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Quantum entanglement is a fundamental resource for various quantum applications and generation of large-
scale entanglement is a key quantum technology. In recent years, continuous-variable optical systems have
shown promising results in this direction, thanks to deterministic generation and multiplexing via rich degrees
of freedom naturally occurring in the optical system. In this paper, we review the generation and applications of
multipartite optical quantum entanglement. We begin with a theoretical overview of how to represent and verify
multimode continuous-variable quantum states and entanglement. Then, we discuss the multiplexing technique
in time, frequency, and spatial domains, and their applications in generation of large-scale entangled states.
Afterward, we review the current status and development of the basic technology used in the generation of
multipartite quantum entanglement. Finally, we discuss the applications of large-scale quantum entanglement
and possible future perspectives.
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I. INTRODUCTION

Quantum physics plays an important role in the develop-
ment of science and technology. In quantum mechanics, many
ideas foreign to classical physics are introduced to explained
physical phenomena on the microscopic level. These ideas,
although counterintuitive, have withstood countless experi-
ments and are incorporated in a current standard framework
of physics. Quantum mechanics are now used not only to
describe physical phenomena, but to control and engineer
the physical systems for various novel applications such as
quantum computation [1,2], quantum communication [3,4],
quantum cryptography [5], quantum chemistry [6], quantum
material [7], to name a few.

One of the ideas central to quantum mechanics is quantum
entanglement. The concept of quantum entanglement arises
when two or more quantum systems are considered. When
multiple quantum systems interact with each other, the resul-
tant quantum state can become inseparable, even after each
system is physically separated. The observable effects of the
inseparability of the quantum state appear when each system
is measured and the correlation between the measurement
results is investigated; due to the property of quantum en-
tanglement, the measurement results are likely correlated. In
fact, they can be correlated in a way that cannot be explained
within the standard framework of classical mechanics. An
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important example of this is the violation of Bell inequality, an
inequality that holds in the classical regime, with quantum en-
tanglement [8,9]. Although we will properly define quantum
entanglement later, we would like to note to the reader that
there are concepts such as steering [10] and nonlocality [11]
that are closely related to quantum entanglement, but with dif-
ferent operational definition. In this article, our main focuses
will be on practical generation and applications of quantum
entanglement on optical systems and we will not delve into
the details in the fundamentals of quantum mechanics.

The reason that makes quantum entanglement an intriguing
concept is the fact that the observables of the quantum system
can be locally random, but show more information (correla-
tion) when they are considered as a whole. This correlation
could even exist for physical quantities that are not locally
commuted, meaning that the correlations can exist for not only
a single observable but various observables that do not have
local simultaneous eigenstate. In the paper by Einstein, Podol-
sky, and Rosen (EPR) in 1935, they argued that the prediction
of the quantum entanglement itself is the internal contradic-
tion of the quantum theory and the theory itself is incomplete
[12]. Although the basic concepts of quantum mechanics are
now widely accepted and the arguments by Einstein et al. are
no longer a common view, a quantum state that appeared in
their argument, the EPR state, has now become one of the
most important quantum entangled states. The coexistence of
the local uncertainty principle and the multipartite quantum
entanglement is the key to many of the quantum protocols
such as quantum teleportation and quantum computation.

The experimental exploration of the quantum entanglement
and its applications was accelerated by the pioneering work
of Aspect, Clauser, and Zeilinger which was recognized in
the Nobel prize in 2022. In addition to experimental detec-
tion of Bell pairs [13], the work by Zeilinger going beyond
two-mode entanglement [14] and demonstration of quantum
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teleportation with photonic entanglement [15] push the
boundary of experimental development in quantum entan-
glement. Compared to many quantum systems, the photonic
system provides a source of pure and clean quantum entan-
glement that can be easily manipulated at room temperature
and atmospheric pressure. Subsequently, there are numerous
works expanding the numbers and the structure of the quan-
tum entanglement in the photonic qubit system [16]. The
photonic entanglement generated by Aspect et al. belongs to
an approach called discrete-variable (DV) approach. In this
approach, the physical quantities take discrete values. Polar-
ization qubit (S-pol or P-pol), time-bin qubit (which-time-bin
information), and dual-rail qubit (which-path information) are
examples of photonic DV systems.

A complementary approach to the DV approach is the
continuous-variable (CV) approach [17]. In this approach,
the physical quantities of interest have continuous spectrum
rather than taking discrete values. In optical systems, such
continuous spectrum naturally arises when one quantizes
electromagnetic wave; the two quadrature operators (usually
denoted x̂ and p̂) satisfy the commutation relation [x̂, p̂] = ih̄,
similar to position and momentum operator. Experimental
development of the CV quantum entanglement began with the
realization of the squeezed-light generation [18–21], one of
the most fundamental quantum states of light in the generation
of the CV quantum entanglement. Two-mode CV entangle-
ment was used in the quantum teleportation protocol [22] and,
subsequently, various generations of small-scale CV quantum
entanglement in optical system have been realized and demon-
strated over the years [23–35].

Although quantum entanglement in both DV and CV op-
tical systems has seen astounding progresses, the recent idea
of multiplexing changes the landscape of CV optical quantum
entanglement from small scale to large scale. There are two
main reasons that large-scale entanglement generation with
multiplexing is highly compatible to the CV optical system.
The first reason is the rich degrees of freedom of the optical
system. There are many parameters in the optical system that
can be incorporated to quantum computation. The examples
are spatial mode, wavelength, path, polarization, temporal
wave packet, time bin, to mention a few. Generation with
multiplexing based on these degrees of freedom (or mixture of
them) opens a gate to the large-scale entanglement generation.
The propagating wave aspect of the optical system is also a
crucial factor. Instead of making a qubit one by one, in the
optical system, we make a circuit that generates entangled
state when the light passes through. If such a circuit can
be made so that various modes and degrees of freedom can
interact, a large-scale entanglement can be generated using
a simple circuitry. The core idea of multiplexing is that the
same physical circuit can be used over and over for multiple
light modes. The number of the research in the CV entan-
glement generation using multiplexing has increased over the
years in both theory [36–50] and experiment [51–74], with
various techniques based on various degrees of freedom being
explored.

The second reason is that the squeezed-light generation
is deterministic. The rich degree of freedom of the optical
system is applicable to both DV and CV systems. On the
other hand, large-scale entanglement generation based on

multiplexing is much more progressed in the CV systems. The
difference stems from the fact that single-photon generation
in the optical systems is usually probabilistic, at the very best
heralded, while the generation of squeezed light is determin-
istic. The deterministic nature of the squeezed-light source
generation makes generation of quantum entanglement in the
CV system highly advantageous as CV quantum entangled
states can be generated with only the squeezed light and linear
optics [75]. On the other hand, generation of DV entangled
state uses a single-photon state which reduces the overall suc-
cess probability when the scale of the entanglement increases.
Many experimental and theoretical progresses are being made
[76–78] which could improve the situation of the DV en-
tanglement in the future. A related issue in the large-scale
generation of entanglement in DV system is the nondetermin-
istic nature of the DV Bell measurement, although these can
be dealt with as the erasure error and corrected, given that
overall probability and efficiency of the system is above a
certain threshold [78].

From these two aspects, CV optical systems become natu-
ral physical systems for the generation of large-scale quantum
entanglement. There are various theoretical formulations and
experimental demonstrations over the recent years with many
diverse approaches such as time domain, frequency domain,
and spatial-mode multiplexing. In this paper, we will review
the generation and application of the optical quantum entan-
glement, in particular for the CV system with the focus on the
generation of the large-scale quantum entanglement beyond
that of the traditional small-scale entanglement generation.
The departure from small-scale entanglement to large-scale
entanglement is an important step toward development of
practical quantum technology.

This paper is structured as follows. We first give a general
definition of quantum entanglement in Sec. II, then proceed
to defining notation in the CV systems in Sec. III. After that,
we define the multimode Gaussian state in Sec. IV and en-
tanglement in Sec. V, and discuss how to evaluate and verify
CV quantum entanglement. Section VI is the main topic of
this paper, discussing how to generate large-scale quantum en-
tanglement using various multiplexing techniques. The recent
developments of the related components and experimental
techniques are reviewed in Sec. VII. The applications of large-
scale quantum entanglement and its future perspectives are
discussed in Secs. VIII and IX, respectively.

II. DEFINITION

Formally, quantum entanglement is defined via the insep-
arability of the quantum state. If we consider two subsystem
labels by A and B, these two systems are separable if and only
if the combined quantum state ρ̂AB can be written as

ρ̂AB =
∑

i

piρ̂
i
A ⊗ ρ̂ i

B, (1)

where {pi} corresponds to the probability distribution (pi � 0
and

∑
i pi = 1) and {ρ̂ i

A} and {ρ̂ i
B} are physical quantum states

on subsystems A and B, respectively. Subsystems A and B are
entangled if and only if they are not separable, i.e., their joint
quantum state cannot be written in the form of Eq. (1).
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The definition of quantum entanglement implies that when
we consider any physical quantity on each subsystem, their
joint property is the same as if we consider each subsystem
as a separated state. For example, if we want to find the
expectation value of 〈x̂Ax̂B〉, the expectation values for the
separable state becomes

〈x̂Ax̂B〉ρ̂AB =
∑

i

pi〈x̂A〉ρ̂i
A
〈x̂B〉ρ̂i

B
, (2)

which is simply the probabilistic mixture of the product of the
expectation values on each subsystem.

Although this definition of quantum entanglement via in-
separability is universal in a sense that it applies to any type
of physical system, it is highly abstract and lacks any details,
making it not so useful operationally. In this paper, we will
restrict ourselves to the CV quantum entanglement.

III. NOTATIONS

In this section, we review the notation of the basic con-
cepts and notations related to the CV optical system. When
we consider the quantization of the electromagnetic field, we
expand the electromagnetic field into a set of orthonormal
modes (denoted with index k) and an annihilation operator
(creation operator) âk (â†

k) associated with that mode. The
superscript † is a Hermitian conjugate of an operator. The
mode index k is associated with various properties that label
the optical state we consider such as wavelength, polarization,
temporal mode, spatial mode, and spectral distribution. The
quantum states are then stored within modes. This is similar
to classical electromagnetic field where we solve the Maxwell
equations by expanding the basis in the orthonormal mode and
find the values of the complex electromagnetic field amplitude
associated with each mode. The annihilation and creation op-
erators can be considered as quantum analogs to the classical
complex electromagnetic field amplitude.

