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Generating overlap between compass states and squeezed, displaced, or Fock states
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We investigate a broad class of nonclassical states, composed of superposed squeezed and displaced number
states. The phase-space structure is analyzed, keeping in mind the Heisenberg limited sensitivity in parameter
estimation. Appropriate squeezing and displacement parameters are identified, wherein the state fidelity in
comparison to the metrologically sensitive compass state is more than 99%. Also, the equal variance in small
shift measurements, for the proposed and compass state, shows identical behavior of the average photon number.
In metrological application, the number variance of the compass state, which is small for low coherent amplitude,
suggests its potential to estimate damping parameters. Finally, we present the theoretical models corresponding
to their preparation.
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I. INTRODUCTION

Coherent states are minimum uncertainty states with the
Poissonian statistics in the Fock space, describing their clas-
sical nature. The superposition of four different coherent
states [1] is known as the compass or kitten state (KS). See
Ref. [2] for the choice of label “KS.” The compass state
(KS) possesses sub-Planck scale structures in the phase space
with oscillatory distribution as a function of small quadrature
phase-space shift (δx, δp). The interferometric phase-space
structure makes the KS sensitive to quadrature fluctuation,
therefore allowing the detection of weak external forces [3,4]
as well as quadrature phase fluctuation [5,6]. This behavior
of oscillation can be realized in the experiment by measuring
the inversion of a two-level system (TLS) entangled with the
cavity system maintained in the compass state as a probe
[6–8]. In this process, the atom and field system interact in
a way such that the inversion of TLS becomes proportional to
the Wigner function of the system. This whole process allows
us to measure the sensitivity of the probe system in terms of
small phase-space perturbation [8]. Due to the high sensitivity
of KS against loss of the interferometric structure or non-
classicality in the presence of damping to the environment, it
presents great potential as a probe in estimating the damping
constant of the system.

The need for the generation of highly nonclassical states
[9–11] for advancement in fault-tolerant continuous-variable
quantum computation, information processing, and commu-
nication has become pertinent in the optical as well as
microwave [12] platforms. The cat, compass, and higher or-
der of n superposition coherent states (quantum hypercube
state [13]) have found their uses as cat codes in quantum
error correction (QEC) due to the property of returning to
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the same state after two, four, and n excitation loss, respec-
tively [14–16]. Encoding logical qubits in higher-dimensional
Hilbert space of bosonic systems, suffering a few natural er-
rors, has allowed the preparation of QEC systems, preserving
them over a longer period and achieving fault-tolerant sys-
tems. The large amplitude of these bosonic states increases
the success of correcting errors in the logical qubit. There
have been many proposals [17–19] and experimental [20]
generation of low-amplitude cat states in microwave [21] as
well as optical [22] platforms; however, with very few pro-
posals [23,24], it remains a challenge for the preparation of
high-fidelity large-amplitude cat, KS, as well as n-coherent
states. This motivates us to find new methods for producing a
state with an achievable and possibly optical setup.

In this paper, we study the phase-space structures (Sec. III)
for two states proposed in Sec. II, investigating the probability
number distribution (PND) for both squeezing and displace-
ment parameters. The squeezing is not limited to its uses in
a single mode, as recently shown for a two-mode squeezing
superposition [25] with metrological aspects and ion trap im-
plementation. Additionally, we analyze the fidelity between
the proposed states and the compass state in Sec. IV, and
propose a theoretical model for their preparations in Sec. VI.
Finally, Sec. VII contains a conclusion with a summary.

II. SUPERPOSITION OF SQUEEZED AND DISPLACED
NUMBER STATES

The main aim of this paper is finding the form of states in
such a way that there exists a large overlap of KS with the
states comprised of squeezing, displacement, and Fock num-
ber parameters. We know that the photon-subtracted squeezed
state (âS[r]|0〉) is equivalent to the squeezed single-photon
state (S[r]|1〉), and describes two Gaussian lobes with nega-
tive center in the phase space causing large overlap with the
odd cat state [17]. Using this analogy, we have two approaches
to obtain KS with possibly large overlap: (i) application of
squeezing on two different displacements for the Fock state or
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(ii) two opposite phase-space oriented squeezings of the Fock
state.

We express the mathematical form of the two proposed
states in the x-projected space before assessing the qualitative
characteristics, such as probability number distribution and
phase-space distribution, as well as quantitative metrics, such
as fidelity. The first state is a combination of squeeze and
displacement operators acting on the number state. The ex-
pression for the squeezed superposed displaced number state
(SSDNS) with displacement (α) and squeezing (r) parameters
is as follows:

|ψ1〉 = N1S[r](D[α] + D[−α])|n〉,

where N1 and D[α] are the normalization and displacement
operator with α being real, respectively. The other state in-
volves a superposition of two squeezed number states with
opposite signs of the squeezing parameter r. The superposed
squeezed number state (SSNS) is expressed as follows:

|ψ2〉 = N2(S[r] + S[−r])|n〉.

In this case, N2 stands for the normalization factor and S[r]

is the squeezing operator denoted by the expression er a2−a+2

2 ,
where r is real. Knowing the form of normalized oscillator
state |n〉 in terms of the Hermite polynomial Hn(x) of the order
of n, in x-projection φn(x) = 〈x|n〉, the squeezed displaced
Fock state is written as

φn(erx − α) = 〈x|S[r]D[α]|n〉

=
√

ere− 1
2 (−

√
2α+er x)2

Hn(erx − α
√

2)√
2nn!

√
π

,

leading to the representation of both states in x space
as ψ1(x) = 〈x|ψ1〉 = N1[φn(erx − α) + φn(erx + α)] and
ψ2(x) = 〈x|ψ2〉 = N2[φn(erx) + φn(e−rx)]. Using the x-space
projections, we perform detailed calculations for number
distribution, Wigner function, and small shift variances (see
Appendix B).

For investigating the statistical properties of both states,
we plot the PND (see Fig. 1) with the obtained Fock-space
representation as

|ψ1〉 =
∞∑

m=0

cm|m〉 and |ψ2〉 =
∞∑

m=0

bm|m〉,

where cm and bm are probability amplitudes. In Fig. 1, the
PND is denoted as P(m), which is |cm|2 for ψ1 and |bm|2
for ψ2.

