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In this work, a parity-time (PT )-symmetric system is investigated based on superconducting circuits, which
allows the tunability of atom-atom coupling using superconducting qubits. The calculation results demonstrate
that the interaction between artificial atoms significantly impacts the transmission spectrum and the conditions
of the phase transition in the system. When introducing a weak probe signal into the PT -symmetric system,
several findings are observed. (1) The symmetry and intensity of both the linear and nonlinear outputs can
be fine-tuned by adjusting the coupling strength between artificial atoms or manipulating the gauge-invariant
phase in the system. (2) Nonreciprocal transmission can be achieved by driving different cavity modes. (3) The
exceptional point (EP) of the PT phase transition can be adjusted within a certain range by modifying the
gauge-invariant phase or adjusting the coupling strength in the system. One feasible experimental setup is also
described and analyzed based on existing experimental techniques. These findings may inspire further research
into modulating quantum phase transitions based on superconducting circuits.
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I. INTRODUCTION

The study of phase transition modulation has garnered
significant attention in modern physics in recent years [1–18].
Notable efforts addressing phase transition modulation have
been conducted across diverse physical platforms. For ex-
ample, carrier concentration in ultrathin materials [5] and
double-pulse excitation [6] have been studied for metal-
insulator transitions in superconductivity mechanisms. Gate
voltage adjustments control the 0 - π phase transition in topo-
logical insulators [7]. The manipulation of topological phase
transitions within magnonic topological phases involves re-
search into magnon-magnon interaction [8], magnon-phonon
coupling [9–11], and variation of magnetic field [12–14]. For
the ferroelectric transition in distinct magnetoelectric materi-
als, exploration includes the use of magnetic fields [15,16],
electric field [17], and temperature variations [18].

The notion of parity-time (PT ) symmetry has been stud-
ied in many branches of physics, including optics [19–24],
acoustics [25–27], electronic circuits [28–32], and photonics
[33–38], among others. Due to the mathematical relationship
between quantum mechanics and optics, photonics systems
serve as excellent platforms for PT symmetry research. A
fundamental architecture comprises two coupled cavities ex-
hibiting non-Hermiticity due to gain and loss [39–41]. In such
systems, the phase transition can lead to supermode profiles,
where the real frequency components become complex. By
crossing the exceptional point (EP) in parameter space, the
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eigenvalue spectra transition from real to complex, causing
the corresponding modes to merge into one [33,42–45]. The
PT phase transition exhibits intriguing and counterintuitive
properties, especially in proximity to the EP, leading to sig-
nificant transformations in system dynamics. The distinctive
attributes of PT -symmetric phase transitions hold promise
for applications across various fields, including loss-induced
or gain-induced transparency [46–49], low-power optical iso-
lation [50–52], unidirectional invisibility [53–58], and more.
The EP, situated in parameter space with unique properties,
marks significant changes in system behavior upon crossing
it. Meeting the conditions for EP occurrence poses notable
challenges, thereby complicating the experimental realiza-
tion of PT -symmetric systems. Controlled manipulation of
EPs could alleviate these challenges, enabling enhanced con-
trol and utilization of PT -symmetric system characteristics.
However, only a limited number of studies have proposed
methods to modulate PT phase transitions for increased flex-
ibility in the process [59–62].

In this work, we introduce a method that leverages the
nontrivial gauge phase to modulate the PT phase tran-
sition within the system. To illustrate this approach, a
cavity-QED system can be established using either a PT -
symmetric microcavity with classical atoms or one based on
superconducting circuits [63,64]. The phase associated with
cavity-cavity coupling is examined as a nontrivial gauge phase
of the overall system [65–67]. This phase can be manipulated
by adjusting the magnetic flux passing through the coupler
[68–70]. To examine the influence of the nontrivial gauge
phase and atom-atom coupling on the phase transition, an
analysis of the linear and nonlinear characteristics based on
the output field of a weak probe signal is conducted for various
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FIG. 1. Schematic diagram of a PT -symmetric system, includ-
ing two cavity modes â and b̂ with gain and loss, two atoms σ̂±

1 and
σ̂±

2 regarded as two two-level systems. Within the system, the cavity-
cavity coupling strength is denoted as Jeiθ , the atom-cavity coupling
strengths are ga and gb, and the atom-atom coupling strength is
represented by G. Cavity A can be externally driven by a probe field
S1

in with amplitude εp and frequency ωp at port 1, with the resulting
field S1

out serving as the output of the driving field. Meanwhile, cavity
B can be driven by an external probe field S2

in at port 2, and the
corresponding output field is denoted as S2

out.

scenarios [71–73]. Utilizing the steady-state approximation
enables the calculation of the eigenvalue spectrum. Our results
indicate the significant impact of both the nontrivial gauge
phase and atom-atom coupling on the symmetry and intensity
of the output field. Moreover, the phase and coupling strength
of the interactions between cavities or atoms are shown to play
a pivotal role in modulating the EP of the phase transition
within the system.

This paper is organized as follows. In Sec. III B, we
delve deeper into the cavity-atom system with PT symmetry,
a model that offers significant insights into the underlying
physics of PT -symmetric systems. In Sec. III C, two kinds
of systems are introduced in the first part, focusing on the
analytical description of the linear transmission rate and the
third-order Kerr-nonlinear coefficient of the output field. An
analysis of realizing nonreciprocal transmission in the system
is conducted through numerical calculations. In the second
part, the phase diagram of the PT -symmetric system is cal-
culated based on the steady-state approximation. In the third
part, we demonstrate that the EP of the phase transition can
be modulated by the nontrivial gauge phase and coupling
strength in the system. In Sec. V, an experimental setup uti-
lizing a superconducting circuit is proposed to investigate the
system under consideration. Additionally, a table containing
parameters from some existing experiments is compiled. Fi-
nally, some remarks on this work are summarized in Sec. IV.

II. THEORETICAL MODEL AND ANALYTIC METHODS

As depicted in Fig. 1, a PT -symmetric system is con-
structed, comprising two coupled single-mode cavities and
two atoms. Cavities A and B are represented by bosonic anni-
hilation and creation operators (â, â†) with resonant frequency
ω1 and decay rate κ1, and (b̂, b̂†) with resonant frequency ω2

and decay rate κ2, respectively. Atoms 1 and 2 are modeled
as two-level systems, represented by Pauli operators σ̂±

1 with

frequency �1 and decay rate γ1, and σ̂±
2 with frequency �2

and decay rate γ2, respectively. Cavity A is passive (i.e.,
loss), and cavity B is active (i.e., gain). The two cavities
are coupled via a tunable coupling strength J with phase θ

[68–70]. The two atoms are coupled to the two cavities with
coupling strength g. The first physical system is established
with microcavities and classical atoms. The second physical
system is realized using superconducting circuits, employing
superconducting qubits as artificial atoms [64].