The annihilation and creation operators satisfy the follow-
ing equation:

[âk, â†
k′ ] = δkk′ , (3)

which is the bosonic commutation relation. As the annihila-
tion operators are not Hermitian operators, they are not the
observable physical quantity. The quantity of our interest is
the quadrature x̂k and p̂k which is given by1

x̂k =
√

h̄

2
(âk + â†

k ), (4)

p̂k = −i

√
h̄

2
(âk − â†

k ). (5)

These quantities can be considered to be equivalent to
the real part and the imaginary part of the complex electric

1Here we consider the case where ω = 1 which holds in the case
where the spectral of the quantum state of our interest is localized
near the carrier frequency. This is the case that holds for almost
all optical systems as their carrier frequencies are usually extremely
high.

FIG. 1. Schematic diagram of the homodyne detector. The phase
θ of the local oscillator determines the linear combination x̂ cos θ +
p̂ sin θ to be measured. The homodyne detector measures the differ-
ence of the current on the two photodiodes (Î1 − Î2).

field amplitude. The quadrature amplitude can be easily mea-
sured using the measurement called homodyne measurement
which is also a standard measurement in classical optics and
telecommunication. In the CV system, we usually considered
the quantum systems and their correlations from the aspect
of the quadrature operators. Quantum states that have corre-
lations in quadrature operators usually possess correlation in
photon-number basis and they are useful for state generation
[79], but for other applications such as quantum computation,
quadrature-basis correlation is the main quantity of interest.

We can easily show that the quadrature operators sat-
isfy [x̂k, p̂l ] = ih̄δkl , similar to the the position operator and
momentum operator of a particle. From the commutation re-
lation, we can show that the quadrature operators have the
uncertainty principle given by

〈�2x̂〉〈�2 p̂〉 � h̄2

4
, (6)

〈�2x̂〉 + 〈�2 p̂〉 � h̄, (7)

where 〈�2x̂〉 = 〈x̂2〉 − 〈x̂〉2 is the variance of the operator.
The uncertainty principle plays an important role in the
formulation of the concept of quantum entanglement and
also the formulation of the criteria for detecting quantum
entanglement.

Figure 1 shows the schematic of homodyne measurement.
The homodyne detector amplifies the quadrature operator by
interfering the quantum state with a strong classical light
called local oscillator. The local oscillator also acts as a mode
filtering; only the mode that is matched to the local oscillator
is amplified and observable. The phase of the local oscillator
determines the phase of the measured quadrature, allowing
us to measure any arbitrary linear combination in a form of
x̂ cos θ + p̂ sin θ , where θ is the phase of the local oscillator.

CV quantum states are usually grouped into two types:
Gaussian states and non-Gaussian states. For pure states, they
are categorized simply by whether the shapes of the Wigner
functions are Gaussian or not. Although we can consider CV
quantum entanglement for both Gaussian and non-Gaussian
states, in this paper, we will restrict ourselves to the quantum
entanglement in the Gaussian states. There are two reasons
for this. The first reason is the experimental practicability. In
the optical system, Gaussian states and Gaussian operations,

040101-3



WARIT ASAVANANT AND AKIRA FURUSAWA PHYSICAL REVIEW A 109, 040101 (2024)

including multimode cases, are deterministic. This property
makes generation of large-scale quantum entanglement via
Gaussian toolbox highly appealing as there is no additional
overhead from any probabilistic processes. The second reason
is the simplicity in the analysis. If we consider a general quan-
tum state of M mode where each mode is truncated to a max
photon number N , then the parameters required to uniquely
describe the state are typically on the order of NM . On the
other hand, for Gaussian states, although Gaussian states are
usually not truncated in photon-number basis, they can be
uniquely determined (up to displacement) with a covariance
matrix (see Sec. IV). This means that describing Gaussian
states, regardless of the photon number, requires only (2M )2

parameters. We see that the scaling in M is exponential in the
general case, while it is only square in the Gaussian case. This
makes characterization of multimode Gaussian states more
viable compared to general multimode quantum states.

Now let us define Gaussian operations and Gaussian states.
Here we will restrict ourselves to the case of the pure states.
For a detailed review on the Gaussian toolbox of CV quantum
computation, see Ref. [80] for a review. The Gaussian oper-
ations transform Gaussian states to other Gaussian states. In
the Heisenberg picture, Gaussian operations can be written as

q̂′ = Sq̂ + q0, (8)

where the hat vector is

q̂′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x̂1

x̂2

...

x̂N

p̂1

p̂2

...

p̂N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (9)

Because the transformation of the quadrature must pre-
serve the commutation relation, the matrix S must be a
symplectic matrix satisfying

S�ST = � (10)

with

� =
(

0 I

−I 0

)
. (11)

A. Single-mode Gaussian operations

In this subsection, we will briefly cover basic single-mode
Gaussian operations

1. Displacement operation

The displacement operation corresponds to the scalar part
in Eq. (8). As we will see in Sec. V, the CV quantum entangle-
ments are defined by the linear correlation of the quadrature
operators, meaning that the displacement operations are trivial
as they are simply redefining the offset of the quadrature
values.

2. Phase rotation

Phase rotation R̂(θ ) of the quadrature operators can be
written as(

x̂′

p̂′

)
= R(θ )

(
x̂
p̂

)
=

(
cos θ − sin θ

sin θ cos θ

)(
x̂
p̂

)
, (12)

which corresponds to the rotation in the phase space. In
the optical system, phase rotation can be realized by simply
changing the optical path length that the state propagates.

3. Squeezing operation

The squeezing operation Ŝq(r) is given by(
x̂′

p̂′

)
= Sq(r)

(
x̂
p̂

)
=

(
er 0
0 e−r

)(
x̂
p̂

)
. (13)

Squeezing operation is a basic component in the generation
of optical quantum entanglement, and is usually the only non-
linear optics process required in the entanglement generation.
Experimentally, rather than implementing squeezing opera-
tion directly on quantum states, we usually generate squeezed
vacuum states (i.e., a vacuum state that has squeezing opera-
tion acting on it, also simply called a squeezed state) and use
them as our initial resources.

B. Two-mode Gaussian operations

In this subsection, we will briefly cover the basic two-mode
Gaussian operations.

1. Controlled-Z gate

The unitary operator of the controlled-Z gate is given by

ĈZ (g) = exp

(
i

h̄
gx̂1 ⊗ x̂2

)
, (14)

where g is the gain that is tunable. This operation transforms
the quadrature operator as follows:⎛⎜⎜⎜⎝

x̂′
1

x̂′
2

p̂′
1

p̂′
2

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1 0 0 0
0 1 0 0
0 g 1 0
g 0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

x̂1

x̂2

p̂1

p̂2

⎞⎟⎟⎟⎠. (15)

As we can see, interaction from controlled-Z gate mixes the
p quadrature with the x quadrature operator from the other
mode. Controlled-Z gate is a popular type of interaction
usually used in the early theoretical calculations regarding
CV quantum entanglement and measurement-based quantum
computation [81]. This is because controlled-Z gate affects
only single quadrature and has nice parallelism to the en-
tangling gate in the qubit system. Optical realization of the
controlled-Z gate was implemented using linear optics and
squeezing gate [82,83] as they come naturally in the optical
system.

2. Beam-splitter interaction

Although the controlled-Z gate suffices as the two-mode
interaction, a more widely used interaction in the optical
system is the beam-splitter interaction. Implementation of the
beam-splitter interaction is very straightforward in the optical
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regime; we simply put a coated plate of glass and then inter-
fere two beams at that glass. Without the loss of generality, the
beam-splitter interaction transforms the quadrature operators
in the Heisenberg picture as⎛⎜⎜⎜⎝

x̂′
1

x̂′
2

p̂′
1

p̂′
2

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
√

R −√
T 0 0√

T
√

R 0 0

0 0
√

R −√
T

0 0
√

T
√

R

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

x̂1

x̂2

p̂1

p̂2

⎞⎟⎟⎟⎠, (16)

with R + T = 1, where R and T correspond to the energy re-
flectivity and transmittivity of the beam splitter, respectively.
We can see that the beam-splitter interaction defined here does
not mix the two quadratures x and p. We can also make a
beam-splitter interaction that mixes the quadrature, but that
is equivalent to adding additional phase rotation to Eq. (16).
Unlike the controlled-Z gate, the beam-splitter interaction
changes both quadratures which could make their visualiza-
tion more difficult than controlled-Z gate (see Sec. IV B).
Availability of the easy-to-use beam-splitter interaction is one
of the main factors that makes generation and manipulation
of the quantum entanglement much developed in the optical
systems.

C. Gaussian decomposition

We have discussed various basic Gaussian gates. Next let
consider how to construct a Gaussian operation when a sym-
plectic matrix S of the desired operation is given. As any
Gaussian operations are uniquely determined (up to displace-
ment operation) by their symplectic matrix, the problem of
constructing a Gaussian operation is equivalent to the decom-
position problem of the symplectic matrix. One of the useful
decompositions of the symplectic matrix is called the Bloch-
Messiah decomposition [84,85] which decomposes arbitrary
symplectic matrix S into

S = O

(
�−1 0

0 �1

)
O′, (17)

where O and O′ are orthogonal and symplectic, and � is a
diagonal matrix whose elements are all positive. Although we
have not explicitly stated it, the symplectic transform that is
also orthogonal matrix corresponds to the passive linear op-
tics network composed of beam splitters and phase rotations.
On the other hand, the � part corresponds to a single-mode
squeezing. Therefore, we can decompose any arbitrary Gaus-
sian operation into linear optics network and single-mode
squeezing.

Another useful decomposition of the symplectic matrix
is [86]

S =
(

I 0

V I

)(
U−1/2 0

0 U1/2

)
O′′, (18)

where O′′ is an orthogonal matrix, U and V are both sym-
metric matrices, with only U being positive definite. Although
decomposition in Eq. (18) is similar to Eq. (17), the leftmost
matrix resembles the controlled-Z gate, while for the middle
matrix, although it has some resemblance to the �, it is not

FIG. 2. Generation of arbitrary Gaussian states from vacuum
states. The example here shows the case of five-mode Gaussian state.
(a) Generation circuit based on the Bloch-Messiah decomposition.
(b) Equivalent circuit based on offline squeezed states and linear
optics. Ô and Ô′ are linear optics operation which are not unique as
Bloch-Messiah decomposition is not a unique decomposition. Ŝq(r)
is a squeezing operation.

orthogonal, thus does not directly correspond to squeezing
operation

IV. MULTIMODE GAUSSIAN STATES

In this section, we will define multimode Gaussian states
and how to represent them. Pure Gaussian state is a quantum
state whose wave function is a (complex) Gaussian function.
If we represent the state in the phase space using the Wigner
function, the Wigner function becomes a real Gaussian func-
tion. In fact, a quantum pure state is Gaussian if and only if it
has no negative region in its Wigner function [87].

