
PHYSICAL REVIEW A 109, 042201 (2024)

Quantum strategies for rendezvous and domination tasks on graphs with mobile agents
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This paper explores the application of quantum nonlocality, a renowned and unique phenomenon acknowl-
edged as a valuable resource. Focusing on an alternative application, we demonstrate its quantum advantage
for mobile agents engaged in specific distributed tasks without communication. The research addresses the
significant challenge of rendezvous on graphs and introduces a distributed task for mobile agents grounded
in the graph domination problem. Through an investigation across various graph scenarios, we showcase the
quantum advantage. Additionally, we scrutinize deterministic strategies, highlighting their comparatively lower
efficiency compared to quantum strategies. The paper concludes with a numerical analysis, providing further
insights into our findings.
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I. INTRODUCTION

Quantum information has emerged as a valuable asset in a
multitude of tasks inherent to information and communication
technologies. Remarkably, quantum cryptography stands out
as an example, where the harnessing of quantum entanglement
has paved the way for innovative protocols ensuring secure
key exchange and robust randomness certification [1]. Despite
these achievements, the phenomena of Bell inequalities and
nonlocality, which defy the boundaries of correlations allowed
in classical physics [2,3], have remained largely unexplored
for other pragmatic endeavors. In particular, their potential
for distributed tasks in facilitating the coordination of actions
among distributed agents with a shared goal, even in situations
with limited or no communication, remains almost untapped
[4], with preliminary trials in [5,6].

In the realm of quantum information, the accomplishments
have been particularly pronounced in quantum cryptogra-
phy [1], where the manipulation of quantum entanglement
has enabled the creation of novel protocols guaranteeing the
confidentiality and integrity of exchanged keys, as well as
certifying the security of random data [7]. The potential
of quantum phenomena achieved with the aid of entangle-
ment has been illustrated by multiple examples of so-called
nonlocal games [8–10]. A prominent example of them are
the exclusive alternative (XOR) games [11], and gener-
alizations thereof [12–15]. However, amidst these striking
achievements, the captivating domains of Bell inequalities and
nonlocality [16], which intrinsically challenge the limitations
imposed by classical physics on correlations, have not been
widely applied to other practical tasks. A notable area that
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remains unexplored is their potential application in orchestrat-
ing the collaboration of distributed agents striving towards a
collective objective, even in scenarios where communication
is restricted or absent, like the rendezvous task [17].

This paper delves into the realm of quantum entangle-
ment and its application in coordinating distributed tasks on
graphs. The groundwork is laid with two fundamental prob-
lems of graph theory: rendezvous and graph domination [18].
These problems serve as the foundation for exploring the
potential benefits of quantum entanglement in achieving co-
ordinated actions among distributed agents striving to achieve
a common goal on graphs. We continue and extend the inves-
tigations initiated in [6] where it was shown how to exploit
quantum resources for the rendezvous task.

To tackle this topic, we use semidefinite programming
(SDP) [19–21], in particular two prominent methods: the
Navascués-Pironio-Acín method (NPA) [22,23] and the see-
saw method [24]. These techniques offer valuable insights into
the quantum nonlocality, which challenges the boundaries set
by classical physics. We explore how quantum entanglement
enables distributed agents to achieve rendezvous with no com-
munication, surpassing classical constraints. Then, the paper
introduces the domination distributed task for agents. We are
in this way laying out the framework for incorporating quan-
tum entanglement as a resource for enhanced coordination.
To demonstrate the practical implications of the findings, the
paper presents a series of numerical calculations and examples
involving various graph structures. These numerical simula-
tions showcase the effectiveness of quantum entanglement in
scenarios of distributed actions of agents, illustrating the po-
tential advantages of using quantum strategies over classical
ones.

The organization of this paper is the following. In Sec. II
we discuss the two relevant problems of graph theory, viz.,
the task of rendezvous of mobile agents, and the problem
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of domination number in graphs. We show how to turn the
latter problem into a task for mobile agents. Then we discuss
multipartite probability distributions in classical and quantum
physics and show how to express distributed tasks as so-called
Bell, or nonlocal, games investigated in quantum theory. In
Sec. III we briefly describe the numerical methods used in
this paper based on SDP. Next, in Sec. IV we provide ana-
lytical results about deterministic strategies that can be used
by the agents for the tasks. The results showing the quantum
advantage of the tasks are presented in Sec. V. We discuss the
obtained results in Sec. VI and conclude in Sec. VII.

II. DISTRIBUTED TASKS FOR AGENTS

We will now describe the tasks for mobile agents inves-
tigated in this paper. The rendezvous task is discussed in
Sec. II A. In Sec. II B we cover the domination number of
graphs and then propose a distributed task inspired by it.
The examples of graphs considered in this paper are given in
Sec. II C together with definitions of selected terms used in
describing mobile agents. In Sec. II D we introduce classical
and quantum probability distributions and Bell games. Finally,
in Sec. II E we show how to relate distributed tasks with Bell
games.

A. Rendezvous on graphs

The rendezvous problem, as formulated by Alpern [17], is
a mathematical problem that deals with the challenge of two
or more mobile agents trying to meet at a specific location
without any form of communication. In its simplest form,
the rendezvous problem involves two mobile agents, referred
to as players or parties, that are initially located in different
positions within a known environment. The objective is for
both players to reach a common meeting point simultaneously.
The key constraint is that the players cannot communicate
with each other and have no knowledge of each other’s current
position.

To elucidate the concept of the rendezvous problem we
refer to the following two motivating examples. The first one
is named the telephone problem and is formulated as follows:
“In each of two rooms, there are n telephones randomly strewn
about. They are connected in a pairwise fashion by n wires.
At discrete times t = 0, 1, 2, . . . players in each room pick
up a phone and say ‘hello.’ They wish to minimize the time t
when they first pick up paired phones and can communicate”
[25]. This problem is the spatial rendezvous on a complete
graph, i.e., a graph where an edge exists between every pair of
vertices.

The second motivating problem is the Mozart Café ren-
dezvous problem: “Two friends agree to meet for lunch at the
Mozart Café in Vienna on the first of January, 2000. However,
on arriving at Vienna airport, they are told there are three (or n)
cafés with that name, no two close enough to visit on the same
day. So each day each can go to one of them, hoping to find
his friend there” [26].

One variant of the rendezvous problem is the “symmetric
rendezvous” where both players have equal capabilities and
constraints or are following the same strategy [27–30]. In
this case, the goal is to find a strategy that ensures both
players meet at some vertex, regardless of their initial posi-

tions. Another variant is the “asymmetric rendezvous,” where
the players have different capabilities or constraints and are
following the same strategy [31–34]. For example, one player
may have limited mobility or restricted vision compared to the
other player. In this case, the objective is to find a strategy that
maximizes the probability of meeting at the rendezvous point
while taking into account the differences in capabilities.

The importance of studying the rendezvous problem lies in
its relevance to various real-world applications. For instance,
in search and rescue missions, autonomous robots or drones
may need to coordinate their movements to cover a large
area efficiently and meet at a specific location to exchange
information or resources. Similarly, in autonomous vehicle
systems, vehicles may need to coordinate their routes and tim-
ing to avoid collisions and efficiently utilize shared resources
like charging stations [35].

By understanding and solving the rendezvous problem,
researchers can develop efficient strategies for coordinating
multiple agents without relying on direct communication.
This can lead to improved efficiency, resource utilization, and
safety in various domains. More generally, the problem is
about coordinating action when the communication is prohib-
ited or severely limited; see, e.g., [36] for an overview.

