Refs. [16,17].

As with the Hardy-type paradoxes formulated by CLL
[20,21], we show that a DS generalizing the notion of suc-
cess probability—whose nonnegative value witnesses Bell-
nonlocality—may be introduced for the FTI-based Hardy-
type paradox. In the simplest Bell scenario with two inputs
and two outputs, we show that the new FTI-based formula-
tions give the highest DS among all existing (i.e., Hardy, CLL,
and FTI-based) formulations. Moreover, this advantage—in
the form of a generalized DS—persists even when the zero-
probability constraints required in all these formulations are
relaxed.

Then, we provide—as with Ref. [26] for the original Hardy
paradox—a generalization of the FTI-based formulation and
the CLL-type formulation, to symmetric Bell scenarios in-
volving an arbitrary number of inputs and outputs. In turn,
this allows us to show that a ladder-type, cf. Ref. [15], and
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TABLE I. Comparison of the best upper bound (UB) and the best lower bound (LB) found on the DS for three different Hardy and
Hardy-type paradoxes beyond the CHSH scenarios with k � 2 inputs. From top to bottom, we list the results for the Hardy paradox given
by the ladder proof of nonlocality without inequality [15] (see also Ref. [26]), generalized CLL’s argument due to Ref. [24], our FTI-based
formulation [Eq. (18)] for d = 2, generalized Hardy paradox given by Meng et al. [26], our generalized CLL formulation [Eq. (14)] for d = 3,
and our FTI-based formulation [Eq. (18)] for d = 3. See also Fig. 4 for the relationship between all these paradoxes. The UBs were obtained
by considering level 1 (or higher) of the SDP hierarchy introduced in Ref. [31]. Not all upper bounds reported here were obtained using the
higher-level SDP hierarchy because some of these higher-level computations, due to numerical issues, resulted in worse upper bounds. The
LBs, obtained numerically, may be attained using the strategies provided in Ref. [32] (see also Appendix B).

d Type (k) 2 3 4 5 6

2 Boschi [15] UB 0.090 20 0.17459 0.23132 0.27095 0.29999
LB 0.090 17∗ 0.174 55 0.231 26 0.270 88 0.299 95

2 Cereceda [24] UB 0.107 85 0.185 23 0.238 01 0.275 46 0.303 27
LB 0.107 81∗ 0.185 19 0.237 96 0.275 42 0.303 21

2 FTI-based UB 0.125 01 0.207 13 0.259 76 0.295 79 0.321 92
LB 0.125∗ 0.207 11 0.259 73 0.295 76 0.321 90

3 Meng [26] UB 0.141 94 0.267 82 0.348 23 0.401 96
LB 0.141 33 0.267 79 0.348 16 0.401 84

3 CLL-type UB 0.167 94 0.282 72 0.357 06 0.407 63
LB 0.167 91 0.282 65 0.356 98 0.407 53

3 FTI-based UB 0.193 13 0.312 30 0.384 67 0.432 25
LB 0.193 09 0.312 26 0.384 60 0.432 16

an FTI-based proof of nonlocality without inequality are
equivalent for an arbitrary symmetric Bell scenario, thereby
generalizing the result of Ref. [26] beyond the binary-outcome
Bell scenarios.

For several simple Bell scenarios, we further observe (see
Tables I and II) numerically that our FTI-based generaliza-
tions provide the largest value of the DS. We do not currently
have any concrete physical intuition behind this observation
but it will be interesting to develop one in the future. Another
natural question left open from the current work is to deter-
mine if this trend continues to hold for an arbitrary, symmetric
Bell scenario. Also worth noting is that within each type of
logical argument, the largest values of DS found appear to
increase monotonically when one increases either the number
of inputs k or the number of outputs d involved—an analytic
proof of this observation will be more than welcome.

On the other hand, given the close connection found
[28,41,42] between the optimizing strategy for a Hardy para-
dox and its self-testing [43] property, it would also be
interesting to see if the optimizing correlations found for

these new generalizations are also self-testing (and non-
exposed [36]). From an application perspective, one may
also be interested in the potential of such correlations for
device-independent applications, especially in randomness
amplification [38], and proofs of Bell-nonlocality in the pres-
ence of measurement independence [35].
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APPENDIX A: DEGREE OF SUCCESS VS CONCURRENCE

For Hardy’s argument, we can again take Eq. (7) but now
with the constraint [28]

tan θ sin α = tan β. (A1)

TABLE II. Comparison of the UB and the LB found on the DS for the Hardy paradox due to Ref. [25], our generalized CLL formulation
[Eq. (14)], and our FTI-based formulation [Eq. (18)] for Bell scenarios with two inputs and d � 2 outputs. See also Fig. 4 for the relationship
between all these paradoxes. Most of the UBs were obtained by considering level 1 of the SDP hierarchy introduced in Ref. [31] but those
marked with ‡ were obtained by considering level 2 of the SDP hierarchy introduced in Refs. [33,34] (see also the caption of Table I). The
LBs, obtained numerically, may be attained using the strategies provided in Ref. [32] (see also Appendix B). Entries marked with * are known
to be tight quantum bound.