Furthermore, to explore and obtain the large similarity
via qualitative and quantitative properties for the pairs of
proposed and KS states, we look for the relevant form of
KSs corresponding to the ‘n′ parameter-dependent ψ1 and ψ2.
The l orthogonal states can be constructed for l superposed
coherent states with an appropriate weight factor [14]. In
Fock space, four orthogonal KSs with β amplitude and label

(c) (d)

(a) (b)

FIG. 1. Comparative PND analysis for SSDNS vs KS states.
(a) Strong overlap in PND plot between SSDNS ψ1 and ψ0

KS(−)
with parameters (r, α, n, β ) = [0.15, 0.61, 1, 0.75(1 + i)], suggest-
ing potential squeezing and displacement strength for proximity to
the KS state. (b) Reduced overlap with β = 2, while other parameters
remain constant. (c) PND comparison of SSNS ψ2 and KS ψ2

KS(+)
with parameters (r, n) = (0.3, 2) and β = 1.5 reveals substantial
similarity. (d) Noticeably decreased overlap as β for the KS state
becomes 2.

l ∈ {0, 1, 2, 3} are written as

|ψ l
KS(±)〉 = |β〉 ± (−1)−l |−β〉 + (i)−l |iβ〉 ± (−i)−l |−iβ〉

=
⎛⎝ ∞∑

p=0

| f ±
p |2

⎞⎠− 1
2 ∞∑

m=0

f ±
m |m〉,

where

f +
m = β4n+lδm,4n+l√

(4n + l )!
, f −

m = [1 + (−1)ni]β2n+l+1δm,2n+l+1√
(2n + l + 1)!

.

In the above expression, l ranges from 0 to 3 and 0 to 1 for
|ψ l

KS(+)〉 and |ψ l
KS(−)〉, possessing four and two orthogonal

states, respectively. It becomes clear for the choice of two dif-
ferent KSs when their PNDs are compared with our proposed
states. PNDs for both states against Fock-state number “m ”
are seen in Fig. 1. Both compass |ψ l

KS(−)〉 and SSDNS |ψ1〉
possess odd distribution [see Figs. 1(a) and 1(b)] for n = 1
and l = 0, which changes to even parity for n even and l = 1.
In Fig. 1(a), the PND overlap is high between |ψ l

KS(−)〉 and
|ψ1〉, while in Fig. 1(b), it reduces with a change in β. Both
states show their distribution similar to the cat state, where
nonzero adjacent states are at a step of 2 along Fock state |m〉
for either even or odd parity. Figures 1(c) and 1(d) describe,
respectively, the large and small overlap of the PNDs between
compass |ψ l

KS(+)〉 and SSNS |ψ2〉 for n = 2 and l = 2. They
possess even distribution at a step of 4 along Fock state |m〉.
Even and odd parity correspond to even and odd values of
n and l for both KS and ψ2. Considerable overlap between
the compass state and our proposed state for number distri-
bution is obtained by tuning squeezing, displacement, and n
parameters for appropriate output of the coherent amplitude
β. Further, analyzing the Wigner distribution allows us to view
whether there exist interferometric structures with sub-Planck
scales and regular oscillations.
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FIG. 2. The interference appears in the Wigner function of SSDNS for squeezing r = 0.45 and displacement α = 2 for different Fock
number: (a) n = 1, (b) n = 2, (c) n = 3, (d) n = 4. The phase-space distribution for (a)–(d) is compared with two different KS, ψ0

KS(−) and
ψ1

KS(−). We present the plots of KS ψ0
KS(−) with parameters (e) β = 1.7e3iπ/4 and (f) β = 2e3iπ/4. Additionally, we provide the plots of KS

ψ1
KS(−) for (g) β = 1.7e3iπ/4 and (h) β = 2e3iπ/4.

III. WIGNER FUNCTION

The Wigner function is the quasiprobability distribution in
the phase space as one of the measures for nonclassicality
depending upon its negative volume. The presence of positive
and negative parts in this distribution signifies the displaced
parity of the state. The Wigner function is derived as follows:

Wj (x, p) = 1

π

∫ ∞

−∞
dy〈x − y|ψ j〉〈ψ j |x + y〉e2ipy,

where W1(x, p) and W2(x, p) are the Wigner functions for
SSDNS ψ1 and SSNS ψ2 corresponding to j = 1 and 2,
respectively.

In this section, the reason for the proposed states SSDNS
and SSNS becomes evident as we compare their phase-space
distributions with the corresponding KS states ψ l

KS(−) and
ψ l

KS(+).

As illustrated in Figs. 2(a)–2(d), we present the phase-
space distributions of SSDNS for various values of n ranging
from 1 to 4. Additionally, Figs. 2(e) and 2(f) display the
phase-space distributions for KS ψ0

KS(−), while Figs. 2(g)
and 2(h) show those for KS ψ1

KS(−). It is worth noting that
in Figs. 2(e)–2(h), the KS states exhibit central interference
patterns around the origin, characterized by four Gaussian
lobes at the corners of a square.

This structure can be understood as arising from the dis-
placement of squeezed Fock states (S[r]|n〉), at two positions,
namely, α and −α, along the real quadrature, as depicted in
Figs. 2(a)–2(d). Here, it is important to emphasize that S[r]|n〉
almost represents the cat state, with its amplitude increasing
as n varies under suitable squeezing parameter r.

Interestingly, both Figs. 2(e) and 2(f) display a strong
resemblance in their distributions to SSDNS in Fig. 2(a).
Similarly, the plots in Figs. 2(g) and 2(h), as β increases,
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FIG. 3. The sub-Planck scale structure appears in the phase space of SSNS for squeezing r = 0.45 with Fock number (a) n = 1, (b) n = 2,
(c) n = 3, (d) n = 4, as well as in the same distribution for different KSs: (e) ψ1

KS(+), (f) ψ2
KS(+) with β = 1.5, and (g) ψ3

KS(+), (h) ψ4
KS(+)

with β = 2. Significant similarity is observed between plots of pairs: (a) and (e), (b) and (f), (c) and (g), and (d) and (h).

demonstrate analogous distribution patterns around the origin,
characterized by four Gaussian lobes at the corners of a rect-
angle, mirroring the SSDNS in Fig. 2(b). It is noteworthy that
the excess fringes observed in SSDNS for n = 2 [Fig. 2(b)]
lead to a reduction in overlap with KS states in Figs. 2(g) and
2(h).