For this paper, we will use the following definition.
Definition 1. Given a graph, and a number h � 1, the

rendezvous task is defined as the task in which r � 2 agents,
placed uniformly randomly among the vertices of the graph,
move along edges of the graph h times. They are successful if,
after crossing the edges h times, they are all positioned in the
same vertex. They can establish a strategy before being placed
on the graph, but they are not allowed to communicate before
each of the agents has completed their move.

If h = 1 then the rendezvous task is called single-step.
Note that, for the single-step task, to allow strategies for

which the agents can end their movement on the same vertex
in which they started, each of the vertices of the graph must
be connected with itself.

B. Domination on graphs

The domination number is a fundamental concept in graph
theory [37,38]. It quantifies the minimum number of vertices
needed to control, or dominate, all other vertices in a graph.
In essence, it identifies the smallest set of vertices where each
vertex either belongs to the set or is adjacent to at least one
member of the set. Formally, consider a graph G = (N, E )
with a vertex set N and an edge set E . A dominating set D
is a subset of N such that every vertex in N is either part
of D or adjacent to a vertex in D. The domination number,
denoted as γ (G), is defined as the minimum cardinality of
any dominating set D.

Various variants of the domination number exist, each
imposing specific conditions on dominating sets. Common
variants include the following.

(1) Total domination number [39,40]: This requires that
every vertex in the graph is adjacent to at least one vertex in
the dominating set, ensuring direct control over each vertex.

(2) Independent domination number [41–43]: In this vari-
ant, the dominating set must also be an independent set,
meaning no two vertices in the set are adjacent. This variant
seeks dominating sets without redundant control.
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FIG. 1. Some of the graphs analyzed in this paper.

(3) Connected domination number [44]: Here, the dom-
inating set must induce a connected subgraph, ensuring an
efficient path between any two vertices in the set for com-
prehensive control over the entire graph.

The domination number and its variants have various ap-
plications and usefulness in different domains. For network
design, the domination number can be used to optimize net-
work design problems, such as determining the minimum
number of sensors or routers required to monitor or control
a network effectively. By finding an optimal dominating set,
resources can be allocated efficiently while maintaining net-
work connectivity. In the area of facility location, this quantity
can help in determining the optimal location of facilities,
such as hospitals, fire stations, or surveillance cameras, to
ensure maximum coverage and control over a given area. By
minimizing the domination number, the cost and resources re-
quired for facility placement can be reduced. The domination
number can be also applied in social network analysis to iden-
tify influential individuals or groups. By finding dominating
sets in social networks, it is possible to identify key players
who have control or influence over a large portion of the
network.

The domination problem until now has been investigated
only from the static global point of view, where the entity was
deciding which vertices can be used to dominate the graph. In
our paper, we propose a distributed approach to the problem
and treat it as a dynamic task of a group of mobile agents who
start at not known in advance locations, and want to organize
themselves without communication so that they dominate as

large part of a graph as possible. To be more specific, in this
paper, we use the following definition.

Definition 2. Given a graph, and a number h � 1, the
domination task is defined as the task in which r � 2 agents,
placed uniformly randomly among the vertices of the graph,
move along edges of the graph h times. They try to dominate
as many vertices as they can, counting the dominated points
only after all the agents completed their moves.

A vertex is said to be dominated when an agent occupies it
or it is connected with an edge to a vertex where there is an
agent.

The agents can establish a strategy before being placed on
the graph, but they are not allowed to communicate before
each of the agents has completed their move.

If h = 1 then the domination task is called single-step.
Note that, for the single-step task, to allow strategies for

which the agents can end their movement on the same vertex
in which they started, each vertex of the graph must be con-
nected with itself.

C. Considered scenarios and definitions

In Fig. 1 we present some of the graph scenarios with
which we dealt. With the name “n-gon” we refer to the graphs
described by a polygon with n vertices, with the name “n-line”
we refer to the graphs described by a line connecting n ver-
tices, while with the name “n-line curly” we refer to a n-line
graph where the extrema are connected with themselves.

With the exception of the n-line curly graphs, for which we
provided a specific definition, for all the graphs we included
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the word “curly” in their name when each of their vertices is
connected with itself.

Let r denote the number of agents performing a given dis-
tributed task, let N be the set of all the nodes of the considered
graph, and let n be the number of nodes, n = |N |. Let us
introduce the following notation.

(1) pi(a|x) denotes the probability that the ith agent will go
to the node a ∈ N when starting from the node x ∈ N .

(2) Si := {pi(a|x)}a,x∈N is the classical strategy for the ith
agent.

(3) pi(a) := 1
n

∑
x∈N pi(a|x) is the probability to find the

ith agent in the node a ∈ N .
(4) S̃i := {pi(a)}a∈N .
Note that S̃i is uniquely determined by the set Si. A strategy

is called deterministic (for all the agents) if and only if all
the elements of Si, ∀i ∈ {1, . . . , r}, are either zeros or ones.
Given the set of strategies adopted by the agents {Si}i∈{1,...,r},
the strategies Si’s are called symmetric if they are all equal
among each other.

D. Classical and quantum probabilities and Bell games

The classical joint probability distribution P(a, b|x, y) for
obtaining outcomes a and b in response to inputs x and y is
expressed as a sum over a hidden variable λ, viz.,

P(a, b|x, y) =
∑

λ

P(λ)PA|X,�(a|x, λ)PB|Y,�(b|y, λ). (1)

Each term in the sum corresponds to a specific hidden state
λ and is weighted by the probability P(λ) of observing that
hidden state. The conditional probabilities PA|X,�(a|x, λ) and
PB|Y,�(b|y, λ) represent the likelihood of obtaining outcomes
a and b for Alice and Bob, respectively, given their inputs
x and y and the hidden state λ. The probability distribution
P�(λ) characterizes the likelihood of different hidden internal
states. The normalization condition

∑
λ∈� P�(λ) = 1 ensures

that the probabilities are properly scaled. This formulation
captures the classical statistical description of the behavior of
the devices and is often called a local hidden variables (LHV)
model, which assumes that the measurement outcomes are
determined by preexisting properties of the system that are
independent of the measurement settings

A bipartite quantum probability distribution of joint mea-
surement results refers to the statistical distribution of
outcomes obtained from a joint measurement performed on
a bipartite quantum system. The bipartite system is described
by a density operator ρ. The joint measurement performed
by Alice and Bob is typically represented by a set of posi-
tive operator-valued measures (POVMs), denoted as M(a, x)
[N (b, y)], where a (b) and x (y) represent the measurement
outcomes and settings of Alice (Bob). These POVMs satisfy
the completeness relation

∑
a M(a, x) = 1 [

∑
b N (b, y) = 1],

where 1 is the identity operator [45].
The bipartite quantum probability distribution P(a, b|x, y)

gives the probability of obtaining measurement outcomes a
and b when Alice and Bob use measurement settings x and y,
respectively. It is calculated using the Born rule, which states
that the probability is given by

P(a, b|x, y) = Tr[ρM(a, x) ⊗ N (b, y)]. (2)

Here, Tr[ρM(a, x) ⊗ N (b, y)] represents the trace of the prod-
uct of the density operator ρ and the corresponding POVM
elements M(a, x) and N (b, y). The bipartite quantum prob-
ability distribution captures the correlations between Alice’s
and Bob’s measurement outcomes. These correlations can
exhibit various phenomena such as entanglement, nonlocality,
or classical correlations depending on the quantum state ρ.
We denote the set of all possible quantum bipartite probability
distributions by Q.

A bipartite game is a linear functional over probability
distribution of the form

B[P(a, b|x, y)] =
∑

a,b,x,y

βa,b,x,yP(a, b|x, y) (3)

for some coefficients {βa,b,x,y}. Equation (3) can be easily
generalized to more parties.

