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Magnon blockade based on the Kerr nonlinearity in cavity electromagnonics
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Magnon blockade is an effective physical mechanism to generate a single magnon, which is of great impor-
tance in quantum information processing. We present a scheme to realize the unconventional magnon blockade
effect by using Kerr nonlinearity in a cavity electromagnonic system. Under weak driving conditions, we give
the optimal parameter conditions for magnon antibunching through analytical calculations, which are in good
agreement with numerical results. Furthermore, we find that Kerr nonlinearity is necessary to create magnon
blockade. In particular, unconventional magnon blockade can be achieved in both weak nonlinearity and weak
coupling regimes. The present scheme indicates a method for generating unconventional magnon blockade effect
and provides a feasible and flexible platform for the realization of a single-magnon source with high purity.
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I. INTRODUCTION

Hybrid quantum systems that combine the advantages
of different quantum subsystems play an important role in
the fields of quantum technology, quantum information pro-
cessing, and quantum sensing [1–3]. In recent years, hybrid
quantum systems based on collective spin excitations in ferro-
magnetic crystals have developed rapidly [4–12]. A variety
of quantum phenomena, including magnon-photon-phonon
entanglement [13–15], mechanical squeezing [16,17], as well
as photon and magnon blockade (MB) [18–24], have been ex-
tensively investigated both theoretically and experimentally.
Cavity electromagnonics serves as the basis of almost all hy-
brid systems based on magnonics, focusing on the interaction
between magnetic spin waves [25] and microwave photons.
A typical cavity electromagnonic system consists of the mi-
crowave cavity and yttrium iron garnet (YIG), which serves as
a highly desirable ferromagnetic material due to its high spin
density and low dissipation rate [26–28]. The hybrid quantum
system containing magnons is different from the conventional
cavity optomechanical system [29,30]. By utilizing the mag-
netic dipole interaction, the coupling between magnons and
microwave photons can be achieved.

The MB effect, similar to the photon blockade effect [31],
implies that the absorption of the first few magnons will
block the transmission of subsequent magnons. The MB ef-
fect is divided into conventional magnon blockade (CMB)
and unconventional magnon blockade (UMB) due to dif-
ferent physical mechanisms. The CMB effect is caused by
the anharmonicity of the energy spectrum in the system,
while the UMB effect is induced by the destructive quan-
tum interference between different transition paths. The MB
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effect in a hybrid ferromagnet-superconductor quantum sys-
tem was first proposed in 2019 [18], subsequently demon-
strated in a hybrid quantum system of a three-dimensional
microwave cavity coupled to both a small YIG sphere and
a superconducting qubit [21], and explored in a hybrid
ferromagnet-superconductor system with two qubits [32].
Recently, the simultaneous photon-phonon-magnon blockade
has been achieved in a hybrid microwave optomechanical-
magnetic system [33]. Meanwhile, the MB effect has been
extended to the multimagnon regime, which has been studied
in a hybrid superconducting system [34].

As a nonlinear interaction between fields and waves, the
Kerr interaction [35–38] can be employed for the realization
of quantum logic gates [39,40] and the generation of entan-
gled photons [41,42]. The photon blockade effect has been
studied using the cross-Kerr interaction between the cavity
and mechanical modes [43,44] as well as two resonators [45].
Also, a scheme has been proposed to implement the un-
conventional photon blockade effect via the cavity self-Kerr
coupling and the intercavity cross-Kerr coupling in a four-
mode optomechanical system [46]. Recently, a scheme has
been proposed to investigate the MB effect in cavity magnon
systems by utilizing cross-Kerr interactions between cavity
modes [23,47]. However, this scheme uses the Heisenberg
equation of motion to consider the dynamics of the system.
Therefore, an intriguing question arises here: is it possible to
study the MB effect using the master equation to describe the
dynamic evolution of the system?

