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Exploring quantum synchronization with a composite two-qubit oscillator
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Synchronization has recently been explored deep in the quantum regime with elementary few-level quantum
oscillators such as qudits and weakly pumped quantum van der Pol oscillators. To engineer more complex
quantum synchronizing systems, it is practically relevant to study composite oscillators built from basic quantum
units that are commonly available and offer high controllability. Here we consider a minimal model for a
composite oscillator consisting of two interacting qubits coupled to separate baths and show that this system
exhibits a wide variety of synchronizing behaviors. We study the phase response of the constituent qubits as
well as the system as a whole, when one of the qubits is weakly driven. We consider the thermal baths to have
positive as well as effective negative temperatures and discover effects that occur only when the temperatures of
the baths for the two qubits are of opposite signs. We propose and analyze a circuit quantum electrodynamics
implementation of this model, which exploits recent advances in dissipation engineering to realize effective
negative temperature baths. Our work demonstrates the potential for assembling complex quantum synchronizing
systems from basic building units, which is of pragmatic importance for advancing the field of quantum
synchronization.
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I. INTRODUCTION

Synchronization is at the heart of a variety of phenom-
ena in nature and finds important practical applications,
e.g., in the working of pacemakers and lasers [1]. At its
core, synchronization is the tendency of a self-powered
or self-sustained oscillator (SSO) to lock to an external
phase reference. Quantum synchronization explores how the
synchronizing tendency of SSOs is affected by the strong
quantum-mechanical effects that arise when the oscillators are
scaled down in size and energy [2–20].

A quantum SSO can be realized as the low occupation limit
of a classical SSO or as a finite-dimensional system where
only a few states are available even in principle. An example
for the former is a weakly pumped van der Pol oscillator [2–5].
On the other hand, a qudit with gain and damping serves as a
realization of a finite-dimensional quantum SSO [6–9].

An important class of problems in quantum synchroniza-
tion research is to understand the synchronization of model
quantum SSOs to an external drive or the mutual synchro-
nization of two (or more) SSOs when they are coupled. Recent
work has uncovered genuine quantum features in the response
of quantum SSOs, such as entanglement [4,6], and quan-
tum interference effects that lead to synchronization blockade
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[10–12]. Furthermore, quantum synchronization is beginning
to gain experimental relevance with the demonstration of ele-
mentary synchronizing systems in a vapor of Rb atoms [13],
in nuclear spin systems [14], and by a digital simulation on a
quantum computer [15].

Going beyond paradigmatic systems, theoretical studies
have discovered novel quantum synchronization phenomena
in a variety of systems with structured energy levels and
exotic gain and loss channels [9,21]. However, it remains
unclear how such systems can be realized in practice. There-
fore, complementary efforts are needed that explore how a
variety of quantum synchronizing systems can be realized
in the laboratory. With current technology, a promising and
scalable approach to achieve this is to consider the assembly
of a quantum many-body oscillator, which we refer to as a
composite oscillator, using elementary building blocks that
are available in today’s experiments, such as qubits. Such
a bottom-up approach provides a path to assemble quantum
synchronizing systems with desired features by tuning the
properties of the constituent building blocks.

In this paper we study a minimal model of a composite
many-body quantum SSO made from two interacting qubits.
The qubits are each coupled to separate thermal baths that
provide local gain and damping to power the SSO. We study
the response of this system to a weak synchronizing drive
applied to one of the qubits. In addition to characterizing the
synchronization of the composite system using global met-
rics, complementary insights can also be gained by studying
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local observables that capture the response of the individual
constituents to the external drive. Besides being easier to
measure, local observables also provide a window into how
system parameters affect the internal workings of the compos-
ite system and can reveal interesting features in the response
of individual constituents that may not be apparent in global
synchronization measures, as we will see below. Accordingly,
we first study how the phase response of the individual qubits,
i.e., their tendency to develop a phase relative to the external
drive, is modified by virtue of their mutual interaction. Re-
markably, we find that under certain conditions, the interplay
of gain, damping, and interaction can cause the local phase
response to completely vanish, despite the presence of the
drive. Next we explore the tendency of the composite oscil-
lator, as a whole, to synchronize to the drive, using a recently
introduced generalized measure of quantum synchronization
[16], which quantifies the overall buildup of coherence in the
system because of the drive. We find that based on the choice
of gain and damping rates, the qubit-qubit interaction can
strongly enhance or suppress the coherence buildup compared
to that of a single qubit, thus leading to a diverse range of
synchronizing behaviors that can be controlled by the system
parameters. Finally, in line with our motivation to study ex-
perimentally feasible systems, we propose a realization of our
model on a circuit quantum electrodynamics (QED) platform,
using transmons and microwave resonators. We perform a
detailed master equation simulation of our proposed imple-
mentation and show that it operates as a two-qubit oscillator
under experimentally feasible parameters. Importantly, our
implementation is scalable and can be extended to realize
many-body quantum SSOs made of more than two qubits.