To investigate the signal transmission process, each of the
two cavities can be individually stimulated. Specifically, at
port 1, cavity A is excited by a weak external probe field
denoted as S1

in, characterized by an amplitude εp and fre-
quency ωp. The parameter κe represents the coupling loss rate
between the cavity and the external field, which is intricately
tied to the coupling quality factor [45]. The total decay rate
of cavity A is a sum of the intrinsic loss rate and the external
loss rate, given by κa = κ1 + κe, while cavity B possesses a
decay rate of κb = κ2. Conversely, at port 2, the probe signal
is introduced into cavity B. Consequently, the overall decay
rate of cavity B is denoted as κ ′

b = κ2 + κe, while cavity A
sustains a decay rate of κ ′

a = κ1. For simplicity, we assume
that ω1 = ω2 = ω, �1 = �2 = �, γ1 = γ2, and S1

in = S2
in =

Sin. The coupling strengths J , g, and G are considered as real
numbers. Following the formalism of Blais et al. [64], the
Hamiltonian for this composite system, involving a driving
probe field targeted as cavity A, is expressed as (setting h̄ = 1)

Ĥ = Ĥ0 + ĤI + Ĥd

= ω(â†â + b̂†b̂) + �(σ̂+
1 σ̂−

1 + σ̂+
2 σ̂−

2 )

+ g(âσ̂+
1 + â†σ̂−

1 ) + g(âσ̂+
2 + â†σ̂−

2 )

+ g(b̂σ̂+
1 + b̂†σ̂−

1 ) + g(b̂σ̂+
2 + b̂†σ̂−

2 )

+ G(σ̂+
1 σ̂−

2 + σ̂−
1 σ̂+

2 )

+ J (eiθ â†b̂ + e−iθ âb̂†) + i
√

κe[Sin(t )â† − S∗
in(t )â]. (1)

The first two terms in the expression signify the energy asso-
ciated with the uncoupled cavity-atom system. Subsequently,
the third to sixth terms encapsulate the interactions arising
from the cavity-atom coupling, while the seventh and eighth
terms delineate the dynamics stemming from the cavity-cavity
coupling and atom-atom couplings. The final term illustrates
the scenario where cavity A is stimulated by a probe field. In
this context, a passive cavity exhibits an intrinsic decay rate
denoted as κ j > 0, whereas an active cavity is characterized
by κ j < 0. These rates adhere to the condition |κ j | = ω j/Qj

( j = 1, 2), where Q1 and Q2 represent the intrinsic quality
factors of cavities A and B, respectively. As for the external
loss rate κe, it is governed by the relationship |κe| = ω j/Qe

( j = 1, 2), where Qe signifies the coupling quality factor of
either cavity A or B [45]. The overall decay rate of the cavity
is a composite of the intrinsic loss rate and the external loss
rate.

To facilitate the transformation of the Hamiltonian pre-
sented in Eq. (1) into the rotating frame with respect to the
external probe signal operating at the frequency ωp, Ĥfree and
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U (t ) are defined:

Ĥfree = ωp(â†â + b̂†b̂ + σ̂+
1 σ̂−

1 + σ̂+
2 σ̂−

2 ), (2)

U (t ) = e−iĤfreet . (3)

The Hamiltonian Ĥrot under rotating frame is

Ĥrot = 
(â†â + b̂†b̂) + (
 + δ)(σ̂+
1 σ̂−

1 + σ̂+
2 σ̂−

2 )

+ ĤI + Ĥd, (4)

where 
 = ω − ωp signifies the frequency detuning existing
between the cavity and the probe signal, while δ = � − ω

represents the frequency detuning between the atoms and
cavity modes. The term ĤI embodies the interactions encom-
passing cavity-atom, cavity-cavity, and atom-atom couplings.
The term Ĥd = i

√
κe(εpâ† − ε∗

pâ) characterizes the driving of
cavity 1 by the probe signal, with εp denoting the classical
amplitude of the probe field. Notably, the amplitude εp is cor-
related with the signal power Pin according to |εp| = √

Pin/ωp.
Under such a low-power driving field, the input-output re-

lationship in the system can be described by the semiclassical
Heisenberg-Langevin equations of motion derived from the
Heisenberg-Langevin formalism [74,75]:

da

dt
= −

(
i
 + κa

2

)
a − Jei( π

2 +θ )b − ig(σ̂−
1 + σ̂−

2 ) + εp
√

κe,

(5)

db

dt
= −

(
i
 + κb

2

)
b − Jei( π

2 −θ )a − ig(σ̂−
1 + σ̂−

2 ), (6)

dσ z
1

dt
= −γ

(
σ z

1 + 1

2

)
− ig(aσ+

1 − a†σ−
1 )

− ig(bσ+
1 − b†σ−

1 ) − iG(σ−
2 σ+

1 − σ+
2 σ−

1 ), (7)

dσ−
1

dt
= −

[
i(
 + δ) + γ

2

]
σ−

1 + 2i[g(a + b) + Gσ−
2 ]σ z

1 ,

(8)
dσ z

2

dt
= −γ

(
σ z

2 + 1

2

)
− ig(aσ+

2 − a†σ−
2 )

− ig(bσ+
2 − b†σ−

2 ) − iG(σ−
1 σ+

2 − σ+
1 σ−

2 ), (9)

dσ−
2

dt
= −

[
i(
 + δ) + γ

2

]
σ−

2 + 2i[g(a + b) + Gσ−
1 ]σ z

2 .

(10)

Consider system operators ô1 and ô2, where 〈ô1〉 = o1

and 〈ô2〉 = o2. Consequently, o1 and o2 are observable, and
the mean-field approximation is given by 〈ô1ô2〉 = 〈ô1〉〈ô2〉
[45]. In the context of two-level atoms, designate the ground
state as |0〉 and the excited state as |1〉. It follows that
σ̂+

j = |1〉〈0|, σ̂−
j = |0〉〈1|, and σ̂ z

j = (〈σ̂+
j σ̂−

j 〉 − 〈σ̂−
j σ̂+

j 〉)/2
( j = 1, 2) signifies the half-population difference between the
ground and excited states.

In the realm of quantum mechanics perturbation theory,
this methodology can be extended to two cavity modes. Under
the assumption of weak excitation, it can also be employed for
two atoms (the justification for these approximation methods

is deliberated in the initial section in Appendix A). The terms
of the perturbation expansions are [76–79]

a = λa(1) + λ2a(2) + λ3a(3) + · · · , (11)

b = λb(1) + λ2b(2) + λ3b(3) + · · · , (12)

σ z
i = σ

z(0)
i + λσ

z(1)
i + λ2σ

z(2)
i + λ3σ

z(3)
i + · · · , (13)

σ−
i = σ

−(0)
i + λσ

−(1)
i + λ2σ

−(2)
i + λ3σ

−(3)
i + · · · , (14)

in which λ ∈ [0, 1], and i = 1, 2. It is assumed that a(0) =
b(0) = 0 since the weak probe field drives the two cavities.
Furthermore, due to the presence of zeroth-order electronic
operators, σ

−(0)
1 = σ

−(0)
2 = 0. With respect to the definition

of σ̂ z
j , ( j = 1, 2) σ

z(0)
1 = σ

z(0)
2 = −1/2. Then it becomes fea-

sible to compute each cavity field term under these particular
approximations.

III. MAIN RESULTS

A. Linear and nonlinear output properties

By employing Eqs. (11)–(14) to address the semiclassical
Heisenberg-Langevin equations presented in Eqs. (5)–(10),
one can determine the field amplitudes in cavity A and cavity
B for various systems. When cavity A is stimulated, the output
signal Sout is defined as

Sout = Sin − √
κea. (15)

Upon truncating the cavity field terms to third order, the re-
sulting output field is given by

Sout = εp − √
κea(1) − √

κea(2) − √
κea(3). (16)

Then, each term of the cavity field can be computed based on
the system parameters.

1. Coupled double microcavities with atoms

In the first physical system, the setup comprises two micro-
cavities and two classical atoms. There is no coupling between
the atoms, implying G = 0. By solving the aforementioned
equations, the first three terms of the field in cavity A can be
derived as follows:

a(1)
I = εp

√
κed2

d1d2 − d3d4
, (17)

a(2)
I = 0, (18)

a(3)
I = 4g4(d2 − d3)(d2 − d4)

(d1d2 − d3d4)2

∣∣∣∣
√

κe(d2 − d4)

d1d2 − d3d4

∣∣∣∣
2

×
√

κeεp|εp|2
[γ /2 + i(
 + δ)][γ 2/4 + (
 + δ)2]

, (19)

in which d1 = (i
 + κ1/2 + κe/2) + M1, d2 = (i
 +
κ2/2) + M1, d3 = Jei(π/2+θ ) + M1, d4 = Jei(π/2−θ ) + M1,
and M1 = 2g2/[γ /2 + i(
 + δ)]. The nonzero terms of the
field intensity in cavity A are directly linked to the intensity
of input driving field εp. When analyzing the transmission
behavior of the PT -symmetric system, the coefficients
governing the linear transmission rate χ (1) and the third-order
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FIG. 2. The linear transmission rate T and Kerr-nonlinear coeffi-
cient K of the probe field vs the detuning 
/κ1 for various parameter
sets (J/κ1, g/κ1, κ2/κ1). The gain-to-loss ratios are specified as (a
and b) κ2/κ1 = 3.6 and (c and d) κ2/κ1 = −3.6. The curves are
denoted by different colors and line styles: blue solid, green solid,
red dash-dot, and purple dotted lines correspond to J/κ1 = 0, g/κ1 =
0; J/κ1 = 0, g/κ1 = 2; J/κ1 = 2, g/κ1 = 0; and J/κ1 = 2, g/κ1 = 2,
respectively. The remaining parameters are fixed as κe = 5κ1, γ =
0.2κ1, δ = 0, and θ = π/2.

