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The Leggett-Garg inequality (LGI) delineates a boundary between quantum and classical systems. While
the temporal quantum correlations represented by LGIs have been extensively investigated in the Hermitian
domain, the exploration of LGIs under non-Hermitian conditions remains scarce. Theoretical conjectures posit
that nonunitary dynamics could transcend the boundary of LGIs set by Hermitian quantum mechanics, yet its
empirical validation is lacking. Here, we demonstrate the enhanced violation of LGIs in a non-Hermitian system
of a parity-time (PT )-symmetric trapped-ion qubit. The upper bounds of both the third-order parameter K3

and fourth-order parameter K4 increase with dissipation and can reach the maximum value when the system
approaches the exceptional point, where K3 = C21 + C32 − C31 is comprising three two-time correlations and
K4 = C21 + C32 + C43 − C41 is comprising four correlations. We also find that the lower bounds of K3 and K4

exhibit distinctive behaviors, where the lower bound of K3 remains constant, but that of K4 depends on the target
states and measurement operators. These findings reveal a pronounced correlation between the dissipative nature
of a quantum system and its temporal correlations.
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I. INTRODUCTION

Quantum state superposition [1] stands as a fundamental
concept in quantum mechanics, providing a framework to
describe the behavior of particles on microscopic scales. How-
ever, the concept of superposition runs counter to the tenets of
macrorealism, as exemplified by the renowned “Schrödinger’s
cat” paradox proposed in 1935 [2]. In a quest to delve into the
experimental implications of this paradox, Leggett and Garg
introduced the Leggett-Garg inequality (LGI) in 1985 [3].
This inequality aims to delineate the temporal correlation in a
classical world, with its validity anchored in two fundamental
assumptions: (i) macroscopic realism (MR), asserting that a
macroscopic system possesses a definite state at any given
time; (ii) noninvasive measurement (NIM), stipulating that
measurements should not alter the state of the system. The
violation of this inequality in quantum mechanics arises from
two primary reasons: first, the principle of quantum superpo-
sition contravenes the concept of realism; second, the collapse
of quantum states challenges the NIM assumption.

The LGI serves as a tool for testing correlations within
a single system at different moments. This is in contrast to
the Bell inequality, which is employed to test correlations
between spatially separated systems [4]. The most frequently
encountered LGI follows a general form [5]

Kn = C21 + C32 + C43 + · · · + Cn(n−1) − Cn1, (1)

*These authors contributed equally to this work.
†luole5@mail.sysu.edu.cn

where Cn(n−1) represents the correlation function of the ob-
servables between times tn and tn−1. The basic form of
third-order LGIs emerges from the measurement of a sys-
tem with two possible states at three consecutive moments,
expressed as −3 � K3 � 1. The upper bound of one, often re-
ferred to as the classical bound, is constrained by the behavior
of classical systems. But in a two-level quantum system, the
upper limit of third-order LGI K3 can reach 1.5, as dictated
by the Lüders state update rule (LSUR)—commonly known
as the Lüders bound [6]. This boundary is also recognized
as the temporal Tsirelson bound (TTB) [7], drawing parallels
to Tsirelson’s bound in the context of Bell’s inequality. For
quantum systems with multiple levels, instead of the LSUR,
the von Neumann state update rule (VSUR) is commonly
employed to project the system to its each subspace. This
allows the extraction of information from higher dimensions.
Utilizing the VSUR, the upper bound of K3 can surpass
the limitation of 1.5 [8]. Experimental investigations of K3

have been implemented on closed quantum systems, including
superconducting circuits [9], single-photon [10,11], nuclear
magnetic resonance [12,13], trapped ions [14], and NV
centers [15,16].

Higher-order LGIs typically refer to the inequalities that
involve two-time correlations of more than three different
moments. The higher-order LGIs could discern more differ-
entiation between classical and quantum systems than K3. For
example, the higher-order LGIs are valuable in addressing
the clumsiness loophole [17] and they can be related to the
cut polytope for a nontrivial test of macrorealism [18]. The
elementary higher-order LGI K4 has been studied theoretically
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FIG. 1. Schemes of testing third-order (K3) and fourth-order (K4)
LGIs. (a) The experiment involves measuring three two-time tem-
poral correlations (C21, C32, and C31) to determine the parameter
K3. (b) The experiment requires measuring four two-time temporal
correlations (C21, C32, C43, and C41) to determine the parameter K4.
Here, |ψt 〉 denotes the target state, the time intervals are defined
as t j − ti = ( j − i)τ , and t1 = 0. The preparation of |ψt 〉 can be
regarded as the measurement at time t1.