Although a model of two interacting qubits with local ther-
mal baths has been studied before in other contexts [22–25],
our work demonstrates a different aspect of this system,
namely, its utility as a tunable test bed to explore quantum
synchronization phenomena in composite quantum systems.
Accordingly, our study is distinctive in the kind of metrics
we consider, the parameter regimes we study, and the experi-
mental scheme we propose to access these parameter regimes.
First, our interest is not in the intrinsic steady state of the
undriven two-qubit system per se, but instead we focus on
the emergence of coherence in this system when a weak
external drive is applied to one of the qubits. Consequently,
we study metrics quantifying phase response and quantum
synchronization, which are nonzero only when an external
drive is applied. Second, in order to explore the full range of
possible effects, we allow for the local baths to have positive
(damping-dominated) as well as negative (gain-dominated)
temperatures. Remarkably, we uncover effects that only arise
when the two baths are inverted, i.e., when their temperatures
have opposite signs. Accordingly, a third distinguishing aspect
of our work is the proposed implementation, which exploits
recent demonstrations of dissipation engineering with trans-
mons [26,27] in order to realize effective negative temperature
baths.

This paper is organized as follows. In Sec. II we introduce
our two-qubit oscillator model and discuss the metrics we
use to quantify the phase response of individual qubits and
the synchronization of the composite system. We use these
metrics to study the two-qubit oscillator as the system pa-

FIG. 1. Composite two-qubit oscillator. (a) Schematic showing
two interacting qubits, with each qubit coupled to a thermal bath.
Additionally, qubit A is weakly and coherently driven with strength
ε. (b) Energy-level diagram showing the gain and damping channels,
and the exchange interaction of the qubits. The right panel illustrates
the flip flop of excitations under the exchange interaction. The white
(colored) circles represent the ground (excited) states of the two
qubits.

rameters are varied in Sec. III. In Sec. IV we propose and
simulate a circuit QED realization of the two-qubit oscillator.
We conclude with a summary and outlook in Sec. V. Rel-
evant additional details and extensions are provided in the
Appendixes. In particular, our model can be generalized to
higher-dimensional spins, which we illustrate with the exam-
ple of a two-qutrit oscillator in Appendix D.

II. MODEL AND METHODS

In this section we first describe the system under study.
We then discuss the symmetry properties of the undriven
steady state and subsequently introduce the metrics we use
to quantify the phase response of individual qubits and the
synchronization of the composite oscillator.

A. Model

The model we consider is shown in Fig. 1. We consider
two qubits A and B, each with ground (excited) states |↓〉 (|↑〉)
and with respective natural frequencies ωA and ωB, interacting
via an exchange interaction with strength g. The Hamiltonian
describing this system is (h̄ = 1)

Ĥ0 = ωAŜz
A + ωBŜz

B + g

2
(Ŝ+

A Ŝ−
B + Ŝ−

A Ŝ+
B ). (1)

Here Ŝz
j = (|↑〉 j 〈↑| − |↓〉 j 〈↓|)/2 for j = A, B and Ŝ±

j are

raising and lowering operators defined as Ŝ+
j = |↑〉 j 〈↓| and

Ŝ−
j = |↓〉 j 〈↑|. Such a model can be realized on a number

of platforms. For example, in the case of superconducting
quantum circuits, a capacitive coupling between two trans-
mon qubits gives rise to an interaction of the form Ĥint ∝
gŜx

AŜx
B, where Ŝx

j = (Ŝ+
j + Ŝ−

j )/2. When g, |�q| � ωA, ωB,
where �q = ωB − ωA is the relative qubit detuning, a rotating-
wave approximation can be used to discard the Ŝ+

A Ŝ+
B and

Ŝ−
A Ŝ−

B terms to arrive at Eq. (1).
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Furthermore, each qubit is weakly coupled to a thermal
bath which leads to loss (gain) of excitations at rates γ j

(w j) with j = A, B. In particular, γ j > w j (γ j < w j) corre-
sponds to a positive (negative) temperature bath dominated
by loss (gain). These two regimes occur on either side of an
infinite-temperature bath corresponding to w j = γ j . In order
to describe the system using a Markovian master equation, the
qubit-bath couplings have to be weak compared to ωA and ωB

[25]. Additionally, if the qubit-qubit coupling g � ωA, ωB as
considered here, the system can be accurately described using
a local master equation [24,25] given by

d ρ̂

dt
= −i[Ĥ0, ρ̂] +

∑
j=A,B

D[
√

w j Ŝ
+
j ]ρ̂ +

∑
j=A,B

D[
√

γ j Ŝ
−
j ]ρ̂,

(2)

where D[Ô]ρ̂ = Ôρ̂Ô† − 1
2 Ô†Ôρ̂ − 1

2 ρ̂Ô†Ô is the Lindblad
dissipator.