Inspired by the above-mentioned works, in this paper,
we present an efficient method for realizing UMB in both
strong-coupling and weak-coupling regimes. Here, strong
coupling [48,49] (weak coupling) means that the magnon-
photon coupling strength is larger (less) than the decay rate
of the modes. The magnon-photon coupling strength can be
changed by adjusting the position of the YIG sphere. We study
the MB effect based on Kerr nonlinearity in the cavity electro-
magnonic system, by analytically and numerically calculating
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FIG. 1. (a) Schematic diagram of the cavity electromagnonic
system consisting of two microwave cavity modes in an optical cavity
within a Kerr medium and a magnon mode. (b) Diagram of a magnon
mode interacting with two microwave cavity modes in a microwave
cavity containing Kerr medium.

the equal-time second-order correlation function of magnons
using wave function and density matrix methods, respectively.
We find that the numerical results agree with the analytical
calculations. In particular, Kerr nonlinearity is necessary to
achieve magnon antibunching. This work may provide an
experimentally implementable method for the observation of
the MB effect in the cavity electromagnonic system.

This paper is organized as follows. In Sec. II, we de-
rive the Hamiltonian of the cavity electromagnonic system
consisting of two microwave cavity modes and a magnon
mode. In Sec. III, we analytically and numerically solve the
equal-time second-order correlation functions and give the
optimal parameter conditions for UMB. In Sec. IV, we discuss
the influence of tunable parameters on the UMB. Finally, a
conclusion is given in Sec. V.

II. SYSTEM MODEL

We consider a cavity electromagnonic system in which
a two-mode quantized radiation field (with specific standing
wave field distributions) oscillating in frequencies ω1 and ω2

interacts with the magnon mode (with frequency ωm) in a
YIG sphere in a microwave cavity containing Kerr medium,
as depicted in Fig. 1. Using this centrosymmetric nonlin-
ear medium, both self-Kerr and cross-Kerr nonlinearities are

considered simultaneously in the system. The magnons are
embodied by the collective excitation of a large number of
spins inside a YIG sphere. The YIG sphere (250 µm diameter)
is mounted at the antinode of the magnetic field of the cavity
mode and magnetized to saturation by a bias magnetic field
H . The bias magnetic field (z direction), the magnetic field
(x direction) of the microwave cavity mode, and the drive
field magnetic component (y direction) are perpendicular to
each other at the position of the YIG sphere. This maximizes
the strength of the magnon-photon coupling. The magnon
mode is directly driven by a microwave source with frequency
ωd . In a frame rotating at the driving frequency ωd , the total
Hamiltonian of the system is written as (h̄ = 1)

H = H0 + HI + Hk + Hd . (1)

H0 corresponds to the free Hamiltonian of two microwave
cavity modes and a magnon mode, which can be given by

H0 = �1a†
1a1 + �2a†

2a2 + �mm†m, (2)

where a†
i (ai ) and m†(m) are the creation (annihilation) opera-

tors of the microwave cavity and magnon modes, respectively.
For clarity, Table I concludes the definitions of operators,
frequencies, and decay rates for the physical systems consid-
ered in this paper. Here, �(i,m) = ω(i,,m) − ωd is the driving
detuning. HI represents the interaction between microwave
cavity modes and the magnon mode. The Hamiltonian can be
described by

HI = g1(a†
1m + a1m†) + g2(a†

2m + a2m†), (3)

where gi is the magnon-photon coupling strength. The
magnetic dipole interaction mediates the coupling between
magnons and microwave photons. Hk refers to the self-Kerr
and cross-Kerr nonlinearity of microwave cavity modes. It
reads as

Hk = −U1a†
1a1a†

1a1 − U2a†
2a2a†

2a2 − Ua†
1a1a†

2a2, (4)

where Ui = 3(h̄ωi )2χ̄ (3)/(4ε0Veff ε̄
2
r ) is the self-Kerr nonlinear

coefficient of the microwave cavity mode. To have order-of-
magnitude results, we assume constant values for the average
real part of the nonlinear susceptibility and relative dielec-
tric permittivity, χ̄ (3) and ε̄2

r , respectively. ε0 is the vacuum
permittivity, and Veff is the effective mode volume. U is
the cross-Kerr coefficient between the two microwave cavity
modes. Meanwhile, the self-Kerr and cross-Kerr coefficients
satisfy the following relationship: U1 = U2 = U/2 [50]. Hd

denotes the magnon mode is directly driven by a microwave
source. It is given by

Hd = �d (m† + m). (5)