[19,20]. Its standard expression is articulated as −2 � K4 � 2
(−2

√
2 � K4 � 2

√
2) in classical (quantum) systems. Due to

both structural and boundary resemblances, K4 can be viewed
as a temporal analog to the Clauser-Horne-Shimony-Holt
(CHSH) inequality. The experimental investigation of K4 in
a three-level system has exceeded the constraints set by the
TTB [21]. Recently, Halliwell et al. [22–24] utilized multitime
correlations to explore the criteria for macroscopic realism
within fourth-order LGIs.

While the LGIs have been extensively studied in closed
quantum systems, their roles in open quantum systems still
remain elusive, where the interplay between the quantum
dynamics and the coupling to external environment could
enhance temporal correlations. This prompts the following
intriguing question: can the larger violation (beyond the TTB)
of LGIs emerge in an open quantum system? Theoretical
studies have predicted that a two-level non-Hermitian sys-
tem undergoing nonunitary dynamics will lead to enhanced
violations of LGIs [25–27], showing that the upper bound
of K3 can approach the algebraic maximum value of 3. The
larger violations of LGIs in non-Hermitian systems is the
indicator of the enhancement of temporal correlation in an
open quantum system. Thanks to the atomic systems with
controllable dissipation [28–33], recent experimental inves-
tigations of LGIs have been conducted in a non-Hermitian
trapped-ion qubit [34,35], utilizing K3 to quantify enhanced
quantum correlation.

Exploring LGIs in non-Hermitian systems is significant
for unraveling the intricate interplay between quantum co-
herence, dissipation, and emergent phenomena [36]. This
exploration has implications for both fundamental quantum
theory and practical applications in emerging quantum tech-
nologies. For fundamental quantum theory, examining LGIs
in non-Hermitian systems helps to understand how dissipation
and decoherence influence the violation of the realism, pro-
viding valuable information about the robustness of quantum
features in the presence of environmental interactions [37]. On
the other hand, for quantum information processing, a deeper
comprehension of the behavior of LGIs in non-Hermitian
systems may open up a pathway for the stability of quan-
tum coherence and correlations in the presence of dissipation
[25], which is crucial for the development of robust quantum
technologies. Particularly, studying LGIs in non-Hermitian
systems provides insights into how non-Hermitian dynamics
affect the transition from quantum to classical behavior [38],
shedding light on the quantum-to-classical crossover of a
larger scale system with entanglements and correlations.

In this paper, we systematically investigate the third- and
fourth-order LGIs (K3 and K4) in a trapped-ion system gov-
erned by a parity-time (PT )-symmetric Hamiltonian. The
upper bounds for both K3 and K4 exhibit the enhanced vio-
lations with increasing dissipation. Contrastingly, the lower
bounds for K3 and K4 manifest distinct behaviors. While K3

remains constant with increasing dissipation, demonstrating
insensitivity to non-Hermiticity, K4 exhibits variation in re-
sponse to escalating dissipation. We also find that the lower
bound of K4 depends on both the measurement operator and
the target state, which could vary differently with the dissipa-
tion. These findings provide a route to finely tune the strength
of quantum correlation through nonunitary dynamics.

II. THEORY OF LGIS OF A PT -SYMMETRIC
HAMILTONIAN

A. PT -symmetric dynamics of a non-Hermitian qubit

The non-Hermitian LGI test is conducted in a single
trapped-ion qubit with a PT -symmetric Hamiltonian (h̄ = 1)

HPT =
(

iγ J

J −iγ

)
, (2)

where J is the coupling strength and γ is the dissipation rate.
The term iγ (−iγ ) in the diagonal represents the gain (loss) of
the qubit. Equation (2) commutes with the PT operator [39],
i.e., [HPT ,PT ] = 0, where P = σx and T = ∗ denotes com-
plex conjugation operation. The eigenvalues can be obtained
as λ = ±J

√
1 − S2, where the parameter S = γ /J represents

the degree of non-Hermiticity. When 0 � S < 1, the system is
in the PT symmetry unbroken phase. When S > 1, the system
is in the PT symmetry broken phase. The exceptional point
locates at S = 1. The investigation of PT symmetry breaking
transition can be found in the previous works conducted by
our group [33,40] and others [32,41].