This analysis underlines the importance of optimizing the
overlap between SSDNS and KS by adjusting the parameters
r, α, and β, as elaborated in Sec. IV. Furthermore, Figs. 2(c)
and 2(d) do not exhibit a substantial degree of resemblance in
their distributions with either of the KSs in Figs. 2(e)–2(h).
This observation highlights the diminishing overlap between
KSs and SSDNS as n increases (see details of the fidelities in
Sec. IV and Appendix A).

Furthermore, we elucidate the motivation for proposing
the second state, which involves squeezing the number state

(S[|r|eiφ]|n〉 = e|r| e−iφ a2−eiφ a+2

2 |n〉). The direction of squeezing

applied to the number state is tuned in the phase space via the
squeezing angle (φ). Consequently, to achieve a phase-space
distribution akin to that of the KS, it necessitates the imple-
mentation of two squeezing operations of equal magnitude,
with a phase difference of π in the phase space, leading to the
superposition of two squeezing operators acting on the Fock
state |n〉 (SSNS).

The Wigner function W2(x, p) of the SSNS distinctly man-
ifests sub-Planck oscillatory behavior, as seen in Figs. 3(a)–
3(d), corresponding to different values of n, ranging from
1 to 4. A comparison of these W2(x, p) distributions in
Figs. 3(a)–3(d) is made with the distributions for KSs de-
noted as ψ l

KS(+), where l varies from 1 to 4, as illustrated
in Figs. 3(e)–3(h).

For the real amplitude parameter β of the KSs, we observe
a remarkable similarity in terms of interference patterns and
the presence of Gaussian lobes when comparing pairs of dis-
tributions: Figs. 3(a) and 3(e), Figs. 3(b) and 3(f), Figs. 3(c)
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TABLE I. Fidelities of SSDNS and SSNS vs KSs.

State F (l,±)
ψ α n r KS (β ) Fidelity (F (l,±)

ψ )

F (3,+)
ψ2

0 3 0.2 1.41 0.9998

F (2,+)
ψ2

0 2 0.3 1.41 0.9997

F (1,+)
ψ2

0 1 0.3 1.01 0.9994

F (0,+)
ψ2

0 0 0.4 0.81 0.9998

F (0,−)
ψ1

0.61 1 0.15 0.7(1 + i) 0.9995

F (0,−)
ψ1

0.7 1 0.2 0.85(1 + i) 0.9960

F (−1,−)
ψ1

0.5 2 0.49 0.9(1 + i) 0.9634

and 3(g), and Figs. 3(d) and 3(h). Increase in the fringes and
phase-space area of the SSNS [Fig. 3(d)] compared to KS
[Fig. 3(h)] causes reduced overlap (see details of the fidelities
in Sec. IV and Appendix A).

In addition to our qualitative analysis, the subsequent
section deals with a quantitative examination, specifically fo-
cusing on fidelity as a suitable measure for the closeness of
our states to KS. Moreover, the fidelity as an overlap between
perturbed and unperturbed states serves as a sensitivity for
estimating minute shifts within the phase space. To elaborate,
both overlap and variance in measurements of displacement
due to small phase-space perturbations enable us to investigate
a rigorous comparison of our proposed states with KS.

IV. FIDELITY AND SMALL SHIFT SENSITIVITY

To assess the degree of similarity between states ψ1 and
ψ2 and the KS states for large amplitudes (|β| > 0.5), where
small area phase-space structures are present in both field
quadratures, we use a measure known as fidelity (Fψ ). Fi-
delity quantifies the closeness or overlap between a target state
and an acquired state, serving as a metric for comparing their
similarity.

This fidelity measure, denoted as Fψ for the proposed
state |ψ〉 and the KS state |ψ l

KS(±)〉, is expressed in terms
of squeezing and displacement parameters as follows:

F (l,±)
ψ1

= |〈ψ1|ψ l
KS(±)〉|2

and

F (l,±)
ψ2

= |〈ψ2|ψ l
KS(±)〉|2.

The precision measurement processes are dependent on the
energy resources, for example, average of photon number 〈n〉
of the probe state. In the standard quantum limit (SQL), small
displacement measurements are independent of the average of
the photon number, using coherent state as a probe, while the
presence of sub-Planck structures in the probe state (such as
cat state and compass state of coherent amplitude β) allows
measurement of the small displacement [δ = √

2(δx + iδp)]
inversely proportional to the coherent amplitude |β| (where
|β| ∼ √〈n〉 with |β| > 2 for the cat and KS states), which
leads to Heisenberg limited sensitivity (HL) [3,6,8]. We know
from Table I of the fidelities for both proposed states with KS
that tuning to particular values of squeezing r and displace-
ment α parameters for Fock number n = 1 provides overlap
beyond 99%. For SSDNS with n = 1, we find great fidelity for
different coherent amplitude β of the KS (|ψ l

KS(−)〉), while

other values of n for this state do not make good candidates
for the comparison with KS on the basis of overlap (Fψ ). Our
second state (SSNS) for every Fock number (n = 0, 1 and so
on) shows fidelity beyond 99% with the KS (|ψ l

KS(+)〉) for
different coherent amplitude (β).

Further, we compare the sensitivity of small phase-space
shifts for SSDNS, SSNS, and KS with the help of the overlap
quantity.

Overlap (Oνδ) of perturbed and unperturbed states of the
system describes distinguishability of the state distribution
against small shifts in phase space and quantifies sensitivity
to the shifts δ as Oνδ −→ 0 with δ −→ δ0 (first zero of Oνδ).
Hence, the sensitivity of state is how quickly the overlap (Oνδ )
changes with a small change in shift δ. The smaller the overlap

Oνδ = 2π

∫ ∞

−∞
dxd pWψ (x, p)Wψ (x + δx, p + δp)

= |〈ψ |D[|δ|eiθ ]|ψ〉|2 ∼ 1 − 1

4
FQ(ψ )|δ|2 + O(|δ|3)

becomes for different states ψ , the higher the sensitivity
against the same weak perturbations δ (= |δ|eiθ ) in the phase
space becomes. Above expansion Oνδ is applicable for small
|δ| with negligible higher-order terms O(|δ|3). The term
FQ(ψ ) characterizes the rate of change in Oνδ . Therefore,
this term itself is a measure of sensitivity, known as quantum
Fisher information, [26] for probe state ψ . A larger value
of FQ(ψ ) corresponds to a reduced δ0, which in turn results
in higher sensitivity. Later in this section, we find that the
variance in estimating |δ| is inversely proportional to FQ. This
relation is also known from the quantum Cramer-Rao bound,
where the root-mean-square error in parameter estimation is
bounded below by the inverse of its Fisher information [27].

