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Nonreciprocal non-Hermitian Su-Schrieffer-Heeger chain modulated by the influence
of PT -symmetric imaginary potentials

Chen-Hao Zhao,1 Jia-Rui Li,1 Cui Jiang,2 Lian-Lian Zhang,1 and Wei-Jiang Gong 1,*

1College of Sciences, Northeastern University, Shenyang 110819, China
2Basic Department, Shenyang Institute of Engineering, Shenyang 110136, China

(Received 25 November 2023; accepted 22 March 2024; published 8 April 2024)

We concentrate on the skin effects and topological edge states in the nonreciprocal non-Hermitian Su-
Schrieffer-Heeger (SSH) chain, by taking into account the presence of PT -symmetric imaginary potentials.
Following a detailed demonstration of the theoretical method, we find that, regardless of the application manner
of PT -symmetric imaginary potentials, they take weak impacts from the skin effect of bulk states, but efficiently
modulate the topological edge states. On the other hand, if such potentials are applied according to two
domains, the skin effect and new edge states can be induced along the domain wall, which are also dependent
on the structural parameters. Therefore, the findings in this paper promote understanding of the independent
modulations of the skin effects and topological edge states via the interplay between the imaginary potentials
and nonreciprocal couplings in the SSH lattices.
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I. INTRODUCTION

Non-Hermitian systems are open structures that can be
described by non-Hermitian Hamiltonians. During the past
years, they have attracted great interest from both theoretical
and experimental perspectives [1–5]. With the development
of topological systems, non-Hermitian topological systems
have been found to possess profound application values in
enhanced sensing [6–8], topological lasers [9], and topolog-
ical optical funneling [10]. Presently, there are two ways to
achieve non-Hermitian systems: using gain and loss potentials
[11–14] and nonreciprocal couplings [15–17].

The most famous system of gain and loss potentials is
the parity-time (PT ) symmetry system. In 1998, Bender
and Boettcher first discovered that non-Hermitian Hamil-
tonians with PT symmetry can display completely real
energy spectra [18]. This indeed promotes the development
of researches on non-Hermitian systems [19]. On the ex-
perimental side, researchers have found that PT -symmetric
systems can be achieved in optics [20–22], topological cir-
cuits [23,24], and topological photonic structures [25–27].
Moreover, many groups prefer to introduce PT -symmetric
imaginary potentials with gain and loss into topological sys-
tems to discuss the mechanisms of new phase transition
and PT -symmetric transition, such as the one-dimensional
(1D) Su-Schrieffer-Heeger (SSH) model, trimer lattices,
graphene, two-dimensional SSH lattices, and the Kitaev
model [28–35].

The other non-Hermitian mechanism is the nonreciprocal
coupling by asymmetric intensity of the hopping amplitudes
between the lattice points. According to the previous re-
ports, this characteristic causes the systems to display the
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non-Hermitian skin effect (NHSE), that is, eigenstates under
open boundary conditions are localized near the bound-
ary of the system in the form of exponential decay in
1D systems [10,36–39]. Due to the occurrence of NHSE,
the bulk-boundary correspondence of the system completely
collapses [36,40]. During the past years, research groups
discussed the topological characteristics in the nonrecipro-
cal topological structures and proposed some concepts, such
as generalized Brillouin zone (GBZ) [36,41–43], non-Bloch
bulk-boundary correspondence [36], non-Bloch topological
invariants [36,41], and non-Bloch electronic polarization
[44,45]. Meanwhile in experiment, NHSE has been realized
and applied, including the utilization of cold atoms, quan-
tum optical systems, optical grid systems, and topolectrical
circuits [46–50].

In view of the research progress about the systems with
imaginary potentials or nonreciprocal couplings, it is natural
to think about the interplay between these two mechanisms
in the modification of skin effect and topological edge states.
Motivated by such a topic, in the present paper we concentrate
on the skin effects and topological edge states in the nonre-
ciprocal non-Hermitian SSH chain, by taking into account the
presence of PT -symmetric imaginary potentials. Our purpose
is to provide a way to predict the skin effect of bulk states and
localization of edge states, and then provide some credible
results to separate the specific edge state from bulk states
and analyze the topological properties of the SSH chain. The
calculation results show that the PT -symmetric imaginary
potentials take weak impact from the skin effect, but effi-
ciently modulate the topological edge states, regardless of the
application manners of them. Alternatively, if such potentials
are applied according to two domains, the skin effect and new
edge states can be induced along the domain wall, which are
also dependent on the structural parameters. We thus believe
that the findings in this paper promote understanding of the
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FIG. 1. Three models of our considered nonreciprocal non-
Hermitian SSH chain. In case I, PT -symmetric imaginary potentials
are introduced according to the cells. In case II, the PT -symmetric
imaginary potentials are introduced to the end sites, whereas in case
III such imaginary potentials are applied according to the left and
right domains of the SSH chain.

independent modulations of the skin effects and topological
edge states via the interplay between the imaginary potentials
and nonreciprocal couplings in the SSH lattices.

II. MODEL

The nonreciprocal non-Hermitian SSH chain that we con-
sider is illustrated in Fig. 1. It is composed of N cells and
each unit cell has two distinct sites A and B, respectively.
Moreover, we only consider the nearest-neighboring hopping
in this chain, and then the whole system can be described by
the following Hamiltonian:

H = H0 + Ui, (i = I, II, III). (1)

H0 is the Hamiltonian of the nonreciprocal non-Hermitian
SSH chain. Ui denotes the Hamiltonian of imaginary poten-
tials. Regarding H0, it takes the form

H0 =
∑

n

[tl c
†
A,ncB,n + trc†

B,ncA,n

+ t2(c†
A,n+1cB,n + c†

B,ncA,n+1)]. (2)

c†
α,n(cα,n) is the creation (annihilation) operator of the particle

at site α (α = A, B) of the nth cell. tl (r) = t1 ± γ are the
amplitudes of intracell hoppings. Note that γ is exactly the
intracell nonreciprocal coupling strength. Due to the presence
of γ , the nonreciprocal non-Hermitian SSH chain is achieved.
In addition, t2 is the amplitude of intercell hopping.