The non-Hermitian systems with pure loss provide a conve-
nient way to explore the PT -symmetric dynamic features in
quantum systems, given that quantum systems rarely possess
the gain terms. The effective PT Hamiltonian of pure loss
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follows as

Heff = HPT − iγ I =
(

0 J

J −2iγ

)
, (3)

where I is the identity operator. Based on the relation
e2γ t |〈ψfin|e−iHefft |ψini〉|2 = |〈ψfin|e−iHPT t |ψini〉|2, the evolu-
tion of non-Hermitian systems, governed by Heff, when
multiplied by a coefficient e2γ t , can be effectively mapped to
those of PT -symmetric systems governed by HPT .

B. Third- and fourth-order LGIs in a non-Hermitian system

The schemes of testing the third-order (K3) and fourth-
order (K4) LGIs under Heff are depicted in Figs. 1(a) and
1(b). The correlation function Cji is derived from the joint
probability Pji(Qj, Qi ) of obtaining the outcome of observable
Qi (Qj) at time ti (t j). The corresponding expression is denoted
as

Cji =
∑

qi,q j=±1

qiq jPji(Qj, Qi ), (4)

where the macroscopic dichotomic variables qi = ±1 (at
time ti) and q j = ±1 (at time t j). Then, we utilize σy

as the observable for calculating the two-time correla-
tion, with the eigenvectors |+〉 = [i/

√
2, 1/

√
2]T and |−〉 =

[−i/
√

2, 1/
√

2]T representing the two eigenstates of σy.

qi, j = ±1 with |±〉. The joint probability under the HPT is
equivalent to that under Heff as

Pji(Qj, Qi )

= |〈Qj |e−iHPT t ji |Qi〉|2
〈Qi|eiH†

PT t ji e−iHPT t ji |Qi〉
|〈Qi|e−iHPT ti1 |ψt 〉|2

〈ψt |eiH†
PT ti1 e−iHPT ti1 |ψt 〉

= |〈Qj |e−iHefft ji |Qi〉|2
〈Qi|eiH†

efft ji e−iHefft ji |Qi〉
|〈Qi|e−iHeffti1 |ψt 〉|2

〈ψt |eiH†
effti1 e−iHeffti1 |ψt 〉

, (5)

where Qi, j = {+,−} at time ti, j , t ji = t j − ti = ( j − i)τ . This
allows for straightforward calculation of Pji(+,+), Pji(−,+),
Pji(+,−), and Pji(−,−).

In general, K3 and K4 are dependent on the target state
|ψt 〉. To obtain the maximum violation, we choose |ψt 〉 = |+〉
based on the maximum values of K3 and K4 in the θ -φ plane
(see Appendix A for details). Consequently, K3 and K4 in the
Hermitian case (in the absence of the dissipation rate γ ) are
expressed by

K3 = 2 cos(2Jτ ) − cos(4Jτ ),

K4 = 3 cos(2Jτ ) − cos(6Jτ ), (6)

while in the non-Hermitian case (with the presence of the
dissipation rate γ ), the LGIs can be replaced by

K3 = γ + JA

J + γ A
− γ + JB

J + γ B
+ Jγ 2 + J (J2 + Jγ − γ 2)A

(J − γ A)(J + γ A)2
− γ A2(−J2 + Jγ + γ 2 + J2A)

(J − γ A)(J + γ A)2
(7)

and

K4 = γ + JA

J + γ A
− γ + JC

J + γC
+ (γ + J )(A + 1)(γ + JA)

2(J + γ A)2
− (J − γ )(1 − A)(JA − γ )

γ 2 − 2J2 + γ 2B

+ 2(−γ 3 + 2J3 + γ J2 − 2γ 2J )A + γ [2J (J − γ )B − J (−2γ + JD + J ) + 2χ2C]

4(J − γ A)(J + γ A)(J + γ B)
, (8)

where χ =
√

J2 − γ 2, A = cos(2τχ ), B = cos(4τχ ),
C = cos(6τχ ), and D = cos(8τχ ). The detailed derivations
of Eq. (7) and Eq. (8) are provided in Appendix B. Theoretical
plots of K3 and K4 as a function of γ and τ are also included in
Appendix B. The algebraic bounds of K3 and K4 in classical,
Hermitian, and non-Hermitian conditions can be summarized
in Table I.