Figure 2 shows how to generate an arbitrary multimode
Gaussian state. If we can implement arbitrary Gaussian opera-
tions, then any pure N-mode Gaussian states can be generated
by applying Gaussian operations to N-mode vacuum state.
Using the decomposition in Eq. (17) and the fact that beam-
splitter interaction on vacuum states results in vacuum states,
we can readily show that arbitrary N-mode Gaussian states
can be generated by combining N single-mode squeezed vac-
uum states on a linear optics network. This is an important
result in CV optical system as generation of a squeezed vac-
uum state is much simpler than applying squeezing operation
on an arbitrary quantum state [88,89].
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A. Representation of Gaussian states

In this section, we will discuss different ways of defining
Gaussian states, thus the CV quantum entanglement.

1. Wave function and Wigner function

First let us consider how to derive the wave function of the
single-mode vacuum state. The single-mode vacuum state |0〉
satisfies

â|0〉 = x̂ + i p̂√
2h̄

|0〉 = 0. (19)

To find the wave function ψ0(x) = 〈x|0〉, we put bra 〈x| on the
left side of Eq. (19) and do the change x̂ → x and p̂ → −ih̄ d

dx
which gives the equation(

x + h̄
d

dx

)
ψ0(x) = 0. (20)

This gives

ψ0(x) = N exp

(
− x2

2h̄

)
, (21)

where N is a normalization factor. Now let us consider an
N-mode Gaussian state |ψG〉 that is connected to |0〉 via a
Gaussian operation ÛG. Then, from Eq. (19), we can show
that this state must satisfy

ÛGâÛ †
G|ψG〉 = 0, (22)

where â = (â1 â2 . . . âN )T is a vector of annihilation operator
for each mode and the above equation is a shorthand for N
equations. Note also that in our notation the transpose of the
vector of the operator does not transpose the operator inside.
As the transformation of â is an inverse of the transformation
of the operators in the Heisenberg picture, the transformation
here is done by the inverse of S. Using the form of S in
Eq. (18) and the fact that beam-splitter interaction on vacuum
does not do anything, we put O′′ = I and find S−1 as

S−1 =
(

U1/2 0

0 U−1/2

)(
I 0

−V I

)

=
(

U1/2 0

−U−1/2V U−1/2

)
. (23)

Then, we get the new equation as

[(U1/2 − iU−1/2V)x̂ + iU−1/2p̂]|ψG〉 = 0, (24)

[(U − iV)x̂ + ip̂]|ψG〉 = 0. (25)

Doing the same substitution as Eq. (20), we arrive at

ψG(x) = NG exp

[
− 1

2h̄
xT(U − iV)x

]
. (26)

Thus, the property of the wave function is determined by the
combination of U and V which has been shown to be related to
the graphical representation of the multimode Gaussian states
[90] (see Sec. IV B).

Next let us look at the Wigner function representation of
the multimode Gaussian states. There are many different ways

to define the Wigner function. For our purpose, let us use the
following definition:

W (q) = 1

π h̄
Tr[(−1)N̂ D̂(−q)ρ̂D̂†(−q)], (27)

where N̂ = ∑
i n̂i is the sum of the photon in all modes with

n̂i being a photon-number operator in mode i. This equa-
tion means that the value of the Wigner function at coordinate
q = (x

p) is equal to the parity at that point. When ρ̂ is acted

on with Gaussian operation ÛG, by using the relation between
Gaussian operation and displacement operator, and the fact
that (−1)N̂ is a π phase shift, we have

WÛG
(q) = 1

π h̄
Tr[(−1)N̂ D̂(−S−1q)ρ̂D̂†(−S−1q)]

= Wρ̂ (S−1q). (28)

This means that Gaussian operation corresponds to linear
coordinate transformation of the Wigner function.

2. Covariance matrix

Another way to uniquely determine a pure Gaussian state
is via the covariance matrix. Let us define the covariance
matrix C as

C = 1
2 〈q̂q̂T + (q̂q̂T)T〉. (29)

Using Eq. (18), we can readily calculate this as

C = h̄

2

(
U−1 U−1V

VU−1 U + VU−1V

)
. (30)

We see that when V = 0 there is no correlation between
quadrature x and p.

B. Graphical representation

As we have seen, Gaussian states are characterized by the
complex combination U − iV which is a symmetric matrix. In
Ref. [90], it has been shown that by considering a matrix

Z = V + iU, (31)

multimode Gaussian states could be represented as a graph
where matrix Z is a matrix of the complex edge weight be-
tween modes. Gaussian transformations can also be rewritten
as the transformation of graph which affected only the edge
weights of the edges that are connected to the modes that are
operated on. In this paper, we will not go into the details of the
graphical calculus, and the readers should consult Ref. [90]
for more details if necessary. With graphical calculus, all the
graphical representations of the entanglement in this paper
are not just schematic diagrams but are equivalent to actual
mathematical descriptions of states.

Graphical calculus is an important tool in describing large-
scale quantum entanglement. The reason for this is not only
because graphical calculus allows us to visualize the entan-
glement, but also due to the fact that describing entangled
states using equations becomes unrealistic when the number
of the modes greatly increases. Moreover, graphical calculus
lets us describe the change of the entangled state via graphical
transformation rules without having to resort to mathematical
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equations. This is convenient when we want to describe the
effects of gates or measurements on modes of the entangled
state. Another instance that makes graphical calculus highly
useful is the fact that large-scale optical entanglement is usu-
ally generated in the manner that its graphical structure is
periodical. Thus, we can look at a small number of nodes in
the graphical structure and infer the structure and relation of
the whole entangled state.

V. MULTIMODE CONTINUOUS-VARIABLE
ENTANGLEMENT

A. Entanglement and finite squeezing

As the first example of the entangled state, we consider
the case of two-mode entangled state. In this case, the most
well-known state is the Einstein-Podolsky-Rosen (EPR) state
which first appeared in the paper by the authors of the same
name [12].

One of the ways to think about the EPR state is that al-
though x̂ and p̂ do not commute, the linear combination could
commute:

[x̂1 − x̂2, p̂1 + p̂2] = 0. (32)

This means that quantum mechanics allows such a state which
is a simultaneous eigenstate of x̂1 − x̂2 and p̂1 + p̂2.

Now comes what makes the CV system more complicated
than the qubit system; although these states are allowed, it
does not mean that these states are physical. One could naively
try to write the EPR state as

|ψEPR〉 =
∫

dx |x〉1|x〉2 =
∫

d p |p〉|−p〉. (33)

Note that the representation between x̂ and p̂ basis stems from

|p〉 = 1√
2π h̄

∫
dx exp

(
i

h̄
xp

)
|x〉. (34)

|ψEPR〉, however, obviously does not represent a physical
state. This is a recurring difficulty in the CV system. In most
of the cases, the entanglements we wish to generate for some
particular applications are sought for their correlation in the
quadrature operators. However, when one tries to write the
state, we found that the state is unphysical.

Even if the state we want is unphysical, experimentally, we
can think of how to approximate the state. This way of think-
ing is similar to how the x eigenstate is usually approximated
by the x-squeezed state in the experiment as the variance in x
and p of the x-squeezed state approaches the same value as the
x eigenstate when the squeezing level is taken to infinite limit.
Thus, we can try to approximate the quantum entangled state
by finding the state whose correlation we want approaches an
ideal value when the squeezing level is taken to infinite limit

Here we emphasize that it is important not only to consider
the realistic finite-squeezing case, but also the infinite-
squeezing limit when we build an experimental setup. It is not
difficult to come up with a system that, although it does not
give the desired quantum correlation in the infinite-squeezing
asymptotic limit, the correlation level at certain squeezing
level could be better than the classical correlation. This, how-
ever, does not necessarily make the setup appropriate for

approximating the target state as the state generated does not
converge to the target state at the infinite-squeezing limit.

B. Nullifiers

Following the idea of the last section, we can consider the
nullifiers. For N-mode Gaussian state |ψN 〉, the nullifier δ̂i is
an operator that satisfies

δ̂i|ψN 〉 = 0. (35)

The state |ψN 〉 can be specified by N linearly independent
and commutative nullifiers, and there is a one-to-one corre-
spondence between the state and the nullifier. As an example,
the nullifiers of the EPR state are x̂1 − x̂2 and p̂1 + p̂2. Lin-
ear combinations of the nullifiers are also nullifiers, and we
can consider the transformation of the nullifiers when unitary
transformation Û acts on the state as

δ̂ → Û δ̂Û † (36)

which is the inverse of the transformation in the Heisenberg
picture.

For a state with finite squeezing, Eq. (36) gives the form
of the nullifiers for arbitrary multimode Gaussian states and
entanglement as arbitrary Gaussian states can be generated by
applying Gaussian operations to vacuum state.

The issue with Eq. (36) is that the annihilation operator is
not an observable. It would be much more convenient to start
from the state that has quadrature operators as their nullifiers
(such as quadrature eigenstate) because the resulting state will
be nullified by linear combination of quadrature operators
which are measurable. Similar to the EPR state, however,
these ideal states are usually unnormalizable making their
state vector representation difficult to be related to experiment.
On the other hand, when the ideal nullifiers are given, it is of
experimental interest to find the ways to produce the state that
approaches the ideal state in the limit of infinite squeezing. For
a type of state called cluster state, this has been exhaustively
explored and we will discuss this in Sec. V D 1.