Based on the above Hamiltonian, we would like to intro-
duce PT -symmetric onsite imaginary potentials to observe
the property variations of the nonreciprocal non-Hermitian
SSH chain, since such potentials enable one to introduce new
physics pictures to the topological systems. In this paper,
we would like to consider three types of imaginary potential
settings, i.e.,

UI(ε) = iε

(∑
n

c†
A,ncA,n − c†

B,ncB,n

)
,

UII(ε) = iε(c†
A,1cA,1 − c†

B,N cB,N ),

UIII(ε) = iε

⎡
⎣ N/2∑

n=1

(c†
A,ncA,n + c†

B,ncB,n)

−
N∑

n=N/2+1

(c†
A,ncA,n + c†

B,ncB,n)

⎤
⎦. (3)

It is clearly shown that UI describes the case where imagi-
nary potentials are added on sites A and B in each cell in a
periodic way. ε corresponds to the magnitude of the imagi-
nary potentials. According to the previous works, positive and
negative signs represent the energy gain and loss, respectively,
which has already been realized in experiment [22]. For UII,
it denotes the case of two imaginary potentials added on the
ending sites of the SSH chain. Next, UIII shows the alternate
case in which the imaginary potentials are added by dividing
the SSH chain into two domains. To be concrete, energy gain
is assumed to occur in the left-half domain, whereas energy
loss occurs in the right-half domain.

When observing the three types of cases, one can find that
all of them have the η-pseudo-Hermitian symmetry [51,52],
i.e., ηHη−1 = H† with η = Ioff−diag N . Therefore, we can
claim that such cases have non-Bloch PT (nPT ) symme-
try, due to the coexistence of nonreciprocal couplings and
PT -symmetric imaginary potentials. Surely, such a kind of
symmetry also leads to the appearance of real eigenvalues
[52]. Meanwhile, it can be seen that the above Hamil-
tonians have particle-hole symmetry with CH∗C−1 = −H
(C = IN/2 ⊗ σz), time-reversal symmetry with T HTT −1 =
H [T = off-diag(1, 1, . . . , 1) ⊗ off-diag(1, 1, . . . , 1)K], and
chiral symmetry with �H†�−1 = −H (� = Ioff−diag N/2 ⊗
iσy). According to the work [53], we can ascertain the non-
Hermitian topological classes of all the three cases. Namely,
they belong to the BDI†-class topology.

III. THEORETICAL DERIVATION

According to the Hamiltonian in the above section, we
continue to evaluate the skin effect and edge states of our SSH
chain. Through this derivation, we aim to give the conditions
for the direction, skin degree, and location of the NHSE of
the bulk states as well as the localization of the edge states,
by presenting the ratio of the relevant parameters. We would
like to emphasize that the appearance of skin effect and local-
ized edge states can be described by solving the Schrödinger
equation. The details are presented as follows.

To begin with, we assume a left local state to be defined as
ψL = 	N

i Li|i〉 with a right local state written as ψR = 	N
i Ri|i〉

(note that in our system, odd i is for site A with even i for
site B). Taking the case of ψL as an example, we write out
the relevant Schrödinger equation HψL = EψL. And then, the
eigenvalue equations of the left local states under the open
boundary condition can be given as

XL,1L1 + tlL2 = EL1, (4)

trLn + t2Ln+2 + XL,n+1Ln+1 = ELn+1, n ∈ [1, N ), (5)

t2Ln−2 + tlLn + XL,n−1Ln−1 = ELn−1, n ∈ (1, N], (6)

trLN−1 + XL,N LN = ELN . (7)

Equations (4) and (7) are related to the left and right bound-
ary conditions, whereas Eqs. (5) and (6) are for bulk states,
with Eq. (5) for odd n and Eq. (6) for even n, respectively.
In addition, XL/R,n = XL/R,n(ε) represent the generalized on-
site energies of the SSH chain. For instance, in case I of
our system, one can understand XL/R,1(ε) = ±iε. By the
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same token, the eigenvalue equations of the right local states
can be obtained by changing Li to Ri. When observing
Eqs. (4)–(7), we can find that regardless of the three types of
PT -symmetric imaginary potentials, the eigenvalues of the
Schrödinger equations are allowed to obey two relationships,
i.e., E = XL,1;(R,N )(ε) or E �= XL,1;(R,N )(ε), respectively (for
convenience, the subindex of X will be ignored hereafter).

On the one hand, as the localized edge states arise, their
eigenenergies have an opportunity to satisfy the result of
E = X . Instead, the eigenenergies describe the characteristics
of the bulk states. In view of this phenomenon, we can discuss
the properties of Li to present the leading properties of the
localized edge states and the bulk-state skin effect. First, when
E = X (ε), we can immediately derive Ln = −t2/trLn+2, L2 =
0. Furthermore, if the localized edge state exists in this system,
the distribution of it must have a threshold value at site m
(such as higher-localized edge states m ∈ [2, 5] and Z) which
satisfies Lm+1 = 0, when the maximum site for localized edge
state appears on the left. In fact, the absolute value of Lm is
basically of the order 10−2, the smallest among Li. So we can
derive

|L1|2 ∝
∣∣∣∣ t2
tr

∣∣∣∣
m−1

|Lm|2, (8)

Ln = 0, (n is even). (9)

This result means that if the eigenvalue of localized edge state
satisfies E = X (ε), |ψL|2 will have oscillatory value along
with the increase of sites to the left direction, accompanied by
the occurrence of the state localization on the left if |t2| > |tr |.