We now focus on the estimation of small displacements
with a two-level system (TLS). The overlap of the system state
is obtained by measurement of the TLS, interacting with the
probe state (|ψ〉) of the system, either in the upper state (|e〉)
or lower state (|g〉).

In the measurement strategy of small displacements, a
probe state of the oscillator (field state or ion state) entangled
with TLS is prepared through time unitary evolution U by
initializing the system in the product state of the oscillator
(|φi〉) and TLS (|e〉). After the preparation, small displacement
operator D[δ] as a consequence of weak forces or small pertur-
bations external to the composite system (oscillator and TLS)
is applied along with reversing the action of U thereafter. The
final state (|ψ f 〉) obtained for this composite system [6] is
written as

|ψ f 〉 = U −1D[δ]U |φi〉|e〉 = √
pe|
1〉|e〉 + √

pg|
2〉|g〉.
The U unitary operator is such that probe state |ψ〉 and the

excited state probability

pe = |〈e|〈φi||ψ f 〉/〈φi|
1〉|2 = |〈ψ |D[δ]|ψ〉|2 = Oνδ.

We can take the advantage of preparing probe state |ψ〉 into
either the cat state, compass state (KS), SSDNS, or SSNS.
In the measurement of a two-level atom in the excited state,
the obtained probability function [pe = pe(δ)] is inverted to
find small shift δ. To achieve an estimated small displacement
very close to its true value, a measurement of the TLS of the
composite system, in its excited or ground state, is repeated R
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(c) (d)

(a) (b)

FIG. 4. Comparative variance and average photon number 〈n〉
analysis for SSDNS vs KS: (a) Blue line follows FQ(ψ1) =
FQ(ψ0

KS(−)) leading to two constraints Aψ1 = AKS and Bψ1 = BKS.
This curve corresponds to equal variance for SSDNS with n = 1 and
ψ0

KS(−), with β being the absolute of coherent amplitude βeiπ/4.
(b) 〈n〉 and (c) product of variance and 〈n〉 become the same for
constraints in (a), at each θ with respect to SSDNS and ψ0

KS(−).
(d) Both states have the same variance changing with θ at small
β = 1.01 and remain constant at β = 2.02.

times. Consider m times (m 
 R) the atom is found to be in its
excited state. The probability of this measurement is written
[6,8] as

R!

m![(R − m)!]
pm

e (1 − pe)R−m,

where this binomial can be approximated to normal distri-
bution, when number R is very large compared to m. With
prior knowledge of 0 < δ < δ0 
 1 and true value s = |δ|2,
the normal distribution in terms of R, pe is

1√
2π�2

s

e
− (s−s̄)2

2�2
s ,

where s̄ is the estimated value of shifts, with variance

�2
s ∼ 4|δ|2

RFQ(ψ )
.

The smaller the variance, the closer the estimator (s̄) to the
true value (s), as seen in the above normal distribution. We
calculate variances �2

s and average number 〈a+a〉 for ψ1, ψ2,
and ψKS as probe states, against variation in squeezing (r), dis-
placement (α), and Fock number (n) along with the amplitude
|β| of the KS. We approximated the variance to 4|δ|2/(RFQ) <

4|δo|2/(RFQ) < 4/(RFQ), with quantum Fisher information
FQ dependent on the parameters of the probe state (ψ). We
have that FQ only produces a change in variance �2

s for differ-
ent states ψ . Therefore, we plot quantity 4/FQ as the variance
and average photon number 〈n〉 for the compass state (ψKS),
SSDNS (ψ1), and SSNS (ψ2) in Figs. 4 and 5 to study their
energy cost in perturbation sensitivity. Here, the energy cost
signifies the average amount of the energy resources occupied

(c) (d)

(a) (b)

FIG. 5. Comparative variance and average photon number 〈n〉
analysis for SSNS vs KS: (a) Both curves follow FQ(ψ2) =
FQ(ψ l

KS(+)), leading to a constraint Aψ2 = AKS. Blue curve corre-
sponds to equal variance for SSNS with n = 1 and ψ1

KS(+), with
β being the coherent amplitude. Similarly, the red curve describes
the same variance for SSNS with n = 2 and ψ2

KS(+). The following
pairs: SSNS n = 1 (yellow) and ψ1

KS(+) (black), and SSNS n = 2
(blue) and ψ2

KS(+) (red), have overlapping lines for (b) 〈n〉 and (c) the
variance multiplied by 〈n〉 under constraint in (a), showing resem-
blance for SSNS and KS. (d) The variance remains independent
of θ and overlaps along points in (a), for SSNS (n = 1) with ψ1

KS.
For illustration, we use two sets of points with parameters r and β:
(r, β ) = (0.15, 1.0) represented by the thick line and = (0.6, 2.07)
denoted by the dotted line.

by probes which provide the same precision in estimating
parameters. A probe yielding the same precision of parameter
with a smaller energy cost is a better quantum resource in
metrology than other probes with larger costs.