TABLE I. Algebraic bounds of LGI parameters K3 and K4 in
classical, Hermitian, and non-Hermitian systems. It is noted that, for
the non-Hermitian case, the maximum and minimum values of K4

can be obtained simultaneously with the certain observable and target
state.

Conditions Kmin
3 Kmax

3 Kmin
4 Kmax

4

Classical system −3 1 −2 2
Hermitian system −3 1.5 −2

√
2 2

√
2

Non-Hermitian system −3 3a −4a 4a

aThe value can be achieved when γ → J .

III. EXPERIMENTS AND MEASUREMENTS

A. Trap-ion setup

The LGI experiments were performed employing a single
171Yb+ ion. The ion is confined near the center of the trap,
which consists of four gold-plated ceramic blade electrodes.
The configuration of the microwave and dissipation beam
setup is illustrated in Fig. 2(a). To implement Eq. (3), a
microwave operating at a frequency of 12.643 GHz and a
369.5 nm dissipative beam are simultaneously applied to the
ion. The microwave signal is used to coherently couple the
spin states |0〉 = |F = 0, mF = 0〉 and |1〉 = |F = 1, mF =
0〉. The dissipative laser contains only the π polarization com-
ponent [the purple arrow in Fig. 2(a)] and is used to excite
the ion from |1〉 to the 2P1/2 excited state. This excitation
leads to spontaneous decay (the blue dashed line) to three
magnetic levels |F = 1, mF = 0,±1〉 in the 2S1/2 ground state
with equal probability. The decay to |F = 1, mF = ±1〉 can
be considered as equivalent loss of the qubit, resulting in a
nonunitary evolution of the two-level subspace (|0〉 and |1〉)
[32,33]. The experimental timing sequences are depicted in
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FIG. 2. Experiment setup for testing LGIs. (a) The trap confines
a single 171Yb+ ion through the application of radio frequency (rf)
signals and direct current (dc) voltages to two rf electrodes (RF1
and RF2) and two sets of dc electrodes (DC1-5 and DC6-10), re-
spectively. Additional dc voltages (DC11 and DC12) applied to the
rf electrodes are utilized to displace the ion to the rf null position.
The magnetic field (B) is oriented along the Z axis. The microwave
signal used to drive the transition between the states |0〉 and |1〉
is generated through mixing a standard rf source with either a di-
rect digital synthesizer (DDS) or an arbitrary waveform generator
(AWG). The energy level diagram of the 171Yb+ ion is depicted
within the dashed box; the involved four levels in the gray shaded
region can be simplified to a dissipative two-level system. (b) The
timing sequences for initialization (including cooling and optical
pumping), dissipation beam, and detection beam are controlled by
acoustic-optic modulators (AOMs) equipped with rf switches, which
receive TTL (transistor transistor logic) sequences from the ARTIQ
(advanced real-time infrastructure for quantum physics) device. The
synchronization of the microwave and the dissipation laser is pre-
cisely controlled by simultaneously triggering and passing through
the same length of rf cables. The intensity of the dissipation beam
can be finely adjusted by varying the rf power applied on the AOM.

Fig. 2(b). Initially, the ion can be initialized to either |0〉 or
|1〉 in 2S1/2 in the ground-state hyperfine manifold. Next, we
prepare the target state and allow for nonunitary evolution
for a certain time. Finally, we employ the standard fluores-
cence counting rate threshold method to readout experimental
results.

B. Realization of an effective PT Hamiltonian

The nonunitary evolution of the multilevel system [the gray
shaded region in the inset of Fig. 2(a)] can be described by
(h̄ = 1)

dρ

dt
= −i[HC, ρ] +

(
L1ρL1

† − 1

2
{L1

†L1, ρ}
)

, (9)

where ρ(t ) represents a 3 × 3 density matrix that includes
the qubit subspace and HC = J (|1〉〈0| + |0〉〈1|) is a coupling
Hamiltonian. L1 = √

4γ |a〉〈1| is the dissipation operator
which accounts for the population probability decay from

level |1〉 to |a〉 (|a〉 =2 S1/2|F = 1, mF = ±1〉), where 4γ is
the effective dissipation rate from |1〉 to |a〉.