The Rabi frequency �d = (
√

5/4)γ0

√
NB0 denotes the

coupling strength between the magnon mode and its driving
magnetic field with amplitude B0 and frequency ωd , where
γ0 is the gyromagnetic ratio, and the total number of spins
N = ρV with the spin density ρ and the volume of the
sphere V. The experimentally accessible parameters are
chosen as [13,51,52] ωi/2π = 10 GHz, ωm/2π = 10 GHz,
κi/2π = 1 MHz, γm/2π = 1 MHz, Veff = 0.01 µm3,
χ̄ (3)/ε̄2

r = 2×10−17 m2/V2, γ0/2π = 28 GHz/T, and
ρ = 4.22×1027 m−3.
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TABLE I. Bosonic operators, and typical values for the frequencies and decay rates of the modes of the different physical systems.

Physical system Mode Operators Frequency Decay rate

Microwave cavity Microwave cavity mode i (i = 1, 2) âi, â†
i ωi/2π ∼ 10 GHz κi/2π ∼ 1 MHz

Ferromagnetic crystal Magnetostatic mode m̂, m̂† ωm/2π ∼ 10 GHz γm/2π ∼ 1 MHz

III. MAGNON STATISTICAL PROPERTIES

The statistic properties of the magnon will be described by
the equal-time second-order correlation function in the steady
state, which can be obtained through analytically solving the
non-Hermitian Schrödinger equation and numerically simu-
lating the quantum master equation.

A. Analytical solution

Here, the non-Hermitian Hamiltonian is given by adding
phenomenologically the decay rate

Hnon = H − iκ1

2
a†

1a1 − iκ2

2
a†

2a2 − iγm

2
m†m. (6)

Under the weak driving condition (�d � γm), the Hilbert
space of the system can be limited in the low-excitation sub-
space (up to 2). Therefore, the wave function for the system
can be expressed as

|ψ〉 = C000|000〉 + C001|001〉 + C100|100〉
+C010|010〉 + C002|002〉 + C101|101〉
+C011|011〉 + C110|110〉 + C200|200〉
+C020|020〉, (7)

with probability amplitudes Ca1a2m. Substituting the above
wave function and non-Hermitian Hamiltonian into
Schrödinger equation i∂|ψ〉/∂t = Hnon|ψ〉, we get a set
of dynamic equations for the probability amplitudes

iĊ000 = �dC001, iĊ001 = �′C001 + g(C100 + C010) + �d (
√

2C002 + C000),

iĊ100 = (�′ − U/2)C100 + gC001 + �dC101, iĊ010 = (�′ − U/2)C010 + gC001 + �dC011,

iĊ002 = 2�′C002 +
√

2gC101 +
√

2gC011 +
√

2�dC001,

iĊ101 = 2(�′ − U/4)C101 +
√

2gC002 +
√

2gC200 + gC110 + �dC100,

iĊ011 = 2(�′ − U/4)C011 +
√

2gC002 +
√

2gC020 + gC110 + �dC010,

iĊ110 = 2(�′ − U )C110 + gC001 + gC101,

iĊ200 = 2(�′ − U )C200 +
√

2gC101,

iĊ020 = 2(�′ − U )C020 +
√

2gC011, (8)

where we assume �1,2,m = �, κ1,2 = γm = κ , �′ = � −
iκ/2, and g1 = g2 = g. Under the assumption of the weak
driving field, the probability amplitude satisfies C000 � 1 �
C001,C100,C010 � C002,C101,C011,C110,C200,C020. By ne-
glecting the higher-order term in each equation, we can easily
obtain the steady-state solutions of the above equations,

C001 = −2�d (U − 2� + iκ )

A
,

C002 = −2
√

2�2
d [8Ug2 + C(U − 2� + iκ )]/B, (9)

with

A = 8g2 + (U − 2� + iκ )(2� − iκ ),

B = A[16g2(U − 2� + iκ ) + C(2� − iκ )],

C = (2U − 2� + iκ )(U − 4� + 2iκ ). (10)

Combining the above steady-state analytical result with the
definition of the equal-time second-order correlation func-
tion, and the fact that C000 � C001,C100,C010 � C002,C101,