It is worth noting that in some cases, the bipartite quantum
probability distribution may be incompatible with classical
theories. This means that it cannot be explained solely by
LHV models. If this is the case for a given game, then such
a game is called a Bell game or nonlocal game [2,3]. Its max-
imal value over classical distributions is called the classical
bound and denoted C, and its maximal value over quantum
distributions is called the Tsirelson bound and denoted by Q
[8], Q > C.

In the case in which the agents participating in the domi-
nation or rendezvous tasks have access to quantum resources,
they share a chosen quantum state before being placed on the
graph. Once on the graph, they can measure their own state
depending on the node they are at and choose which node to
move to based on the outcome of their local measurement.

E. Distributed tasks as Bell games

The success probability of a distributed task involving two
agents, Alice and Bob, can be expressed as a linear functional
of joint probabilities P(a, b|x, y), where successes are as-
signed a coefficient of 1 and failures are assigned a coefficient
of 0. This approach allows us to quantify the likelihood of
success based on the joint probabilities of the agents’ actions
and observations.

To understand this concept better, let us break down the no-
tation used. In this point of view the probabilities P(a, b|x, y)
as defined in Sec. II D represent the joint probability distribu-
tion of Alice’s action a, Bob’s action b, Alice’s observation x,
and Bob’s observation y. Thus, it captures the probabilistic
relationship between the actions and observations of both
agents. We note that the observation is performed depending
on the agent’s local situation, like information about its posi-
tion in a graph, and the action depends on the measurement
result.

Indeed, in a distributed task, Alice and Bob may need
to coordinate their actions or make decisions based on their
individual observations. The success of the task depends on
how well they align their actions and observations to achieve
the desired outcome. By considering the joint probabilities
P(a, b|x, y), we can analyze the likelihood of success in dif-
ferent scenarios. To express the success probability as a linear
functional, we assign coefficients to each possible outcome
(success or failure) based on its desirability. In this case,
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successes are assigned a coefficient of 1, indicating their
importance in determining overall success. Failures, on the
other hand, are assigned a coefficient of zero since they do
not contribute to the success of the task. Let S(a, b, x, y) be a
relevant scoring function of a distributed task. Using the coef-
ficients for all possible outcomes and their corresponding joint
probabilities, we obtain a linear combination that represents
the score as ∑

a,b,x,y

S(a, b, x, y) × P(a, b|x, y), (4)

which is in the form of a bipartite game. This approach allows
us to quantify the likelihood of success in distributed tasks
by considering the joint probabilities and assigning appropri-
ate coefficients to different outcomes. By manipulating these
coefficients, we can prioritize certain outcomes or adjust the
importance of different actions and observations in determin-
ing success or normalize events to interpret the score as a
success probability of a task.

This approach allows us to analyze the likelihood of
success based on the agents’ actions and observations and
compare the capabilities possible in classical and quantum
probability distributions. We say that we have a quantum
advantage for a given task if the score is a Bell game with
Q > C.

III. NUMERICAL OPTIMIZATION METHODS

In this section, we describe the SDP method in Sec. III A.
This optimization technique is used to formulate two tools
allowing for calculations of the success measure in dis-
tributed tasks, viz., NPA and see-saw. The former, discussed
in Sec. III B, provides upper, and the latter, discussed in
Sec. III C, lower bounds on successes, respectively.

A. Semidefinite programming

SDP is a mathematical optimization technique that ex-
tends the concepts of linear programming to handle matrices
and, in particular, positive semidefinite matrices. It addresses
problems where the goal is to optimize a linear objective
function subject to linear equality and semidefinite inequal-
ity constraints. SDP finds applications in diverse fields [46],
including quantum information [19–21]. Advancements in al-
gorithmic design and improvements in computational power
have significantly enhanced the efficiency of SDP solvers.
Modern interior-point methods [47] have proven to be ef-
fective in solving large-scale SDP, making them a versatile
tool for addressing complex optimization problems [48]. For
m, n ∈ N+ the primal optimization task of SDP is

minimize cT x subject to F (x) � 0, (5)

where c ∈ Rm, F (x) := F0 + ∑m
i=1 xiFi, Fi ∈ Rn×n, and x ∈

Rm is the variable. The so-called dual of this problem with
a symmetric matrix variable Z ∈ Rn×n is

maximize − Tr[F0Z] subject to Tr[FiZ] = ci,

for i = 1, . . . , m, Z � 0.

(6)

B. Navascués-Pironio-Acín method

The NPA method, introduced by Navascués et al. in 2007
[22], is a mathematical framework used to study quantum
correlations and entanglement in quantum information theory.
It provides a systematic approach to analyze the behavior
of quantum systems and their correlations. Recall that in
quantum mechanics, entanglement refers to the phenomenon
where two or more particles become correlated in such a
way that their states cannot be described independently. These
correlations are stronger than any classical (or local) correla-
tions and play a crucial role in various quantum information
processing tasks.

This technique aims to quantify and characterize these
quantum correlations by constructing a hierarchy of SDPs.
The hierarchy is defined by introducing a sequence of op-
erators that capture the correlations between systems under
consideration and are associated with different levels of the
hierarchy. Moving up the hierarchy, at each level, new se-
quences of operators are introduced that constrain or restrict
additional correlations beyond those captured at lower levels.
The NPA method provides a systematic way to compute these
moment operators at each level and study the properties of
quantum correlations rigorously. In this paper, we employ the
so-called almost quantum [49] level 1 + ab, and more precise,
but also more computationally demanding, level 2.

Let us now explain NPA in more detail. As we mentioned,
quantum probability distributions P(a, b|x, y) [see Eq. (2)] are
challenging to characterize due to their inherent complexity.
Recall that they belong to the set Q if certain conditions are
met, namely, if there exists a Hilbert space H, a state (vector)
|ψ〉, and a set of operators (measurements) {Ea

x , Eb
y }a,b,x,y

satisfying specific criteria. These criteria include Hermitian
properties of operators, orthogonality of different measure-
ment outcomes, normalization conditions, and commutativity
of measurements between Alice and Bob. The probability
distribution is then expressed as an inner product involving
measurements of the quantum states. However, characterizing
Q without quantum formalism poses a challenge. The NPA
method provides a solution by defining a hierarchy {Qk}∞k=1
of SDP problems. This hierarchy offers increasingly accurate
approximations of Q, with higher levels yielding more precise
solutions, albeit at the expense of increased computational
complexity. Ultimately, the hierarchy converges to the quan-
tum set Q [23], reflecting the effectiveness of the NPA method
in characterizing quantum correlations.

A sequence of operators is formed by concatenating
projective measurement operators. For instance, E1

2 E3
2 F 2

1 E1
1

represents a sequence of four operators. Exploiting the com-
mutativity of Alice’s operators Ea

x with Bob’s operators F b
y ,

we can rearrange the sequence as E1
2 E3

2 E1
1 F 2

1 . Given that
Ea

x Ea′
x = 0 and F b

y F b′
y = 0 for a 	= a′ and b 	= b′, and lever-

aging the commutation property, we obtain, for instance,
E2

1 F 3
3 E1

1 = E2
1 E1

1 F 3
3 = 0 since E2

1 and E1
1 are orthogonal.

Moreover, as Ea
x are projectors, (Ea

x )k = Ea
x for any k � 1,

and similarly for F b
y [20,50].

The length of a sequence of operators S denotes the
minimal number of projectors required to express it. The
null sequence corresponds to the identity operator, de-
noted by 1, with its length defined as zero. Consider an
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n-element set S of sequences of operators, such as S1+ab =
{1, Ea

x , F b
y , Ea

x F b
y }a∈A,b∈B

x∈X,y∈Y
. By employing the NPA method, one

constructs a hierarchy of relaxations using different choices of
the set of sequences S . Specifically, a set Sk is composed of
all sequences of operators {Ea

x , Eb
y } with a length at most k.