Then, it is the question of interest of how to find a system
that approximates the desired states that are defined by the
nullifiers. To look at this, let us consider nullifiers of N-mode
entanglement in the form

δ̂ = (A B)

(
x̂
p̂

)
, (37)

where A and B are N × N real matrices. As we are consider-
ing a set of nullifiers that uniquely determines the state, all
nullifiers must be commutable, i.e., [δ̂i, δ̂ j] = 0 for all i, j.
From the form of δ̂, we can compactly write the condition as

ABT − BAT = 0. (38)

The above condition must be satisfied for the simultaneous
eigenstate of the assigned set of nullifiers to be allowed (even
though they are not necessarily physical). To consider actual
generation system, let us consider the singular value decom-
position of (A B)

(A B) = ON×N�N×2N O′T
2N×2N , (39)

where the lower indices indicate the dimension of each matrix.
O and O′ are orthogonal matrices, while � is a diagonal
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rectangular matrix with non-negative elements. From the lin-
ear independency rank(�) = N , so all diagonals of � are
nonzero. Note that typical singular value decomposition only
requires that the diagonals of σ to be non-negative, and the
nonzero requirements come from independency assumption.
Inserting Eq. (39) into (37), we have

δ̂ = O�O′Tq̂. (40)

As the orthogonal matrix O corresponds to linear combination
of the nullifiers, it does not affect the actual nullifiers and
can be canceled out. The matrix � is also multiplication of
constant value on each nullifier; this can also be ignored, so
we have

δ̂ = (I 0)O′Tq̂. (41)

As O′T is an inverse of the linear optics given by O′ and
(I 0)q̂ = x̂ is simply the nullifier of the x eigenstate,
the state given by nullifiers that is linear combination of
quadrature operators can be realized simply by combining x-
squeezed states on a linear optics determined by O′. Note that
the linear optics for realizing particular nullifiers is not unique
as we can add linear optics that do not change x-squeezed state
as much as we want. In Ref. [75], the network for realizing
arbitrary cluster state with offline squeezing and linear optics
was demonstrated by canceling the antisqueezing component
in the nullifiers.

C. Figure of merit and criteria for quantum entanglement

Next, let us consider how to evaluate the CV optical
quantum entanglement. For Gaussian states, measuring the
covariance matrix uniquely defines the states. From the co-
variance matrix, figures of merit such as fidelity, purity, and
various entanglement indicators can be calculated. We will not
go into the details here and let the reader consult Ref. [80]. For
evaluation of large-scale quantum entanglement such as one-
million-mode quantum entanglement in Ref. [52], however,
the covariance matrix becomes difficult to handle, and not
necessarily relevant when considering the applications with
large-scale entanglement.

The early sufficient criteria for checking the existence of
quantum entanglement were put out by Horodecki [91]. The
criteria proposed were based on the positivity of the partial
transpose operation on the separable state. In 2000, a separate
work by Duan [92] and Simon [93] has extended the criteria
by Horodecki into a necessary and sufficient criteria for deter-
mining whether there is entanglement between the two-mode
states. Their formulations are based on quadratures and co-
variance matrix which can be easily measured experimentally.
Later, these criteria were extended to sufficient criteria for the
multimode case by van Loock and Furusawa [94] and have
become a standard tool for evaluation of large-scale optical
CV quantum entanglement.

Before going into the details of van Loock–Furusawa
(vLF) criteria, let us discuss why vLF criteria are useful for
evaluating quantum entanglement. vLF criteria utilize the fact
that for the separable state, quadrature correlations will have
a lower limit. Although we are free to select the form of

the correlation, it is usually advantageous to use nullifiers as
they approach 0 for ideal states. Moreover, as large-scale en-
tanglement generated with multiplexing usually has periodic
graphical structure, applying the measured correlation to vLF
criteria is simple, even when the number of modes becomes
extremely large. When used in quantum protocol such as
quantum teleportation or computation, the variances of the
nullifiers are usually directly equal to the intrinsic squeezing
noise. Hence, vLF criteria utilize the physical quantities that
are directly related to quantum protocol.

Even if the states are the same in the asymptotic infinite-
squeezing limit, in the finite-squeezing limit, the variances can
be dependent on how the state is generated. In the case of the
generation using linear optic and offline squeezing (where all
the squeezing levels are assumed to be equal), decomposition
in Eq. (17) and the form of nullifiers in Eq. (41) suggests
that the variances of the nullifiers will squeeze below vacuum
equal to the squeezing level of the initial resources. This is
because when linear optics are applied to vacuum state input,
the output is simply a vacuum state without any changes. On
the other hand, if we use, for example, controlled-Z gate and
squeezed state for the generation, the variance of the nullifiers
will be different as controlled-Z gate generates entanglement
even if the vacuum inputs are used. One way to reconcile this
is to notice that controlled-Z gate has squeezer in it when we
do Bloch-Messiah decomposition [88].

In vLF criteria, we consider operators that are linear in the
quadrature which are given by

ξ̂ =
∑
k∈A

(gkx̂k + hk p̂k ) +
∑
l∈B

(gl x̂l + hl p̂l ), (42)

ζ̂ =
∑
k∈A

(g′
k x̂k + h′

k p̂k ) +
∑
l∈B

(g′
l x̂l + h′

l p̂l ), (43)

where gk, g′
k, hk, h′

k are real numbers and we have grouped
the mode indices into two sets A and B where A ∩ B = φ.
Note that we restrict the coefficients to be real so that the
operators ξ̂ and ζ̂ are observable. In principle, for the purpose
of vLF criteria, these operators do not have to commute or
correspond to nullifiers of the state. We will see, however,
that for practical purposes in the verification of large-scale
quantum entanglement, selecting ξ̂ and ζ̂ to be nullifiers has
many advantages.

Next, we consider a quantum state that is separable with
respect to A and B, i.e.,

ρ̂AB =
∑

i

piρ̂
i
A ⊗ ρ̂B. (44)

ρ̂A is a quantum state on the subsystem defined by A and so
on. If we measure the variances of ξ̂ and ζ̂ , we can easily show
that [94]

〈�2ξ̂ 〉ρ̂AB + 〈�2ζ̂ 〉ρ̂AB =
∑

i

pi
[〈�2ξ̂A〉ρ̂i

A
+ 〈�2ζ̂A〉ρ̂i

A

+ 〈�2ξ̂B〉ρ̂i
B

+ 〈�2ζ̂B〉ρ̂i
B

]
, (45)
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FIG. 3. Bipartitions of four-partite state. Negating all of
these possible configurations establishes genuine multipartite
inseparability.

where the variance is defined as 〈�2x̂〉 = 〈x̂2〉 − 〈x̂〉2 and the
definition of each operator is

ξ̂A =
∑
k∈A

(gkx̂k + hk p̂k ), (46)

ζ̂A =
∑
k∈A

(g′
k x̂k + h′

k p̂k ), (47)

ξ̂B =
∑
l∈B

(gl x̂l + hl p̂l ), (48)

ζ̂B =
∑
l∈B

(g′
l x̂l + h′

l p̂l ). (49)

Invoking the uncertainty principle [Eq. (7)], we arrive at

〈�2ξ̂〉ρ̂AB + 〈�2ζ̂ 〉ρ̂AB

� h̄

(∣∣∣∣∣∑
k∈A

gkh′
k − g′

khk

∣∣∣∣∣ +
∣∣∣∣∣∑

l∈B
glh

′
l − g′

l hl

∣∣∣∣∣
)

. (50)

Equation (50) means that if we measure the variances of ξ̂

and ζ̂ and find that they are below a threshold determined by
the right side of Eq. (50), then we can establish that the state is
inseparable with respect to A and B. By selecting appropriate
operators, we can negate the possibility of the state being in
any biseparable form, which leads to the conclusion that the
state is inseparable. For example, if we want to show that a
four-partite state is inseparable, we have to use vLF criteria
to negate the possibility of seven types of biseparable form
shown in Fig. 3. This equation is the van Loock–Furusawa
criteria [94]. Note that in the original paper, they only consid-
ered the form where there are only x or p quadratures in the
linear combination.

The fact that vLF criteria utilize variances makes them
highly compatible with the nullifiers as the nullifiers approach
zero when the entanglement approaches ideal form. From the
experimental point of view, there are also other considerations
that need to be taken into account.

FIG. 4. Cluster states generated from controlled-Z gate. (a) A
particular circuit for state generation. The black line corresponds to
controlled-Z gate and the number is the gain g. (b) Corresponding
graphical representation determined by the adjacency matrix A.

D. Examples of CV entanglement

In this section, we will give some examples of the common
CV quantum entanglement.

1. Cluster state

The first type of the state is called the cluster state. The
cluster state is a resource for measurement-based quantum
computation [81,95]. Traditionally, the cluster state is defined
via p eigenstate, controlled-Z gate, and adjacency matrix A as

|ψA〉 = ĈZ [A]|p = 0〉⊗N , (51)

ĈZ [A] = exp

(
i

2h̄
x̂TAx̂

)
. (52)

Figure 4 shows an example of cluster state generated in this
manner. In this definition, the matrix A directly corresponds
to the graphical representation of the state, i.e., Z = A in
Eq. (31), which makes the graphical representation of this type
of the state easy to write. The nullifier for this type of state also
becomes δ̂ = p̂ − Ax̂.

Despite the simplicity in the definition and a strong par-
allelism to the qubit cluster state, straightforward generation
based on the controlled-Z gate is difficult in the optical sys-
tem as it is not a naturally available interaction. Although
there is experimental demonstration of the controlled-Z gate
using linear optics and measurement-induced squeezing gates
[82,83], the system is too complex to be repeated several
times. There is an early theoretical proposal that uses time
multiplexing with the controlled-Z gate to realize a scalable
cluster state [39], but even then a single controlled-Z gate
remains challenging and resource inefficient due to the addi-
tional ancillary state. A better approach is via linear optics
and offline squeezing as explained in Sec. IV. Based on
this approach, small-scale cluster states with many different
structures have been realized [23–32] and even some demon-
strations of applications using these cluster states also have
been demonstrated.

There are, however, a few experimental hurdles for this
approach. First, in addition to the structure, the linear op-
tics required for the state generation is highly dependent on
the mode number N . If we were to use the generation via
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the controlled-Z gate as in Eq. (52), then adding the mode
is a simple task as all controlled-Z gates commute. On the
other hand, the structure of the linear optics for the gener-
ation with offline squeezing depends on the decomposition
of A as shown in Eq. (17) which in general would be very
dependent on the dimension of the matrix. Moreover, unlike
the controlled-Z gate, beam-splitter interactions in general do
not commute. There is a recent work that utilizes variable
beam splitter and loop structure to circumvent this limitation
[96], but even then generation of large-scale entanglement
with this approach is not easy and there are other approaches
that can be taken. Experimentally, the p eigenstates are
approximated using p-squeezed state as the quadrature dis-
tribution of p-squeezed state bears more resemblance to the p
eigenstate as the squeezing level increases [97].