Rearranging Eq. (9), we obtain the dρ/dt = −i(Heffρ −
ρH†

eff ) + L1ρL†
1, where the Heff = HC − i

2 L†
1L1. Because the

microwave drive and the dissipation laser beam only act on
the qubit, the dynamics of |a〉 is decoupled from qubit states;
therefore, we focus on the qubit subspace of the whole system,
where the qubit retains its coherence and its dynamics are
governed by the effective PT -symmetric Hamiltonian, and
so we neglect the quantum jump term L1ρL†

1 and obtain the
following:

dρ

dt
=

(
iJ (ρ01 − ρ10) iJ (ρ00 − ρ11) − 2γ ρ01

−iJ (ρ00 − ρ11) − 2γ ρ10 −iJ (ρ01 − ρ10) − 4γ ρ11

)
.

(10)

In this context, Eq. (10) describes the dynamical evolution of
the qubit under the effective Hamiltonian Heff in Eq. (3).

In the experiment, for larger dissipation, the qubit pop-
ulation experiences rapid decay due to spin-dependent loss.
This leads to a significantly reduced state population, posing
challenges for accurate detection. To address this challenge,
we employ a piecewise strategy, where the total evolution
time T is partitioned into N segments. In the nth (1 � n � N)
segment, the qubit is prepared to the state predicted by theory,
allowing it to evolve for tn−1 = (n − 1)T/N . Subsequently,
it continues to evolve for t = T/N under Heff. This scheme
effectively facilitates the mapping of the entire process.

IV. RESULTS AND DISCUSSION

We observe an enhanced violation in the upper bound
of K3, with its value increasing as the dissipation grows.
Figure 3 presents the experimental results of the LGI param-
eter K3 under both Hermitian and PT -symmetric dynamics.
Figure 3(a) shows the Hermitian case (γ /J = 0), where
−2.93 (±0.01) � K3 � 1.51 (±0.08) is obtained from the
three correlation functions (see Appendix B). This result
aligns with the theoretical calculation represented by the red
solid line (−3 � K3 � 1.5). The K3 curves under different dis-
sipation intensities are depicted in Figs. 3(b)–3(d). For γ /J =
0.472 [Fig. 3(b)], the upper bound of K3 is 1.79 (±0.08)
observed at an evolution time τ = 12.5 µs. The corresponding
theoretical value stands at 1.84. Similarly, for γ /J = 0.669
[Fig. 3(c)], the upper bound of K3 is 1.91 (±0.08) observed
at τ = 14.5 µs. The corresponding theoretical value stands at
2.10. Increasing dissipation to a higher level, for γ /J = 0.942
[Fig. 3(d)], the upper bound of K3 is 2.50 (±0.11) observed
at τ = 36.5 µs, where the corresponding theoretical K3 value
stands at 2.78 approaching the maximum value of 3. It is noted
that, as the dissipation increases from the Hermitian case to
the exceptional point, the evolution time for the maximum
violation increases from τ/TRabi = 1/6 to 1/4, where TRabi =
π/

√
J2 − γ 2 represents the generalized Rabi period with the

dissipation. For γ /J = 0.942, TRabi = 144 µs, and the mea-
sured τ/TRabi � 0.25 is consistent with the prediction. While
the upper bound of K3 surpasses the constraints allowed in the
Hermitian system, the lower bound of K3 remains constant at
−3, demonstrating insensitivity to non-Hermiticity.
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FIG. 3. Experimental results for the LGI parameter K3. (a) Mea-
surement results of K3 under Hermitian condition (γ /J = 0).
(b)–(d) Measurement results of K3 under non-Hermitian condition,
with the ratios of γ /J being 0.472 (b), 0.669 (c), and 0.942 (d),
respectively. The red solid lines in (a)–(d) are the theoretical results
calculated by Eq. (6) [Eq. (7)]. The blue circles depict the experimen-
tally measured results and the dashed line indicates the upper bound
(3/2) of K3 in the quantum system. Error bars for the experimental
results are estimated using the standard deviation (1σ ) from multiple
rounds of experiments. To discern the population information of
qubits effectively, each set of experiments is repeated 500 times. The
dissipation rates in (a)–(d) correspond to the four dashed lines in
Fig. 9(a). The coupling strength J is 2π × 10.4 kHz.