Kerr coefficient χ (3) can be defined in accordance with
nonlinear optics [79]:

χ (1) = 1 − a(1)/εp, (20)

χ (3) = a(3)/(εp|εp|2). (21)

Within the system, T = |χ (1)|2 quantifies the intensity of the
normalized linear transmission rate. Concerning the coeffi-
cient χ (3), the real part K = Re[χ (3)] characterizes the Kerr
nonlinearity, while the imaginary part A = Im[χ (3)] is asso-
ciated with nonlinear absorption. Based on the transmission
coefficients delineated in Eqs. (20) and (21), the impact from
the intensity of the probe field may be neglected.

In units of κ1, the normalized linear transmission T =
|χ (1)|2 of the probe signal is depicted as a function of detuning

/κ1 in Fig. 2, considering four types of coupling inter-
actions: (1) no coupling (J = 0, g = 0), (2) direct coupling
(J �= 0, g = 0), (3) indirect coupling (J = 0, g �= 0), and (4)
both direct and indirect coupling (J �= 0, g �= 0). In Figs. 2(a)
and 2(b), the decay rates of the two cavities satisfy κ2/κ1 =
3.6. When J/κ1 = 0, g/κ1 = 0 (blue solid line) in Fig. 2, the
system reduces to a single cavity, and the linear transmission
rate T displays a dip at 
 = 0, matching the probe field
frequency with the cavity resonant frequency. Conversely,
for J/κ1 = 2, g/κ1 = 0 (red dashed line), the system trans-
forms into a passive-passive double-cavity system, featuring
dipole-induced transparency (DIT) in the linear transmission
[80–84]. The green solid line and purple dotted line corre-
spond to scenarios where the system comprises two cavities
and two atoms. One system exhibits indirect coupling between
cavities, while the other involves both indirect and direct
coupling. These configurations still exhibit DIT features but
with three absorption dips, owing to the interactions between

FIG. 3. The linear transmission rate T and Kerr-nonlinear coef-
ficient K of the probe field vs detuning 
/κ1 for different values of
κ2/κ1. Considering the passive-passive double-cavity system, (a) the
linear transmission rate T for κ2 = 2κ1 (green dash-dot line), κ2 =
6κ1 (red solid line), κ2 = 10κ1 (black dotted line). (b) Kerr-nonlinear
coefficient K for the same κ2/κ1 values. Shifting focus to the passive-
active double-cavity system, (c) the logarithm of T for κ2 = −2κ1

(green dash-dot line), κ2 = −6κ1 (red solid line), κ2 = −10κ1 (black
dotted line). (d) The logarithm of K for the same values of κ2/κ1. The
remaining parameters in the system are defined as J = 3κ1, g = κ1,
κe = 5κ1, γ = 0.7κ1, δ = 0, and θ = π/2.

cavities and atoms introducing additional resonant modes, re-
sulting in extra absorption dips within the linear transmission
rate curve. In Fig. 2(b), the absence of a nonlinear output
signal when g = 0 indicates that the nonlinearity in the system
arises from the qubits. In Figs. 2(c) and 2(d), with κ2/κ1 =
−3.6, the linear transmission rates for J/κ1 = 0, g/κ1 = 0
(blue solid line) remain consistent with Fig. 2(a), representing
a single cavity system. Conversely, for J/κ1 = 2, g/κ1 = 0
(red dashed line), a passive-active double-cavity system is
established, exhibiting an enhanced inverted-DIT profile, fea-
turing a pronounced transmission peak at 
 = 0 [49]. In the
remaining cases (green solid line and purple dotted line), a
similar enhanced inverted-DIT profile is also observed, where
two symmetrical peaks emerge around 
 = 0. In Fig. 2(d),
the K significantly amplifies due to the gain in cavity B.

In Fig. 3, the linear transmission rate T = |χ (1)|2 and the
third-order Kerr-nonlinear coefficient K = Re[χ (3)] are plot-
ted for both passive-passive and passive-active double-cavity
systems. For the setup comprising two passive cavities and
two atoms, the cavity gain-to-loss ratio is characterized by
κ2/κ1 > 0. The linear output T is plotted against the detuning

/κ1 in Fig. 3(a). When κ2/κ1 = 2, three absorption dips are
evident in the linear transmission rate curve. With an increase
in the gain-to-loss ratio κ2/κ1, a transparent window emerges
at 
 = 0, accompanied by double-symmetric-sideband ab-
sorption dips. The third-order Kerr coefficient K is graphed
against the detuning 
/κ1 in Fig. 3(b). These curves exhibit
symmetry around 
 = 0, and the system manifests weak non-
linear output when κ2/κ1 > 0. In scenarios where cavity A
is passive and cavity B holds gain, denoted by κ2/κ1 < 0.
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The logarithm of the linear output T as a function of 
/κ1

is shown in Fig. 3(c), showcasing an inverted-DIT trans-
parency profile in the linear output. With the gain-to-loss
ratio transitioning from κ2/κ1 = −2 to κ2/κ1 = −6, there
is a progressive rise in the amplitude of the linear output.
Three amplifying peaks become discernible, notably with the
peak at 
 = 0 exhibiting greater prominence than others. As
κ2/κ1 reaches -10, the amplitudes of the sideband peaks are
diminished, and the peak at 
 = 0 vanishes. In Fig. 3(d),
the logarithm of the nonlinear output K is graphed against

/κ1. Mirroring the behavior of the linear output, there is a
noteworthy enhancement observed at 
 = 0, accompanied by
two sideband amplifying peaks located at the same positions
as in the linear output for κ2/κ1 = −6.

The amplitude of T and K exhibit significant sensitivity
to the gain-to-loss ratio κ2/κ1. When κ2/κ1 > 0, the passive-
passive system fails to achieve intracavity field localization,
leading to a DIT profile in linear transmission and weak
nonlinear output. The system remains in an unbroken PT -
symmetric phase within the range −6 < κ2/κ1 < 0. The gain
in cavity B counters the losses in the system, ensuring its
stability. By adjusting the ratio to traverse through the EP,
both linear transmission and nonlinear output can be greatly
enhanced. Upon κ2/κ1 < −6, the system transitions into the
broken PT -symmetric phase. In this phase, field intensity
dynamically accumulates in cavity A due to strong field local-
ization [49,51]. This accumulation effectively augments the
nonlinear output intensity of the system.