Another problem with this definition of cluster state is
that they cannot incorporate the quantum entanglement that
is related to the cluster state but are not exactly of this type.
For example, it can be easily shown that the EPR state in
Sec. V A is related to two-mode linear cluster state via π/2
phase shift of one mode. In the recent experimental generation
of large-scale cluster state, the “cluster state” does not have
the form defined in Eq. (52), but is usually related to it via
local phase rotation [90]. This difference does not affect any
capability of the state in the quantum computation as local
phase rotation simply means that measurement bases can just
be redefined when the state is used.

2. H-graph state

A type of entanglement that is highly related to the cluster
state is called the H-graph state. In fact, many of the generated
“cluster states” are actually this type of state as many H-graph
states are related to cluster states via local phase rotations.
The H-type state corresponds to the Gaussian state whose
graphical structure is in the form [90]

Z = i exp(−2αG), (53)

where α is a unitless parameter corresponding to squeezing
strength. It can be shown that this type of state can be gener-
ated with generalized version of parametric downconversion
[90]. This fact means that they can also be engineered by
entangling various EPR states appropriately. The form of the
H-graph state is also useful as it can be generated in the
frequency domain from a single optical parametric oscillator
(OPO) by engineering the pump light and the Hamiltonian.
We will discuss this in Sec. VI.

3. GHZ state

The N-qubit version of Greenberger-Horne-Zeilinger
(GHZ) state is given by

|ψ〉 = 1√
2

(|0〉⊗N + |1〉⊗N ). (54)

The GHZ state is known to be useful for various quan-
tum tasks such as quantum communication and teleportation
network. The continuous variable version is defined by the

FIG. 5. Graphical representation of the GHZ state. As an exam-
ple, we show the case with five modes. (a) H-graph representation
as all-connected graph. (b) Representation using Z after the Fourier
transform of a single mode as a star graph.

nullifiers given by [98]

δ̂1 =
∑

i

p̂i, (55)

δ̂ j = x̂ j − x̂ j+1, (56)

with 1 < j < N − 1. It can be shown that the H-graph rep-
resentation of the GHZ state is an all-connected graph with
G = I − J where J is the matrix where all elements are 1 [90].
If we perform Fourier transformation on every single mode
but one (which we will denote as mode 1) and take some linear
combination, we have a new set of nullifiers as

δ̂′
1 = p̂1 −

∑
k 
=1

x̂k, (57)

δ̂′
j = p̂ j − x̂1, (58)

with 2 < j < N . The new nullifiers have the form of the
cluster state whose graph is a star graph (Fig. 5). This here
shows the equivalence between the all-connected H graph and
the star graph represented with Z.

VI. GENERATION OF OPTICAL
CONTINUOUS-VARIABLE QUANTUM

ENTANGLEMENT WITH MULTIPLEXING

So far we have discussed the general description of CV
quantum entanglement. From this section, we will discuss
how the optical system allows us to generate large-scale quan-
tum entanglement.

In most of the generation of the small-scale entanglement,
one squeezed-light source is used per one mode of the entan-
glement. This highly limited the scale of the entanglement.
Moreover, as CV quantum entanglement is a phase-sensitive
state, the more linear optics required in the systems, the more
parameters that are needed to be controlled and stabilized. The
idea of multiplexing for the generation of large-scale quantum
entanglement is based on the fact that the optical system is rich
in degrees of freedom such as polarization, time, frequency,
and spatial mode. By multiplexing in these degrees of free-
dom, it is possible to make various modes interact using the
same optical components. The fact that the optical system is
a propagating wave system and not a static qubit also helps
in this regard; light modes can pass through the optical com-
ponents without staying there, allowing other light modes to
enter the same component and repetitively interact. As a side
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FIG. 6. Conceptual diagram of time-domain multiplexing. Here we assume that the quantum state of light is generated with continuous
wave, which is usually the case in the actual experiments. The shape of the wave packet f (t ) is assumed to be the same in all time bins of
temporal width �t that are labeled by index k. This assumption is made so that the temporal mode can interact with each other. The circle
nodes correspond to each wave-packet mode that is usually shown in the graphical representation.

note, we also see development of nonchip components which
could further assist the large-scale entanglement by making
the required components more compact [99,100].

In this section, we will look at the large-scale generation of
quantum entanglement based on three popular multiplexings:
time-domain multiplexing, frequency-domain multiplexing,
and spatial-mode multiplexing.

A. Time-domain multiplexing

Figure 6 shows the concept of time-domain multiplexing.
In time-domain multiplexing, we encode the information in a
temporal wave packet and have the wave packets interact by
using the optical delay line and linear optics [36]. If we let �t
be the time width of the wave packet and f (t ) be the shape of
the wave packet which is assumed to be real, we can write the
annihilation operator â f associated with this mode as

â f =
∫ ∞

−∞
dt f (t )â(t ), (59)

where â(t ) is an annihilation operator at time t which satisfies
a commutation relation

[â(t ), â†(t ′)] = δ(t − t ′). (60)

Note that for the f (t ) here, we considered a rotation reference
frame of the carrier frequency and all the following discus-
sions hold for the wave packet f (t ) whose frequency spectral
is localized near the carrier frequency, which is almost always
the case for an optical system as the optical carrier is on the
order of a few hundred terahertz. Moreover, we will ignore
dispersion in this argument, meaning that the wave packet can
be considered as only the function of time.

As we are multiplexing the temporal mode on a same
spatial beam and want them to interact, we usually denote the
temporal index as k and consider the temporal mode at that
timing as fk (t ) = f (t − k�t ) which is simply a translation
of the original mode function. This is important as we would
want them to interact with each other.

There are a few conditions, both theoretically and ex-
perimentally, that these wave packets should satisfy. First,
we would want the mode to represent the bosonic mode.

Therefore, if we look at the commutation relation, we have[
â fk , â†

fl

] =
∫∫

dt dt ′ [â(t ), â†(t ′)] fk (t ) f ∗
l (t ′)

=
∫

dt fk (t ) f ∗
l (t ′). (61)

Thus, if we select f (t ) so that it is normalized and are orthogo-
nal when it is shifted by �t , the bosonic commutation relation
can be satisfied.

Another important aspect is that we want to be able to
measure the quadrature of each mode individually. For that,
let us consider the quadrature operator for the wave-packet
mode f (t ). Using the definition of quadrature, we can readily
write the quadrature x̂ f as

x̂ f =
√

h̄

2

∫
dt [ f (t )â(t ) + f ∗(t )â†(t )]. (62)

For a mode function that is real, we have

x̂ f =
∫

dt f (t )x̂(t ) (63)

with

x̂(t ) =
√

h̄

2
[â(t ) + â†(t )]. (64)

Note that the above equation holds for other phases aside
from the x quadrature as well. This means that we can just
choose and measure the temporal signals at the phase of our
interest and then postprocess by integrating with the shape
of the wave packet f (t ) to retrieve the quadrature x̂ f . This
simplicity makes time-domain multiplexing a nice choice as
each wave-packet mode can be easily accessed by changing
the phase of the local oscillator (LO) at the timing required.
For many tasks, we need to measure each mode fk (t ) and
fl (t ) with different bases. Hence, it is important that the mode
function we select is not only orthogonal, but also contained
within the time-bin width �t .

Strictly speaking, x̂(t ) does not mathematically satisfy the
criteria for the usual quadrature operator; the temporal signal
measured from the homodyne does not correspond to this.
However, if we are considering the f (t ) whose frequency
bandwidth is sufficiently smaller than the detection bandwidth
of the homodyne detector, we can use the homodyne detector
signal as x̂(t ) and Eq. (63) gives the correct quadrature for the
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FIG. 7. Various setups for generation of time-domain-multiplexed cluster states. Sqz. light: squeezed light. (a), (b) Setups for quad-rail
lattice [36] and bilayer square lattice [37], while (c) and (d) are the experimental setups in Refs. [53] and [54], respectively.

mode function we want. Another way of thinking about this is
to actually measure x̂(t ); we need the homodyne detector with
infinite-frequency bandwidth, and the physical homodyne de-
tector corresponds to sampling with finite-time resolution.

In the discussion so far, we have not discussed how to
determine the wave-packet width �t . In principle, we would
want this �t to be as small as possible so that we can pack
the wave packets close to each other. This, however, is lim-
ited by the parameters of the systems. The first limitation is
the frequency bandwidth of the squeezed-light source. When
doing time-domain multiplexing, we want to consider each
wave-packet mode as an independent squeezed state. If we
calculate the correlation between the quadrature (for example,
x quadrature) of two adjacent modes, we have

〈x̂k x̂k+1〉 = h̄

2

∫∫
dt dt ′ fk (t ) fk+1(t ′)

× 〈[â(t ) + â†(t )][â(t ′) + â†(t ′)]〉, (65)

where the mean is taken with respect to the squeezed light
generated from the source in the time axis. If the generated
light has no temporal correlation, the above mean 〈. . . 〉 is
nonzero at only t = t ′ and the orthogonality of the mode
ensures that 〈x̂k x̂k+1〉 = 0. In the actual squeezed-light source,
however, there is always a finite temporal correlation. For
instance, at the weak pump limit, the light from traditional
optical parametric oscillator (OPO) has a temporal correlation
of [101,102]

〈â(t )â(t ′)〉 ∝ exp(−γ |t − t ′|), (66)

where γ is the cavity decay constant of the OPO [102]. There-
fore, even if the mode function is selected so that they are
contained in the time bin �t , the finite-frequency bandwidth

of the light source could make the state of the squeezed light
in the temporal mode inseparable. Note that this is the prop-
erty of the squeezed-light source. Therefore, the frequency
bandwidth of the squeezed-light source limits how small we
can select �t while preserving the independence between the
temporal modes.