For comparison, we show regions for both SSDNS and
SSNS where the variance for each state equals that for their
respective KS. Figures 4(a)–4(d) describe the resemblance
of different quantities: variance, average photon number, a
product of variance with the average number, and θ depen-
dence of variance for SSDNS and ψ0

KS(−). FQ is dependent
on the θ orientation of displacement in phase space for SS-
DNS with n = 1 and ψ0

KS(−). We obtain two constraints by
comparing θ dependent and independent terms for FQ(ψ1) and
FQ(ψ0

KS(−)). Figure 4(a) plots these between α and β, while
squeezing r is dependent on both α and β. Here, β is the
absolute of coherent amplitude βeiπ/4. This region provides
the value of r and α in terms of β, which allows us to plot
〈n〉 against β in Fig. 4(b). The same variance region shows
the same 〈n〉 for both states. In Fig. 4(c), overlapping lines for
the product of variance and 〈n〉 for both states at respective θ

demonstrate resemblance, which is also clear from Figs. 4(a)
and 4(b). Irrespective of θ , all lines asymptotically approach-
ing 0.5 describe the asymptotic inverse relation of variance
with 〈n〉 for large β, consistent with the region in Fig. 4(a).
This asymptotic behavior for variance and average number is
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known as HL sensitivity for KS, resembling SSDNS in the
region of equal variance in Fig. 4(a). The variance changes
with θ for ψ0

KS(−) with small β = 1.01 and becomes al-
most constant for same state with β = 2.02. This behavior
is exactly mimicked by SSDNS (ψ1) with n = 1, as seen in
Fig. 4(d), where r and α are obtained from constraints in
Fig. 4(a).

Similarly, the comparison between SSNS and ψ l
KS(+) can

be seen in Figs. 5(a)–5(d). Figures 5(a)–5(d) include a com-
parison between SSNS and KS for two pairs: SSNS (n = 1)
and ψ1

KS, and SSNS (n = 2) and ψ2
KS. In this case, FQ remains

independent of θ for SSNS as well as ψ l
KS(+) with any n

and l . Later in this section, we see that FQ has θ dependence
due to nonzero coefficients in the probes’ Fock basis expan-
sion. We obtain two curves corresponding to equal variance
for SSNS and KS in each pair: (n = 1, l = 1) blue line and
(n = 2, l = 2) red line in Fig. 5(a). In Fig. 5(b), the average
number (〈n〉) has overlapping curves for states SSNS n = 1
(yellow) and KS l = 1 (black), as well as for the other pair
SSNS n = 2 (blue) and KS l = 2 (red), showing identical be-
havior under the constraint in Fig. 5(a). Similarly, the variance
multiplied by the average number demonstrates resemblance
in behavior [Fig. 5(c)] for both pairs: n = 1, l = 1 (yellow,
black) and n = 2, l = 2 (blue, red). Asymptotically, all curves
approaching 0.5 show HL sensitivity of KS as well as SSNS.
Finally, Fig. 5(d) illustrates θ -independent variance for both
states n = 1 and l = 1 at two different points, satisfying the
constraint in Fig. 5(a).

We observe that the variance or FQ displays a depen-
dence on θ , which arises from the decomposition of ψ with
zero coefficients in the Fock basis. This dependence can be
derived from the second-order derivative of Oνδ for |ψ〉 =∑∞

n=0 cn|n〉, with the constraint that the coefficients cn sat-
isfy cncm �= 0 for |n − m| � 2. This condition holds true for
SSDNS and ψ l

KS(−), whereas for SSNS and ψ l
KS(+), the co-

efficients follow cncm = 0 for |n − m| � 2, resulting in their
θ independence.

In this section, we have shown that the fidelities for SSDNS
and SSNS, when analyzed with KS, exceed 99%. All these
plots in Figs. 4 and 5 describe small phase-space fluctuation
measurements corresponding to the same HL sensitivity with
the obtained parameters’ region of equal variance for both
proposed states when compared to the KS.

V. USE OF PROBE IN THE DAMPING
CONSTANT ESTIMATION

In the open system, light interacting with the environment
such as absorption media, passing through a beam splitter
(BS), causes its damping and leads to the decoherence of the
quantum state. In this process of coherence loss, it allows us
to gain the information about the damping parameter of the
medium. The decay of the light amplitude in the cavity is
described by the master equation,

∂ρ

∂t
= κ (2aρa+ − {a+a, ρ}),

where κ is the damping constant of the cavity. This equa-
tion also describes the dynamics of the BS, opening the
possibility to estimate either reflectivity (1 − η) or transmittiv-
ity (η = e−2κt ) of the BS. The use of the quantum state of light

(a) (b)

FIG. 6. The regions of the pairs (a) SSDNS and ψ0
KS(−) and

(b) SSNS and ψ1
KS(+) show values of �2N/〈N〉2 (thick) and

〈N〉−1 (dashed), which closely resemble single-photon states. (a) β

for both SSDNS: S[r](D[α] + D[−α])|1〉 (black) and S[r](D[α] −
D[−α])|0〉 (red) with squeezing r = 0.1 represents α, while co-
herent amplitude for ψ0

KS(−) (blue). (b) β for SSNS (red) with
n = 1 is squeezing (r), and coherent amplitude ψ1

KS(+) (blue). Both
(a) and (b) have regions for parameter β, where �2N/〈N〉2 −→ 0
and 〈N〉−1 −→ 1.

being sensitive to the small changes in the parameter (κ) can
increase the precision of estimating parameter κ . Error (�κ)
associated in the measurement of η, obtained through the out-
put of the BS [28], can be found using the error-propagation
method,

�κ =
√

�2N̂out

|∂〈N̂out〉/∂κ| =
√

�2Nin

4t2〈N̂in〉2
+ (η−1 − 1)

4t2〈N̂in〉
,

where 〈N̂out〉 (〈N̂in〉) and �2N̂out (�2N̂in) are the average num-
ber and number variance, respectively, at the output (input)
for the probe passing through the BS for time t . As is known,
for the optical probe state, Fock states |n〉 provide the lowest
error bound as the number variance is zero with the cost of
n average photon number. Hence, the use of a single-photon
state leads to the lowest bound with the least cost of 1 (〈a+a〉).
We know from Fig. 1 that with an increase in the superposition
number of different coherent states (for example,

∑max
k=0 |αk〉),

there is a corresponding larger gap for adjacent nonzero prob-
ability in the Fock space. It leads to a decrease in number
fluctuation and therefore close to the number state |n〉. �κ de-
pending on the variance and average reaches the minimum for
small magnitude β with states SSDNS and ψ0

KS(−), as well
as SSNS ψ1

KS(+), similar to the single-photon state, which is
clearly evident in Fig. 6. As a result, these states as the probes
are good candidates to estimate the damping constant of the
BS.