2. Coupled superconducting microwave resonators
with artificial atoms

The second physical system is constructed using supercon-
ducting circuits, employing two qubits to enable adjustable
coupling interactions between atoms. When the coupling
strength between the artificial atoms meets the condition G �=
0, the first three terms of the field in resonator A can be
obtained:

a(1)
II = εp

√
κe p2

p1 p2 − p3 p4
, (22)

a(2)
II = 0, (23)

a(3)
II = 2ig(p3 − p2)(p2 − p4)

γ (p1 p2 − p3 p4)2

∣∣∣∣
√

κe(p2 − p4)

p1 p2 − p3 p4

∣∣∣∣
2

×
√

κeεp|εp|2(ig + M2G/2g)

[γ /2 + i(
 + δ + G)][γ 2/4 + (
 + δ + G)2]
,

(24)

in which p1 = (i
 + κ1/2 + κe/2) + M2, p2 = (i
 +
κb/2) + M2, p3 = Jei(π/2+θ ) + M2, p4 = Jei(π/2−θ ) + M2,
and M2 = 2g2/[γ /2 + i(
 + δ + G)]. Observations reveal
that the nonzero terms of the field in resonator A can be
altered by the value of G, potentially impacting the linear
and nonlinear output of the system. Analogous to the first
scenario, the two coefficients χ (1) and χ (3) can be computed.

In Fig. 4, the normalized linear transmission rate T and
the third-order Kerr-nonlinear coefficient K are depicted
for different coupling strengths between the two artificial
atoms, illustrating their dependencies on the detuning 
/κ1
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FIG. 4. The linear transmission rate T and Kerr-nonlinear coeffi-
cient K of the probe field vs the 
/κ1 for different coupling strengths
G. When κ2/κ1 = 6, (a) the linear transmission rate T for G = 0
(green dash-dot line), G = 4 (red solid line), G = 8 (black dotted
line). (b) Kerr-nonlinear coefficient K for the same values of G. For
κ2/κ1 = −6, (c) the logarithm of T for the same values of G. (d) The
logarithm of K for the same values of G. The remaining system
parameters are defined as J = 3κ1, g = κ1, κe = 5κ1, γ = 0.7κ1,
δ = 0, and θ = π/2.

in passive-passive or passive-active double-resonator configu-
rations. For the scenario with κ2/κ1 = 6, Fig. 4(a) presents the
linear transmission rate T as a function of 
/κ1. When G = 0,
three absorption dips are observed, one at 
 = 0 and the other
two symmetrically positioned about it. As G increases, the
symmetry of these curves is broken, and the absorption dip
on the left side undergoes a noticeable blue shift. In Fig. 4(b),
the nonlinear system output is displayed. Notably, for G �= 0,
the curves exhibit asymmetry about 
 = 0 in contrast to
the symmetric pattern observed at G = 0. This asymmetry
can be elucidated by analyzing the system Hamiltonian (with
J = 0, δ = 0 and h̄ = 1):

Ĥ1 = 
(â†â + b̂†b̂) + 
(σ̂+
1 σ̂−

1 + σ̂+
2 σ̂−

2 )

+ g[(â† + b̂†)(σ̂+
1 + σ̂+

2 ) + H.c.]

+ G(σ̂+
1 σ̂−

2 + H.c.) + εp(â† + â). (25)

The spin interaction, expressed in symmetric and antisym-
metric modes with resonance frequencies 
 ± G, can be
reformulated as

Ĥ2 = 
(â†â + b̂†b̂) + εp(â† + â)

+ (
 + G)σ̂+
S σ̂−

S + (
 − G)σ̂+
A σ̂−

A

+ g[(â† + b̂†)σ̂+
S + H.c.], (26)

in which σ̂+
S = (σ̂−

S )† ≡ (σ̂+
1 + σ̂+

2 )/
√

2 and σ̂+
A = (σ̂−

A )† ≡
(σ̂+

1 − σ̂+
2 )/

√
2. It is evident that the resonance between the

cavities and qubits shifts from 
 = 0 to the points 
 = ±G.
The presence of only one resonant mode at 
 = −G is at-
tributed to the coupling between the cavity and the symmetric
mode (further insights can be found in Appendix B).
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FIG. 5. The Kerr-nonlinear coefficient K (blue solid line), non-
linear absorption coefficient A (red dash-dot line), and linear
transmission rate T (black dotted line) as functions of the detuning

/κ1. (a) G = 0. (b) G/κ1 = 2. (c) G/κ1 = 4. (d) G/κ1 = 16. The
other parameters in the system are chosen as κ2 = −5κ1, J = 4κ1,
g = κ1, κe = 5κ1, γ = 0.7κ1, δ = 0, and θ = π/2.

In the second scenario, where κ2/κ1 = −6, the logarithms
of T and K are plotted as functions of 
/κ1 in Figs. 4(c)
and 4(d), respectively. Analogous to the outcomes observed in
the first physical system, when the gain-to-loss ratio satisfies
κ2/κ1 < 0, both linear and nonlinear outputs witness substan-
tial enhancements. At G = 0, the peaks of both linear and
nonlinear outputs are located at 
 = 0, accompanied by two
sideband amplification peaks at 
/κ1 = ±2. With an increase
in G/κ1 to 4, the maximum of T remains constant, while
the maximum of K further escalates. The peak on the right
shifts to approximately 
/κ1 = 0.8 with heightened intensity,
whereas the peak on the left shifts to 
/κ1 = −4.8 with
reduced intensity. When G/κ1 = 8, the central peak at 
 = 0
for both T and K drastically diminishes to roughly T = 1013

and K = 1011. The peak on the right intensifies to T = 1013

and K = 1017 at 
/κ1 = 0.5, while the left peak weakens to
T = 0.25 and K = 87 around 
/κ1 = −8.5.

To contrast the field output at varying values of G, the Kerr-
nonlinear coefficient K , nonlinear absorption A, and linear
transmission T are depicted in Fig. 5 as functions of 
/κ1.
Illustrated in Fig. 5(a), when G = 0, K exhibits an even sym-
metry with respect to 
/κ1, while A displays an odd function
of 
/κ1. At the frequency corresponding to the right peak
in K , T attains its maximum value, while A tends to zero.
Subsequently, in Figs. 5(b)–5(d), for G/κ1 = 2, 4, and 16,
respectively, the interaction between the two artificial atoms
disrupts the symmetry of all three curves. This phenomenon
is likely attributed to the interference among three types of
interactions: resonator-resonator, resonator-atom, and atom-
atom couplings. This interference consequently influences
the effective resonant modes within the system, akin to a
quantum interference effect [85]. With an increase in G,
the intensity of T remains relatively stable, while K and
A initially rise and then decline. This amplification stems
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FIG. 6. The normalized linear transmission rate T and Kerr-
nonlinear coefficient K of the probe field vs the detuning 
/κ1 for
different values of the set (G/κ1, θ ). The blue solid, orange solid,
green dash-dot, black dotted, and red dashed lines represent θ = −π ,
θ = −π/2, θ = 0, θ = π/2, and θ = π , respectively. Other parame-
ters include g = 2κ1, J = 6κ1, κe = κ1, κ2 = −1.4κ1, γ = 0.7κ1, and
δ = 0.

from the nonlinearity introduced by the two qubits. How-
ever, the decrease in the field output intensity could be a
result of the competing interactions among these elements.
A more robust coupling strength G than J and g may prior-
itize the atom-atom interaction over the resonator-resonator
and resonator-atom interactions, causing energy confinement
within the artificial atoms rather than emission from the sys-
tem. The inclusion of G not only distorts the symmetry of the
curves but also governs the peak value of the field output. This
observation indicates that the intensity of the nonlinear output
can be effectively modulated by the interactions of artificial
atoms.