Regarding the localized edge state on the right, we can
perform the same analysis about ψR. In the presence of the
right localized states, the distribution of the local states also
has a threshold value at site m′ which satisfies Rm′−1 = 0.
Just like the left localization case, Rm′ ’s absolute value also
is around 10−2 and is the smallest among Ri. According to
this relationship, we can obtain the following result:

Rn = 0, (n is odd), (10)

|RN |2 ∝
∣∣∣∣ t2
tl

∣∣∣∣
N−m′

|Rm′ |2. (11)

It is obvious that this system has an opportunity to display
the right-side localized edge states when |t2| > |tl |. Up to now,
we can find that the localized edge states on the left or right
must not be consistent with each other due to |tl | �= |tr |. In
other words, the difference between tl and tr determines the
localized edge states in this system. It is easy to understand
that if |tr | < |tl | (|tr | > |tl |), for the same |t2|, Eqs. (8) and (11)
is more dominant. Obviously, the system intends to display
the left (right) localized edge state, in the case of |t2| > |tr |
(|t2| > |tl |). Moreover, the left (right) localized edge state can
be ascertained under the condition of |tl | > |t2| > |tr | (|tr | >

|t2| > |tl |). However, if |t2| � |tl | > |tr | or |t2| � |tr | > |tl |, the
competition between Eqs. (8) and (11) will become uncertain,
so localized edge states have the possibility to exhibit the
double-direction localization, with the critical condition |t2| ≈
|tl | (|t2| ≈ |tr |) where the localization phenomenon could be
destroyed.

On the other hand, when E �= X (ε), the localization be-
haviors of the eigenstates can be viewed as the skin effect
of the bulk states and some edge states. In such a case, the
above derivation can be performed in an alternate way. Taking
the left-side skin effect as an example, considering there is
Lm+1 = 0, we can write out the result that Lm−1 = (E−X )

tr
Lm.

Substituting this result in Eqs. (4)–(7), one can find that
Lm−2 = (E−X )2−tl tr

t2tr
Lm. Next, the general form of Lm−q can be

expressed, i.e.,

Lm−q =
∑

j Pj (t2, tl , tr )(E − X ) j

t [q/2]
2 t [(q+1)/2]

r

Lm. (12)

∑
j Pj (t, tl , tr )(E − X ) j is the polynomial of (E − X ) and Pj

is a function about tl , tr , and t2. The maximum value of index
j is equal to q, but j = 1, 3, 5, . . . , q when q is odd and
j = 0, 2, 4, . . . , q when q is even. Meanwhile, the polynomial∑

j Pj (t, tl , tr )(E − X ) j is different for j odd or even. For
odd j,∑

j

Pj (t, tl , tr )(E − X ) j

= (E − X )q −
[

(q − 1)

2
tl tr + (q − 1)

2
t2

]
(E − X )q−2

+ . . . + Pj (E − X ) j + . . . + P1(E − X ),

in which P1 = −[t q−1 + t q−3tl tr + . . . + t q−st (l−1)/2
l t (l−1)/2

r +
. . . + t (q−1)/2

l t (q−1)/2
r ].

For even j, we can obtain∑
j

Pj (t, tl , tr )(E − X ) j

= (E − X )q −
[

q

2
tl tr + (q − 2)

2
t2)

]
(E − X )q−2

+ . . . + Pj (E − X ) j + . . . + P1,

with P1 = −t q/2
l t q/2

r . Note that if |E − X | is small, we can
drop all the terms that include (E − X ). In such a case,
Eq. (12) changes to be

Lm−q ≈ t q/2
l

t q/2
2

Lm. (13)

For the right-side skin effect, in the same way, we derive

Rm+q =
∑

j P′
j (t2, tl , tr )(E − X ) j

t [q/2]
2 t [(q+1)/2]

l

Rm. (14)

If |E − X | is small enough, there will be

Rm+q ≈ t q/2
r

t q/2
2

Rm. (15)

In Eqs. (12)–(15), it can be readily found that the large
value of |E − X | is certain to induce the occurrence of the
skin effect. If |E − X | is small, the skin effect will be rel-
atively weak. Similar to the case of E = X which displays
the localized edge states, the difference between tl and tr
determines the skin effect to occur on the left or right in
this SSH chain. For the case of large |E − X |, if |tl | > |tr |
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FIG. 2. The direction of the skin effect in the nonreciprocal SSH
chain is highly related to the ratio of tl and tr . Relevant parameters are
taken as ε = 0, t2 = 1.0. (a) tl = 1.5 and tr = 0.5 for tl > tr . (b) tl =
0.5 and tr = 1.5 for tl < tr .

(|tl | < |tr |), Eqs. (12) and (14) is more competitive for the
same E , so the system intends to display the left (right) skin
effect. To check this conclusion, we present the numerical re-
sults in Fig. 2. One can readily find the skin effect determined
by the ratio of tl and tr . However, for some special states,
|E − X | may become very small. In such a case, according
to Eqs. (13) and (15), we can know that if |tl | > |t2| > |tr |
(|tr | > |t2| > |tl |), such states must be manifested as the left
(right) skin characteristics. Surely, for the edge states when
E �= X (ε), if |t2| ≈ |tr | (|t2| ≈ |tl |), the localization could be
suppressed seriously, similar to the result of E = X .