Both the experimental results and the numerical cal-
culations for K4 are presented in Fig. 4. Figure 4(a)
shows the results of the Hermitian dynamics (γ /J = 0),
where −2.73 (±0.08) � K4 � 2.82 (±0.06) agrees with the
theoretical predictions (−2

√
2 � K4 � 2

√
2) fairly well. Fig-

ures 4(b)–4(d) demonstrate enhanced violations of the upper
bound for K4 as the dissipation intensity increases. For γ /J =
0.708 [Fig. 4(b)], the upper bounds of K4 observed at τ =
11.3 µs are 2.98 (±0.07). The corresponding theoretical value
stands at 3.21. Similarly, for γ /J = 0.857 [Fig. 4(c)], the
upper bound of K4 is 3.06 (±0.14) at τ = 16.3 µs, com-
pared to the theoretical value of 3.37. In the case of a larger
dissipation with γ /J = 0.915 [Fig. 4(d)], the upper bound
of K4 is 3.25 (±0.20) at τ = 20.3 µs, while the theoretical
value is 3.66. For K4, as the dissipation increases from the
Hermitian case to the exceptional point, the evolution time
for the maximum violation will increase from τ/TRabi = 1/8
to 1/6. For γ /J = 0.915, TRabi = 120 µs, and the measured
τ/TRabi � 0.167.

With the measurement operator σy and the target state |+〉,
we observe that the lower bound of K4 exhibits an upward
trend with the increase of dissipation. In the context of a
Hermitian system, the lower bound of K4 is established at
−2

√
2 [Fig. 4(a)]. For the case of γ /J = 0.708 [Fig. 4(b)],

the lower bound of K4 is −2.56 (±0.10) observed at τ =
38.3 µs. The corresponding theoretical value stands at −2.66.
Similarly, for γ /J = 0.857 [Fig. 4(c)], the lower bound of
K4 is −2.52 (±0.06) observed at τ = 50.3 µs. The corre-
sponding theoretical value stands at −2.62. Moving to a larger

FIG. 4. Experimental results of the LGI parameter K4. (a) Mea-
surement result of K4 under Hermitian condition (γ /J = 0).
(b)–(d) Measurement result of K4 under non-Hermitian condition,
with the ratios of γ /J being 0.708 (b), 0.857 (c), and 0.915 (d),
respectively. The red solid lines in (a)–(d) are the theoretical results
calculated by Eq. (6) [Eq. (8)]. The blue circles depict the exper-
imentally measured results and the black (gray) dashed line is the
upper (lower) bound 2

√
2 (−2

√
2) of K4 in the quantum system. The

error bars for the experimental results are estimated by the standard
deviation (1σ ) of multiple rounds of experiments. To discern the
population information of qubits effectively, each set of experiments
is repeated 500 times. The dissipation rate in (b)–(d) corresponds to
three dashed lines in Fig. 9(b). The coupling strengths J in (a) and
(b)–(d) are 2π × 11.5 kHz and 2π × 10.4 kHz, respectively.

dissipation level, with γ /J = 0.915 [Fig. 4(d)], the lower
upper bound of K4 is −2.46 (±0.05) observed at τ = 62.3 µs.
The corresponding theoretical value stands at −2.47. The
behavior of the lower bound of K4 is distinguished from that
of K3, which remains constant.

Under the measurement operator σy and the target state
|+〉, the lower bound of K4 does not surpass the Hermitian
lower bound. However, the lower bound of K4 is contin-
gent upon the choice of the observables and target states. In
Appendix C, we choose a specific set of the measurement
operator and the target state, showing that both the lower
and upper bounds of K4 can be violated simultaneously and
reaching the algebraic maximum value of both bounds. These
findings indicate that the higher-order LGIs offer specific
advantages in certain applications requiring sensitivity to the
observables [17,18].

To gain a deeper understanding of the enhanced tem-
poral correlations in non-Hermitian systems, we investigate
Eq. (10), which elucidates that the enhanced temporal cor-
relations result from the nonlinear interaction. When we
normalize the density matrix ρ, Eq. (10) can be replaced by
dρ/dt = −iJ[σx, ρ] + γ {σz, ρ} − 2γ 〈z〉ρ. The Bloch com-
ponent 〈z〉 = Tr[σzρ] characterizes the nonlinear interaction
[34,42]. This nonlinear term introduces a nonuniform evo-
lution dynamic, manifested as an inhomogeneous evolution
speed illustrated in Fig. 5. This inhomogeneous evolution
in the dissipative two-level system has been experimentally
confirmed in our previous work [40]. As dissipation increases,
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FIG. 5. Experimental results of state evolution dynamic. The
three solid lines are theoretical results and different colors represent
different dissipation strengths.

the duration of the evolution from |+〉 to |1〉 prolongs, while
the evolution time from |1〉 to |−〉 shortens. This nonuniform
speed gives rise to the distorted time-dependent correlations,
as evidenced by the evolution from a cosine curve to a non-
cosine curve with increasing dissipation (see Appendix B for
details). The distorted time-dependent correlations (depicted
in Figs. 7 and 8) then result in the larger violations of the
LGIs [26].