VI. PREPARATION OF THE STATE

We now focus on the generation of the proposed states
in the optical setup. One procedure, described in detail [29]
for the preparation of any single-mode radiation field’s state,
can be used in our case of both proposed states. This method
requires N two-level atoms and high-Q cavity such that the
damping of photons and the spontaneous emission rate of
atoms in the cavity are negligible. The cavity is initialized
in a vacuum state while allowing atoms prepared in super-
position states of two levels beforehand to pass through the
cavity one by one. Atoms interact via the Jaynes-Cummings-

033724-7



ARMAN AND PRASANTA K. PANIGRAHI PHYSICAL REVIEW A 109, 033724 (2024)

Hamiltonian with the cavity field state, increasing the Fock
state superposition by one, when found in the ground state
as they leave the cavity. Tuning parameter d in the two-level
atom prepared state |e〉 + d|g〉 allows effective control of the
amplitude of the Fock state superposition formed in the cavity
and hence leads to the desired state preparation after N atoms
enter and leave the cavity one by one. To obtain maximum
overlap of the formed state in the cavity with the desired state,
N must be greater than the average of the photon number for
the desired state. It can also be decided from the probability
number distribution as the trend becomes appreciably small
after obtaining the desired state.

Light-matter interactions have allowed the generation of
nonclassical states of light within rotating-wave approxima-
tion and beyond RWA. An extensive amount of theoretical
research has been performed in solving the dynamics of the
JC-Rabi model, but the realization of this model in and be-
yond ultrastrong coupling (USC) has shown itself to be quite
challenging to reach in cavity QED. Advances in technology
have allowed uses of a superconducting qubit in circuit QED
to simulate dynamics of the Rabi model in the USC regime, as
proposed in Ref. [30] and recently reported in Refs. [31–34].
The Hamiltonian for the superconducting qubit-resonator in-
teraction describing the Rabi model in circuit QED in the
presence of two-photon driving is

H1 = ωoa+a + ωa

2
σz + g(a+ + a)σx

+ G(a+2
e−2iωt t + a2e2iωt t ),

where ωo, ωa, and ωt are resonator mode, qubit frequency,
and two-photon drive frequency. The annihilation (a or a−)
and creation (a+) operators belong to the field, while the
Pauli matrices (σi for i ∈ {1, 2, 3}) correspond to the qubit.
The parameters g and G describe the interaction strength
and two-photon drive strength. This Hamiltonian H can be
further modified by using squeeze S[χ ] = exp( −χa+2+χ∗a2

2 )
and displacement D[λ] = exp(λa+ − λa) unitary operators
[35] and their respective adjoints S+[χ ] and D+[λ]. For
the Hamiltonian involving qubit σi for i ∈ {1, 2, 3} and field
mode (a±) as separate parties, we have [σi, a±] = 0. We use
operators D[λσi] = e(λσia+−λ∗σia) = eσi (λa+−λ∗a) and S[χσi] =
e( χ∗

2 σia2− χ

2 σia+2 ) = eσi (χ∗a2−χa+2 )/2 to simplify the Hamiltonian.
The diagonalized Hamiltonian reads as

Hd = eiωt ta+aD+[λσx]e−iωt ta+aS+[χ ]eiωt ta+a(H1

−ωaσz/2)e−iωt ta+aS[χ ]eiωt ta+aD[λσx]e−iωt ta+a

=
√

�2 − 4G2a+a + 1

2
(
√

�2 − 4G2 − 1)

− 2g2

√
�2 − 4G2

(
� − 2G

� + 2G

)2

,

where the parameters detuning (�), phase-space displacement
(λ), and squeezing coefficient (χ ) for the diagonalization of
H1 (when ωa = 0) are defined as follows:

� = ωo − ωt , λ = g(� − 2G)

(
√

�2 − 4G2)(� + 2G)
,

χ = −1

2
ln

(
� + 2G

� − 2G

)
.

In the presence of a degenerate qubit (i.e., ωa = 0), the above
Hamiltonian (H) can be diagonalized in the squeezed dis-
placed number state S(χ )[D(λ) ± D(−λ)]|n,±〉 in the even
(odd) parity branches, as discussed in [36]. The introduction
of a qubit with ωa �= 0 lifts the degeneracy and its eigenspec-
trum can be approached through first-order perturbation [37],
considering the qubit σz term as perturbation. This regime is
described as perturbative-deep strong coupling. In this regime,
for ωa �

√
�2 − 4G2 [36,37], the above-found eigenstates

have a 99% overlap with exact numerically simulated states
in Ref. [36] with lifted degeneracy. The generation and prop-
erties of the first proposed state have also been theoretically
discussed on the ion trap platform [38].

The production of SSNS can be achieved with the help of
a system containing two excitations, emissions, and losses of
the resonator (oscillator) mode. The two-photon Rabi model
has received theoretical interest and was proposed in circuit
QED, for example, zero current bias in the superconducting
quantum interference device (SQUID) loop controls the linear
interacting term, leading to a two-photon-qubit dominant term
for the SQUID-flux qubit [39] interaction. The use of the
Hamiltonian in the form

H2 = [g1a+a + g2(a2 + a+2)]σz + ωa+a,

containing the interaction term of the two-quanta resonator
mode with superconducting qubit, can be diagonalized in the
interaction picture. The time evolution of the state (|ψI〉 =
eig1tσza†a|ψH2〉 = U |ψH2〉) is given by

|ψI (t )〉 = e−i
∫ t

0 dtU[g2(a2+a+2 )σz+ωa+a]U −1 |ψI (0)〉
= eig1σzta+a/2S(−rσz )e−i t

2 [(2a+a+1)
√

ω2−4g2
2 j2

o (g1t )]

× ei ωt
2 S(rσz )e−ig1σzta+a/2|ψI (0)〉,

where the zeroth spherical Bessel function jo(t ) = t−1 sin t
and the squeezing parameter r = 1

2 ln ( ω−2g2 jo(g1t )
ω+2g2 jo(g1t ) ), with g2

being constrained by the condition 2g2 � ω for real r. Initial-
izing the resonator mode and qubit state as |ψI (0)〉 = |n,+〉,
the system’s state under H2 evolves to the state at time t :

|ψH2 (t )〉=NS(−re−ig1σztσz )S(re−iÂtσz )e−ig1σzta+a|n,+〉
= N [S(−re−ig1t )S(re−iλ+t )e−ig1tn|n, e〉

+ S(reig1t )S(−re−iλ−t )eig1tn|n, g〉],
where N corresponds to the normalization constant of the

state, and Â = g1σz + 2
√

ω2 − 4g2
2 j2

o (g1t ) with eigenval-

ues λ± = ±g1 + 2
√

ω2 − 4g2
2 j2

o (g1t ) satisfies Â|e〉 (Â|g〉) =
λ+|e〉 (λ−|g〉). Measurement of the qubit of the above evolved
state in a |±〉 basis will lead to the required superposition of
the squeezed number state.