In Fig. 6, the normalized linear transmission rate T and
Kerr-nonlinear coefficient K are plotted as functions of 
/κ1

for different values of the phase θ and coupling strength G.
When G = 0, the plots of T and K against 
/κ1 are presented
in Figs. 6(a) and 6(b). These two curves demonstrate sym-
metry about the 
 = 0 axis when θ = ±π/2. With varying
θ , the frequencies of the two peaks undergo certain shifts,
where the amplitude of one peak can be magnified while the
other is attenuated. The linear and nonlinear characteristics
display contrasting variations with θ . For instance, at θ = 0,
T exhibits an intensified peak at 
/κ1 ≈ 6 and a diminished
peak at 
/κ1 ≈ −8, while K features a heightened peak at

/κ1 ≈ −8. Upon setting θ = ±π , T manifests a magnified
peak at 
/κ1 ≈ −6 and a suppressed peak at 
/κ1 ≈ 8,
whereas K displays a heightened peak at 
/κ1 ≈ 8. This
attribute can be leveraged in scenarios necessitating enhanced
nonlinearity alongside suppressed linear signals. In a distinct
scenario where G/κ1 = 4, Figs. 6(c) and 6(d) exhibit T and
K as functions of 
/κ1. In contrast to the initial scenario, the
curves lack symmetry, showcasing varied peak intensities and
frequencies. The results underscore the capacity to tune the
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FIG. 7. Nonreciprocity in the PT -symmetric system. (a) Schematic diagram of the system: Port 1 is for probe signal input to resonator
A, while port 2 is for the signal driven on resonator B. The system features a phase-induced gauge field resulting from resonator-resonator
coupling. Precise transmission results are calculated under system parameters: (b) J/κ1 = 2, G/κ1 = 0; (c) J/κ1 = 2, G/κ1 = 2; (d) J/κ1 = 2,
G/κ1 = 4; and (e) J/κ1 = 2, G/κ1 = 8. The red circles and blue rectangles represent the transmission results when the input signal is applied
to resonators A and B, respectively. The red dotted and blue dash-dot lines represent the transmission results when J = 0 and G = 0. The other
parameters are κ2 = −3.6κ1, g = κ1, κe = 0.1κ1, γ = 0.7κ1, and δ = 0.

output field intensity and peak frequency of the passive-active
double-resonator system by manipulating the parameter θ .

3. Nonreciprocity of transmission

As previously discussed, the linear transmission rate T and
third-order Kerr-nonlinear coefficient K can be manipulated
by several system parameters, including the gain-to-loss ra-
tio κ2/κ1, resonator-resonator coupling strength J , atom-atom
coupling strength G, and the phase θ embedded in J . To
delve deeper into nonreciprocity, we independently stimulate
both resonators and analyze the resultant transmission output.
Here, the phase θ acts as the independent variable capable of
altering the transmission output of the system. The numerical
outcomes are derived from Eqs. (5)–(10):

H0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a
b
σ z

1

σ−
1

σ z
2

σ−
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ √
κe

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

S1
in

S2
in

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0. (27)

When the probe field is applied to resonator A, the input
signals are S1

in = εp and S2
in = 0. Similarly, when resonator B

is excited, the input signals are S1
in = 0 and S2

in = εp.
As illustrated in Fig. 7(a), two resonators, functioning as

distinct ports, are stimulated by the probe field. According
to Eq. (20), the transmission responses under two excitation
directions are computed as S1 = 1 − a/εp and S2 = 1 − b/εp.
The modulated transmission output Tp influenced by the phase
θ is plotted in Figs. 7(b)–7(e) for varying values of J and
G. With the range from −π to 0, the specific intervals of
TA→B and TB→A span from −0.75π to −0.25π for J/κ1 = 2
and G/κ1 = 0, from −0.7π to −0.25π when J/κ1 = 2 and

G/κ1 = 2, from −0.8π to −0.2π with J/κ1 = 2 and G/κ1 =
4, and from −0.85π to −0.2π for J/κ1 = 2 and G/κ1 = 8.
The disparity between TA→B and TB→A signifies the non-
reciprocity within the system. Evidently, one can tune the
transmission output, irrespective of whether the input signal is
directed towards resonator A or resonator B. This adaptability
could be attributed to the gauge field introduced through the
phase θ , which aids in breaking the time-reversal symmetry
within the system [47,62,86]. Consequently, the transmission
outcomes exhibit nonreciprocity along both propagation di-
rections. Additionally, it appears that different values of J
and G can alter the range of nonreciprocity. This phenomenon
might offer a strategy for designing devices necessitating non-
reciprocal transmission or potentially enabling unidirectional
invisibility.

B. Properties of PT symmetry

The PT -symmetric phase and PT -broken phase are delin-
eated through the linear and nonlinear output characteristics of
the weak probe field. This section portrays the phase diagram
of the first physical system by evaluating effective eigen-
values. By employing Eq. (4), the coefficient matrix can be
expressed as follows:

H =

⎡
⎢⎢⎢⎣


 − iκa/2 Jeiθ g g
Je−iθ 
 − iκb/2 g g

g g ζ − iγ /2 0
g g 0 ζ − iγ /2

⎤
⎥⎥⎥⎦.

(28)

The qubit and the probe signal can be represented as ζ =

 + δ. To vividly illustrate distinct phases, the semiclassi-
cal Heisenberg-Langevin equations can be streamlined based
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on the steady-state approximation (dσ z
1/dt = dσ−

1 /dt =
dσ z

2/dt = dσ−
2 /dt = 0) [87]:

da

dt
= −

(
i
 + κa

2

)
a − Jei( π

2 +θ )b − M + εp
√

κe, (29)

db

dt
= −

(
i
 + κb

2

)
b − Jei( π

2 −θ )a − M, (30)

in which

M = M1γ (a + b)

γ + (M1 + M�
1 )|a + b|2 , (31)

and M1 = 2g2/[γ /2 + i(
 + δ)]. Then, the matrix form is

H =
[

 − iκa/2 − iM Jeiθ − iM

Je−iθ − iM 
 − iκb/2 − iM

]
. (32)

The eigenvalues are

λ± =
[

 − i

4
(κa + κb + 4M )

]

±
√

J2 − M2 − 2iMJcosθ − 1

16
(κa − κb)2. (33)

It can be observed that when κb/κa < 0, the unbro-
ken PT -symmetric phase fulfills the condition J2 − M2 −
2iMJcosθ − 1

16 (κa − κb)2 > 0. Conversely, the broken PT -
symmetric phase occurs in the range satisfying J2 − M2 −
2iMJcosθ − 1

16 (κa − κb)2 < 0.
The phase diagram of the PT -symmetric system is illus-

trated in Fig. 8(a) showing the real (solid lines) and imaginary
parts (dashed lines). The system can transition between
the broken PT -symmetric phase and the unbroken PT -
symmetric phase by adjusting the gain-to-loss ratio. Three
distinct regimes are outlined: (1) κ2/κ1 > 0, corresponding to
the non-PT -symmetric regime; (2) −6 < κ2/κ1 < 0, repre-
senting the unbroken PT -symmetric regime; and (3) κ2/κ1 <

−6, indicating the broken PT -symmetric regime. During the
phase of (1), the system behaves akin to a passive-passive
system without output field enhancement. In the phase of (2),
nonzero imaginary parts in the eigenvalues are attributed to
the dominant photon-tunneling effects, characterized by J and
θ , surpassing the intracavity localization effects associated
with the gain-to-loss ratio. This suggests that the gain in
resonator B fails to offset the overall loss in the system [45].
It is possible to adjust Jeiθ or κ2/κ1 to induce a PT transition
within the system. Phase (3) is marked by an escalation in
the field intensity within resonator A, consequently amplify-
ing the nonlinear output of the system. At κ2/κ1 ≈ −6, this
aligns with the EP of the PT transition in the passive-active
double-resonator system. Near the EP, a significant boost
in the output field is anticipated [49,51]. The logarithm of
the maximum linear transmission rate Tmax and the maxi-
mum third-order Kerr-nonlinear coefficient Kmax are plotted
as functions of the gain-to-loss ratio κ2/κ1 in Figs. 8(b) and
8(c), correspondingly. Both parameters indicate a conspicuous
enhancement when the ratio κ2/κ1 approximates the EP value.
The values of Tmax and Kmax are computed using Eqs. (20)
and (21) derived from the semiclassical Heisenberg-Langevin
equations of motion, while the phase diagram is formulated
from Eq. (32) with estimates from Eqs. (29) and (30). The
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FIG. 8. The phase diagram of the PT -symmetric system and
enhancement of linear and nonlinear properties by breaking PT
symmetry. (a) The phase diagram of the system. The real and imag-
inary parts of the effective eigenfrequencies λ± of this system are
plotted as functions of the gain-to-loss ratio κ2/κ1. Blue solid and
dashed lines are the real and imaginary parts of λ+, while red solid
and dashed lines are the real and imaginary parts of λ−. (b) The
logarithm of the maximum linear transmission T as a function of
the gain-to-loss ratio κ2/κ1. (c) The logarithm of the maximum
third-order Kerr-nonlinear coefficient K as a function of the ratio
κ2/κ1. The other parameters are chosen as g = κ1, J = 3κ1, κe = 5κ1,
γ = 0.7κ1, δ = 0, and θ = π/2.