V. CONCLUSION

We have experimentally demonstrated the enhanced vio-
lations of LGIs in a PT -symmetric trapped-ion qubit. The
upper bounds of both K3 and K4 show enhanced violations
with the increasing dissipation, eventually reaching the al-
gebraic maximum values 3 and 4 by infinitely approaching
the exceptional point. Intriguingly, we observed that the lower
bound of K3 remains relatively insensitive to non-Hermiticity,
while the lower bound of K4 exhibits remarkable sensitivity
to non-Hermiticity, contingent upon the choice of the mea-
surement operators and the target states. Specifically, when

FIG. 6. Numerical results for the maximum and minimum value
of K3 (a),(b) and K4 (c),(d) by optimizing the parameters θ and φ,
where the ratio of the coupling strength and dissipation strength
approaches the unity (γ /J → 1). Here, the observable operator
is σy.

FIG. 7. Experimental results of correlation functions Cji in LG
parameter K3. The dissipation intensity γ in four pictures is (a) 0, (b)
0.472J , (c) 0.669J , and (d) 0.942J , respectively, where the coupling
strength J is 2π × 10.4 kHz.

employing the measurement operator σy and the target state
|+〉, the lower bound of K4 demonstrated an upward trend with
increasing dissipation. Furthermore, we conducted experi-
mental investigations of the relation between the nonuniform
evolution speed and the enhanced violations of LGIs. Along
this line, the LGI tests can be extended to the dissipative
quantum many-body systems, holding promise for studying
non-Markovian dynamics [43], dissipative quantum phase
transitions [44], and quantum-to-classical transition [45].
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APPENDIX A: OPTIMIZATION OF THE TARGET STATE

The selection of the target state is crucial for carrying out
an experimental test of LGIs in a dissipative quantum system.
In this study, we flip the |1〉 state to the target state |ψt 〉
through the evolution operator

U (θ, φ) =
(

cos θ
2 −i sin θ

2 e−iφ

−i sin θ
2 eiφ cos θ

2

)
, (A1)

where the U (θ, φ) is obtained from the interaction
Hamiltonian HI = J (σ+eiφ + σ−e−iφ )(h̄ = 1) in the rotating

frame. Here θ = 2Jt and φ are the rotating angle and rotating
axis on the Bloch sphere. Thus the target state |ψt 〉 can be
described as

|ψt 〉 = U (θ, φ)|1〉 =
(

−i e−iφ sin θ
2

cos θ
2

)
. (A2)

The goal is to obtain the algebraic maximum value of
LGIs with the observable σy by optimizing the parameters θ

and φ. To achieve this, we have computed the maximum and
minimum values of K3 and K4 and presented them in Fig. 6.
We find that the optimal solution for the maximum values of
K3 and K4 is achieved when the parameters are θ = π/2 and
φ = π . The optimal target state is exactly the eigenstate |+〉
of the observable operator σy.

APPENDIX B: CALCULATIONS OF TWO-TIME
TEMPORAL CORRELATIONS

The two-time temporal correlations, denoted as Cji, can be
calculated through the measurement of the joint probability
Pji(Qj, Qi ). This probability is obtained by preparing the tar-
get state |ψt 〉 and utilizing the observable operator σy. Thus
we get the following:

C21 =
∑

q1,q2=±1

q1q2P21(Q2, Q1)|t21=τ = P21(+,+) − P21(−,+) − P21(+,−) + P21(−,−)

= γ + J cos(2τχ )

J + γ cos(2τχ )
,

C31 =
∑

q1,q3=±1

q1q3P31(Q3, Q1)|t31=2τ = P31(+,+) − P31(−,+) − P31(+,−) + P31(−,−)

= γ + J cos(4τχ )

J + γ cos(4τχ )
,

C41 =
∑

q1,q4=±1

q1q4P41(Q4, Q1)|t41=3τ = P41(+,+) − P41(−,+) − P41(+,−) + P41(−,−)

= γ + J cos(6τχ )

J + γ cos(6τχ )
,

C32 =
∑

q2,q3=±1

q2q3P32(Q3, Q2)|t32=τ = P32(+,+) − P32(−,+) − P32(+,−) + P32(−,−)

= Jγ 2 + J (J2 + Jγ − γ 2) cos(2τχ )