C011,C110,C200,C020 under weak driving conditions. Using
the perturbation method, we approximately obtain the an-

alytical solution of the equal-time second-order correlation
function g(2)

m (0) as follows:

g(2)
m (0) = 〈m†m†mm〉

〈m†m〉2

= 2|C002|2
(|C001|2 + |C101|2 + |C011|2 + 2|C002|2)2

≈ 2|C002|2
|C001|4 . (11)

B. Numerical simulation

To verify the validity of the analytical results, we numeri-
cally study the quantum dynamics of the system. Considering
the dissipations of microwave cavity modes and the magnon
mode, the dynamical evolution of the system is described by
the quantum master equation

ρ̇ = −i[H, ρ] + κ1

2
L[a1]ρ + κ2

2
L[a2]ρ + γm

2
L[m]ρ, (12)

where L[o]ρ = 2oρo† − o†oρ − ρo†o is the Lindblad super-
operator for the arbitrary system operator o. Here, ρ̂ is the
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density operator of the system. We are concerned with the
second-order correlation function in the steady state, so we
need the steady-state density operator ρ̂s, which can be ob-
tained by setting ∂ρ/∂t = 0. Therefore, the numerical result
of the equal-time second-order correlation function is

g(2)
m (0) = 〈m†m†mm〉

〈m†m〉2
= Tr(m†m†mmρs)

[Tr(m†mρs)]2
. (13)

The second-order correlation function of magnons has been
used in most experimental and theoretical studies as a ba-
sis for determining the single-magnon blockade effect. Here,
g(2)(0) < 1 corresponding to the sub-Poissonian statistics,
which implies a magnon antibunching effect. g(2)(0) > 1 cor-
responding to the super-Poissonian statistics, which implies a
magnon bunching effect.

IV. MAGNON BLOCKADE EFFECT

According to the analytical solution for the equal-time
second-order correlation function, if setting C002 = 0, then
g(2)

m (0) → 0, generating a complete magnon blockade effect.
Thus, we obtain the optimal parameter conditions for the
UMB

0 = 8g2U + 2U 3 + 28U�2 − 14U 2�

− 16�3 − 7Uκ2 + 12�κ2, (14)

0 = 7U 2κ + 24�2κ − 28U�κ − 2κ3, (15)

and according to Eq. (15), we are able to derive

�1 = (7U −
√

12κ2 + 7U 2)/12,

�2 = (7U +
√

12κ2 + 7U 2)/12,

U1 = 2� + [
√

2/7(1 + 2�2)],

U2 = 2� − [
√

2/7(1 + 2�2)], (16)

when g and κ are determined, the optimal parameters �opt and
Uopt can be obtained from Eqs. (14) and (15). Figure 2 shows
the �opt and Uopt as functions of g/κ . It can be noticed that
the optimal parameters are valid at g/κ > 0.67. At the same
time, the optimal Kerr nonlinearity Uopt increases [Fig. 2(a)]
or decreases [Fig. 2(b)] with increasing coupling strength g/κ .
This indicates that perfect magnon blockade effect can be
observed in the strong or weak Kerr nonlinearity.

In order to verify the above analysis, we investigate the
effect of the detuning on the antibunching characteristics of
the magnon. Figure 3 displays the equal-time second-order
correlation function g(2)

m (0) as a function of the detuning �/κ

for different U . We find that the numerical results are in
good agreement with the analytical results, which proves the
validity of Eq. (11). According to Fig. 2, we know that when
fixing the values of g, the optimal parameters are obtained as
follows: for g/κ = 0.8, �opt ≈ ±0.1κ and �opt ≈ ±1.3κ . It
can be seen from Fig. 3 that the strongest magnon blockade
occurs at the optimal detuning, and the minimum value of
the corresponding g(2)

m (0) can reach 10−5, which means that
our model can obtain single-magnon sources with high purity.
At the same time, we note that the numerical and analyti-
cal solutions of g(2)

m (0) are slightly different at the optimal
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FIG. 2. The optimal detuning �opt and Kerr nonlinearity Uopt vs
the coupling strength g/κ .