The frequency bandwidth of the squeezed-light source also
limits the amount of the squeezing level we can get when we
make the entangled states. If we suppose that the frequency
spectral of the squeezing from the light source is given by
S̃(ω) where ω is the angular frequency, then the amount of the
squeezing S f in mode f (t ) is given by [102]

S f =
∫

dω| f̃ (ω)|2S̃(ω), (67)

where f̃ (ω) is the Fourier transform of the mode f (t ). Thus,
when the frequency bandwidth of S̃(ω) is limited, the squeez-
ing level S f will degrade if we make the mode f (t ) too narrow
[ f̃ (ω) becomes broad]. Taken the above consideration, we
can define our time-bin width �t and the shape of the wave
packet f (t ). After that, the temporal-mode squeezed state can
be made to interact. Figure 7 shows the various experimental
setup for the generation of time-domain-multiplexed quan-
tum entanglement. Despite the differences in the setup, the
key component that makes the temporal modes interact and
weaves them into a large-scale entanglement is the optical
delay line. As we want the time bins to correctly interact with
each other, the long optical delay line has to be an integer time
of �t . Figure 8 shows the structures of the two-dimensional
cluster states that have been experimentally realized [53,54].
As both of the dimensions are time, we can see the spiral
structure of the entanglement. The more the number of the
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FIG. 8. Graphical representation of time-domain-multiplexed
cluster state generated in [53] (a) and [54] (b) (reproduced from [53]
and [54] with permission).

optical delay lines allow a more complicated structure of the
entanglement. The length of the delay line will eventually be
limited by practicability and coherence time of the master
laser. For the case where only static components are used,
the entanglement generated from this method will have pe-
riodicity as the lights enter and come out of the same optical
components. This is also the case for various demonstrations
of cluster state generation experiments [51–54]. On the other
hand, if we add dynamic components such as a variable beam
splitter, it is possible to tailor various entanglement structure
[96].

Measuring the time-domain-multiplexed quantum
entanglement is also straightforward. The modes here
are the temporal wave packets of the propagating light
which can sequentially enter the homodyne detectors and
are individually measured. Thus, accessing and manipulating
each mode of the entanglement can be done relatively easy,
and the number of the homodyne detectors required is equal to
only the number of the spatial beams used. Verification of the
entanglement using vLF criteria in Sec. V C is also relatively
straightforward as each mode is measured individually.

B. Frequency-domain multiplexing

Frequency-domain multiplexing can be considered com-
plementary to time-domain multiplexing as time and fre-
quency are related via Fourier transformation. In the
frequency-domain multiplexing, the modes are taken to be
each frequency comb. The characteristic of this method is that
the frequency comb can be generated in a single time step.
Frequency domain is also one of the main approaches to mul-
tiplexing and there are various theoretical [38,40,44,45,50]
and experimental [57–62,64–68] researches in this direction.
There are also proposals where time-domain and frequency-
domain multiplexing are combined [38,103,104].

Figure 9 shows two approaches in defining the frequency
mode of the frequency-domain multiplexing. If we are using

FIG. 9. Conceptual diagram of frequency multiplexing. (a) Mul-
tiple resonant frequency mode from an optical parametric oscillator
(OPO). Each peak is separated in the frequency by a free-spectral
range (FSR). If the separation is large compared to the linewidth,
each cavity peak can be considered as an independent bosonic mode.
(b) Supermode, which is a linear combination of binned frequency
mode within the phase-matching region of the nonlinear medium.

OPO, we can define each resonant frequency mode of the
cavity as the mode for our entanglement and the quantum
entanglement is multiplexed using the cavity mode [Fig. 9(a)].
We can also define supermodes [50] which are the orthonor-
mal set of the modes defined by their frequency spectrum, and
consider the entanglement between them [Fig. 9(b)]. In this
approach, rather than individual frequency comb or resonant
frequency mode, the mode is taken as a linear combination of
binned frequency comb. Below we show two examples that
illustrate the basics of two approaches.

Figure 10(a) shows the schematic of the generation dia-
gram for frequency-domain-multiplexed entanglement based
on cavity resonant modes [57]. The basic ideas are similar
to the time-domain-multiplexing method; from a single (or
a few) squeezed-light source, we generate squeezed states
or small entangled states that are multiplexed in frequency.
Then, these modes can be put through optical components
such as beam splitters which can act on all the frequency
modes and connect them into a large-scale quantum entangled
states.

To be more explicit, the OPO is pumped using two dif-
ferent frequencies at two different polarizations. This creates
two-mode squeezed states in frequency modes in both polar-
izations. The frequency modes that are entangled, however,
are also different because the pump is in a different frequency.
After that, the two-mode squeezed states in the frequency
modes in both polarizations interact using a polarization beam
splitter and a half-wave plate which acts as beam-splitter in-
teraction between two polarization modes. This beam-splitter
interaction acts on all frequency modes allowing the genera-
tion of a large-scale entanglement. The fact that many optical
components are nonselective with respect to a certain mode
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FIG. 10. Experimental setup for generation of quantum entan-
glement multiplexed in frequency domain. (a) Generation using
resonant peaks of cavity [57]. (b) Generation of frequency-
multiplexed entanglement in supermode (reproduced from [60] with
permission).

(in this case frequency) makes multiplexing possible. The
resulting entanglement in this case is a dual-rail structure [36].

Figure 10(b) shows the experimental setup for the gener-
ation of the entanglement in frequency domain based on the
super mode [60]. Similar to the former approach, the entan-
glement can be engineered by the pump light of the OPO and
the measurement is done using LO whose frequency profile
has been tailored. For the former approach, the mode sepa-
ration is determined by the free-spectral range of the OPO,
while the frequency spectral of modes here are not separated
as the frequency combs are binned into the frequency bin
and the linear combinations are taken so that the modes are
orthogonal.

The main limitation of the frequency-domain multiplexing
is the phase-matching bandwidth of the nonlinear medium
of the squeezed-light source. When the OPO is pumped, the
number of frequency modes generated is limited by the phase-
matching bandwidth. As the frequency mode approaches the
cutoff frequency of the phase matching, the squeezing level
becomes smaller until there is no squeezing present at all.
In the case where OPO is used, the number of the fre-
quency mode that can be generated at once is roughly the
phase-matching bandwidth divided by the free-spectral range
of the OPO. As an example, in Ref. [57], they estimated
the number of generated modes to be about 6000 modes,
where the number of modes actually measured is 60 modes,
limited only by the technology level in that time. For the
case of the entanglement in the supermode, the number of
modes depends on the frequency resolution that one can
tailor the pump and the LO of the local oscillator. This is
also limited by the phase-matching bandwidth, as broader
phase-matching bandwidth mean that it is easier to bin the
frequency.

Regarding the measurement of the frequency-domain-
multiplexed quantum entanglement, if we want to measure the
quadrature of each mode, as all the modes are generated and
arrive at the same time, we have to demultiplex the frequency
mode (for example, by using grating) to be able to implement
homodyne measurement of each frequency mode. For the case
where the linear combination of the quadrature is what we
want to measure, this can be done by using frequency combs
with appropriate relative phases between each comb as an
LO and lock the relative phase between each comb. This was
in fact implemented experimentally in the generation of the
frequency-domain-multiplexed cluster state [57,68]. For the
supermode case, a similar approach can be taken to measure
multiple supermodes simultaneously.

C. Spatial-mode multiplexing

Another method of multiplexing that has been researched
is the multiplexing in the spatial mode [69–74]. There are
methods that use a specifically designed OPO system that
allows generation of entanglement between different spatial
modes [69–71,73] or atomic systems which generate entan-
glement in optical orbital angular momentum [72,74]. Atomic
systems have high affinity with this approach as optical or-
bital angular momentum can couple with atomic spin. There
is also a proposal for generation of quantum entanglement
where both spatial mode and temporal mode are used in
multiplexing [105].

To do the measurement on the individual mode, the gen-
erated entanglement must be demultiplexed. Although there
are researches on spatial-mode demultiplexing [106–108],
the technology still remains challenging and many of the
verifications of the spatial-mode entanglement are not done
with mode demultiplexing. Figure 11 shows an example of
the experimental setup in the generation of spatial-mode-
multiplexed cluster state [47]. In this setup, the OPO is
designed so that when it is pumped, instead of typical
Hermite-Gaussian modes, the Laguerre-Gaussian modes are
generated and they are entangled. The phase-matching con-
dition for the Laguerre-Gaussian mode is analogous to the
conservation of angular momentum [46]. By pumping the
OPO with pump light with different angular momentum, a
similar approach taken in the frequency multiplexing can be
done which results in the entangled state. Thus, one can think
of this type of entanglement generation as a spatial-mode
comb. The nonlinearity of the nonlinear medium, however, is
dependent on the shape of the spatial mode which could result
in a different level of correlation across the state. This even-
tually limits the number of the modes that can be generated
using this methodology.

VII. EXPERIMENTAL TOOLBOX FOR OPTICAL
CV QUANTUM ENTANGLEMENT

In this section, we will discuss various experimental el-
ements for the large-scale generation of the CV quantum
entanglement. As we have seen, there are three basic com-
ponents: squeezed-light sources, linear optics (i.e., beam
splitter), and homodyne detector.

040101-14



MULTIPARTITE CONTINUOUS-VARIABLE OPTICAL … PHYSICAL REVIEW A 109, 040101 (2024)

FIG. 11. An example of the setup for the spatial-mode-
multiplexed quantum entanglement generation. (a) Setup for genera-
tion of quantum entanglement in Laguerre-Gaussian modes. (b) The
resulting entanglement in spatial-mode comb. Adapted with permis-
sion from [47].

A. Squeezed-light sources

Squeezed light is an important resource not only in the gen-
eration of optical quantum entanglement, but also for quantum
optics in general. Generation of squeezed light has a long his-
tory beginning from the generation using third-order optical
nonlinearity [19] in 1985 and second-order optical nonlin-
earity [18] in 1986. After that, although the technological
components have seen much development over many years,
the basic concepts have not changed.