Type (d) 2 3 4 5 6 7

Chen [25] UB 0.090 20 0.141 94 0.176 59‡ 0.203 17‡ 0.224 41‡ 0.241 96‡

LB 0.090 17∗ 0.141 33 0.176 56 0.203 06 0.224 24 0.241 75
CLL-type UB 0.107 85 0.167 94 0.208 90‡ 0.239 59‡ 0.263 92‡ 0.283 95‡

LB 0.107 81∗ 0.167 91 0.208 83 0.239 48 0.263 78 0.283 78
FTI-based UB 0.125 01 0.193 13 0.238 44 0.271 76‡ 0.297 82‡ 0.319 04

LB 0.125∗ 0.193 09 0.238 39 0.271 75 0.297 73 0.318 80

042206-7



CHEN, MAL, TABIA, AND LIANG PHYSICAL REVIEW A 109, 042206 (2024)

Hence, we again have the concurrence given by Eq. (9). More-
over, the success probability of Eq. (1) is

Psucc(θ, α, β ) = (cos θ cos α sin β )2, (A2)

subjected to Eq. (A1). Rewriting Psucc in terms of C and β

and using variational techniques, the largest DS is obtained
for cos2 β = C

2−C , giving

P∗
succ(C) = C2(1 − C)

(2 − C)2
. (A3)

Similarly, for the CLL argument using the state and observ-
ables given in Ref. [28, Eqs. (40, 41)], we have

C(|ψ〉) = | cos2 φ sin 2θ | (A4)

and the degree of success

Psucc(φ, θ, α, β ) = (cos φ sin θ cos α)2

− (sin φ cos β + cos φ sin θ sin β )2,

(A5)

with constraint (tan φ + cos θ tan α) tan β = sin θ . To obtain
the maximal DS for a given concurrence C, we may take
α = π

2 − β and use the constraint to eliminate φ and θ , thus
arriving at

Psucc(C, β ) = (C − 1) cos4 β +
√

2 cos β sin β

×
√

(1 − C) cos2 β[1 + C + (C − 1) cos 2β]

× sin

[
1

2
sin−1

(
C sec2 β

C + tan2 β

)]
. (A6)

Using, e.g., MATHEMATICA, we can numerically optimize
Psucc(C, β ) for fixed values of C and verify that the resulting
plot matches the green dashed line in Fig. 2.

TABLE III. Summary of the largest zero-probability-constraint
violation for each optimal strategy [32] used to give the best lower
bound on the DS presented in Tables I and II.

(k, d ) Hardy CLL FTI

(3, 2) 2.4057 × 10−14 1.1211 × 10−14 9.7925 × 10−16

(4, 2) 3.7182 × 10−14 1.5057 × 10−15 7.1356 × 10−16

(5, 2) 1.2657 × 10−15 3.2069 × 10−10 1.5557 × 10−12

(6, 2) 2.2401 × 10−15 1.6756 × 10−11 4.0152 × 10−12

(2, 3) 2.8391 × 10−15 1.2214 × 10−16 2.9997 × 10−16

(3, 3) 2.4822 × 10−9 4.9471 × 10−16 3.8448 × 10−10

(4, 3) 1.6744 × 10−11 2.0745 × 10−14 4.8225 × 10−14

(5, 3) 9.9972 × 10−14 4.7729 × 10−14 4.8075 × 10−12

(2, 4) 8.0796 × 10−8 1.8599 × 10−16 3.2093 × 10−16

(2, 5) 3.5385 × 10−10 2.3190 × 10−14 5.0784 × 10−8

(2, 6) 4.3552 × 10−10 4.7699 × 10−11 7.8787 × 10−11

(2, 7) 1.2624 × 10−7 2.3396 × 10−12 5.9839 × 10−8

APPENDIX B: QUANTUM STRATEGIES

In this Appendix, we give some further information about
the quantum strategies that reproduce our best lower bound
(LB) on the various DS shown in Tables I and II. The actual
quantum strategies for each case are available in Ref. [32]. For
convenience, we refer to the various generalizations of Hardy
[14] due to Boschi et al. [15], Chen et al. [25], and Meng et al.
[26] as Hardy paradoxes. Indeed, in all three cases, the DS is
exactly the success probability of observing such a paradox.

Next, notice that the best quantum strategies we have found
for the Hardy, CLL-type, and FTI-based arguments for a k-
input, d-output Bell scenario, denoted by (k, d ), are always
attained by performing real rank-1 projective measurements
on a real pure quantum state |ψ〉 residing in the two-qudit
Hilbert space Rd ⊗ Rd . However, due to numerical impreci-
sions, the zero-probability constraints are not always strictly
enforced in all these optimal strategies found. For complete-
ness, we list in Table III the largest deviation found among
all the zero-probability constraints for each of these “optimal”
strategies.
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