We note that previous studies have considered the mu-
tual synchronization of two quantum units when they are
weakly coupled, i.e., when g is weak compared to the gain
and damping rates of the individual units [6]. In contrast,
here we consider the two-qubit system as a single composite
oscillator whose intrinsic dynamics includes the qubit-qubit
coupling, which is not restricted to be weak compared to the
gain wA and wB and damping rates γA and γB of each qubit.
The Lindblad master equation (2) remains valid even when
g � w j, γ j , provided all of these parameters are very small
compared to ωA and ωB [24,25].

We study the response of this system to a weak synchro-
nizing drive with frequency ωd and strength ε that is applied
to qubit A. When the drive detuning �d = ωA − ωd � ωA, the
driving can be described under a rotating-wave approximation
by the Hamiltonian

Ĥd = ε

2
(Ŝ+

A e−iωd t + Ŝ−
A eiωd t ). (3)

To remove the time dependence, we transform the system into
a frame rotating at ωd , where the total Hamiltonian is given
by

Ĥtot = �d Ŝz
A + (�d + �q)Ŝz

B

+ g

2
(Ŝ+

A Ŝ−
B + Ŝ−

A Ŝ+
B ) + ε

2
(Ŝ+

A + Ŝ−
A ). (4)

The total master equation in the drive frame is given by
Eq. (2), with Ĥ0 replaced by Ĥtot. For discussing the results
in Sec. III, we introduce characteristic frequencies

� j = γ j + w j, j = A, B, (5)

that define the total relaxation rate of a single qubit.
At a formal, mathematical level, the model described above

can also apply to a two-qudit oscillator wherein each spin
has size S > 1

2 . In this general case, the levels of each spin
can be labeled using the eigenstates |S, m〉 of the operator
Ŝz, which satisfy Ŝz |S, m〉 = m |S, m〉. The operators Ŝ± are
raising and lowering operators that transform the states ac-
cording to Ŝ± |S, m〉 = √

(S ∓ m)(S ± m + 1) |S, m ± 1〉. In
Appendix D we briefly study the case when A and B are
qutrits, i.e., spins with S = 1. We note, however, that the real-
ization of such a system may be challenging and furthermore

the specific form of the exchange interaction between qudits
depends on the implementation.

B. Symmetry properties of the undriven steady state

In order to understand the sense in which quantum syn-
chronization occurs in the proposed model, it is useful to
understand the symmetry properties of the master equa-
tion and the steady state of this system in the absence
of the external drive. Representing the master equation (2)
compactly as ∂t ρ̂ = L0ρ̂, where L0 is the Liouvillian super-
operator for the system, we observe that L0 has a global U(1)
symmetry, i.e., it is invariant under the transformation L0 →
Û (φ)L0Û †(φ), where Û (φ) = eiφ(Ŝz

A+Ŝz
B ). Consequently the

steady state ρ̂u satisfying L0ρ̂u = 0 also enjoys this symmetry,
i.e., Û (φ)ρ̂uÛ †(φ) = ρ̂u.

Writing the spectral decomposition ρ̂u =∑4
j=1 λ j |λ j〉 〈λ j |, the global U(1) symmetry implies that

each |λ j〉 is an eigenstate of the operator Ŝz = Ŝz
A + Ŝz

B.
Accordingly, |λ1〉 = |↑↑〉 with eigenvalue Sz = 1,
|λ4〉 = |↓↓〉 (Sz = −1), and |λ2〉 and |λ3〉 are orthogonal
linear combinations of |↑↓〉 and |↓↑〉 (Sz = 0). Their exact
forms depend on the system parameters. Hence, ρ̂u does
not feature coherences between subspaces corresponding to
different Sz values, implying the absence of a preferred phase
[14,28] between these subspaces. Synchronization in this
system thus corresponds to the development of a preferred
relative phase between these subspaces under the influence
of an external global U(1) symmetry-breaking perturbation.
Indeed, it is evident from the form of the drive in Eq. (4) that,
to leading order in ε, it establishes coherences, i.e., phase
relations, between subspaces with �Sz = ±1.

C. Phase response metric for individual qubits

In Sec. III A we study the phase response of the individual
qubits constituting the system when a weak external drive is
applied to one of them. The metric we use to quantify the
phase response is the off-diagonal element, or coherence, of
the steady-state reduced density matrix of each qubit. The
choice of this metric is based on the phase-space represen-
tation of the individual qubits using the Husimi Q function,
which we define here with respect to the SO(3) coherent
states.1 For a general spin-S system, the Q function is defined
as the overlap

QS,ρ̂ (θ, ϕ) = 〈θ, ϕ| ρ̂ |θ, ϕ〉 . (6)

Here |θ, ϕ〉 are the SO(3) coherent states for a spin-S system,
which are defined via rotations of the state |S, m = S〉 as
|θ, ϕ〉 = eiϕŜz

eiθ Ŝy |S, m = S〉 [30]. The angles θ and ϕ corre-
spond to the polar and azimuthal angles, respectively, on a
generalized Bloch sphere. The Q function therefore serves as
a tool to visualize the state of the system on the surface of this
sphere.