[J − γ cos(2τχ )][J + γ cos(2τχ )]2
− γ cos2(2τχ )[−J2 + Jγ + γ 2 + J2 cos(2τχ )]

[J − γ cos(2τχ )][J + γ cos(2τχ )]2
,

C43 =
∑

q3,q4=±1

q3q4P43(Q4, Q3)|t43=τ = P43(+,+) − P43(−,+) − P43(+,−) + P43(−,−)

= 2χ2(γ + 2J ) cos(2τχ )

4[J2 − γ 2 cos2(2τχ )][γ cos(4τχ ) + J]
+ γ [2J (J − γ ) cos(4τχ ) + 2χ2 cos(6τχ )]

4[J2 − γ 2 cos2(2τχ )][γ cos(4τχ ) + J]

− J[−2γ + J cos(8τχ ) + J]

4[J2 − γ 2 cos2(2τχ )][γ cos(4τχ ) + J]
. (B1)

Here, the time intervals are defined as t4 − t3 = t3 − t2 = t2 − t1 = τ and χ =
√

J2 − γ 2. The experimentally measured
temporal correlations Cji are depicted in Figs. 7 and 8. The experimental results agree well with the corresponding theoretical
predictions.
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FIG. 9. Theoretical plots of the third-order K3 (a) and fourth-
order K4 (b) as a function of γ and τ . Here, the target state is
|+〉 and the observable operator is σy. The black, blue, green, and
red dashed lines in (a) represent γ = 2π × 0 kHz, 2π × 4.9 kHz,
2π × 7 kHz, and 2π × 9.7 kHz, respectively. Similarly, the black,
blue, green, and red dashed lines in (b) represent γ = 2π × 0 kHz,
2π × 7.3 kHz, 2π × 8.9 kHz, and 2π × 9.4 kHz, respectively. The
coupling strength J in (a) and (b) is 2π × 10.4 kHz.

The color maps illustrating the values for K3 and K4 as
functions of γ and τ are presented in Figs. 9(a) and 9(b). As
dissipation increases, the maxima of both K3 and K4, repre-
sented by red color, shift to larger values. We also observe that
the violations of LGIs can approach the algebraic maximum
of Kmax

3 → 3 and Kmax
4 → 4 when γ → J .

APPENDIX C: NUMERICAL RESULTS
OF THE HIGHER-ORDER LGI K4

We analyze variations in the maximum and minimum val-
ues of the high-order LGI (K4) in response to dissipation
intensity. This investigation is conducted under various mea-
surement operators and target states, as illustrated in Fig. 10.
The universal measurement operator is denoted as

�n · �σ =
(

cos(θm) e−iφm sin(θm)

eiφm sin(θm) − cos(θm)

)
, (C1)

FIG. 10. Numerical results of the higher-order LGI K4. The
lower (a) and upper (b) bounds of K4 exhibit variations with the
dissipation rate under different measurement operators and target
states. The parameters for the black solid lines in (a),(b) are θm =
φm = π/2, θ = π/2, and φ = π . Meanwhile, the parameters for the
blue dashed lines in (a),(b) are θm = θ = 0.51π , φm = π/2, and
φ = π . The coupling strength J in (a) and (b) is 2π × 10.4 kHz. The
exceptional point (EP) is marked by the blue pentagram.

where �n = [sin(θm) cos(φm), sin(θm) sin(φm), cos(θm)] is a
unit vector in three dimensions and �σ denotes the three com-
ponent vector of Pauli matrices.

The behavior of the lower bound differs from the case
where the lower bound of K3 remains constant. When θm =
φm = π/2, the measurement operator transforms into σy. Fol-
lowing the optimized solution of Eq. (A2), we select θ = π/2
and φ = π . Under these conditions, we observe an upward
trend in the lower (upper) bound of K4 with increasing dis-
sipation, as depicted by the black solid line in Fig. 10(a)
[Fig. 10(b)].

Introducing a new operator (θm = 0.51π , φm = π/2) and
a new target state using Eq. (A2) (θ = 0.51π , φ = π ) yields
distinct results for the lower bound of K4, as illustrated by the
blue dashed line in Fig. 10(a). Meanwhile, the upper bound
of K4 consistently exhibits an upward trend with increasing
dissipation [the blue dashed line in Fig. 10(b)]. These findings
highlight the strong dependence of the lower bound of K4 on
the selected measurement operator and the target state.
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