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Recently, Leontica and Amaro found a counterexample [1] to our claim in Lemma 1 of our paper that the optimization
landscape for the MaxCut problem with an X-Ansatz is free of local optima. We describe and investigate this counterexample.
We confirm that the central Theorem (2) of our paper, i.e., that establishes the equivalence between the solution sets of the
X-Ansatz and a purely classical algorithm, remains valid.

In Appendix A2b of our paper, we distinguished between different cases (a)-(c) when the critical points condition in
Eq. (A27) can be satisfied, yielding different types of critical points. We have found that the conclusion presented in case
(a) is false, as Eq. (A28) only holds at a critical point. For example, consider the vector 6 + v for some real scalar x, and v,
being the unit vector with a 1 in the kth position and 0 everywhere else. Using the critical point condition in Eq. (A27), we obtain

1(0 + %Cvk> — J(0) = [cos(x) — 1][cos(26;)S) + sin(26;)T; ],

which shows that J (6 + Jvi) — J(0) is either always nonpositive or always non-negative, depending on the sign of [cos(26;)Sy +
sin(26;)T;], which is independent of the scalar x. As a result, we have shown that in this example, k£ does not lead to @ being
a saddle. Consider now any critical point corresponding to an eigenstate of H),, and choose any k corresponding to some cut
element Hy. From the discussion of case (a) we conclude that if we vary 6; along the entire interval [0, ) and the objective
function value does not change, we obtain a class of critical points that are not saddles.

We illustrate this phenomenon and allude to a broader class of critical points by expanding upon the counterexample by
Leontica ef al. based on a 4-qubit star. Consider the 4-qubit star described by the Hamiltonian [1],

H, = Zy(Z + 7, + Z3), (D

and an X-Ansatz consisting of all 1- and 2-qubit elements. We collect the corresponding variational parameters in the set {05},
where S € {0, 1, 2, 3,01, 02, 03, 12, 13, 23} denotes the different vertex subsets. The global optimum (i.e., corresponding to the
smallest eigenvalue —3 of H,,) is obtained by “cutting out” the center vertex. Leontica et al. point out the following:

(1) Setby =6, =03 =6 =6y =03 = %, i.e., effectively “doing nothing” since cos(%) =0.

(2) Set 6y, = m while setting 8y, = 63 = 0, which effectively “decouples” vertex 1 while selecting the central vertex (which
is now connected to vertices 2 and 3 giving a cut value of —2).

(3) Now, 0; can be arbitrarily varied without changing the objective function, which is constant at —2. Thus, for all values of
0, the objective function is identically —2, the Jacobian is identically 0, and the Hessian row/column corresponding to vertex 1
is identical zero. As such, the “line” that is described by 6, corresponds to critical points that are local optima.

This observation is a specific illustration of the aforementioned class of critical points. Vertex 1 has effectively been
“decoupled” from the graph, and the resultant line of local minima are in fact global minima of the decoupled subgraph. On
the other hand, consider the following construction:

(1) Set 6p =0, =6, =63 =03 = %, effectively “doing nothing” for all the one-body terms (as before) and the 1,3
interaction term.

(2) Further set 6y3 = —% and 6y, = 61, = 0, but allow both 6y, and 6,3 to be freely varied. This choice yields J(0) = —[1 +
sin(623 — 6p1)], while the Jacobian elements are all O except for the terms cos(63 — 6p;) and — cos(623 — 6y ) that correspond to
601 and 6,3, respectively.

(3) Consider the line 6,3 = % + 6o1. On this line, the objective function is identically —2 and the Jacobian is identically O.
However, the Hessian along this line does not have 0's in the corresponding columns/rows, although it is still degenerate. Instead,
the Hessian has a kernel of dimension 1 defined by the {6y, 8>3} line above. All other Hessian eigenvalues are positive. As such,
this line is also a “line of local minima.”

(4) Unlike the original example of Leontica et al., however, the nondegenerate subspace does not correspond to a subset of
the original graph.
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FIG. 1. Cumulative distribution function of the approximation ratio of an N-qubit star with K-body Ansatz elements, averaged over 100
randomly chosen initial variational parameters and optimized using the L-BFGS-B gradient algorithm for each (¥, K) tuple. We see that for
six of the nine tuples (corresponding to K = 1 and K = N — 1 for each of N € {3, 4, 5}) the gradient algorithm always converges to the global
optimum. The (N, K) € {(4,2); (5, 2); (5, 3)} instances show convergence to local optima, e.g., the pink dots indicate that 62% of the time,
(N, K) = (5, 2) converges to an approximation ratio of 0.75.

In summary, we have described two lines of local minima: one defined by a single “free” Ansatz element (and therefore it can
be reduced to an equivalent subgraph by decoupling) and another defined by a pair of “free” Ansatz elements with a constraint
on their difference (i.e., still a single degree of freedom, but with no subgraph correspondence).

We numerically examine whether a gradient algorithm will get stuck in the local optima described above for an N-qubit
star graph with N < 5. The numerical simulations are shown in Fig. 1, where we studied the cumulative distribution function
(CDF) of the approximation ratio for different numbers of vertices N and K-body depth K. We find that the pair (N, K) = (5, 3)
achieves higher approximation ratios than (N, K) = (5, 2). Furthermore, we also see that K = 2 instances perform strictly worse
than K = 1 instances for small N < 5. Importantly, for a sufficiently large K-body depth, which translates into sufficiently many
variational parameters, convergence to the global optimum can be obtained with high probability.

We conclude by restating the major theorems from the original paper following Lemma 1, with comments on which portions
remain true, and which require modifications:

Theorem 1. The optimization landscape associated with an X-Ansatz for which A consists of all nonsymmetric 2"~! — 1
vertex subsets exhibits no local optima.

Since this theorem rests on Lemma 1, it does not hold anymore.

Theorem 2. For any graph G and an X-Ansatz A with size |.A|, there exists a purely classical algorithm with O(|.A|) resources
that has the same solution set as the set of local optima that satisfy conditions Eq. (17) and Eq. (18) in the original paper.

This theorem holds. The classical algorithm utilized in its proof is effectively independent from the prior results in the paper,
and is thus unaffected by the existence of degenerate critical points in Lemma 1.

Corollary 2.1. Unless P = NP, there does not exist a class of X-Ansdtze with | A| = poly(n) that yields a landscape free from
local optima for generic graphs.

This first corollary to Theorem (2) holds as well.

Corollary 2.2. Given a fixed approximation ratio «, and any X-Ansatz with | A| = poly(n), even an algorithm that can escape
saddle points cannot provide a superpolynomial advantage over a purely classical polynomial-time «-approximation scheme for
MaxCut.

The original proof of this corollary sidestepped the need to consider the value of the cost function at saddle points by focusing
only on approximation ratios derived from local optima. However, we now need to consider whether degenerate critical points
can provably or numerically show faster convergence and/or better approximation ratios, which remains an open question.
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