detuning. This is due to the different Hilbert space dimen-
sions. To obtain the analytical solutions, we omit the quantum
jumps [53], and truncate the Hilbert space to two dimensions.
However, in actual numerical calculations, the states |a1a2m〉
(a1, a2, m > 2) are still occupied with small probability in
order to test whether a higher number of magnon excitations
can be suppressed. In Fig. 4, we plot the dynamical evolution
of the equal-time second-order correlation function, which in-
dicates the system reaches a steady state after a long evolution
time. It clearly demonstrates that g(2)

m (0) approaches a steady
value at κt ≈ 15. Based on Table I, we know that the decay

-2 -1 0 1
10-5

100

-1 0 1 2
10-5

100

Analytical Numerical

(b)

(a)

FIG. 3. The equal-time second-order correlation function g(2)
m (0)

vs the detuning �/κ for different values of the Kerr nonlinearity U .
(a) U = U1, (b) U = U2. The other parameters are g/κ = 0.8 and
�d = 0.01κ .
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FIG. 4. The equal-time second-order correlation function g(2)
m (0)

vs the time κt . The parameters are g/κ = 0.8, � = �opt = 1.3κ ,
U = Uopt = 3.9κ , and �d = 0.01κ .

rates of both the microwave cavity mode and magnetostatic
mode are κ ∼ MHz, so the corresponding relaxation time is
t ≈ 15 µs.

Unconventional magnon blockade arises from the
physical mechanism of the destructive quantum interference
between different quantum transition pathways, as
shown in Fig. 5. Obviously, there are three transition
pathways corresponding to the transition from |001〉
to |002〉. The first one is the direct excitation from
|001〉−→|002〉, and the two magnetic dipole coupling-
mediated transitions |001〉−→|100〉−→|101〉−→|002〉 and
|001〉−→|010〉−→|011〉−→|002〉. If the � and U in our
system satisfy the optimal conditions corresponding to the
fixed value g/κ , destructive interference will occur in the
three different excitation paths, the two-magnon excitation
will be suppressed, and the probability of detecting the state
|002〉 will be zero.

Next, we will study the influence of magnetic dipole
coupling strength g on the magnon blockade effect. It is
well known that if the microwave magnetic field is uni-
form throughout the ferromagnetic crystal, then the magnetic
dipole coupling vanishes except for the Kittel mode. Thus,
the coupling strength [13] between the Kittel mode and the

microwave cavity mode is

g = η

2
γ

√
h̄ωμ0

V

√
2Ns, (17)

where ω is the resonance frequency and V is the mode volume,
μ0 is the vacuum permeability and γ is the gyromagnetic
ratio, N is the total number of spins, and s = 5/2 is the
spin number of the ground state Fe3+ ion in YIG. The over-
lapping coefficient η describes the spatial overlap between
the microwave cavity and the magnon mode. Because of the
high spin density of the YIG sphere and few excitations of
magnons, it is easy to realize a strong coherent coupling mech-
anism (g > κ ) through magnetic dipole interaction. We can
move the position of the YIG sphere to change the magnon-
photon coupling strength [54]. Thus, we can easily implement
experimentally the weak and strong coupling between the
magnon mode and the microwave cavity mode.

In Fig. 6, we show g(2)
m (0) as a function of �/κ for dif-

ferent values of g/κ . It is observed from Fig. 6 that g(2)
m (0)

shows a strong antibunching effect at the optimal value of
�/κ when the optimal Kerr nonlinearity Uopt is satisfied.
Moreover, strong magnon blockade can be achieved both
in the strong and weak coupling regimes, which provides
more feasibility and flexibility for experimental implemen-
tation. In order to demonstrate the magnon blockade effect
more clearly, we plot the function log10[g(2)

m (0)] versus the
Kerr nonlinearity U/κ and the detuning �/κ in Fig. 7. Us-
ing Eqs. (14) and (15), we plot the optimal detuning �opt

and Kerr nonlinearity Uopt versus the coupling strength g/κ ,
as shown in Fig. 2. [i.e., when fixing the value of g, we
can get the optimal parameters as follows: for g/κ = 0.8,
�opt ≈ ±0.1κ (�opt ≈ ±1.3κ) and Uopt ≈ ±0.75κ (Uopt ≈
±3.9κ); for g/κ = 1, �opt ≈ ±0.07κ (�opt ≈ ±2.1κ) and
Uopt ≈ ±0.37κ (Uopt ≈ ±5.8κ); for g/κ = 2, �opt ≈ ±0.23κ