It follows that S1+ab = S1 ∪ {Ea
x Eb

y }, where S1+ab is defined
accordingly.

The NPA method aims to characterize a given bipartite
probability distribution as quantum, implying the existence
of a realization with a state |ψ〉 and projective measure-
ments {Ea

x , F b
y }. This realization satisfies, for all settings

x ∈ X and y ∈ Y and outcomes a ∈ A and b ∈ B, the
equation P(a, b|x, y) = 〈ψ |Ea

x F b
y |ψ〉. Considering operators

Oi and Oj in the set S , let �Oi,Oj be defined as 〈ψ |O†
i O j |ψ〉.

Consequently, �Ea
x ,Eb

y
= P(a, b|x, y) and �1,1 = 1. This equa-

tion defines an n × n matrix, where rows and columns are
indexed by elements of S , forming the so-called moment
matrix �.

The elements of � satisfy linear constraints: �i, j =
�k,l if and only if O†

i O j = O†
kOl , and O†

i O j = 0 im-
plies �i, j = 0. For v ∈ Cn and V = ∑

j v jO j , it fol-

lows that v†�v = ∑
i, j v

∗
i �i, jv j = ∑

i, j v
∗
i 〈ψ |O†

i O j |ψ〉v j =
〈ψ |V †V |ψ〉 = |〈V |ψ〉|2 � 0, thereby ensuring � � 0. We
obtain the relaxation by requiring the existence of such �

instead of the existence of states and operators realizing
P(a, b|x, y). This method is particularly useful for analyzing
complex quantum systems and can provide valuable insights
into the nature of quantum correlations and phenomena. The
results obtained from NPA, as it constitutes a relaxation, pro-
vide an upper bound on the exact solution of the quantum
optimization problem.

C. See-saw method

An alternative approach to optimization over quantum
distributions Q, when we have certain restrictions on the di-
mensions of operators included in the setup, is the so-called
see-saw [24] method. Again, we consider bipartite quantum
probabilities given by expressions of the form of Eq. (2). It
is easy to see that expressions that are linear combinations of
probabilities given by formulas of the form of Eq. (3), such as
Bell-type operators, are linear in each term, viz., the quantum
state, Alice’s measurement operators, and Bob’s measurement
operators. However, since the optimization must be done over
all these groups of variables, the whole expression is nonlin-
ear.

The key idea of the see-saw method is the alternating use
of a series of optimizations for which two of the expressions
constituting Eq. (2) are treated as constants, and the third of
them is a variable subjected to optimization by SDP methods
with the objective function being the considered Bell operator.
For this purpose, in the first iteration, two of the terms take
fixed, often randomly chosen, values.

To be more specific, see-saw allows us to maximize a
given Bell expression, which serves as a score function in the
considered bipartite games. This Bell expression, denoted as
B[P(a, b|x, y)], quantifies the correlations between measure-
ment outcomes a and b for settings x and y. It is computed

as a weighted sum of bipartite probabilities P(a, b|x, y), as
defined in Eq. (2), where the coefficients βa,b,x,y weight the
contributions of each outcome to the overall score.

At each iteration of the see-saw method, the quantum state
and measurements of both Alice and Bob are optimized to
maximize the Bell expression. This involves three main op-
timization steps: first, the state ρ is optimized while holding
the measurements of Alice and Bob constant; next, all Alice’s
measurements M(a, x) are optimized while keeping the state
and Bob’s measurements fixed; finally, Bob’s measurements
N (b, y) are optimized while the state and Alice’s measure-
ments are held constant.

During each iteration, the value of the Bell expression is
computed using the updated quantum state and measurements.
If the improvement in the Bell expression value falls below
a predefined threshold or the maximum number of iterations
is reached, the optimization process terminates. Through this
iterative procedure, the see-saw method efficiently explores
the space of possible quantum correlations, even though it is
not guaranteed to be converging towards the optimal solution
that globally maximizes the Bell expression. Nonetheless, by
providing explicit quantum state and measurements, it sheds
light on the quantum nature of the underlying system. Indeed,
note that while the NPA method provides an approximation
of the quantum set of probabilities from its exterior, meaning
a relaxation, the see-saw method finds direct representations
of the quantum state and measurements implementing the
found distribution. Thus, any solution obtained by the see-saw
method is a lower bound on the exact solution of the quantum
optimization problem, complementing the results from NPA.

IV. PROPERTIES OF SYMMETRIC DETERMINISTIC
STRATEGIES FOR DISTRIBUTED TASKS

In Sec. IV A we prove lemmas showing that deterministic
symmetric strategies are sufficient for consideration of LHV
models for the rendezvous task, and then in Sec. IV B we
prove an analogous result for the domination task.

A. Symmetric deterministic strategies for rendezvous on graphs

Given any set of strategies {Si}i∈{1,...,r} we have the success
probability W ({Si}i∈{1,...,r}) given by

W ({Si}i∈{1,...,r}) =
∑
a∈N

r∏
i=1

pi(a) = W̃ ({S̃i}i∈{1,...,r}) (7)

so the success probability is completely determined by the set
{S̃i}i∈{1,...,r}.

Lemma 1. Symmetric strategies for the rendezvous task are
at least as good as nonsymmetric strategies.

Proof. We have that

W̃ ({S̃i}i∈{1,...,r}) =
∑
a∈N

r∏
i=1

pi(a) �
r∏

i=1

r

√∑
a∈N

pi(a)r

� max
i∈1,...,r

∑
a∈N

pi(a)r = W̃ ({S̃i∗ , . . . , S̃i∗ }), (8)
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where i∗ is the value of i for which the maximum is reached.
Here for the first estimation we used the Hölder inequality for
sums [51].

So, given any set of strategies adopted by the r agents, the
winning probability is upper bounded by the success prob-
ability of the symmetric strategy which employs a suitable
strategy chosen among the set of the given strategies. �

Lemma 2. Symmetric deterministic strategies for the
rendezvous task are at least as good as symmetric nondeter-
ministic strategies.

Proof. Given any nondeterministic strategy S =
{p(a|x)}a,x∈N , repeated for each of the agents, and the
associated set S̃ = {p(a)}a∈N , we have that it is always
possible to build a deterministic strategy, repeated for each of
the agents, which has a greater success probability. In fact,
if S1 is not deterministic, there is at least one input node x0

for which there are at least two nodes a1 and a2 for which
p(a1|x0), p(a2|x0) > 0.

Without loss of generality, we consider the case in which
p(a1) � p(a2). A better strategy S′ = {p′(a|x)}a,x∈N , repeated
for each of the agents, is built by assigning to the node x0

a probability p′(a1|x0) = p(a1|x0) + p(a2|x0) and p′(a2|x0) =
0, and the same probabilities in all the other cases. This is
true because, for any b, c ∈ N , r � 2 with p(b) � p(c) and
0 < ε � p(c), we have that

p(b)r + p(c)r < (p(b) + ε)r + [p(c) − ε]r . (9)

Then, it is possible to repeat this procedure until you obtain a
deterministic strategy.

So any nondeterministic symmetric strategy has a lower
success probability of at least one symmetric deterministic
strategy. �

Putting together the previous two results from Lemmas 1
and 2 we get the Corollary 1.

Corollary 1. It is possible to find the optimal strategy for
the rendezvous problem by investigating only deterministic
symmetric strategies.