The above analysis helps us to understand the localized
edge states and the bulk-state skin effect under the conditions
of E = X and E �= X , respectively. In practice, for the cases of
UII or UIII, additional boundaries or domain walls are formed
in the SSH chain, and then the energies of some states are
allowed to satisfy E = Xa and E �= Xb simultaneously (Xa

and Xb are the onsite energies beside the boundary or domain
wall). In that case, taking the left skin effect as an example,
we consider the threshold site to be m = n′ + q and E �= Xb

exists before site n′. From Eqs. (4)–(7) we have

. . .

t2Ln′−2 + tlLn′ = (E − Xb)Ln′−1,

trLn′−1 + t2Ln′+1 = (E − Xb)Ln′ ,

t2Ln′ + tlLn′+2 = 0,

trLn′+1 + t2Ln′+3 = 0,

. . .

trLn′+q−2 + t2Ln′+q = 0.

This exactly means that Ln′ = (trLn′−1 + t2Ln′+1)/(E − Xb)
and Ln′−1 = (t2Ln′−2 + tlLn′ )/(E − Xb). In the presence of
large |E − Xb|, e.g., |E − Xb| 
 t2, Ln′ has an opportunity to
decay rapidly following the decay of Ln′+1 and Ln′−1. At the
same time, Ln′−1 decays following Ln′ and Ln′−2 in such a case.
Thus, the magnitude of Ln′+1 must be much larger than Ln′−1,
and Ln′−1 can be ignored. This allows us to consider Li in front
of Ln′−1 to be equal to zero. Then, the relationship between
Ln′+1, Ln′+3, Ln′ , and Ln′+1 will be simplified as∣∣∣∣Ln′+1

Ln′+q

∣∣∣∣
2

=
(

t2
tr

)q−1

, (16)

Ln′

Ln′+1
= t2

E − Xb
. (17)

Obviously, the magnitude of Li will be decreased rapidly at
site n′. Therefore, the wave function cannot pass through site
n′ and there must be a local location on Ln′+1 which can be

called a local point (LP) mainly working for the edge states.
Here, we set LP > 0 (LP < 0) which originates from positive
(negative) imaginary potentials. For the special case that the
system has a large q, i.e., a domain wall which is known as
the boundary, the LP changes to be the boundary point (BP).
In this sense, the system edges can also be recognized as BPs.
Different from the LPs, BPs mainly affect the bulk states.
Thus we just talk about the BP in the case of the domain wall.

Following the above discussion, we next would like to
clarify the critical locations of the localized states. For the
Hamiltonian H with eigenvalues Ei, we rewrite the corre-
sponding secular equation, i.e.,

det|EI − H |
= [E1 − (X1 − δ1)] . . . [Ei − (Xi − δi )]

× . . . [EN−1 − (XN−1 − δN−1)][EN − (XN − δN )]

=
∏

i

[Ei − (Xi − δi )] = 0. (18)

Here I is the identity matrix and δi ∈ C. δi is an adjustable
parameter to fit Ei and Xi is the potential energy of site i,
with their relationship of |Im(δi )| � |Im(Xmax)| = ε. It can be
understood that for edge modes, Re(Xi ) = Re(δi ), so |Xi| �
|δi|, indicating that sgn(Xi − δi ) = sgn(Xi ). Furthermore, the
states which have the result of δ = 0 are certain to be localized
edge states. Thus from Eq. (18), we can find that the localized
edge states must be located at the site where Xi = Ei, and the
edge states at the domain wall must be located at the site where
sgn(Xi ) = sgn(Ei ), i.e., sgn(Ei ) = sgn(LP) or sgn(BP) com-
bining with the foregoing. In view of this fact, we can consider
that the locations of localized edge states can be modulated by
setting the proper Xi, e.g., the imaginary potentials. This also
means that the positions of the localized edge states are not
necessarily identical with the skin effect, in the presence of
proper imaginary potentials.

Now, we can make a brief conclusion from the above
discussions as follows.

A. C1

For tl > tr (tl < tr), the system display the left (right) skin
effect. In the case of E = X , Eqs. (8) and (11) are only for
localized edge states, whereas if E �= X , Eqs. (12) and (14)
will be used to describe the skin effect of bulk states, with
Eqs. (13) and (15) related to the case of small |E − X |.

B. C2

The effects of the two mechanisms, i.e., the nonreciprocal
coupling as well as imaginary potentials, on the edge and
bulk states of the system are shown in Table I. The label
“|tl | > t2 > |tr |, NHSE ⇒ left (right)” means if the system
has |tl | > t2 > |tr | then the skin effect of bulk states will
arise at the left (right) boundary, i.e., the direction of the
NHSE is on the left (right) side, and other labels represent
similar meanings. The label “Direction of NHSE” means that
the local direction of the edge state is the local direction of
NHSE, i.e., the stronger effect of the nonreciprocal coupling
on the local direction of the edge state. The label “Direc-
tion of sgn(E ) = sgn(LP)” means that the edge states whose
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TABLE I. The specific results for judging the localization directions of the edge and bulk states under the action of nonreciprocal coupling
and imaginary potentials. Our conditions are divided into the Hopping conditions and the potential conditions. Combining these two conditions,
we can prejudge the local direction of edge states. The global LP is the system with the imaginary potentials in all sublattices, such as the case
of UI. The regional LP is the system with the imaginary potentials in some part of sublattices, such as the cases of UII and UIII.

eigenenergies are positive (negative) will be localized at the
position of positive (negative) LP. The modulation mechanism
of imaginary potentials, i.e., the locations of the LPs, have
stronger effects on the local directions of the edge states.