1We have omitted a normalization factor [7] for simplicity. More
generally, the Q function for a spin-S system can also be defined
with respect to SU(2S + 1) coherent states [12,21,29], but it is not
required for our discussion here.

033718-3



GAURAV M. VAIDYA et al. PHYSICAL REVIEW A 109, 033718 (2024)

For qubits (S = 1
2 ), the Q function can be expressed as

Q1/2,ρ̂ (θ, ϕ) = 1
2 + 〈Ŝz〉 cos θ + Re[〈Ŝ+〉e−iϕ] sin θ. (7)

The external drive introduces a nontrivial azimuthal phase
distribution by establishing coherences in the system such
that 〈Ŝ+〉 �= 0. This leads to a marginal distribution P(ϕ) =
(1/2π )

∫ π

0 dθ sin θ Q1/2,ρ̂ (θ, ϕ) for ϕ that deviates from a uni-
form distribution. In Sec. III A we visualize this deviation by
plotting the quantity δP(ϕ) defined as

δP(ϕ) = P(ϕ) − 1

2π
= 1

4
Re[〈Ŝ+〉e−iϕ]. (8)

Therefore, the phase response of individual qubits can be
studied by probing the magnitude of the off-diagonal element
of their reduced density matrices.

For a general spin-S system, the Q function can be decom-
posed into a sum of expectation values of spherical tensors,
which is useful in studying the phase response of higher-
dimensional spin systems. We discuss this in more detail in
Appendix A.

D. Synchronization measure for the composite oscillator

In Sec. III B we study the synchronization of the compos-
ite two-qubit oscillator, as a whole, when one of the qubits
is weakly driven. For this study, we use an information-
theoretic measure of synchronization proposed in Ref. [16].
This metric is system agnostic, which makes it an attractive
choice to study synchronization of composite systems, where
quasiprobability distributions may be inconvenient to com-
pute as well as interpret.

The central idea underlying this metric is to quantify syn-
chronization as the deviation of the steady state ρ̂ in the
presence of the external drive from an appropriate limit cycle
state ρ̂lim (described below), measured using a suitable mea-
sure of distance D. In particular, when ρ̂lim is full rank, the
distance D is taken as the relative entropy

D ≡ S(ρ̂||ρ̂lim ) = Tr[ρ̂ log(ρ̂ ) − ρ̂ log(ρ̂lim )]. (9)

The limit cycle state ρ̂lim is the closest state to ρ̂ which
does not have the coherences induced by the drive. In general,
the limit cycle state ρ̂lim is not just the steady state of the
system when the drive is turned off. The reason is that, while
the drive generally induces changes in populations as well as
coherences, a synchronization metric must be sensitive only
to the buildup of coherences. This subtlety is accounted for
by minimizing D over an appropriate set � of candidate limit
cycle states to obtain the synchronization measure, i.e.,

�(ρ̂) = min
ρ̂lim∈�

D(ρ̂, ρ̂lim ), (10)

where the measure �(ρ̂ ) is called the relative entropy of
synchronization.

The set � of candidate limit cycle states is chosen accord-
ing to the system being studied. For our system, the global
U(1) symmetry discussed in Sec. II B means that a natural
choice of � is the set of states that are diagonal in the eigenba-
sis {|λ j〉} of the steady state ρ̂u of the undriven oscillator, since
synchronization to the external drive occurs via the buildup of
coherences between the different bases {|λ j〉}. For the partic-
ular case of such diagonal limit cycle states, the minimization

FIG. 2. Effect of the weak drive in the dressed-state representation.

in Eq. (10) can be performed analytically and �(ρ̂) reduces to
[16]

�(ρ̂ ) = S(ρ̂diag) − S(ρ̂ ). (11)

Here S(ρ̂) = Tr[−ρ̂ log(ρ̂)] is the von Neumann entropy and
ρ̂diag is a state diagonal in {|λ j〉}, obtained by simply deleting
all the off-diagonal elements of ρ̂ expressed in this basis.

We note that, for a system of the kind considered here,
Ref. [16] prescribes to choose � as a set of so-called partially
coherent candidate limit cycle states. In Appendix B we show
that such a choice leads to results identical to the ones we
have obtained using diagonal limit cycle states and provide an
intuitive explanation for why this is the case.

E. Qualitative expectations

Before turning to the results, we provide some intuition for
the behavior of the metrics introduced in the two preceding
sections for different regimes of the qubit-qubit coupling. In
the following qualitative discussion, we assume that �d ≈
�q ≈ 0.