Note that these results may not be applicable in other
variants of the rendezvous task, such as when agents cannot
be placed in the same initial nodes, in which case it is still
possible to find the optimal solution by investigating only de-
terministic strategies, because the success probability remains
a linear function of the probabilities, which are subject to
linear constraints.

B. Deterministic strategies for domination on graphs

Let us now consider the graph domination task.
Lemma 3. Deterministic strategies for the domination task

are at least as good as nondeterministic strategies.
Proof. Let us consider K ({S j} j∈{1,...,r}) the score, i.e., the

average number of dominated points, of a given strategy
{S j} j∈{1,...,r}. A set of strategies that provides a score at least
as high as K ({S j} j∈{1,...,r}) can be obtained by replacing the
strategy of the first agent with the following deterministic
strategy.

Knowing the strategies {Sj} j∈{2,...,r}), for any fixed input
x ∈ N for the first agent the best move would be to go to the
accessible node which would provide the highest increment
in the score, knowing what is the probability that any node is

going to be dominated by any of the other agents. Assigning
this deterministic strategy to the first agent the score is greater
or equal to the case in which they were using any other
strategy.

Then, repeating the procedure for each of the agents and
updating the strategies employed by them, we obtain the
thesis. �

V. RESULTS

The content of this section includes the results of ren-
dezvous with quantum entanglement in Sec. V A, domination
with quantum entanglement in Sec. V B, and a detailed analy-
sis of selected cases in Sec. V C.

In the following will be presented the scenarios where we
applied this technique and the tables that contain the results
obtained.

In tables the columns “Classical” denote the maximum
values which can be achieved by classical strategies. The
columns “Random” denote the value obtained when the par-
ties choose in a random uniform way which node to reach
from the starting position. The values associated with the
column “NPA” are calculated for the level 1 + ab when they
appear without an asterisk; otherwise, they are calculated for
level 2. The column “Adv.” contains the gain obtained by
using quantum resources compared to the optimal classical
strategy. The quantity is expressed in percents, and is calcu-
lated according to the following expression:

Q − R

C − R
− 1 = Q − C

C − R
, (10)

where C denotes the classical value, i.e., the highest value
that can be achieved when the parties can use only classical
strategies. R denotes the average success probability for the
rendezvous task and the average number of dominated nodes
for the domination task, when the agents choose in a random
uniform way which node to reach from the starting position,
selecting the node to reach among the nodes that can be
reached while respecting the rules of the given task. Q denotes
the value achieved when the agents employ the strategy found
with the see-saw technique.

When, for a given scenario, within at least 100 runs of the
see-saw algorithm we did not find an average success prob-
ability greater than the one obtainable employing classical
strategies and which does not match the upper bound found
with level 2 of the NPA hierarchy, we say that the results are
inconclusive.

Inconclusive results can happen because the level of the
NPA hierarchy investigated, or the number of runs of the see-
saw algorithm, or the dimension of the investigated quantum
states, or the rank of the projectors generated with see-saw
was too low.

Applying the see-saw algorithm we investigated only pro-
jectors of rank 1 for all the cases of three agents and up to rank
2 for the cases involving two agents. For the dimension of the
generated quantum states, we have always chosen the lowest
one determined by the rank of the generated projectors.

Note that in the case of the rendezvous task, due to Lemma
2, to find the best classical value it is sufficient to investigate
only all the symmetric deterministic strategies. In the case of
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TABLE I. Results associated with the single-step rendezvous task, two agents case, when the agents can start from any position.

Name Random Classical NPA Adv. (%)

tetrahedron Fig. 1(b) 1
4

5
8 0.64506∗ 5

square curly, Fig. 1(c) 1
4

5
8 0.64506∗ 5

pentagon curly, Fig. 1(d) 1
5

13
25 0.53009∗ 3

arrow Fig. 1(g) 0.20667 13
25 0.52051∗ 0.1

clamp Fig. 1(i) 0.18827 7
18 0.40063∗ 6

hat Fig. 1(j) 0.17207 5
9 0.58333 ≈ 7

12 7

house Fig. 1(k) 0.18210 5
9 0.58333 ≈ 7

12 7

caltrop Fig. 1(m) 0.20833 5
9 0.58333 ≈ 7

12 8

cube Fig. 1(n) 1
8

5
16 0.32253∗ 5

triangle 3-gon 1
3

5
9 0.58333 ≈ 7

12 13

pentagon 5-gon 1
5

9
25 0.38090 13

hexagon 6-gon 1
6

5
18 0.29167 13

heptagon 7-gon 1
7

13
49 0.27864 11

ennagon 9-gon 1
9

17
81 0.21887 9

decagon 10-gon 1
10

9
50 0.19045 13

11-gon 1
11

21
121 0.17998 8

13-gon 1
13

25
169 0.15273 7

Three-line curly 1
3

5
9 0.58333 ≈ 7

12 13

Five-line curly 1
5

9
25 0.38090 13

Seven-line curly 1
7

13
49 0.27864 11

the domination task, due to Lemma 3, to find the best classical
value it is sufficient to investigate only all the deterministic
strategies.

Both for the domination task and rendezvous task, with
the additional constraint that the agents cannot start from the
same positions, to find the classical value it is sufficient to
study only deterministic strategies. This is true because the
average success probability for the rendezvous task and the
average number of dominated points for the domination task
are still linear functions of probabilities which are subject to
linear constraints.

When dealing with quantum strategies constrained to be
symmetric, we considered only strategies for which all the
agents can perform only the same set of measurements on
the state, which to them is associated with the same marginal
probability distribution, adjusting accordingly the constraints
when performing the see-saw technique.

A. Rendezvous with quantum entanglement

We will now present the results obtained when the agents
are dealing with the single-step rendezvous task.

Table I illustrates the scenarios where a quantum advantage
is observed for two agents undertaking the rendezvous task,
with the freedom to commence from any location, including
the same initial position for both parties.

In contrast, Table II delineates situations where this advan-
tage occurs when agents are refrained from initiating from
identical positions. This dichotomy underscores the robust-
ness of quantum strategies across diverse starting conditions,
offering a notable advantage over classical counterparts.

Expanding on this comparison, Table III delves into the
case where agents cannot start in the same positions, and they
are allowed to use only symmetric strategies. Here, the in-
troduction of symmetric strategies sheds light on the intricate
interplay between quantum and classical approaches.

Remarkably, classical strategies exhibit limitations in max-
imizing success probabilities under symmetric conditions
unless, as shown in Sec. IV A, any starting position is allowed.
On the other hand, quantum strategies continue to demonstrate
a clear advantage in both cases, as we elucidate further in
Sec. V C 1.

The juxtaposition of these findings underscores the nu-
anced dynamics at play in the rendezvous task, emphasizing
the pivotal role of starting conditions and strategy symmetry.
While classical strategies attain their peak when any starting
position is permissible, quantum strategies transcend these
limitations, showcasing their adaptability and efficacy even
under symmetric constraints. This nuanced understanding is
pivotal for harnessing the full potential of quantum strategies
in real-world applications of multiagent coordination.

When dealing with the rendezvous task with three agents
we have found no advantage when they can exploit quantum
resources, when they can start in any position, when they
cannot start in the same position, with and without the restric-
tion of using symmetric strategies for the following graphs:
square curly [Fig. 1(c)], double triangle [Fig. 1(a)], cube
[Fig. 1(n)], tetrahedron [Fig. 1(b)], arrow curly [Fig. 1(h)],
clamp [Fig. 1(i)], hat [Fig. 1(j)], and house [Fig. 1(k)]. It is not
conclusive for pentagon curly [Fig. 1(d)] and arrow [Fig. 1(g)]
when the agents cannot start in the same positions. We found
no advantage for any case for the graphs n-lines and n-lines
curly for 4 � n � 8.
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TABLE II. Results associated with the single-step rendezvous task, two agents case, when the agents cannot start in the same positions.