For the bulk optics systems, generation of the squeezed
light is usually based on the second-order optical nonlinearity.
The basic configuration is based on a nonlinear crystal struc-
ture which is called optical parametric amplifier (OPA). For
the generation of squeezed light in the continuous-wave (CW)
system, sometimes cavity structure is also added to amplify
the nonlinearity and such structure is called optical parametric
oscillator (OPO). Generation of squeezed light in both OPA
and OPO has been widely researched and we outline a few no-
table results below. The readers should consult a more specific
review for more details [21]. The current record of the squeez-
ing level in CW system is 15 dB of squeezing at 1064 nm
[109], and 12.3 dB [110] and 12.6 dB [111] of squeezing at
1550 nm. The bandwidth of the squeezed light of both experi-
ments is on the order of tens of megahertz. On the other hand,
for the pulsed laser, the record is about 5.8 dB of squeezing
[112,113]. Frequency bandwidth of the squeezed light is also
an important parameter for multiplexing. In the CW system,
we have a bulk OPO with about 65-MHz bandwidth with 8 dB

of squeezing [114], and a system with 1.2-GHz bandwidth and
3 dB of squeezing [115]. For the waveguide-based system, the
OPA-based squeezed-light source has shown to have about
6-THz bandwidth with 6.3 dB of squeezing using optical
spectrum analyzer measurement [116]. The direct quadrature
measurement using homodyne detector has observed 5 dB of
squeezing with 43-GHz bandwidth [117] and 8 dB of squeez-
ing with 200-MHz bandwidth [118]. For the pulsed-light
system, the bandwidth translated to repetition rate and has
currently reached 156 MHz in the squeezed state experiment
[65]. Although integrated photonics and silicon photonics
offer a smaller and integrated system, the current squeez-
ing level in such system is still very low. For instance, the
squeezed-light measurement with nanophotonics homodyne
measurement observing about 1.0 dB for 9-GHz bandwidth
[119], and generation and measurement of 1.0 dB squeezed
light with 1-GHz bandwidth generated and characterized on
chip with silicon nitride microring resonator [120] have been
recently reported.

Depending on the tasks, the required squeezing level of
the squeezed light to make an entangled state is different.
If we consider our task to be quantum computation with
fault tolerance, then it is expected that quantum entangled
states whose nullifiers have squeezing level of around 10 to
15 dB is required [121]. For the tasks that only used the
correlations such as quantum computation, only the squeezing
level matters as the contributions due to antisqueezing are
usually erased via measurement and feed forward [122]. For
some tasks such as state engineering, this is usually not the
case. In that regard, bulk-type or OPA-based squeezed-light
source is currently deemed more reachable. Although spa-
tial integration might still be needed, multiplexing technique
could be used to reduce to level of integration required or
we can also just used bulk optics for generation of large-scale
entanglement of certain structure where the number of the
squeezed-light sources is not high.

B. Linear optics

Linear optics components are very well established. For the
bulk optics, the losses in mirror, lenses, and beam splitter can
be made negligible with good coating. For integrated optics,
the optical losses are still relatively high. For the generation of
large-scale quantum entanglement with multiplexing method,
requiring only a few optical components helps reduce the
effects of the optical losses. The difficulties in the linear optics
for the entanglement generation come from the requirement of
the phase locking and interferometric visibility. As squeezed
lights are phase-sensitive states, we have to do the phase
locking between them whenever they interfere. The phase
noise degrades the squeezing level, thus the quality of the
entanglement. When two lights are interfered, their modes
(spatial, temporal, spectral, and polarization) must also be
matched so that they can interfere. In both regards, integrated
photonics are more convenient than bulk optics as lights are
confined in a well-defined mode making mode matching high
and phase control can be done even with passive control.
Multiplexing technique also makes phase control and mode
matching easier as the number of the physical components that
needed to be controlled and adjusted are much lower than the
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same entangled states generated without any multiplexing. In
our opinion, the number of the classical parameters required
to stabilize the system will be the practical limitation of how
large the quantum system can be.

Optical delay line also plays an important role. The most
common platform for the delay line is an optical fiber. Al-
though there are researches on on-chip optical delay line [123]
and free-space-type delay line using mirrors is quite common
in proof-of-principle experiments, the length requirement and
its simplicity make optical fiber the leading candidate. The
imperfections in the delay line come from the propagation
loss and coupling loss. The propagation loss is dependent on
the wavelength, and if we use C band, the propagation loss
can be as low as 0.3 dB/km @ 1550 nm [124]. On the other
hand, the coupling loss comes from the fact that we have
to couple the free-space light or the on-chip system to the
fiber, and direct coupling between them can have some mode
mismatch. For the free-space system, with proper alignment,
the mode matching can go up very high as 96% [51], while
for the integrated system, there are researches on efficiently
coupling light between fiber and on-chip components using
tapered fiber and evanescent wave [125].

C. Homodyne detector

After the large-scale quantum entanglement is generated,
it is crucial that it is measured. For the CV system, the main
measurement on the entangled state is the homodyne mea-
surement. The main parameters of concern for the homodyne
detector are efficiency, clearance, and bandwidth. The quan-
tum efficiency of the homodyne detector directly corresponds
to the loss and is mainly determined by the photodiodes.
Silicon photodiode for near infrared and InGaAs photodiode
for C band with quantum efficiency of above 99% are avail-
able [109]. The quantum efficiency, however, has a tradeoff
relation with the bandwidth of the detector. The bandwidth of
the homodyne detector determines how small we can multi-
plex the information in the time domain or how fast can the
repetition rate be in the frequency domain. This is limited
mainly by the capacitance of the photodiode. To have high
efficiency, the photodiode must have certain thickness which
increases the capacitance and limits the bandwidth. This effect
has been theoretically explored [126]. In addition to these
two parameters, the electrical part of the circuit also plays
an important role. The power of the optical local oscillator
put into the homodyne detector must be sufficient so that
the shot-noise level is well above the circuit-noise level. This
clearance limits the detection noise of the homodyne detector.
Although it should be possible to put as much local oscillator
power, it is limited by the saturation power of the photodiode.

Although the homodyne detector is an established tech-
nique, the frequency bandwidth of high-efficiency homodyne
detectors used in quantum experiments is currently lim-
ited to about a few hundred megahertz. Recently, by using
OPA as an optical preamplifier, this bandwidth has been
greatly improved [117,127,128] and we have seen measure-
ment of squeezed light on the gigahertz order with lossy
homodyne detectors. Preamplification with OPA opens the
possibility of measuring nonclassical light and quantum en-
tanglement with broadband homodyne detectors that are

FIG. 12. Conceptual diagram of quantum teleportation.

commonly used in the telecommunication. It is important that
the amplification via OPA acts equally on all the multiplexed
modes, i.e., the amplification gain does not differ between
modes. The gain flatness and the frequency bandwidth of
OPA will play an important role for the detection of large-
scale quantum entanglement generated with the multiplexing
method.

VIII. APPLICATIONS OF LARGE-SCALE OPTICAL
QUANTUM ENTANGLEMENT

In this section, we will discuss various applications for the
large-scale quantum entanglement. As the subjects are very
broad, we do not claim to have thoroughly covered every
subject. We will give our main focus to the applications of the
large-scale cluster-state-type entanglement whose large-scale
generation has been widely demonstrated.

A. Quantum teleportation

The most basic application of quantum entanglement is
quantum teleportation [129–131]. Quantum teleportation was
first demonstrated in optical systems for both the DV system
[15] and CV system [22]. Figure 12 shows the basic idea of
quantum teleportation. In quantum teleportation protocol, a
state to be teleported is mixed with one mode of the quantum
entanglement and the two modes are jointly measured using
the Bell measurement. By feed forwarding the measurement
results to another mode of the entanglement and performing
operation on it depending on the measurement results, the
input state is teleported to the output mode.

The key to quantum teleportation relies on the fact that
although the measurements at each mode of the quantum state
give random values, they are correlated in a nonclassical way.
The feed-forward operation removes the randomness of the
measurement results using the fact that we know the form
of the quantum entanglement. In CV teleportation, the ideal
resource is an EPR state with the correlation, i.e., the nullifier,
of x̂1 − x̂2 = 0 and p̂1 + p̂2 = 0. In reality, the nullifiers will
not be perfectly zero and it can be shown that the variances
of these two nullifiers directly determine the amount of the
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noises that are added to the quadrature of the teleported
state [97].

B. Measurement-based quantum computation

Although the quantum teleportation protocol can be
viewed simply as an identity operation where the input
and output states are the same, the essence of quantum
teleportation protocol is important in quantum computation
using large-scale quantum entanglement. In 2001, Briegel and
Raussendorf proposed a quantum computing method called
one-way quantum computation or measurement-based quan-
tum computation (MBQC) [95]. In this approach, a large-scale
quantum entanglement called cluster state is first generated,
and each mode of the cluster state is then measured accord-
ing to the desired quantum operation. In 2006, Menicucci
et al. extend the idea of MBQC to the CV system [81]. One
way to think about MBQC is that if we have an entangled
state with appropriate structure, by measuring some of the
modes, we can tailor the entanglement into any type of cor-
relation corresponding to quantum operation we want. During
such measurement, however, the classical values obtained
will have some randomness which can be eliminated via
feed-forward operation similar to the quantum teleportation
protocol.

MBQC is a powerful approach in a sense that once we
have generated the cluster state, we only have to do local
measurement and feed-forward operation to implement quan-
tum computation. This makes MBQC an appealing candidate
for optical quantum computation as generation of large-
scale quantum entanglement can be done via multiplexing.
In fact, there have been various demonstrations of cluster
states with various entanglement structure in the time domain
[51–54], frequency domain [57,59,66], and spatial mode [71].
A feature of the generated cluster states is that their graph
structures are periodic, making it highly compatible with
multiplexing.

For the cluster state to be useful in MBQC, not only must
they have large scale, but we must be able to access each mode
individually as the individual measurement on each mode
determines our computation. This is trivial for the CV cluster
state without multiplexing and has been experimentally
demonstrated [23,24,26,29]. For the multiplexed large-scale
cluster state, implementations of Gaussian operations via
local homodyne measurement on each wave-packet mode
have been demonstrated for the time-domain-multiplexed
cluster state [55,56] (Fig. 13). In this case, as the modes are
temporal wave packets, they enter the homodyne detector
sequentially, and we do not need extra demultiplexing. We
only need to modulate the phase of the LO, which can be
very fast even up to tens of gigahertz with the commercially
available modulator.

The CV cluster state and homodyne measurement are not
sufficient for universal quantum computation and some sort of
non-Gaussianity is needed. We will discuss this in Sec. IX.

C. Quantum error correction

Another important application of quantum entangle-
ment is quantum error correction. When we encode the

quantum information, we need redundancy to mitigate the
effect of errors and make the quantum information re-
silient. In the CV system, the current promising approach is
that we encode a qubit such as Gottesman-Kitaev-Preskill
qubit [132] in the CV system, and then encode them into
a higher-level code [133,134] which relies on quantum
entanglement.