(�opt ≈ ±4.9κ) and Uopt ≈ ±0.09κ (Uopt ≈ ±13.6κ)]. Fig-
ure 7 shows that the values of �/κ and U/κ corresponding
to the strongest magnon antibunching are in good agreement
with the optimal value of �opt/κ and Uopt/κ derived from
using Eqs. (14) and (15). On the other hand, we find that
for the system without Kerr nonlinearity (i.e., U = 0), the
second-order correlation function g(2)

m (0) → 1, and the system
is unable to create the magnon blockade effect. Therefore,

FIG. 5. Energy level diagram of the system in low-excitation subspace.
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FIG. 6. The equal-time second-order correlation function g(2)
m (0)

vs the detuning �/κ for different values of g/κ . The parameters are
U = U1 and �d = 0.01κ .

Kerr nonlinearity is a necessary condition to achieve magnon
blockade effect in our system. In the discussion above, we
do not consider the effect of pure-dephasing-induced deco-
herences (γp = 0). Pure dephasing may originate from the
instability of the laser drive and therefore have a perturbing
effect on the magnon statistics. The effects of pure dephas-
ing can be modeled by adding another Lindblad term of the
form L[m†m]ρ = γp/2[2m†mρm†m − (m†m)2ρ − ρ(m†m)2]
into the master equation, where γp is the pure dephasing rate
for the magnon mode. In order to present how pure dephasing
affects UMB, we plot the equal-time second-order correlation
function g(2)

m (0) as a function of the detuning �/κ for different
values of the pure dephasing rate γp, as shown in Fig. 8.
We can see that with the increase of the pure-dephasing rate,
g(2)

m (0) increases gradually at the optimal detuning (�opt ≈
0.1κ). For higher values of pure dephasing rates (e.g., γp =
0.1κ), g(2)

m (0) approaches classical Poissonian statistics. How-
ever, the magnon antibunching still exists, which indicates
that the pure dephasing is not strictly required in this scheme.
On the other hand, we know that the numerical results are
in good agreement with the analytical results in the absence
of γp. However, the correspondence between numerical and
analytical solutions is not good when considering γp.

V. CONCLUSIONS

In conclusion, we have proposed a method to realize the
UMB effect based on self-Kerr and cross-Kerr nonlinearities

FIG. 7. Second-order correlation function on a logarithmic scale
log10[g(2)

m (0)] as a function of U/κ and �/κ . Here, we chose
(a) g/κ = 0.8, (b) g/κ = 1, and (c) g/κ = 2, respectively. The other
parameter is taken as �d = 0.01κ .

in cavity electromagnonics. Applying the quantum master
equation method, we study the dynamics of the second-order
correlation function to observe the statistical properties of the
magnons. By minimizing the result of the equal-time second-
order correlation function, we derive the optimal parameter
conditions required for the UMB. The numerical calculations

-1 -0.5 0 0.5 1
10-5

100

FIG. 8. The equal-time second-order correlation function g(2)
m (0)

vs the detuning �/κ for different values of the pure dephasing rate
γp. These dotted lines show the numerical results based on Eqs. (1)
and (14). The green, blue, and purple dotted lines respectively repre-
sent γp = 0κ , γp = 0.01κ , and γp = 0.1κ . The yellow line indicates
the analytical result based on Eq. (11). The other parameters are the
same as in Fig. 3(a).
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of the second-order correlation function obtained are in good
agreement with the analytical calculations. We investigate the
influence of Kerr nonlinearity and magnon-photon coupling
strength on the MB effect. We find that the existence of Kerr
nonlinearity is a crucial factor in the generation of MB. When
the optimal parameter conditions are satisfied, the UMB can
be generated in the strong or weak Kerr nonlinearity. At
the same time, both strong and weak coupling strength are
able to realize the MB effect, which enhances the feasibility
of the experiment. The proposed scheme contributes to the

advancement of cavity electromagnonics and offers potential
applications in quantum information processing and quantum
simulation.
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[41] M. D. Lukin and A. Imamoǧlu, Nonlinear optics and quantum
entanglement of ultraslow single photons, Phys. Rev. Lett. 84,
1419 (2000).