For g/� � 1 (�A ∼ �B ∼ �), the response of the oscil-
lator to the drive is primarily just the response of qubit A,
and the qubit-qubit coupling only leads to corrections of
order g/� or higher. On the other hand, when g/� � 1,
the oscillator can be analyzed in the basis formed by the
eigenstates of the undriven system Hamiltonian 1. These are
the usual dressed states, given by |D〉 = |↓↓〉, |U 〉 = |↑↑〉,
|T 〉 = (|↑↓〉 + |↓↑〉)/

√
2, and |S〉 = (|↑↓〉 − |↓↑〉)/

√
2. The

weak external drive is near resonance with the bare transi-
tion frequency of qubit A. In the dressed-state picture, this
drive translates to simultaneously driving four transitions as
depicted by the black arrows in Fig. 2. This can be seen by
expressing the drive term in Eq. (4) in the dressed basis, using
the relation

Ŝ+
A = 1√

2
(|U 〉 〈T | − |U 〉 〈S| + |T 〉 〈D| + |S〉 〈D|). (12)

For g/� � 1 (�A ∼ �B ∼ �), the states |T 〉 and |S〉 are
shifted from the bare resonance by ±g/2 and hence all four
transitions are driven off-resonantly. Hence, the coherence es-
tablished in the system decreases and consequently the phase
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response and synchronization metrics asymptotically decay to
zero as g/� increases.

In the intermediate regime where g/� ∼ 1, neither the in-
dividual qubit basis nor the dressed basis is particularly well
suited for analyzing the system. This is because, while the
Hamiltonian (1) is diagonal in the dressed basis, the local
baths instead drive the system to a steady state that is diagonal
in the product basis of the individual qubits. Hence, when the
qubit-qubit coupling is comparable to the gain and loss rates,
one can expect a complex interplay of these processes, which
leads to nontrivial effects on the metrics.

III. RESULTS

In Sec. III A we study the phase response of the indi-
vidual qubits to the external drive and explore the effect of
the system parameters on their tendency to develop a phase
relative to the drive. Subsequently, in Sec. III B we consider
the two-qubit oscillator as a composite oscillator and study
its collective response to the drive. An extension of this study
to a two-qutrit oscillator is discussed in Appendix D. In the
following we take the total relaxation rate [see Eq. (5)] of each
qubit to be the same, i.e., �A = �B = �, and report frequency
values (w j, γ j, g,�d ,�q, ε, j = A, B) in units of � so that
γ j = 1 − w j when expressed in these units.

A. Phase response of individual qubits

As described in Sec. II C, the phase response of a qubit
is quantified by the magnitude of 〈Ŝ+〉, which is just the
off-diagonal element, or coherence, of the reduced density
matrix of the qubit. In Fig. 3(a) we plot |〈Ŝ+〉| normalized to
the drive strength ε for both qubits as the qubit-qubit coupling
strength g is varied. Here we have set �d = �q = 0, i.e.,
the frequencies of the drive and the two qubits are taken
to be equal. As g increases, the phase response of qubit A
decreases and eventually vanishes completely at a particular
strength g0,A indicated by the purple star. In the case of qubit
B, we observe that it develops a nonzero phase response, even
though it is not directly driven, by virtue of its coupling with
qubit A. Interestingly, the coherence of qubit B also vanishes
completely at a specific coupling strength g0,B (orange star).
Finally, at large values of g, the coherence of either qubit
asymptotically approaches zero, which can be understood as
the result of off-resonant driving in the collective spin picture
(Sec. II E).

The complete vanishing of |〈Ŝ+
j 〉|, j = A, B, at g0, j corre-

sponds to a zero crossing of the quantity 〈Ŝ+
j 〉, which in turn

marks a π phase shift in the phase developed by the corre-
sponding qubit relative to the drive phase. We demonstrate this
in Fig. 3(b), where we plot the variation in the azimuthal phase
distribution δP(ϕ) [see Eq. (8)] for the two qubits at coupling
strengths before, at, and after the zero-crossing point. The
distribution for either qubit is flat right at the zero-crossing
point, while a π phase shift is evident in the distributions
before and after this point.

The zero-crossing phenomenon occurs as a result of
destructive interference from multiple drive pathways. For
instance, in the case of qubit A, multiple pathways arise from
the direct external driving and the feedback from qubit B as

FIG. 3. Phase response of the individual qubits. (a) Plot of
|〈Ŝ+〉|/ε for qubits A and B versus the coupling strength g be-
tween the two qubits. Here we choose wA = 0.4 and γA = 0.6, and
wB = 0.75 and γB = 0.25. Markers (lines) are numerical (analytical)
results. (b) Variation in the azimuthal phase distribution δP(ϕ) [see
Eq. (8)] for qubit A (left) and qubit B (right) at the coupling strengths
indicated in (a).

a result of the coupling. Alternatively, one can also interpret
this phenomenon as a destructive addition of coherences in
the collective spin picture, as discussed in Sec. II E. This phe-
nomenon is intriguing because, for either qubit, the reduced
density matrix at its respective zero-crossing point has an
azimuthal phase symmetry as seen by the flat profile of δP(ϕ),
a remarkable feature given that the external drive explicitly
breaks this symmetry in the system Hamiltonian (4). Hence,
in the following we will explore the parameter regimes where
such a zero crossing can be observed.