C. C3

For the edge states, whether E = X or E �= X , when the
system satisfies |tr | ≈ |t2| or |tl | ≈ |t2|, the localization of edge
states will be destroyed.

IV. NUMERICAL RESULTS AND DISCUSSIONS

Based on the theoretical framework in the above two
sections, we proceed to carry out numerical calculations to
present the skin effects and localized edge states in the three
cases of the nonreciprocal non-Hermitian SSH chain in the
presence of PT -symmetric imaginary potentials.

A. Case I

1. Energy-band structure

We first concentrate on case I where the Hamiltonian is
written as H = H0 + UI. The spectra of the energy-band struc-
tures are shown in Figs. 3(a)–3(c) with the variable t1 for ε =
0, 0.15, and 0.85, respectively. Figure 3(a) is the original band
structure of the nonreciprocal SSH chain [42]. In Fig. 3(b)
we find that in the case of ε = 0.15, the zero-energy modes
in the topologically nontrivial region begin to display the
imaginary energies ±iε. Meanwhile, the band crossing points
are magnified and changed to be two “conglutination” regions,
which can be considered as the so-called zero-gap phase. The
result means that the nPT symmetry of this region has been
broken by the imaginary potentials. Next in Fig. 3(c), it is
shown that with the gradual increase of imaginary potential

strength, the two-side zero-gap phase regions are magnified
obviously. Especially in the case of ε = 0.85, the original
topologically trivial regions are eliminated. And also, a new
zero-gap phase region arises in the vicinity of t1 = 0. Here we
call it the central zero-gap phase.

In order to further present the key role of PT -symmetric
imaginary potentials in case I, we take t1 = 0.2 and plot the
real and imaginary parts of energy as functions of imaginary
potential strength ε. It can be clearly found in Fig. 3(d) that
with the increase of ε, the magnitude of the real part of energy
tends to be decreased, accompanied by the increase of the
spectral widths. Accordingly, in the case of ε = 0.77, the two
branches of the real energy merge into one, and the band gap
disappears. On the other hand, the increase of ε enlarges the
range of the imaginary part of the energy of the bulk states.
As a result, in the critical case of ε = 0.77, the imaginary part
of energy is divided into two branches. We can thus consider
this point to be the exceptional point of the phase transition
of bulk states. Regarding the purely imaginary states, the
imaginary part of energy appears when ε is not equal to zero.
This indicates that the system is located in the regime of
nPT -symmetry breaking.

2. Topological condition and phase diagram

In Fig. 4, we figure out the phase diagram of the topolog-
ical phase transition in case I, caused by the increase of ε.
Before the numerical calculation, we would like to present
our analytical discussion. To perform calculation, we consider
the Hamiltonian under the periodic boundary condition and
express it in the GBZ [52], i.e.,

Hβ =
[

iε t1 + γ + t2β−1

t1 − γ + t2β −iε

]
. (19)

042203-5



ZHAO, LI, JIANG, ZHANG, AND GONG PHYSICAL REVIEW A 109, 042203 (2024)

FIG. 3. (a)–(c) Spectra of the real and imaginary parts of the
energy-band structures. Parameters are taken as t2 = 1.0, γ = 2/3,
and (a) ε = 0, (b) ε = 0.15, and (c) ε = 0.85. (d) Real and imaginary
parts of energy as functions of ε. Relevant parameters are set to be
t1 = 0.2, t2 = 1.0, and γ = 2/3.

In this equation, β = reik and r = √|t1 − γ |/|t1 + γ |. It is
not difficult to find that the formulation of the characteristic
equation of Hβ obeys the form of f (β ) = 	ntnβn. Then con-
sidering f (β ) = 0, we can obtain the result that

β1,2 =
T ±

√
4t2

2

(
γ 2 − t2

1

) + T 2

2t2(t1 + γ )
, (20)

where T = ε2 − t2
1 − t2

2 + γ 2. According to the previous
works [52,53], when |β j | = |β j+1|, we can get the phase tran-
sition conditions, i.e.,

t1 = ±
√

(t2 ± ε)2 + γ 2 |t1| > |γ |, (21)

ε =
√

t2
1 + t2

2 − γ 2 |t1| < |γ |. (22)

In Figs. 4(a) and 4(b), we plot the curves of |β| as a function
of t1 in the case of ε = 0.15 and 0.85, respectively. It can
be readily observed that there are two regions manifested
as |β1| = |β2| for ε = 0.15, whereas for ε = 0.85 an addi-
tional point of |β1| = |β2| appears at t1 ≈ ±0.4 except the two

FIG. 4. (a), (b) The curves of β j as a function of t1 in the cases
of ε = 0.15 and 0.85, respectively. (c) The distribution of edge state
number with the change of ε and t1. Two pink dots are (t1 = 0.5,
ε = 0.9) and (t1 = 1.0, ε = 0.15). (d) Phase diagram according to
panel (c) with the change of ε and t1.

similar regions. We find that Eqs. (21) and (22) can consist
with the phase transition condition of the two-side zero-gap
phase and the central zero-gap phase, respectively, which cor-
respond to the results in Figs. 3(b) and 3(c).

With the help of the above derivation, in Fig. 4(c) we
present the distribution of edge-state number in different
phase regions. Equations (21) and (22) describe the white
and cyan lines. We can find that the numbers of two types of
zero-gap phases are different from each other, corresponding
to different physical properties. According to Fig. 4(c), the
system has four phase regions, i.e., the two-side zero-gap
phase (yellow I), the central zero-gap phase (red II), and the
topologically nontrivial (pink III) and trivial (blue IV) phases,
as shown in Fig. 4(d).