[42] Y. B. Sheng, F. G. Deng, and H. Y. Zhou, Efficient
polarization-entanglement purification based on paramet-
ric down-conversion sources with cross-Kerr nonlinearity,
Phys. Rev. A 77, 042308 (2008).

[43] F. Zou, L. B. Fan, J. F. Huang, and J. Q. Liao, Enhancement of
few-photon optomechanical effects with cross-Kerr nonlinear-
ity, Phys. Rev. A 99, 043837 (2019).

[44] J. Q. Liao, J. F. Huang, L. Tian, L. M. Kuang, and C. P.
Sun, Generalized ultrastrong optomechanical-like coupling,
Phys. Rev. A 101, 063802 (2020).

[45] Y. M. Wang, G. Q. Zhang, and W. L. You, Photon blockade with
cross-Kerr nonlinearity in superconducting circuits, Laser Phys.
Lett. 15, 105201 (2018).

[46] L. J. Feng, L. Yan, and S. Q. Gong, Unconventional photon
blockade induced by the self-Kerr and cross-Kerr nonlinearities,
Front. Phys. 18, 12304 (2023).

[47] M. Moslehi, H. R. Baghshahi, M. J. Faghihi, and S. Y. Mirafzali,
Nonclassicality of dissipative cavity optomagnonics in the pres-
ence of Kerr nonlinearities, Phys. Scr. 98, 025103 (2023).

[48] R. Messina, C. Holm, and K. Kremer, Strong electrostatic inter-
actions in spherical colloidal systems, Phys. Rev. E 64, 021405
(2001).

[49] R. Messina, C. Holm, and K. Kremer, Strong attraction between
charged spheres due to metastable ionized states, Phys. Rev.
Lett. 85, 872 (2000).

[50] H. Z. Shen, Y. H. Zhou, and X. X. Yi, Tunable photon blockade
in coupled semiconductor cavities, Phys. Rev. A 91, 063808
(2015).

[51] S. Ferretti and D. Gerace, Single-photon nonlinear optics with
Kerr-type nanostructured materials, Phys. Rev. B 85, 033303
(2012).

[52] X. Zhang, C. L. Zou, L. Jiang, and H. X. Tang, Cavity mag-
nomechanics, Sci. Adv. 2, e1501286 (2016).

[53] F. Minganti, A. Miranowicz, R. W. Chhajlany, and F. Nori,
Quantum exceptional points of non-Hermitian Hamiltonians
and Liouvillians: The effects of quantum jumps, Phys. Rev. A
100, 062131 (2019).

[54] D. Zhang, X. Q. Luo, Y. P. Wang, T. F. Li, and J. Q. You, Ob-
servation of the exceptional point in cavity magnon-polaritons,
Nat. Commun. 8, 1368 (2017).

033721-8

https://doi.org/10.1007/s11433-018-9327-8
https://doi.org/10.1364/PRJ.7.001229
https://doi.org/10.1103/PhysRevA.102.043705
https://doi.org/10.1103/PhysRevB.104.224434
https://doi.org/10.1103/PhysRevA.101.063838
https://doi.org/10.1103/PhysRevA.103.052411
https://doi.org/10.1103/PhysRev.73.155
https://doi.org/10.1038/nature08876
https://doi.org/10.1103/PhysRev.105.390
https://doi.org/10.1063/1.1735216
https://doi.org/10.1103/PhysRevLett.75.4710
https://doi.org/10.1103/PhysRevLett.117.080502
https://doi.org/10.1103/PhysRevLett.84.1419
https://doi.org/10.1103/PhysRevA.77.042308
https://doi.org/10.1103/PhysRevA.99.043837
https://doi.org/10.1103/PhysRevA.101.063802
https://doi.org/10.1088/1612-202X/aad465
https://doi.org/10.1007/s11467-022-1213-y
https://doi.org/10.1088/1402-4896/acb245
https://doi.org/10.1103/PhysRevE.64.021405
https://doi.org/10.1103/PhysRevLett.85.872
https://doi.org/10.1103/PhysRevA.91.063808
https://doi.org/10.1103/PhysRevB.85.033303
https://doi.org/10.1126/sciadv.1501286
https://doi.org/10.1103/PhysRevA.100.062131
https://doi.org/10.1038/s41467-017-01634-w