Name Random Classical NPA Adv. (%)

tetrahedron Fig. 1(b) 2
9

1
2 0.53333∗ ≈ 8

15 12

square curly, Fig. 1(c) 2
9

1
2 0.53333∗ ≈ 8

15 12

pentagon curly, Fig. 1(d) 1
6

2
5 0.41316∗ 6

arrow Fig. 1(g) 0.16667 2
5 0.40490∗ 2

clamp Fig. 1(i) 0.13704 4
15 0.28229∗ 12

hat Fig. 1(j) 0.15093 7
15 0.50000 ≈ 1

2 11

house Fig. 1(k) 0.15463 7
15 0.50000 ≈ 1

2 11

caltrop Fig. 1(m) 7
40

7
15 0.50000 ≈ 1

2 11

cube Fig. 1(n) 2
21

3
14 0.22857∗ 12

We have no reason to exclude that, in the three agent case,
an advantage could be found by using more computational
resources, when dealing with the inconclusive cases, or in-
creasing the number of nodes of the graphs studied.

Let us denote the considered cases given in Tables I, II, and
III by A, B, and C, respectively. Recall that they refer to cases
when any starting position is allowed (A), when the agents
cannot start in the same positions, also with nonsymmetric
strategies (B), and when the agents cannot start in the same
positions and they use symmetric strategies (C).

We observe that if for a given graph 1 + ab is enough to
determine its exact Tsirelson bound for one of the cases (A,
B, or C) then it is enough for all cases (A, B, and C). What is
more, for cycles in all cases the NPA level 1 + ab is enough.

All the cases in C that do not appear in B are cases for
which we found that there is no advantage when the agents
share a quantum state, so they are cases for which the quantum
correlations are exploited to break the symmetry between the
agents, as will be described more in detail in Sec. V C 1.
Additionally, all the cases in B present the same average
success probabilities both for the classical and the quantum
case as the ones that they present in C, and so they are cases
for which the classical value can be reached by symmetric
strategies.

The graphs triangle, three-line curly, hat, house, and caltrop
have always the same value of classical and quantum for a
given case A or C. Except for triangle and three-line curly,
this holds also for case B.

TABLE III. Results associated with the single-step rendezvous task, two agents case, when the agents cannot start in the same positions
and they are constrained to adopt only symmetric strategies. Note that the first nine cases have identical values as those in Table II.

Name Random Classical NPA Adv. (%)

tetrahedron Fig. 1(b) 2
9

1
2 0.53333∗ ≈ 8

15 12

square curly, Fig. 1(c) 2
9

1
2 0.53333∗ ≈ 8

15 12

pentagon curly, Fig. 1(d) 1
6

2
5 0.41316∗ 6

arrow Fig. 1(g) 1
6

2
5 0.40490∗ 2

clamp Fig. 1(i) 0.13704 4
15 0.28229∗ 12

hat Fig. 1(j) 0.15093 7
15 0.50000 ≈ 1

2 11

house Fig. 1(k) 0.15463 7
15 0.50000 ≈ 1

2 11

caltrop Fig. 1(m) 7
40

7
15 0.50000 ≈ 1

2 11

cube Fig. 1(n) 2
21

3
14 0.22857∗ 12

triangle 3-gon 1
4

1
3 0.50000 ≈ 1

2 200

pentagon 5-gon 1
8

1
5 0.25000 ≈ 1

4 67

hexagon 6-gon 1
10

2
15 0.20000 ≈ 1

5 200

heptagon 7-gon 1
12

1
7 0.16667 ≈ 1

6 40

ennagon 9-gon 1
16

1
9 0.12500 ≈ 1

8 29

decagon 10-gon 1
18

4
45 0.11111 ≈ 1

9 67

11-gon 1
20

1
11 0.10000 ≈ 1

10 22

13-gon 1
24

1
13 0.08333 ≈ 1

12 18

Three-line curly 1
4

1
3 0.50000 ≈ 1

2 200

Five-line curly 1
8

1
5 0.25000 ≈ 1

4 67

Seven-line curly 1
12

1
7 0.16667 ≈ 1

6 40
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TABLE IV. Results associated with the single-step domination task, two agents case, when the agents can start from any position.

Name Random Classical NPA Adv. (%)

pentagon curly, Fig. 1(d) 4.2 4.64 4.67361∗ 8
caltrop Fig. 1(m) 5.458333 5.88889 5.916667 6
spike Fig. 1(e) 4.51333 4.92 4.93 2
clamp Fig. 1(i) 4.94907 5.44444 5.45453 2
pentagon 4.2 4.6 4.67361 18
hexagon 4.50000 4.95000 5.0000 13
heptagon 4.71428 5.08163 5.15517 20
octagon 4.875 5.1875 5.23928 17
9-gon 5 5.24691 5.29434 19
10-gon 5.1 5.3 5.33680 18
11-gon 5.18182 5.39669 5.43395 17
12-gon 5.25 5.47222 5.5 13
13-gon 5.30769 5.50888 5.54543 18
Six-line curly 4.11111 4.44445 4.44895 1

It is worth noting that, at least for the cases analyzed, if for
a cycle the number of vertices is divisible by 4 then there is no
advantage in any case A, B, or C.

B. Domination with quantum entanglement

In Tables IV and V we present the results obtained when
the agents deal with the graph domination task when they can
exploit quantum resources.

For the two agents case we found that there is not an
advantage for any case associated with the following graphs:
double triangle [Fig. 1(a)], tetrahedron [Fig. 1(b)], square
curly [Fig. 1(c)], arrow [Fig. 1(g)], arrow curly [Fig. 1(h)],
pyramid double [Fig. 1(l)], hat [Fig. 1(j)], cube [Fig. 1(n)],
three-line curly, and four-line curly.

In the case of spike curly [Fig. 1(f)], we found that there
is no advantage in using quantum resources when the agents
can start from any position, while we found an advantage
of +0.224% when they cannot start in the same position,
although with see-saw we did not obtain the value found with
level 2 of the NPA hierarchy.

When the agents cannot start in the same positions we did
not find any advantage for all n-line curly with 4 � n � 8.

When dealing with the three agents cases we found no
advantage when the agents cannot start in the same positions
for all n-line and n-line curly with 4 � n � 8 and, when they
can start in any position not conclusive for n-line and n-line
curly with 4 � n � 7 and for n = 8 we found no advantage.
In the case of n-gon, when the agents can start in the same
positions, we found no advantage for 5 � n � 8, while, for
the same graphs, when the agents can start in any positions,
the results are inconclusive.

We have no reason to exclude that, in the three agent case,
an advantage could be found by using more computational
resources, when dealing with the inconclusive cases, or in-
creasing the number of nodes of the graphs to study.

C. Detailed analysis of selected cases

We will now consider several examples of strategies for the
rendezvous and domination tasks to illustrate their working.
In Sec. V C 1 we discuss one of the cases from Table III with
particularly high advantage and discuss the role of quantum
resources in this particular case. Next, in Sec. V C 2, we dis-
cuss the quantum nature of the advantage for the rendezvous
task with agents that are not symmetric. Finally, in Sec. V C 3

TABLE V. Results associated with the single-step domination task, two agents case, when the agents cannot start in the same positions.