3. Skin effect and topological edge states

Next, to illustrate the NHSE and the topological edge states
in case I, we pay attention to the density-of-state (DOS) dis-
tribution of the bulk states and the edge states. The relevant
parameters correspond to the two pink dots in Fig. 4(c).

In Fig. 5(a), we present the DOS distribution of the bulk
states and topological edge states in the central zero-gap
phase. For the bulk states, the system exhibits the NHSE in
the left direction because of C1. For the edge states, they
display a different localization effect. To be specific, the edge
states are localized on the left side when E = ±0.9000i = X
and the localization in the case of E = −0.9000i is worse
than that of E = 0.9000i in Figs. 5(a)(i) and 5(a)(ii). When
E = ±0.1133i �= X , the edge states are also localized on the
left side, just the same as the direction of NHSE. In the
topologically nontrivial region [see Fig. 5(b)], the topological
edge states and skin effect of the bulk states are relatively well
defined and have the same localized direction.

Based on the above phenomena of localization, we can
explain the conclusions in Sec. III. Whether t1 = 0.5, ε =
0.90 (|tl | = 1.166 and |tr | = 0.166) or t1 = 1.0, ε = 0.15
(|tl | = 1.666 and |tr | = 0.344), the hopping terms satisfy the
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FIG. 5. The index of eigenstates and density-of-state distribution of the bulk states and topological edge states (a) in the central zero-gap
phase (t1 = 0.5, ε = 0.90) and (b) in the topological phase (t1 = 1.0, ε = 0.15). In panels (a) and (b), the colorscale corresponds to the value
of the imaginary part of energy. Eigenenergies of edge states for panel (a) are taken as (i) E = 0.9000i, (ii) E = −0.9000i, (iii) E = 0.1133i,
and (iv) E = −0.1133i; for panel (b) they are taken as (i) E = 0.1500i and (ii) E = −0.1500i. The red lines describe the density-of-state
distribution of the edge states, and cyan lines denote the skin effect of the bulk states.

relationship tl > t2 > tr . Taking the result in Fig. 6(a)(i) as an
example, the energy of the edge state belongs to the type of
E = X . Supposing m = 5 and putting such a condition into
Eq. (8), one has |L1|2 = | t2

tr
|4|L5|2. With the help of |L1|2 +

|L3|2 + L2
5 = 1, we can obtain the result of L1 ≈ 0.868, L3 ≈

0.116, and L5 ≈ 0.016. These results are the same as the val-
ues in Fig. 6(a)(i). Therefore, one can find that our conclusions
in Sec. III are correct. For the case in Fig. 6(a)(ii), although the
eigenenergy of the edge state is a negative imaginary number,
at this point the localization of the edge state is modulated
by the NHSE, therefore it is still manifested as the left-side
localization. Also, with the condition |t2| ≈ |tr |, the effect
of localization is not well defined, which has already been

FIG. 6. (a) Phase diagram with the change of ε and t1. The
spectra of energy bands are (b) ε = 0.4 and (c) ε = 3.6.

discussed regarding C3. From the above results, we can prove
that our conclusions in Sec. III are reasonable.

B. Case II

In this subsection, we turn to the investigation of case II
with its Hamiltonian written as H = H0 + UII. In such a case,
the imaginary potentials are applied to the end sites of the SSH
chain. The phase diagram and the band structures for some
typical cases are shown in Fig. 6.

1. Phase diagram and energy band

Figure 6 displays the phase diagram and specific energy
bands. From the phase diagram, we see that with the increase
of ε, the original topologically nontrivial region (region II) is
not changed and the topologically trivial region (region III) is
narrowed obviously. Between the topologically nontrivial and
trivial regions, a new type of phase region comes into being, in
the case of rising ε. Such a phase region is widened apparently
in this process.

To further clarify the band structure of case II of the SSH
chain, we take two cases to present the real and imaginary
parts of energy, as shown in Figs. 6(b) and 6(c). For the
case of small ε, e.g., ε = 0.4 [see Fig. 6(b)], in the range
of t1 ∈ [−1.21, 1.21], the edge states have imaginary energy
Im(E ) �= 0. Since the topological states are located at the ends
of the SSH chain, the application of imaginary potentials is
certain to modify the energies of the edge states. In the region
of 1.21 < |t1| < 2.0, all the eigenenergies are real. Thus, the
states are protected by the nPT symmetry. With the increase
of ε, the edge states are not ended at the band-crossing points,
but penetrate into the topologically trivial region. In the ex-
treme case where ε = 3.6, in Fig. 6(c) we see that the edge
states penetrate into the topologically trivial region, and the
imaginary part of energy obtains the larger magnitude. One
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FIG. 7. Real and imaginary parts of energy with (a) t1 = 0.2 and
(b) t1 = 1.5. We can clearly find that two bulk states become edge
states induced by imaginary potential.

can also find that edge states have two pairs of the imaginary
part of energy. This means that the two types of edge states
possess different properties. In Fig. 7, we present the variation
of the real and imaginary parts of energy with the increase of
the imaginary potential strength, for further describing the role
of the imaginary potentials in modulating the respective states.
As shown in Figs. 7(a) and 7(b) where t1 = 0.2 and 1.5, we
can clearly observe that the two types of phase regions have
different properties. To be specific, in the case of t1 = 0.2 [see
Fig. 7(a)], the edge states obtain the imaginary part of energy
when ε > 0, which is proportional to the value of ε in a linear
way. It means that the system is located in the phase of nPT
symmetry breaking. When t1 = 1.5, in Fig. 7(b) it shows that
from the imaginary part of energy, the system undergoes two
nPT -symmetry phase transitions. The first phase transition is
at εc1 = 1.00. In the region of ε ∈ [0, 1.00], all eigenenergies

are real and belong to the nPT -symmetry-protected phase. In
the region of ε ∈ [1.0, 2.24], the system has nonzero isolated
states in the bulk band and gradually enters into the energy
gap [see the green line in Fig. 7(b)]. The second phase transi-
tion occurs at εc2 = 2.24. The nonzero isolated states become
degenerate into purely imaginary edge states. The imaginary
part of energy experiences new splitting at εc2.