EPs in these figures are nearly identical, signifying strong
concurrence between the results obtained via the perturbation
approach and the steady-state approximation.

C. Modulation of PT symmetry

The phase diagram of the PT -symmetric system has been
computed, illustrating the amplification of both linear and
nonlinear outputs to delineate the EP of the phase transition.
It has been demonstrated that by adjusting the gain-to-loss
ratio κ2/κ1, the phase within the system can be controlled,
with an EP corresponding to a specific value of κ2/κ1 given
particular system parameters. This section investigates vari-
ous parameters in the system, such as the phase θ and the
coupling strengths J and G, to modulate the EP of the phase
transition.

The energy-level arrangement of the system is shown
in Fig. 9(a), showcasing two resonators and two artificial
atoms engaging in interactions that can result in energy-level
splittings within the system. Subsequently, Figs. 9(b)–9(d)
examine three system parameters, the phase θ and the cou-
pling strengths J and G, to manipulate the EP of the phase
transition. To begin, in Fig. 9(b), the influence of the phase
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FIG. 9. Modulation of EP of the PT phase transition. (a) The
energy-level configuration of the system consists of two resonators
and two artificial atoms. Three parameters, namely, (b) the phase θ ,
(c) the coupling strength J , and (d) the coupling strength G, have
been investigated to modulate the EP of the phase transition, which is
determined by κ2/κ1 in the system. Gray circles, red rectangles, and
blue rhombuses represent the EPs estimated from the phase diagram,
the maximum point in linear transmission, and the maximum point
in nonlinear enhancement, respectively.

θ on modulating the EP is illustrated. It is observed that
adjustments in the phase can induce periodic fluctuations
in the EP value. The EP derived from the phase diagram
demonstrates a correlation with the trends seen in both lin-
ear and nonlinear enhancements, although divergences exist
due to varying approximation methodologies. At θ = ±π/2,
the EP ratio value is approximately -6, consistent with the
findings in Sec. III C. Conversely, at θ = ±π or zero, the
ratio hovers around -2. Next, in Fig. 9(c), the effect of the
coupling strength J on modulating the EP is investigated. In
this analysis, it is observed that the EP determined from the
phase diagram deviates significantly from the EP obtained
through linear and nonlinear enhancements. However, both
methodologies converge on an EP value of κ2/κ1 = −6 when
J/κ1 = 3. The results of output field enhancement indicate
that the EP value ranges from -2.5 to -10 as J/κ1 varies from
0 to 5. In Fig. 9(d), the impact of the coupling strength G on
modulating the EP is demonstrated. In this instance, the inter-
action between two qubits is considered a perturbation to the
system for simplicity. It has been verified that the EP values,
estimated from the peak points in both linear and nonlinear
outputs, increase with larger G. Specifically, the EP value
transitions from -5.8 to -5.3 as G/κ1 ranges from 0 to 10. This
observation suggests that intensified interactions between the
two artificial atoms may result in a higher EP value associated
with the gain-to-loss ratio. These system parameters serve
as effective tools for adjusting the exceptional point of the
PT -symmetric phase transition, thus enhancing the versatility
of the system to a certain degree. For further details, please
consult the second section of Appendix A.

FIG. 10. Circuit diagram for the phase qubit (black), resonator
(blue and red), and couplers between resonators (purple) and be-
tween qubit and resonator (in green and orange).

IV. EXPERIMENTAL SETUP

In this section, we aim to provide a succinct discussion
on the experimental implementation based on existing experi-
mental techniques. As displayed in Fig. 10, one feasible setup
for this study involves two phase qubits [88] equipped with
geometric inductance, capacitance, and Josephson junctions,
along with two resonators featuring geometric inductance and
capacitance. The phase qubits are regulated by a single flux-
bias line supplying dc and rf flux φi

q, (i = 1, 2). Qubit readout
is realized through a short pulse that induces tunneling of
the excited state. The system further includes three tunable
couplers achieved using an rf SQUID loop with geometric
inductance and two junctions, forming a dc SQUID to alter
the properties of the rf SQUID [89–92]. The couplers are
controlled by two external flux-bias lines: one imposing flux
φ

j
c on the rf SQUID and the other applying flux φ

j
β to the

embedded dc SQUID via inductance Lj, ( j = 1, 2, 3). Based
on these couplers, effective mutual inductances such as MAB,
MA1, MB2, and M12 among them are defined. Resonators A and
B are coupled to qubits 2 and 1 via Ca and Cb, respectively. It
is important to note that the circuit design could alternatively
incorporate other superconducting qubits.

For the phase in a gauge field, it can manifest in any cou-
pling arrangement between qubits or resonators. Firstly, there
is φ1 established between two resonators. Secondly, there are
φ2 and φ3 existing between a resonator and a qubit. Lastly,
there is a phase interaction between two phase qubits. For
simplicity, the phase involvement in the coupling between two
resonators is illustrated as a representative case (highlighted in
purple in Fig. 10), while the other coupling scenarios are all
grounded in geometric capacitance. The collective flux bias
administered to the coupler can be expressed as [92]

φ1 = φ0
1 + δφ1 cos( f1τ + θ1), (34)

in which the first term φ0
1 represents the dc magnetic flux, and

the second term signifies the ac magnetic flux at frequency
f1 and initial phase θ1. Then, the current flowing through this

033723-9



DAI, HE, HE, YANG, LIU, AND CHEN PHYSICAL REVIEW A 109, 033723 (2024)

TABLE I. Experimental observations of qubit-resonator and qubit-qubit coupling in superconducting quantum circuits.

Reference Qubit type a Cavity type b γ /2π c(MHz) κ/2π d(MHz) g/2π e(MHz) ωr/2π f(GHz) Notes

Allman et al. (2010) [89] PQ LE 7.4 1 q-r: 0–100 7.71 Coherent tunable coupling

Allman et al. (2014) [90] PQ LE 1.1 0.6 q-r: 0.4–482 7.2 Enable to introduce phase in the coupler

Yoshihara et al. (2018) [93] FQ LE ∼1 ∼1 q-r: 7480 6.335 Deep-strong-coupling regime

Yoshihara et al. (2017) [94] FQ LE ∼1 ∼1 q-r: 7630 5.711 First DSC work

Hoi et al. (2011) [95] TQ TL 73–96 — — — Single photon router

Noh et al. (2023) [96] TQ LE 0.135 10 q-r: 10 9.4 Statically decoupled qubits from the cavity

Stehlik et al. (2021) [97] TQ — 9-562 — q-r: 80, 110 q-q: 6 — Fixed frequency of qubits with tunable coupling

Xu et al. (2020) [98] XQ LE — — q-r: 122 q-q: 12 6.74 (c) CZ-gate with fidelity 99.5%

Kandala et al. (2021) [99] TQ LE 0.0087 — q-r: 87.5, 88.5 q-q: 6.2 5.964 Multi paths coupling

aPQ: phase qubit; FQ: flux qubit; TQ: transmon qubit; XQ: Xmon qubit.
bLE: lumped-element resonator; TL: transmission line resonator.
cγ : qubit decay rate.
dκ: photon decay rate.
eg: coupling strength; q-r: qubit-resonator coupling; q-q: qubit-qubit coupling.
fωr : resonator frequency; c: coupler frequency.

coupler is

I1 = I0
1 sin

[
2π

�0
(φ1 − L1I1)

]
, (35)

in which I0
1 denotes the critical current of the Josephson

junction in the coupler, and �0 = h/2e is the magnetic flux
quantum. With these definitions, the effective mutual induc-
tance established by coupler 1 (M1 = MAB) would satisfy

Meff
1 = M2

1
∂I1

∂φ1

= M2
1

L1

α1 cos[2π (φ1 − L1I1)/�0]

1 + α1 cos[2π (φ1 − L1I1)/�0]
, (36)

in which α1 = 2π I0
1 L1/�0. Applying the weak ac flux bias

condition, which is δφ1 
 φ0
1 , the effective mutual inductance

can be transformed by a Taylor-series centered at φ0
1 :

Meff
1 =

∞∑
r=0

1

r!