To do quantum error correction, the type of entangle-
ment we need is no longer a multimode Gaussian state,
but a complicated non-Gaussian type of entanglement as the
qubit needs to be a non-Gaussian state. Engineering such
non-Gaussian entanglement is in general difficult as non-
Gaussian generation is probabilistic in optical systems. There
are, however, many proposals to overcome these difficul-
ties. One of the approaches is that we can use the Gaussian
toolbox to generate a type of entanglement called three-
dimensional cluster state or Raussendorf-Harrington-Goyal
(RHG) lattice and then replace each mode with the GKP qubit
[41,49,133–135]. If we have sufficient GKP-qubit sources,
it is also possible to proceed to generation of RHG lattice
with GKP qubit directly [136,137]. The RHG lattice is a
basic unit for surface code which is known to have rela-
tively low threshold at a cost of requiring a large number of
physical qubits per logical qubit. The replacement of mode
with GKP qubit can be done either during generation pro-
cess [49] or they can be teleported if the state is made
with such structure. Experimentally, although non-Gaussian
states are not added, there have been demonstrations of CV
quantum entanglement of structure related to quantum error
correction [68].

As a large number of modes are required in generation of
the entanglement for quantum error correction, it is crucial to
consider the quantum entanglement whose structure is com-
patible with multiplexing.

D. Quantum communication

Aside from the task in quantum computation, quantum
entanglement is also useful in the communication tasks.
The term quantum communication could refer to sharing
quantum information between multiple parties such as quan-
tum network or quantum internet [138], or transmission of
information with quantum system, such as quantum key dis-
tribution and cryptography [139].

Regardless of what physical system will eventually be
used for quantum computation, the optical system will be
required for the communication tasks as it is currently the only
propagating wave system that can carry quantum information
over the distance. If we want to share the quantum state
between multiple parties, one possible way to do it is to share
GHZ-type entanglement between all the parties. By having
some party measure their modes in a certain basis, an EPR pair
can be induced between any two parties [140]. A proof-of-
principle demonstration of this kind of quantum teleportation
network has been already demonstrated in the optical system
[33]. Quantum secret sharing protocol [141–144] also utilizes
quantum entanglement. Optical quantum entanglement
can also be useful for anonymously broadcasting classical
information [145]
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FIG. 13. Demonstration of measurement-based Gaussian operations using time-domain-multiplexed cluster state. (a), (b) From Refs. [55]
and [56], respectively [(b) is reproduced from [56] with permission]. In both experiments, Gaussian operations are implemented via sequential
CV teleportation in the time domain where the phase of the local oscillators is programmed according to the desired operations.

IX. FUTURE PERSPECTIVE

In this section, we discuss the future perspective of large-
scale quantum entanglement. Here we will focus on two
aspects. The first aspect is combination of large-scale quantum
entanglement with non-Gaussian elements. This direction is
required if we want to make the generated large-scale quan-
tum entanglement capable of various applications mentioned
in Sec. VIII. Many aspects of non-Gaussian quantum optics is
so different from Gaussian quantum optics, and many efforts,
both theoretical and experimental, are being made to describe
and incorporate non-Gaussian elements to large-scale quan-
tum entanglement.

The second aspect is how to increase the quality of the
large-scale quantum entanglement. In Sec. VI, we have de-
scribed the main multiplexing approaches via time, frequency,
and spatial modes. Although each approach has its own ad-
vantages and disadvantages, all multiplexing methods allow
efficient usage of optical components. Therefore, increasing
the technological capability of each component, as we have

discussed in Sec. VII, directly increases the quality of the
large-scale entanglement, as the integration and scaling of
the physical size of each component is no longer the main
limitation. However, even with multiplexing, we still require
a large number of modes for many applications such as quan-
tum error correction. This can be achieved by combining
various multiplexing methods. The bandwidth of each com-
ponent also plays a crucial role as they allow much higher
and denser multiplexing of optical modes and we will discuss
this below.

A. Combining non-Gaussianity with optical
quantum entanglement

In the optical system, the Gaussian toolbox is extremely
powerful: generation of the squeezed state is an established
technique, implementation of linear optics and beam-splitter
interactions are straightforward, and all Gaussian operations
can already be implemented. As we have seen from Sec. VIII,
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the tasks that can be done with the Gaussian toolbox, however,
are quite limited. For instance, for MBQC to be universal,
we have to add non-Gaussian measurement or non-Gaussian
state to the system [17,37,81,146], and for tasks such as
quantum neural network [147] or quantum machine learn-
ing [148], non-Gaussian operations are used to generate the
required nonlinearity. Thus, the next step in the research
for large-scale quantum entanglement is how to add non-
Gaussianity to them while retaining the scalability of the
system.

There are already many different approaches toward this
direction. Photon subtraction is the most primitive way to
realize non-Gaussianity in CV optical system [149]. There are
researches where mode-selective photon subtraction is done in
the frequency-multiplexed entanglement [59,150]. Regarding
this direction of development, there is also theoretical analysis
on how photon subtraction affects the entanglement struc-
ture and theoretical properties of these types of non-Gaussian
entanglements [151–156]. In the time domain, there is an
experimental demonstration of time-gated photon subtraction
[157], which could be useful for adding non-Gaussianity to a
particular temporal mode of time-domain-multiplexed quan-
tum entanglement.

An approach complementary to direct enacting of non-
Gaussianity on to the entanglement would be to substitute
some of the nodes of the entangled state in the graphical
representation with a non-Gaussian state. As an example, it
has been shown that probabilistic substitution of a node of
a cluster state with a non-Gaussian state can be useful for
quantum computation and quantum error correction, given
that the substitution rate is above a certain threshold [49,135].
In this approach, as the direct substitution is implemented, an
optical switch is a crucial component for switching between
the Gaussian state and the non-Gaussian state.

For such purpose, the optical switch has to have low-loss,
high-repetition rate, and fast-switching time. These properties,
however, can be difficult to simultaneously realize. Free-space
optical switching is usually based on Pockel cell which can
have low loss, but usually has limited repetition rate due
to its size. On the other hand, the fast switching based on
silicon photonics can have a very high speed, but the loss
is still high. There is also a proposal where instead of us-
ing the optical switch, the Gaussian entanglement is made
with additional modes that can be used to substitute the
mode with the non-Gaussian state via quantum teleport [158].
This method benefits from the fact that the switching is now
done by changing the basis of the homodyne measurement
which can be done with modulation of classical light. The
additional modes, however, add more noises from the finite
squeezing.

For MBQC, it is also possible to add the non-Gaussianity
via the measurement using ancillary state and nonlinear
feed forward [37,53,159]. When this is done, it allows
the cluster state to be used for universal quantum com-
putation. The high-speed system for such nonlinear feed
forward has been recently demonstrated [160]. We could
also consider replacing the homodyne detectors with the
photon-number-resolving detector (PNRD) which would re-
sult in a task called Gaussian boson sampling (GBS) [161].
GBS is known to be a task that cannot be efficiently

simulated on classical computer and can also be used for state
engineering [162–164].

In the near future when non-Gaussian elements are added
to the large-scale quantum entanglement, the experimental
evaluations of such state will also be crucial. In the evaluation
of large-scale quantum entanglement, the common underlying
assumption is that the states are Gaussian. This assumption
greatly simplifies the number of parameters that needed to be
measured. For instance, for N-mode Gaussian entangled state,
measuring N nullifiers could suffice for evaluation of many
states, and even if we have to measure the whole covariance
matrix, they only have (2N )2 parameters. Comparing this to
quantum tomography up to n-photon component, then we
have the parameters on the order of n2N . Although there is
recent research for the non-Gaussian entanglement witness
[165], we expect that development of the verification tech-
nique for large-scale non-Gaussian quantum entanglement
will become a pressing task as the technology matures and en-
gineering of complex non-Gaussian entangled state becomes
more common.

B. Toward high-quality optical quantum entanglement

In the final section of this paper, we would like to reiterate
the important points of optical quantum entanglement and
what is required to make high-quality optical entanglement
for quantum tasks.

Quantum entanglement comes naturally in the CV system.
This is because Gaussian resources and operations can be
efficiently implemented in the optical system, allowing for
deterministic generation of entanglement. The optical sys-
tem is also rich in degrees of freedom, making multiplexing
and large-scale generation of quantum entanglement possible.
Multiplexing is a common technique in telecommunication
and the ability to combine this to the quantum system is the
uniqueness of the optical system. The multiplexing techniques
make integration and scaling down the physical sizes of in-
dividual components no longer a main limitation in scaling
up of the size of entanglement as the required number of
components does not scale with the size of entanglement
anymore.

Although multiplexing has helped in lowering most of
the hurdles regarding scalability, it has not removed all the
hurdles. As it is expected that many physical qubits will
be required for tasks such as quantum error correction and
quantum computation, combination of multiplexing in time,
frequency, and integration of optical components, rather than
multiplexing of single degree of freedom, will be important
to achieve the required scale for any applications. With this
in mind, the development of the entanglement using each
multiplexing method and integrated system should progress in
a way that they are able to incorporate the strategy deployed in
different multiplexing. For the time and frequency domains,
this is rather straightforward as they are related by Fourier
transform and there are already proposals that combined two
types of multiplexing [38,40,103,104].

From a technological perspective, as we have discussed in
Sec. VII, the bandwidth of each optical component determines
the level of multiplexing we can achieve. This is similar to
optical telecommunication technology where information can
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be transmitted faster when a larger bandwidth is used. In
time-domain multiplexing, bandwidth of both squeezed-light
sources and homodyne detectors determined the size of the
temporal wave packet, thus, how packed we can encode the
optical mode. For frequency-domain multiplexing, the fre-
quency bandwidth determined the number of the frequency
modes we can utilize in the generation of the quantum entan-
glement. In the spatial-mode multiplexing, as the higher-order
spatial modes have higher-frequency component, the broader
the bandwidth of the squeezed-light source is, the easier it is to
generate and access the quantum entanglement in higher-order
mode. As the optical telecommunication technology is also
headed toward broader and broader bandwidth, combining
and importing components and techniques of telecommunica-
tion community will allow for the generation of better quality
and even larger scale of optical quantum entanglement. There-

fore, the next breakthrough in the large-scale optical quantum
entanglement will be the hybridization between quantum op-
tics and optical telecommunication. This will lead to the
generation of even larger and more complex quantum entan-
gled state than the impressive results we have reviewed in this
paper.
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