1. Zero crossing: Interplay of gain and loss rates

The existence of a zero-crossing point is dependent on the
temperatures of the local thermal baths coupled to each qubit.
In order to rigorously determine the parameter regime where
a zero crossing can be observed, we first obtain an analytic
expression for |〈Ŝ+

j 〉|, j = A, B, as a function of the coupling
strength g, treating the drive strength ε as a perturbation. The
details of this approach are presented in Appendix C. As
shown in Fig. 3(a), the analytical expression (solid lines) is
in excellent agreement with numerical results (markers). Next
we determine the existence of a zero-crossing point by solving
for the coupling strength g0, j where this expression vanishes.
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FIG. 4. Bath parameters over which a zero crossing can be ob-
served. Shown is the coupling strength at which the zero crossing
occurs for (a) qubit A and (b) qubit B, as wA and wB are scanned
while fixing γA + wA = γB + wB = 1. The regions in white indicate
the absence of a zero crossing and the regions in red [in (a)] indicate
values of g0,A > 4.

In Fig. 4 we explore the existence of a zero-crossing point
for each qubit as their gain rates (and consequently their bath
temperatures) are varied. The color indicates the value of
g0, while the regions in white correspond to bath parameters
where a zero-crossing point does not exist. We observe that,
for both qubits, a zero-crossing point only exists when the
baths are inverted with respect to each other, i.e., when wA >

γA and wB < γB or vice versa. In other words, qubit A (qubit
B) must be coupled to a negative (positive) temperature bath
or vice versa. While this is a necessary condition to observe
a zero crossing in qubit A, it is both necessary and sufficient
in the case of qubit B. Furthermore, except in a narrow band
(highlighted in red) for qubit A where g0,A rapidly increases,
the zero crossing typically occurs for values of g0, j ∼ O(1),
j = A, B, corresponding to the regime where qubit-qubit cou-
pling strengths are comparable to the gain and loss rates of the
qubits.

2. Phase response to a detuned drive

So far, we have assumed that the drive is on resonance
with qubit A. In Fig. 5 we explore the phase response of qubit
A to the external drive when it is detuned. In Fig. 5(a) we
plot |〈Ŝ+

A 〉| for a detuned drive (purple curve) and find that the
coherence no longer passes through a zero-crossing point. To

FIG. 5. Phase response to a detuned drive. (a) Plot of |〈Ŝ+〉|/ε
for qubit A versus the coupling strength g for a detuned drive. The
purple (orange) curves correspond to the case when qubit B is res-
onant with (detuned from) qubit A. Markers (lines) are numerical
(analytical) results. (b) Variation in the azimuthal phase distribution
δP(ϕ) [see Eq. (8)] for qubit A when qubit B is resonant with (left)
and detuned from (right) qubit A, at the coupling strengths indicated
in (a). (c) Value of the qubit-qubit detuning �q at which the zero
crossing is restored, and the corresponding coupling strength g0,A, as
a function of the drive detuning �d . Here we choose wA = 0.25 and
γA = 0.75, and wB = 0.75 and γB = 0.25.

understand how this happens, we plot δP(ϕ) at three different
values of g in the left panel of Fig. 5(b). We observe that the
locations of the peaks and dips gradually shift to the right as g
increases, without ever passing through a flat profile.

Interestingly, when qubit B is appropriately detuned with
respect to qubit A, i.e., �q �= 0, we find that the zero-crossing
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point is restored, as shown by the orange curve in Fig. 5(a). In
the right panel of Fig. 5(b) we plot δP(ϕ) for g values before,
at, and after the zero-crossing point and find that, in contrast to
the �q = 0 case, the distribution passes through a flat profile
similar to the case when �q = �d = 0 [Fig. 3(b)].

As shown in Fig. 5(c), we find that for every drive detuning
�d there is a unique qubit-qubit detuning �q that restores the
zero-crossing point. Furthermore, the coupling strength g0,A

at which this zero crossing occurs is essentially unchanged as
the drive detuning is varied.

These results provide a window into the internal dynamics
of the composite two-qubit oscillator and demonstrate the role
of system parameters such as bath temperatures, qubit-qubit
interaction, and detunings in modifying the tendency of the
constituent qubits to develop a preferred phase relative to the
drive.

B. Synchronization of the composite system

We now shift from the viewpoint of the individual qubits
and instead study the response of the two-qubit system as a
whole. We study the synchronization of the composite oscil-
lator to the weak external drive applied to qubit A by using
the synchronization measure �(ρ̂) given in Eq. (11). In the
following, we will drop the ρ̂ dependence while referring to
this measure for notational convenience.