∂rMeff
1

∂ (φ1)r
|φ1=φ0

1

(
φ1 − φ0

1

)r
. (37)

In this situation, it can be truncated to the first-order term of
the parameter δφ1. Then, the mutual inductance is approxi-
mately calculated as

Meff
1 ≈ M0

1 + δM1 cos( f1τ + θ1), (38)

in which these terms satisfy

M0
1 = M2

1

L1

α1 cos β1

1 + α1 cos β1
,

δM1 = −M2
1

L1

2πα1 sin β1

[1 + α1 cos β1]3

δφ1

φ0
,

β1 = 2π
(
φ0

1 − L1I1|φ1=φ0
1

)
�0

.

(39)

Based on coupler 1, the coupling strength between resonators
can be tuned, and the coupling phase can be adjusted by
varying the external flux signal. Recent experimental findings
[100,101] confirm the feasibility of meeting all the afore-
mentioned conditions. To enhance the transparency of these
parameters, we present a selection of pertinent experiments

in Table I, detailing circuit designs, the range of coupling
strength, and the accomplishment of adjustable phase within
the circuit. Based on these references, it appears straightfor-
ward to modulate the phase within a system featuring multiple
coupling paths. Furthermore, ongoing experimental advance-
ments hold the promise of refining the characteristics of these
systems in the near term, thereby significantly increasing the
prospects of achieving heightened controllability.

V. CONCLUSIONS

The superconducting circuit presents significant advan-
tages in scalability and adjustability, holding great promise
for realizing the model discussed in this study. A com-
parison with systems constructed using microcavities and
atoms reveals that incorporating controllable qubit-qubit cou-
pling profoundly affects both the linear and nonlinear system
outputs. The phase disparity between the two resonators corre-
lates with the nontrivial gauge phase encompassing the entire
system, exerting influence on both the symmetry and magni-
tude of the transmission output. By individually introducing
the probe signal into each resonator, the modulation of phase
can induce nonreciprocity in transmission. By adjusting the
gain-to-loss ratio κ2/κ1, we have observed and validated a
phase transition in the PT -like-symmetric system through the
phase diagram. Proximity to the exceptional point in the phase
diagram showcases an intensified field output, providing a
foundation for signal amplification with feeble input fields.
To bolster the adaptability of the system, parameters such as
phase θ and coupling strengths J and G have exhibited the
capability to modulate the EP of the phase transition. It has
been observed that the interaction between artificial atoms
can, to some extent, enhance nonlinear output and provide
a means to modulate phase transitions within the system.
With these advancements, we anticipate that experimental
investigations on chip-scale superconducting circuits utilizing
PT -like-symmetric systems possess the potential to facilitate
additional applications in on-chip signal modulation, quantum
information processing, and the establishment of large-scale
quantum networks.
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FIG. 11. Fluctuations A and B vs driven signal εp. The other
parameters in the system are chosen as g = κ1, J = 2κ1, κe = 5κ1,
γ = 6κ1, 
 = 0, δ = 2κ1, κ2 = 3.6κ1, and θ = π/2.
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APPENDIX A: APPROXIMATION METHODS

1. Steady-state approximation
and weak excitation approximation

In this Appendix, we analyze the appropriate range of the
probe signal εp to ensure the validity of the two approximation
methods applied in Eqs. (5)–(14), namely, the steady-state
and weak excitation approximations. To enhance the accuracy
of our findings, we employ the numerical method offered
by the ode113 function in MATLAB. The fluctuation of the
annihilation operator of cavity 1, denoted as 〈a〉, is defined
as

A = 〈a〉max − 〈a〉min

〈a〉ave
, (A1)

and the fluctuation of Pauli operator of qubit 1 〈σ z
1 〉 is

B =
[(〈

σ z
1

〉
max − 0.5

)2 + (
0.5 − 〈

σ z
1

〉
min

)2]1/2〈
σ z

1

〉
ave

. (A2)

The values of A and B tuned by the ratio εp/κ1 are displayed in
Fig. 11. It can be seen that as the ratio εp/κ1 varies from 10−5

to 102, the value of A decreases from 10−5 to 10−13 as a result
of the increase in 〈a〉, whereas the value of B escalates from
10−14 to 10. At εp/κ1 = 10, the approximate values of A and
B are achieved at 10−10 and 10−2, respectively. In accordance
with various pertinent experiments [102–104], the intensity of
the driving signal can be adjusted as needed. Consequently,
if the ratio εp/κ1 � 10 holds, both approximation methods
remain valid, and the experimental configuration is deemed
feasible. Additionally, the specific value of εp/κ1 does not
influence the outcomes detailed in the main text, as the driving
signal power has been normalized according to Eqs. (20) and
(21). All other parameters applied in this work have been
thoroughly scrutinized for feasibility and validity [105–108].
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FIG. 12. Schematic depiction of EP (κ2/κ1) modulated by the
decay rate of qubits γ /κ1. (a) The phase is θ = 0.25π . (b) The phase
is θ = 0.5π . (c) The phase is θ = −π . The other parameters in the
system are chosen as g = κ1, J = 2.8κ1, κe = 5κ1, 
 = 3κ1, δ = 0,
and εp = κ1.

2. Transformation from four-body to effective two-body system

In this section, our focus lies on transitioning the system
from a cavity-qubit system to one comprising two effective
cavities. As mentioned in the main text, we presuppose the
qubit to be in a steady state, which means that the decay
rate of the qubit γ plays a crucial role in this transformation,
altering the value of the exceptional point. Consequently, we
delve into exploring the influence of γ on the approxima-
tion of the exceptional point during the phase transition. The
schematic depiction of EP modulation by the decay rate of
qubits under different coupling phases is shown in Fig. 12.
The coupling phases illustrated are (a) 0.25π , (b) 0.5π , and
(c) −π . It is evident that with an increasing γ /κ1, the EP
values calculated by both methods tend to converge. At the
theoretical limit, both methods yield the same EP value, as
the modulation of θ on the phase transition diminishes when
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γ /κ1 → ∞. This convergence arises from the reduced impact
of the qubit on the cavity due to excessive dissipation, disrupt-
ing the quantum interference engendered by multiple paths.
This situation resembles the “bad cavity limit” [109–112]. In
practical applications, achieving an infinitesimal difference in
EP calculation is unattainable, as we cannot realize qubits
with infinite dissipation. Furthermore, the decay rate must
be constrained for an effective PT system to ensure phase
transition modulation stability and functionality. In Fig. 12
of the main text, a specific parameter set chosen can lead to
noticeable disparities in the results between the two methods;
however, overall, they exhibit similar trends in their curves.