Name Random Classical NPA Adv. (%)

pentagon curly, Fig. 1(d) 4,27778 4.7 4.73987 9
clamp Fig. 1(i) 5.01482 5.4 5.41210∗ 3
caltrop Fig. 1(m) 5.48750 5.86667 5.9 9
spike Fig. 1(e) 4.56944 4.9 4.9125 4
pentagon 4.25 4.5 4.59201 37
hexagon 4.60000 4.93333 5.00000 20
heptagon 4.83333 5.09524 5.18103 33
octagon 5 5.21429 5.27346 28
9-gon 5.125 5.27778 5.33113 35
10-gon 5.22222 5.34444 5.37423 24
11-gon 5.3 5.43636 5.47735 30
12-gon 5.36364 5.51515 5.54545 20
13-gon 5.41667 5.51515 5.59088 29
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0 1 2

FIG. 2. Graph with a three-line curly structure.

we explicitly illustrate a particular case of quantum advantage
for the domination task.

1. Three-line curly graph with symmetric strategies for rendezvous

Considering the case of the single-step rendezvous task
with two agents, when the agents cannot start in the same
positions and they are constrained to adopt only symmet-
ric strategies, we now focus on the particular case of the
graph three-line curly, as reported in Table III. We have
that in this case the best classical strategy achieves the av-
erage success probability C = 1

3 , while, when the players
choose randomly the node to reach, they have an average
success probability R = 1

4 . The quantum success probability
is Q = 1

2 .
For the three-line curly graph, shown in Fig. 2, if one of the

parties starts in node 0 and the other in node 1, they win only
if the former decides to stay in node 0, and the other moves to
node 0, and this happens with probability 1

4 = 1
2 × 1

2 . If one
of the parties starts in node 0 and the other in node 2, they
win only if both decide to move to node 1, with probability 1

4 .
Finally, if one of the parties starts in node 1 and the other in
node 2 they win only if the former moves to node 2, and the
latter decides to stay in node 2, which happens, for the random
strategy, again with probability 1

4 . Thus the average winning
probability with random strategy is 1

4 .
The optimal symmetric deterministic strategy is the follow-

ing: If the party is in node 0 or 1, then it should move to the
possible node with the smaller label, i.e., 0; if the party is in
node 2 it should move to the possible node with the largest
label, i.e., 2.

Stating this more explicitly, for the three-line curly graph,
when using the optimal deterministic strategy, if one of the
parties starts in node 0 and the other in node 1, the former
stays in node 0, and the latter moves to node 0, and they win.
If one of the parties starts in node 0 and the other in node 2,
then the former stays in node 0, and the other stays in node 2,
and they fail. If one of the parties starts in node 1 and the other
in node 2, the former moves to node 0, and the latter stays in
node 2, and they fail. Thus, the winning probability is 1

3 .
In the quantum case, the strategy is found apply-

ing see-saw, finding the quantum state ρ shared by the
agents and the measurements performed by them, viz.,
{M(a, x)}x∈{0,1,2},a∈{0,1} and {N (b, y)}y∈{0,1,2},b∈{0,1}, with x and
y denoting the input node and a and b denoting the output
of the measurement. It is sufficient to consider only measure-
ments to which there are associated two outcomes because in
this graph each vertex is attached to at most two edges. In this
example the joint probability distribution of the measurement
results {P(a, b|x, y)}a,b∈{0,1},x,y∈{0,1,2} can be transformed to
a strategy {P̃(ã, b̃|x, y)}ã,b̃∈{0,1},x,y∈{0,1,2} where ã and b̃ de-
note the output nodes, for example, if the agent is starting
in the vertex x ∈ {0, 1, 2}, associating to the output a = 0
the vertex labeled by the smallest number among the ones
which can be reached starting from the input node x and

01

2

3

4
5

FIG. 3. Graph with the “hat” structure.

associating to the output a = 1 the vertex labeled by the
largest number among the ones which can be reached start-
ing from the input node x. We have the following quantum
strategy {P(a, b|x, y)}a,b∈{0,1},x,y∈{0,1,2}:

P(1, 0|0, 0) = P(0, 1|0, 0) = P(0, 0|1, 0) = P(1, 1|1, 0)

= P(1, 0|2, 0) = P(0, 1|2, 0) = P(0, 0|0, 1)

= P(1, 1|0, 1) = P(1, 0|1, 1) = P(0, 1|1, 1)

= P(0, 0|2, 1) = P(1, 1|2, 1) = P(1, 0|0, 2)

= P(0, 1|0, 2) = P(0, 0|1, 2) = P(1, 1|1, 2)

= P(1, 0|2, 2) = P(0, 1|2, 2) = 0.5, (11)

and zero otherwise.
So, considering only the cases for which x 	= y, we have

that the average success probability provided by this strategy
is

Q = P(0, 0|1, 0) + P(0, 1|2, 0) + P(0, 0|0, 1)

6

+ P(1, 1|2, 1) + P(1, 0|0, 2) + P(1, 1|1, 2)

6
= 0.5

(12)

where 6 is the number of possible inputs for the agents for
which they are not starting in the same node. So, applying
Eq. (10), we obtain that the advantage is 200%.

2. Hat graph with nonsymmetric strategies for rendezvous

We will now discuss the hat graph shown in Fig. 1(j), and
repeated here in Fig. 3 for convenience.

In the case in which Alice and Bob cannot start in the same
position and without the symmetric strategy constraint, the
optimal deterministic strategy, leading to the result stated in
Table II, is the following: Alice starting from nodes 0 or 3 or 4
or 5 goes to node 1; from node 1 and 2 she goes to node 3. The
same strategy holds for Bob. This covers 12 possible initial
positions. Since we consider the case in which the agents start
at different positions, we have 30 possible initial locations.
The parties win when Alice starts from nodes {0, 3, 4, 5} and
Bob starts from nodes {0, 3, 4, 5}, as then they meet at node
1. This covers 12 possible initial positions. The other winning
possibilities are when they meet at node 3, which happens in
two cases when Alice starts from node 1 and Bob starts from
node 2 and vice versa. The average success probability in this
case is 14

30 = 7
15 .

One of the quantum strategies giving the optimal value
0.5 uses the entangled state 1√

2
(|00〉 + |33〉) on Hilbert space
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C4 ⊗ C4. For x = 0 the measurements of Alice are the fol-
lowing:

M(0, 0) = |0〉〈0 | + 0.25|1〉〈1 | + 0.25|2〉〈2 |, (13a)

M(1, 0) = M(3, 0) = 0.25(| 1〉〈1 | + | 2〉〈2 |), (13b)

M(2, 0) = 0.25(| 1〉〈1 | + | 2〉〈2 |) + | 3〉〈3 |. (13c)

For x = 1 the measurements are

M(0, 1) = 0.75| 0〉〈0 | + 0.25(| 1〉〈1 | + | 2〉〈2 | + | 3〉〈3 |)
+ α(| 0〉〈3 | + | 3〉〈0 |), (14a)

M(1, 1) = 0.25(| 0〉〈0 | + | 1〉〈1 | + | 2〉〈2 |) + 0.75| 3〉〈3 |
− α(| 0〉〈3 | + | 3〉〈0 |), (14b)

and

M(2, 1) = M(3, 1) = M(1, 0). (14c)

Then, for x = 2 Alice uses the measurements

M(0, 2) = 0.75| 0〉〈0 | + 1

3
(| 1〉〈1 | + | 2〉〈2 |) + 0.25| 3〉

× 〈3 | + α(| 0〉〈3 | + | 3〉〈0 |), (15a)

M(1, 2) = 0.25| 0〉〈0 | + 1

3
(| 1〉〈1 | + | 2〉〈2 |) + 0.75| 3〉

× 〈3 | − α(| 0〉〈3 | + | 3〉〈0 |), (15b)