VII. CONCLUSION

We compared the number distribution (PND), Wigner
function, fidelity, and sensitivity of SSNS and SSDNS with
the compass state (KS). The investigation of these properties
has led to the finding that appropriate squeezing r and dis-
placement α show close number distribution, similar Wigner
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function, and maximum fidelity with the KS, ψ l
KS(±). The

PND shows zero and nonzero probability amplitudes with
respect to the values of l , just as SSNS and SSDNS exhibit
comparable behavior depending on the values of r, α, and the
Fock number n. Similarly, the Wigner distribution correspond-
ing to the SSNS and SSDNS produces Gaussian lobes with
interferometric structure, closely identical to the KS. Both
the PND and the Wigner function behavior of the SSDNS
and SSNS allow us to have KSs with different weight factors
denoted by l , leading to a large overlap. We find a change in
the behavior of the phase-space distribution for SSDNS (ψ1)
and KS as well as a decrease in the fidelity with KS below
99%, as seen in Table I, when the Fock number n �= 1. Our
other state SSNS (ψ2), with the squeezing r and the Fock num-
ber n, shows resemblance in its interferometric phase-space
distribution close to that of the KS. Increasing the parameter
n of SSNS leads to fidelity above 99% and an increase in the
β amplitude of the KS. We see that SSDNS with n = 1 and
SSNS with n > 0 provide a large overlap with KS, showing
potential for reaching close to the KS with a coherent ampli-
tude β > 0.5. Furthermore, the use of KS in detecting small
perturbation is no better than SSDNS and SSNS as there exist
regions, in the parameter space of squeezing, displacement,
and coherent amplitude of equal variances with equal average
energy, evident from Figs. 4 and 5.

It is noteworthy to mention that the single-photon state
has recently shown to be the best probe in the small shift
parameter estimation [26] as well as in estimating the damping
constant [28] for the amplitude damping channel. In view
of the difficulties with the generation of the single-photon
state, SSNS, SSDNS, and KS provide the same precision,
in the limit of small β, for the estimation of the damping
parameter of the BS (see Fig. 6), close to the single-photon
state, thereby becoming probes next to the single-photon
state. Due to their same sensitivity to small shifts, states used
as qubits in quantum error correction can recognize errors
originating as minute phase-space displacements caused by
noise external to the system. The ability to correct these
errors is a work in progress and will be demonstrated
elsewhere.

Given the challenges present in obtaining large coherent
amplitudes (β) of the KS, there are few models to produce
KS states directly either in an optical platform such as Kerr
interaction and conditional measurement on the BS [24,40] or
in the microwave regime. Therefore, considering their many
implications, theoretical models are provided based on their
accessibility in the optical as well as circuit QED. Sub-Planck
structures in SSDNS and SSNS, and their co-relation to the
compass state, will enable different methods for the prepara-
tion of such states, which may find applications in quantum
metrology, sensing, communication, and error correction.
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TABLE II. Comparison of the fidelities of SSDNS and SSNS
with KS for parameters used in Sec. III of Wigner functions.

State F (l,±)
ψ α n r KS (β ) Fidelity (F (l,±)

ψ )

F (0,+)
ψ2

0 4 0.45 2 0.7206

F (3,+)
ψ2

0 3 0.45 2 0.97

F (2,+)
ψ2

0 2 0.45 1.5 0.9816

F (1,+)
ψ2

0 1 0.45 1.5 0.9812

F (0,−)
ψ1

2 4 0.45 2e3iπ/4 0.104

F (0,−)
ψ1

2 3 0.45 2e3iπ/4 0.1363

F (1,−)
ψ1

2 2 0.45 1.7e3iπ/4 0.3147

F (1,−)
ψ1

2 1 0.45 1.7e3iπ/4 0.9865

APPENDIX A: FIDELITIES FOR THE WIGNER
FUNCTION IN SEC. III

It is evident from Fig. 2 that the Wigner function of the first
states, along with their comparison with the KS, illustrates a
resemblance in the phase-space structure. Additionally, their
fidelity, as presented in Table II, starts decreasing with in-
creasing Fock number n.

Regarding the SSNS, the Wigner functions in Fig. 3, along
with their comparison with the KSs, exhibit significant resem-
blance and a large overlap (Table II) with each other. Although
the fidelity of SSNS (ψ2) with n = 4 is reduced to 0.7206 for
β = 2 (the amplitude of KS), this can be optimized to achieve
a large overlap for β > 2, as the phase-space area of states
increases with larger n.

APPENDIX B: CALCULATIONS FOR THE QUANTITIES IN
THE MAIN TEXT

We find the x projection of the squeezed and displaced state
(ψ (x) = 〈x|S[r]D[α]|0〉) by solving the differential equa-
tion of the annihilation operator â as follows:

S[r]D[α]âD[−α]S[−r]S[r]D[α]|0〉 = 0.

For real squeezing (r) and complex displacement (α), the
above equation in x space using the displacement identity
D(iIm[α])D(Re[α]) = D[α]eiRe[α]Im[α] turns into

(∂xe−r + xer −
√

2α)ψ (x) = 0,

leading to

ψ (x) = 1
4
√

(πe−2r )
e− (xer −√

2α)2

2 −Im[α]2
e−iRe[α]Im[α].

The zeroth-state weight factor in the squeezed displaced state
ψ (x) is given by

c0(r, α) = 〈0|S[r]D[α]|0〉 = e− α2

e2r +1
+iαIm(α)

√
cosh(r)

.

We know from the main text that SSDNS with a real
displacement parameter is written as α,

ψ1(x) = 〈x|ψ1〉 = N1[φn(erx − α) + φn(erx + α)],
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TABLE III. Symbols used in the main text.