2. Skin effect and topological edge states

Next, we plot the eigenenergy and DOS spectra, by taking
the cases of t1 = 0.5 and 1.9 with ε = 3.6. According to
the energy spectra in Fig. 6(c), whether t1 = 0.5 or 1.9, the
edge states do not satisfy E = X . Thus, they belong to the
case of E �= X . First, when the case of t1 = 0.5, we can derive
tl = 1.166 and |tr | = 0.166. For the bulk states, because of
tl > tr , the system has the left skin effect which is consistent
with C1 in Sec. III. For the edge states, we can find that the
localization of E = +(−)3.6495i occurs on the left (right)
side of the system [see Figs. 8(b)(i) and 8(b)(ii)]. For the new
phase, such as t1 = 1.9, tl = 2.566, and tr = 1.233, we see
that the edge states of E = 2.4317i and 0.8906i are localized
at the left boundary of the system, whereas the edge states
of E = −2.4317i and −0.8906i are localized at the right
boundary of the system. In addition, the bulk states display
the left-direction skin effect because of tl > tr .

Using the same method, the reason for localization phe-
nomena can be explained by the conclusion regarding C2. In
the presence of UII, +iε is set on the left side and −iε is
set on the right side, thus the direction of LP > 0 (LP < 0)
occurs on the left (right) side. For the case of t1 = 0.5, the
hopping terms satisfy tl > t2 > |tr | and the |E − X | value of
edge states is large. According to Table I, the localization
of edge states is adjusted by the direction of the LP at this
point. Therefore, the positive-imaginary energy edge state is
localized in the direction of LP > 0, i.e., on the left side.

FIG. 8. Index of eigenstates and DOS selected from (a) phase region II (t1 = 1.9, ε = 3.6) and (b) phase region I (t1 = 0.5, ε = 3.6). The
eigenvalues of edge states are [(a)(i)–(a)(iv)] E = 2.4317i, −2.4317i, 0.8906i, and −0.8906i and [(b)(i), (b)(ii)] E = 3.6495i and −3.6495i.
Because there is a negative imaginary potential on the right edge which creates a LP for negative energy, negative-energy edge states localize
at the right edge.
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FIG. 9. (a) Phase diagram with the change of ε and t1. Two red
dots are (t1 = 1.0, ε = 0.2) and (t1 = 1.0, ε = 1.8). The energy-band
spectra are (b) ε = 0.2 and (c) ε = 1.8.

The same results can be seen in Fig. 8(b)(i). In the same
way, for the case of t1 = 1.9, the system satisfies tl > tr > t2.
From Table I, we know that no matter whether the energy of
the edge state belongs to large |E − X | or small |E − X |, its
local direction is driven by the LP direction. Therefore, the
positive-imaginary energy edge state is localized on the left
side (direction of LP > 0), and the negative-imaginary energy
edge state is localized on the right side (direction of LP < 0).
The details can be observed from the results of E = 2.4317i
and −0.8906i in Fig. 8.

We can also verify them with the help of numerical re-
sults. In case II, we have Xi=2→N−1 = 0. For the situation
of t1 = 0.5, according to C1, we consider m = 2 and put
it into Eqs. (4), (5), and (12) and we can obtain the result

that |L1|2 = 1
|t2/E |2+1 and E ≈ iε − i( t2

1 −γ 2

ε
) for the relatively

large ε. According to the above formula, it can be found that
L1 ≈ 0.997, and the edge state is localized on the left side with
the energy given as E ≈ 3.65i.

C. Case III

Following the discussion about cases I and II, we continue
to carry out the study on case III with the system’s Hamil-
tonian written as H = H0 + UIII. In such a case, energy gain
occurs in the left domain, and energy loss appears in the right
domain, thus one domain wall is formed at the middle of the
SSH chain.

1. Phase diagram and energy-band structure

In Fig. 9(a), we plot the phase diagram and real and imagi-
nary energy spectra of specific cases. From the phase diagram,
the system has three phase regions. With the increase of ε,
the topologically trivial region (region III) does not undergo
any clear change, whereas the topologically nontrivial region
(region II) displays phase transition, with the phase boundary

close to the relationship of ε =
√

−t2
1 + t2

2 + r2. With the
increase of ε, the new phase region appears (region I). In

Figs. 9(b) and 9(c), we take ε = 0.2 and 1.8, respectively,
to investigate the spectra of the real and imaginary parts of
energy. First, in the case of ε = 0.2 in Fig. 9(b), the imagi-
nary potentials induce new pure real energy isolated states to
appear in the regions of the bulk states. When imaginary po-
tentials are enhanced, such isolated states tend to be squeezed
into the band gap in the topologically nontrivial region. The
results in Fig. 9(c) show that in the case of ε = 1.8, the
degeneracy occurs in the whole topologically nontrivial re-
gion. Accordingly, our system obtains another two edge states
from the bulk states. Moreover, the imaginary part of energy
is not purely real, and the system is always in the broken
nPT -symmetry phase.