M(2, 2) = 1

3
(| 1〉〈1 | + | 2〉〈2 |), (15c)

and M(3, 2) = 0. The measurements for x = 3 and 5 are

M(0, 3) = M(0, 5) = 0.25(| 0〉〈0 | + | 1〉〈1 | + | 2〉〈2 |)
+ 0.75| 3〉〈3 | + α(| 0〉〈3 | + | 3〉〈0 |), (16a)

M(1, 3) = M(1, 5) = 0.75| 0〉〈0 |
+ 0.25(| 1〉〈1 | + | 2〉〈2 | + | 3〉〈3 |)
− α(| 0〉〈3 | + | 3〉〈0 |), (16b)

and

M(2, 3) = M(3, 3) = M(2, 5) = M(3, 5) = M(1, 0). (16c)

Finally, for x = 4 the measurement is given by

M(0, 4) = | 0〉〈0 | + 1

3
(| 1〉〈1 | + | 2〉〈2 |), (17a)

M(1, 4) = M(2, 4) = 1

3
(| 1〉〈1 | + | 2〉〈2 |) + | 3〉〈3 |,(17b)

and M(3, 4) = 0.
The measurements of Bob are the same, and thus the quan-

tum strategy is symmetric.
Let us now discuss some of the probabilities which occur

in this case. For instance, let Alice start at node 0 and Bob at
node 1. With probability 0.5 Alice goes to node 1 or 3, and
Bob with probability 0.5 goes to node 0 or 3, but due to quan-
tum steering [53–56], which is an effect of the entanglement,
the probability of both parties arriving at node 3 is 3

8 > 1
2 × 1

2 .
A similar situation happens for all other 23 pairs of possible
settings, excluding the six discussed below.

A different type of movement occurs in the following six
cases. The first two cases are when one of the parties starts at

FIG. 4. Pentagon with optimal classical strategies of Alice and
Bob for domination. Red arrows denote moves of one of the parties,
and blue arrows denote moves of the other party.

node 0 and the other at node 4. Then with probability 0.5, they
both move to node 1, and with probability 0.5 they both move
to node 3, so they win with probability 1. Analogous action is
performed when parties are at nodes 1 and 2 and the parties
meet either at node 0 or at node 3. Similarly for starting at a
pair of nodes 3 and 5 the parties meet either at 0 or at 1 with
certainty.

The total winning probability is thus 3
8× 24

30 + 1× 6
30 = 0.5.

3. Domination task on a pentagon

Now, we consider the other cooperation tasks, viz., the
domination.

In the case in which the agents can start from any posi-
tion, the optimal classical strategy is shown in Fig. 4. It can
be noticed that the strategy can be summarized as trying to
concentrate on one of the parties, as Alice, near nodes 1 and
2, and the other party near nodes 3 and 4. It can be calculated
that the parties on average will dominate 4.6 nodes.

One of the quantum strategies achieving the optimal value
has the following properties.

First, consider the case in which Alice and Bob start in
the same position, which happens in 5 out of 25 cases. In
this case, we have that half of the times Alice moves in the
“clockwise” direction [17,25,36,52], while Bob moves “coun-
terclockwise,” and in the other half of the times Alice moves
counterclockwise while Bob moves clockwise, dominating in
both cases the five nodes.

Now let us consider the case when the starting nodes of
Alice and Bob are neighboring. This happens in 10 out of 25
possible initial position pairs. In this case, with a probability
about p1 ≈ 0.3273, they are moving in opposite directions,
so that after their movement they will be separated by one
node. Thus they will dominate all five nodes; in Fig. 5 it is
represented with green ultr-thin arrows.

With the same probability p1, they will move towards each
other, effectively exchanging their positions. They will dom-
inate four nodes; in Fig. 5 this move is represented with blue
ultrathick arrows. With smaller probability 0.5 − p1 ≈ 0.1727
both will move either clockwise or counterclockwise, and
dominate four nodes.

The remaining possible case is when the starting nodes
of Alice and Bob are not neighboring. This happens in 10
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FIG. 5. Pentagon with optimal quantum strategies of Alice and
Bob for domination. Arrows denote the moves of the parties in
different cases, and the labels refer to probabilities of the movement;
see the text in Sec. V C 3 for the description.

out of 25 possible initial positions. The quantum strategy
implies that with probability p2 ≈ 0.452 24, both parties move
clockwise, and with the same probability they both move
counterclockwise, and thus after the movement they are still
not neighboring. In that case, they dominate all five nodes. In
Fig. 5 this move is represented with yellow dashed ultrathick
arrows.

With smaller probability 0.5 − p2 ≈ 0.047 73, the first of
the parties is moving clockwise, and the second counter-
clockwise; with the same probability the first is moving
counterclockwise and the second clockwise. Depending on
the exact starting node locations, the former situation will
lead either to the moving of both parties to the same node,
dominating three nodes, or to the moving to two neighboring
nodes, dominating four nodes; both situations happen with
equal probability. In Fig. 5 this move is represented with red
dashed and cyan dashed thick arrows.

Summarizing, the average number of dominated nodes is

5

25
× 5 + 10

25
× [p1 × 5 + (1 − p1) × 4]

+ 10

25
× [2p2 × 5 + (0.5 − p2) × 4 + (0.5 − p2) × 3]

≈ 4.6736. (18)

VI. DISCUSSION

The two problems under scrutiny in this paper, namely,
rendezvous on graphs and the introduced domination on
graphs task for mobile agents, represent specific instances of a
broader concept known as pattern formation [57–60]. Among
the array of challenges in pattern formation research, the most
akin task is dispersion on graphs [61], wherein the agents’
objective is to efficiently spread throughout a defined territory,
or graph exploration [62]. These problems are particularly
significant as they find applications across a range of fields,
encompassing robotics, networking, and distributed systems,
and they grapple with fundamental issues pertaining to ef-
fective coordination and information exchange among mobile
agents operating within a graph-based framework.

In the seminal paper preceding our current research [6], the
focus was primarily on cubic graphs and cycles. Our present

paper extends this investigation to explore the broader appli-
cability of the conclusions drawn from the advantage quantum
entanglement offers in the context of rendezvous tasks for
mobile agents. This paper aims to establish the extent to which
these findings can be generalized and the ubiquity of situations
where quantum entanglement provides a strategic edge.

On the other hand, it is both surprising and somewhat
disappointing that, on graphs where a quantum advantage was
observed for two parties, we could not identify any gain for
three agents. Consequently, investigating whether such an ad-
vantage is feasible, at least in certain scenarios, for more than
two agents becomes a crucial avenue for further exploration.
Uncovering such examples appears to be a nontrivial task. If
it turns out to be unattainable, it would be valuable to discern
and understand the underlying reasons for this limitation.

VII. CONCLUSIONS

In our paper, we introduced a distributed task for mobile
agents, specifically the domination task, drawing inspiration
from a classical concept in graph theory. Our exploration en-
compassed various scenarios across different types of graphs
for both the domination task and another crucial multiagent
task, namely, rendezvous. After obtaining some results about
classical strategies, we examined cases involving two and
three agents. Intriguingly, we consistently observed a quantum
advantage for scenarios involving two parties, while no such
advantage was found for three parties. This highlights the
potential efficacy of the proposed method for tasks involv-
ing two agents and prompts further investigation into why
it proves challenging to identify examples for three agents.
This, along with the quest for general analytical formulas for
various families of graphs, remains an open question for future
explorations.

It is important to note that this approach offers the pos-
sibility to search for Bell inequalities associated with tasks
with an arbitrary number of inputs and number of outputs
associated with each input by building one of the suitable
graphs and, after selecting a communication task, looking for
gaps between the maximum success probabilities associated
with classical and quantum strategies.
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