Inm(r1, r2, α, β ) = Nr
φ,r1 ,r2
n,m,k (α,β,0)√

Nr
φ,r1 ,r1
n,n,k (α,α,0)Nr

φ,r2 ,r2
m,m,k (β,β,0)

∣∣∣∣∣k = 0
φ = 0

Īn(r, α, β ) = Nrφ,r,r
n,n,k (α,β,0)√

Nrφ,r,r
n,n,k (α,α,0)Nrφ,r,r

n,n,k (β,β,0)

∣∣∣∣∣k = 0
φ = 0

wnm(r1, r2, α, β ) = C
φ,r1 ,r2
n,m,k (α,β,0,z)√

Nr
φ,r1 ,r1
n,n,k (α,α,0)Nr

φ,r2 ,r2
m,m,k (β,β,0)

∣∣∣∣∣k = 0
φ = 0

wn(r, α, β ) = Cφ,r,r
n,n,k (α,β,0,z)√

Nrφ,r,r
n,n,k (α,α,0)Nrφ,r,r

n,n,k (β,β,0)

∣∣∣∣∣k = 0
φ = 0

Tr[D[δ]Ô] = Nr
φ,r1 ,r2
n,m,k (α,β,δ)√

Nr
φ,r1 ,r1
n,n,k (α,α,0)Nr

φ,r2 ,r2
m,m,k (β,β,0)

∣∣∣∣∣k = 0
φ = 0

Tr[(a+a)kÔ] = Nr
φ,r1 ,r2
n,m,k (α,β,0)√

Nr
φ,r1 ,r1
n,n,k (α,α,0)Nr

φ,r2 ,r2
m,m,k (β,β,0)

∣∣∣∣∣
φ = 0

while SSNS, depending on the squeezing parameters (±r), is

ψ2(x) = 〈x|ψ2〉 = N2[φn(erx) + φn(e−rx)].

The normalization N1 and N2 for both states is given as

N−2
1 = Īn(r, α,−α) + Īn(r,−α, α) + Īn(r,−α,−α)

+ Īn(r, α, α)

and

N−2
2 = Inn(r,−r, 0, 0) + Inn(r,−r, 0, 0) + Īn(r, 0, 0)

+ Īn(−r, 0, 0),

with symbols, for r �= r̄,

Inm(r, r̄, α, β ) =
∫ ∞

−∞
dx φn(erx −

√
2α)φ∗

m(er̄x −
√

2β ),

and for r = r̄,

Īn(r, α, β ) =
∫ ∞

−∞
dxφn(erx −

√
2α)φ∗

n (erx −
√

2β ).

The above integrals are evaluated using the identity obtained
through the generating function (see Table III) of the Hermite
polynomials [41].

Calculations for the number distribution based on the
above quantities are

ck = 〈k|ψ1〉 = N1[Ink (r, 0, α, 0) + Ink (r, 0,−α, 0)]

and

bk = 〈k|ψ2〉 = N2[Ink (r, 0, 0, 0) + Ink (−r, 0, 0, 0)].

The Wigner function calculations are

W1(x, p) = 1

π

∫ ∞

−∞
dy〈x − y|ψ1〉〈ψ1|x + y〉e2ipy

= N2
1 [wn(r, α, α) + wn(r,−α,−α)

+wn(r, α,−α) + wn(r,−α, α)]

and

W2(x, p) = 1

π

∫ ∞

−∞
dy〈x − y|ψ2〉〈ψ2|x + y〉e2ipy

= N2
2 [wn(r, 0, 0) + wn(−r, 0, 0)

+wnn(r,−r, 0, 0) + wnn(−r, r, 0, 0)],

where W1(x, p) and W2(x, p) are the Wigner functions for
states |ψ1〉 and |ψ2〉, respectively. The functions used above,

wnm(r, r̄, α, β ) = 1

π

∫ ∞

−∞
dy φn[er (x − y) −

√
2α]

× φ∗
m[er̄ (x + y) −

√
2β]e2ipy

and

wn(r, α, β ) = 1

π

∫ ∞

−∞
dy φn[er (x − y) −

√
2α]

× φ∗
n [er (x + y) −

√
2β]e2ipy,

are evaluated in Table III. Similarly, the Wigner function
(WKS) for the compass state |ψ l

KS(±)〉 includes 16 terms of
Gaussian integrals [1]. Number distribution and Wigner func-
tion are obtained through the evaluation of the cross term as
follows:

Cφ,r1,r2
n,m,k (α, β, δ, z) =

∫ ∞

−∞
d2γ

〈−γ |eiφa+aD[δ]Ô|γ 〉
e−2(γ ∗z−z∗γ )−2|z|2 = ∂k

φ∂n
s ∂m

t

(ik
√

n!m!)

{∫ ∞

−∞
d2γ eiIm[e−iφγ δ∗−|α|2+(ᾱ−s)(s+α∗ )]

× c0(r1, ᾱ)c∗
0(r2, β̄ )

e−er2 γ ∗β+(β̄∗−t )t

e−2(γ ∗z−z∗γ )−2|z|2 e
s2+t2

2

}∣∣∣∣∣s = 0
t = 0

where z = x + ip, Ô = S[r1]D[α]|n〉〈m|D[−β]S[−r2] = (∂n
s ∂m

t S[r1]D[α]|s〉〈t |D[−β]S[−r2] e
s2+t2

2√
n!m!

)|s = 0
t = 0

and

ᾱ = er1 (δ + e−iφγ ) + α + s, β̄ = −er2γ + β + t .

033724-10



GENERATING OVERLAP BETWEEN COMPASS STATES AND … PHYSICAL REVIEW A 109, 033724 (2024)

The above expression is normalized from the cross term [Cφ,r1,r2
n,m,k (α, β, δ, z)] as

Nrφ,r1,r2
n,m,k (α, β, δ) =

∫ ∞

−∞
d2z Cφ,r1,r2

n,m,k (α, β, δ, z).

Using these quantities above, we write the symbols Inm and wnm in Table III.
The two expressions in the last row, which are the cross terms, are used to evaluate the overlap (F (l,±)

ψ , Oνδ) between the
perturbed and unperturbed states, average photon number, and number variance.
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