2. Skin effect and localized edge states

Similarly, we would like to present the localization of the
edge states in Fig. 10. In the case of t1 = 1.0, tl = 1.666
and tr = 0.334. The presence of the domain wall causes the
system to have a BP at j = 51, according to the conclusion of
Sec. III. When the effect of ε is strong, the BP and LP coincide
at the middle of the chain based on Sec. III. Thus, for the
bulk states, the left boundary and the site j = 51 domain-wall
boundary can also have skin effect, according to C1. For the
edge states, two types of phase regions have different results.
To be specific, when ε = 0.2 in region II [see Fig. 10(b)], the
inclusion of weak imaginary potentials leads to the relatively
weak BP effect, so the edge states of E = ±0.2000i are local-
ized on the left side of the system. In region I, the system has
four edge states. At this point the BP effect is strong enough,
therefore the edge states of E = ±1.8000i and ±1.6720i are
localized at the left boundary and BP, that is, the direction of
skin effect.

In the same way, we can use the conclusion in Sec. III to
explain the phenomena. For the case of t1 = 1.0, the hopping
term satisfies tl > t2 > |tr |. Observing the structure of Hamil-
tonian H , one can clearly find that the direction of NHSE is on
the left side, and another direction of NHSE is in the middle of
chain j = 51 (BP), based on the conclusion in Sec. III. When
the energy of the edge state belongs to E = X , according to
Table I, the localization direction of the edge state is mainly
adjusted by the NHSE, thus the case of E = ±0.2000i and
±1.8000i can display phenomena like in Fig. 10. When the
edge state satisfies E �= X and large |E − X |, such as E =
±1.6720i, in the region of tl > t2 > tr , the direction of the
edge state can also be adjusted by the LP (BP).

D. Prediction of edge-state location

Following the above discussion, we can verify that
the three conclusions regarding C1–C3 can be used to
predict the localization directions of edge states and skin
effect of bulk states. In order to validate the precision of
our conclusions, we introduce two constructions: U ′

1(ε) =
−iε(

∑
n c†

A,ncA,n − c†
B,ncB,n) and U ′

2(ε) = iε(
∑N/4

n=1 c†
ncn −∑N/2

n=N/4+1 c†
ncn + ∑3N/4

N/2+1 c†
ncn − ∑N

n=3N/4+1 c†
ncn).

For U ′
1, when t1 = 0.2, there will be tl = 0.866 and |tr | =

0.466, so there will be t2 > tl > |tr |. For the bulk states, the
direction of skin effect will be on the left because of |tl | > |tr |
according to C1. Regarding the edge states, the imaginary
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FIG. 10. Index of eigenstates and DOS selected from (a) phase region I (t1 = 1.0, ε = 1.8) and (b) phase region II (t1 = 1.0, ε = 0.2). The
eigenvalues of edge states are [(a)(i)–(a)(iv)] E = 1.8000i, −1.8000i, 1.6720i, and −1.6720i and [(b)(i), (b)(ii)] E = 0.2000i and −0.2000i.

potentials are manifested as +iε on the right sides (LP >

0) and −iε on the left sides (LP < 0). Thus, according to
Table I, the positive-imaginary energy edge states of E = X
are localized on the left (LP > 0) and negative-imaginary
energy edge states are localized on the right (LP < 0). For the
case of E �= X , the directions of edge states are based on the
NHSE, so the localizations are on the left. In Fig. 11, we plot
the DOS of the system with U ′

1. It can be clearly observed
that our inferred results by Sec. III are consistent with the
figures.

For the case of t1 = 1.0 at U ′
2, t1 = 1.666 and tr = 0.334,

so the system satisfies tl > t2 > |tr |. Based on the conclu-
sions regarding C1 and C3, the system displays four parts of

FIG. 11. (a) The DOS of edge states of ε = 0.9 at t1 = 0.2 in U ′
1

where (i) E = 0.9000i, (ii) E = −0.900i, (iii) E = 0.4836i, and (iv)
E = −0.4836i. (b) The DOS of edge states of ε = 1.8 at t1 = 1.0 in
U ′

2 where (i) E = 1.7999i, (ii) E = −1.7999i, (iii) E = 1.6719i, and
(iv) E = −1.6719i.

left-direction boundary NHSE at the left boundaries j = 1, the
1/4 position j = 26, 1/2 position j = 51, and 3/4 position
j = 76 since there are three BPs. For the edge states, when
the edge states belong to E = X , according to Table I, the
localization directions of edge states are mainly adjusted by
NHSE. When the edge states satisfy E �= X and large |E −
X |, the directions of them are also adjusted by the LP (BP).
In Fig. 11(b), we present the DOS results of different edge
states for the situation of U ′

2, and we find that the localization
property is indeed accordant with the conclusion in Sec. III.

Based on the above results, we can claim that the conclu-
sions in Sec. III are correct and effective ways to predict the
localization properties of edge states and bulk states.

V. CONCLUSION

In conclusion, in this paper we have performed a compre-
hensive analysis on the skin effects and topological properties
in the nonreciprocal non-Hermitian SSH chain, by taking
into account the presence of PT -symmetric imaginary po-
tentials. Following a detailed demonstration of the theoretical
method, we have found that the application manners of the
PT -symmetric imaginary potentials play nontrivial roles in
modulating the topological properties and the skin effect.
When the PT -symmetric imaginary potentials are applied to
the two sites of each cell, the topological properties can be
modulated obviously, with little change of the skin effect.
On the other hand, if such potentials are applied according
to two ending sites, the edge states will have complex local-
ization. In the case of two domains of the SSH chain, both
the topological properties and the skin effect can be modified
in more independent manners. Therefore, the findings in this
paper promote understanding of the influences of the interplay
between the imaginary potentials and nonreciprocal couplings
on the skin effects and topological properties in the SSH
lattices.
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