We quantify the effect of qubit-qubit interactions on the
synchronization to the drive via a ratio R, defined as the ratio
of the values of � in the presence (g �= 0) and absence (g = 0)
of qubit-qubit coupling, i.e.,

R(g) = �|g
�|0 . (13)

In Fig. 6 we plot R versus g for two different sets of bath
parameters for the two qubits. The purple curve demon-
strates that, for appropriate choices of gain and loss rates,
qubit-qubit interactions can significantly enhance the extent
of synchronization in a composite oscillator. On the other
hand, interactions can also strongly suppress synchronization,
as evidenced by the sharp dip in the orange curve.

The synchronization measure is sensitive to the steady-
state coherences established by the drive in the composite
oscillator. As a qualitative indicator of this sensitivity, in
Fig. 6(b) we plot the quantities |〈T |U 〉| and |〈T |D〉|, corre-
sponding to coherences in the dressed basis, along the curves
displayed in Fig. 6(a).2 The coherences 〈S|U 〉 and 〈S|D〉 are
equal in magnitude to 〈T |U 〉 and 〈T |D〉, respectively. We
find that enhancement and suppression of the synchronization
measure are qualitatively associated with corresponding peaks
and dips in the magnitude of individual coherences in the
dressed basis, demonstrating that the synchronization measure
captures the overall extent of coherence built up in the system
as a result of the drive.

2We recall that the actual computation of the synchronization met-
ric is done in the eigenbasis {|λ j〉} of the steady state of the undriven
oscillator, as discussed in Sec. II D.

FIG. 6. Enhancement and suppression of synchronization of the
composite two-qubit oscillator. The ratio R [Eq. (13)] is plotted ver-
sus the coupling strength g for two different sets of bath parameters,
indicated by the wA and wB values in the legend. The total relaxation
rate for each qubit is kept fixed at γA + wA = γB + wB = 1. (b) Mag-
nitude of coherences in the collective spin basis (see Sec. II E),
|〈T |U 〉| and |〈T |D〉|, along the curves shown in (a). Results are
obtained numerically.

1. Synchronization enhancement: Dependence on gain
and loss rates

The enhancement of synchronization as a result of qubit-
qubit interaction depends on the parameters of the local
thermal baths acting on each qubit. We once again consider
the situation when �d = �q = 0. In Fig. 7(a) we plot Rmax,
the value of R maximized over the coupling strength g, as the
gain rates for the two qubits (and consequently their temper-
atures) are varied. We observe that significant enhancement
in synchronization occurs when the gain and loss rates for
qubit A are comparable. This can be understood by consid-
ering the limiting case of wA = γA, which corresponds to
an infinite-temperature bath. For g = 0, the steady state of
qubit A coupled to such a bath is the maximally mixed state,
which does not develop any coherence under an external drive.
However, coupling it to a second qubit with wB �= γB takes the
composite oscillator away from infinite temperature and leads
to a buildup of nonzero coherence in the system.

To see the effect of the qubit-qubit coupling in the region
wA ∼ γA more clearly, we compare the case of coupled and
uncoupled (g = 0) qubits in Fig. 7(b). We fix wB = 0 and
plot � when it is maximized over g (�max), as well as for
g = 0 (�|0), as wA is varied. As wA → γA (wA → 0.5 here),
the coherence in the uncoupled system vanishes, whereas it
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FIG. 7. Effect of bath parameters on enhancement of synchro-
nization in the composite two-qubit oscillator. (a) Plot of Rmax, i.e.,
R [Eq. (13)] maximized over coupling strength g, as wA and wB are
scanned. The regions in white correspond to Rmax > 10. (b) Synchro-
nization measure � [Eq. (11)] versus wA for wB = 0 and γB = 1.
The orange dashed (purple solid) line corresponds to � maximized
over g (� at g = 0). In both panels, the total relaxation rate for each
qubit is kept fixed at γA + wA = γB + wB = 1. Results are obtained
numerically.

persists in the presence of interactions with qubit B. In fact,
we find that for any nonzero temperature of qubit A, interac-
tions with qubit B with wB = 0 (zero temperature) lead to an
enhancement in the synchronization measure, although this is
most noticeable when wA ∼ γA.

We note that it is essential to keep in mind the actual value
of the synchronization measure when interpreting enhance-
ments in synchronization. For instance, as wA → γA, Rmax →
∞. However, this result is an artifact of �|0 → 0 in this limit,
whereas �max remains finite but small. Nevertheless, even a
small nonzero buildup of coherences can lead to observable
effects in macroscopic systems with a large number of quan-
tum units, as occurs in NMR systems [14].