The discrepancies observed in the EP calculations using
both methods can be ascribed to the approximation techniques
employed during the model transformation process. In fact,
the model derived from Eqs. (29) and (30) overlooks certain
dynamics of the overall system outlined in Eqs. (5)–(10).
For instance, the assumption that the behavior of the two
qubits can be represented by two effective cavities implies
a system in a steady state. The rationale behind employing
this transformation to elucidate the PT phase transition lies
in the mixed nature of the coefficient matrix in Eq. (28),
encompassing both cavity and qubit components. While the
former exhibits Boson-like characteristics, the latter embodies
Fermion-like attributes, introducing a conflict. Our objective
is to represent the two emitters equivalently within a model
constructed using two effective cavities to derive analytical
eigenvalues from the coefficient matrix. This strategy enables
us to establish a clear correlation between phase transition
points and diverse parameters, facilitating discussions on the
modulation of phase transition points.

APPENDIX B: PROPERTIES OF PURE CAVITY SYSTEM

In this Appendix, a system consisting of four linear cavities
is constructed to elucidate particular phenomena observed in
cavity-qubit systems. To investigate the origin of asymmetry
in the cavity-qubit system, the intercavity coupling within the
cavity system is configured akin to the cavity-qubit model.
For simplicity, all four cavities are resonant, possess identical
decay rates, and exhibit uniform coupling strengths defined
as g. As shown in Fig. 13, three scenarios are examined:
(1) absence of direct coupling between cavities 1 and 3, (2)
presence of direct coupling between cavities 1 and 3, and (3)
inclusion of direct coupling among cavities 1 and 3, as well as
2 and 4, to analyze the transmission outcomes.

The semiclassical Heisenberg-Langevin equations of the
system can be written as

dm

dt
= −

(
i
 + κ

2

)
m − ig(n + p + q) + εp

√
κe, (B1)

dn

dt
= −

(
i
 + κ

2

)
n − ig(m + p + q), (B2)

d p

dt
= −

(
i
 + κ

2

)
p − ig(m + n + q), (B3)

dq

dt
= −

(
i
 + κ

2

)
q − ig(m + n + p). (B4)

The linear transmission would be calculated as described in
the main text. Here, we utilize the coefficient matrix of the

FIG. 13. Schematic depiction of a system constructed by four
cavities.

system to calculate the intercoupling among the system for
the three cases.

For the first case, the matrix is

HI =

⎡
⎢⎢⎢⎣


 − iκ/2 g 0 0
g 
 − iκ/2 g 0
0 g 
 − iκ/2 g
g 0 g 
 − iκ/2

⎤
⎥⎥⎥⎦.

(B5)

The system has three resonant modes 
, 
 − 2g, and 
 + 2g,
which are symmetrical about the axis 
 = 0. There is only
one route for information transfer, and the four cavities can be
treated as identical due to the highly symmetric structure.

For the second case, the matrix would be

HII =

⎡
⎢⎢⎢⎣


 − iκ/2 g g g
g 
 − iκ/2 g 0
g g 
 − iκ/2 g
g 0 g 
 − iκ/2

⎤
⎥⎥⎥⎦,

(B6)

having four resonant modes 
, 
 − g, 
 + ( 1
2 −

√
17
2 )g, and


 + ( 1
2 +

√
17
2 )g, which are asymmetric about the axis 
 = 0.

This asymmetry stems from broken symmetry and quantum
interference engendered by multiple pathways. As shown in
Fig. 14(a), the introduction of coupling interaction between
cavities 1 and 3 delineates a distinction between these cavities
and cavities 2 and 4, signifying a break in system symmetry.
Upon inputting a probe signal into cavity 1, it can traverse
through the system via diverse pathways, noted in distinct
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(a)

(b)

FIG. 14. Information transfer among the four cavities. (a) Direct
coupling between cavities 1 and 3. (b) Direct coupling between
cavities 1 and 3, as well as cavities 2 and 4.

colors. These pathways interact, causing a modulation of ef-
fective mode frequencies within the system. Consequently,
owing to broken symmetry and quantum interference induced
by multiple pathways, the output of the system exhibits a
marked deviation from its previous state, manifesting asym-
metry.

As for the third case, the matrix is

HIII =

⎡
⎢⎢⎢⎣


 − iκ/2 g g g
g 
 − iκ/2 g g
g g 
 − iκ/2 g
g g g 
 − iκ/2

⎤
⎥⎥⎥⎦.

(B7)

The system has two resonant modes, 
 − g and 
 + 3g,
asymmetric around the axis 
 = 0. This asymmetry can be at-
tributed to quantum interference. As Fig. 14(b) demonstrates,
the information transfer propagation is notably more intricate
compared to the preceding scenario. While the added coupling
between cavities 2 and 4 enhances the propagation complex-
ity, it aids in restoring the high symmetry of the system.

Consequently, these four modes degenerate into two, with one
mode transitioning to 
 − g and the other to 
 + 3g.

In the cavity-qubit PT -symmetric system, the presence of
qubit nonlinearity and gain within a single component dis-
tinguishes it from a pure cavity system. Initially, there is no
direct interaction between atoms or cavities (G = 0, J = 0).
As shown in Fig. 2(a), three resonant modes are observed,
resembling the phenomenon in the initial case of the pure
cavity system. This similarity arises from both systems hav-
ing only one route for information transfer, devoid of any
competition or interference. In Fig. 4(b), cavity 2 exhibits a
positive value rather than a negative one, with the disparities
attributed to the presence of gain within the system. In the
next scenario, there exists direct interaction between cavities
(G = 0, J �= 0). As shown in Fig. 2(a), the transmission curve
exhibits symmetry, and resonant modes remain intact. This
behavior contrasts with the asymmetry observed in the sec-
ond case of the pure cavity system, where J �= 0 induces no
asymmetry in the cavity-qubit system. Compared with the first
case, cavity mode (boson) is unidentical with qubit (fermion),
therefore the additional coupling route between cavities does
not disrupt the symmetry of the original system. Moreover, the
cavity-qubit coupling, distinct from cavity-cavity coupling,
may introduce significant quantum interference effects within
a system featuring multiple pathways. Consequently, the value
of J can modulate the frequencies of resonant modes rather
than the symmetry of transmission curves. In the third sce-
nario, there is direct interaction between cavities and atoms
(G �= 0, J �= 0). As evident from Fig. 4(a), the curves display
asymmetry, featuring three distinct resonant modes. Compar-
ative analysis with the third case of the pure cavity system
indicates that the frequencies and symmetries of two reso-
nant modes situated away from the 
 = 0 axis are primarily
influenced by quantum interference, while the single mode
adjusted by the coupling strength G is linked with qubit prop-
erties. In Fig. 4(c), the observed differences can be attributed
to the gain in cavity 2. A notable observation is the emergence
of a different mode at 
 = 0 in the positive-negative system.
With an increase in qubit-qubit coupling strength G, there is
a tendency for the intensity of the right mode to increase and
that of the left mode to decrease. This phenomenon may be
linked to quantum interference within the system. Moreover,
it appears that the left mode synchronously changes with G,
indicating a possible influence of qubit-qubit coupling on it.
Regarding the physical origin of nonlinear output, the first
case occurs when G = 0 and J �= 0, while the second case
emerges when G �= 0 and J �= 0. It can be observed that qubit-
qubit coupling can augment the intensity of nonlinear output
when cavity 2 is negative. In Fig. 4(d), with cavity 2 being
positive, the introduction of qubit coupling disrupts the sym-
metry of the nonlinear output curves. This phenomenon may
be akin to the disruption observed in linear transmission: the
appearance of the resonant mode at 
 = 0 is predominantly
due to the PT -symmetric system, while the modulation of
the sideband modes is influenced by quantum interference and
qubit interactions. It is inferred from Eq. (24) in the main text
that the numerator M2G/2g signifies the substantial impact of
G on the nonlinear output of the system.
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and J. Vučković, Controlling cavity reflectivity with a single
quantum dot, Nature (London) 450, 857 (2007).

[82] I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J.
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