2. Suppression of synchronization

For g � �, � → 0 because of the large detuning of the
weak drive, as discussed in Sec. II E. However, Fig. 6(a) shows
that for appropriate bath parameters, a nontrivial suppression
of � can occur at intermediate values of g, which manifests as
a local minimum of � (or equivalently R) as a function of g. In
Fig. 8(a) we explore the range of bath parameters over which

FIG. 8. Effect of bath parameters on suppression of synchroniza-
tion in the composite two-qubit oscillator. (a) Plot of Rmin, i.e., R
[Eq. (13)] evaluated at a local minimum as g is scanned. White
regions indicate the absence of a local minimum. (b) Synchronization
measure � [Eq. (11)] versus g evaluated at four different points along
the vertical line shown in (a). In both panels, the total relaxation rate
for each qubit is kept fixed at γA + wA = γB + wB = 1. Results are
obtained numerically.

such a local minimum exists by plotting the value of Rmin,
i.e., the value of R at the local minimum, whenever it exists.
The white regions indicate the absence of a local minimum
for those combinations of bath parameters. Interestingly, we
find that a local minimum in synchronization occurs only
in regimes where the baths for the two qubits are inverted
with respect to each other, analogous to the existence of zero-
crossing points in the phase response of the individual qubits.
We note that the regimes of bath parameters for observing
enhancement [Fig. 7(a)] and suppression of synchronization
[Fig. 8(a)] are not mutually exclusive, because these effects
occur at different values of the qubit-qubit coupling strength
g, as shown by the orange line in Fig. 6(a).

To understand how this minimum emerges and disappears,
in Fig. 8(b) we plot �/ε2 versus g for four points chosen along
the vertical cut shown in Fig. 8(a). For fixed ωB ≈ 0.82, when
ωA is slightly above 0.5, the �/ε2 versus g curve shows only a
single maximum. As ωA is decreased below 0.5 to ωA ≈ 0.46,
a local minimum can be observed. Further decreasing ωA to
0.38, the local minima and local maxima (at g ≈ 2) become
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FIG. 9. Circuit QED realization of a composite two-qubit oscillator. (a) Schematic showing two transmons A and B, each coupled to a
lossy auxiliary resonator as well as to each other and driven using microwave fields. (b) Level diagram illustrating the working principle of the
implementation.

less pronounced. Finally, for ωA ≈ 0.25, � monotonically
decays with g.

These results demonstrate how the overall buildup of co-
herences in a composite system under external driving can be
strongly enhanced or suppressed by tuning the parameters of
the constituent quantum units and the interactions between
them. More broadly, the variety of quantum synchronizing
behaviors observable in our minimal model exemplifies the
potential to assemble quantum self-sustained oscillators using
basic building blocks such as qubits, which can then be used as
a playground to explore aspects and applications of quantum
synchronization [28].

C. Experimental considerations

Motivated by practical considerations, we have studied the
robustness of the features discussed above to qubit dephasing
[see Eq. (C1)] as well as stronger drive strengths such that
ε/� � 1. We find that both dephasing and stronger driving
only lead to quantitative changes, e.g., in the location of the
zero crossing in Fig. 3(a) or the extent of synchronization
enhancement in Fig. 6, but do not change the results quali-
tatively.

IV. PROPOSAL FOR CIRCUIT QED REALIZATION

In this section we propose an implementation of our com-
posite two-qubit oscillator model using artificial atoms and
resonators made out of superconducting microwave circuits.
This platform constitutes a favorable test bed to study syn-
chronization for a number of reasons. These include the high
degree of flexibility in the qubit connectivity, the ability to
scale up the oscillator size if required, and the absence of
certain undesirable effects such as motional heating, which
often accompanies gain and loss channels in real atoms. In
contrast to digital simulations of synchronizing systems on a
superconducting quantum computer [15], here we propose an
analog simulation approach to directly engineer the various
Hamiltonian and dissipative processes of the oscillator, as
discussed below.

Figure 9 shows a schematic of our proposed circuit QED
implementation. The two qubits are encoded in the ground
(|g〉) and first excited (|e〉) states of two tunable frequency
transmons, labeled A and B. While the loss channel, i.e.,
|e〉 → |g〉 decay, is intrinsic to each transmon, the gain chan-
nel, i.e., incoherent |g〉 → |e〉 jumps, need to be artificially
engineered. Such a channel can be engineered by utilizing a
lossy auxiliary resonator coupled to higher levels of the trans-
mon [26,27]. Specifically, for each transmon, a resonator with
decay rate κ j ( j = A, B) is coupled resonantly to its |e〉 ↔ | f 〉
transition. Exploiting the anharmonicity in the spacing of
the transmon levels, two-photon |g〉 → | f 〉 transitions can be
driven resonantly by using appropriately detuned microwave
pump fields �pA and �pB. Consequently, population in |g〉 is
transferred to | f 〉, which decays rapidly to |e〉 as a result of
coupling to the lossy resonator. The net effect of this pro-
cess is an incoherent transfer of population from |g〉 to |e〉,
which realizes a gain channel. The qubit-qubit interaction is
realized using a tunable coupler (not shown) that introduces
spin-exchange interactions with variable coupling strength g.
Finally, the external drive ε is realized as an additional mi-
crowave field applied to transmon A.

To verify the realization of a two-qubit oscillator using this
system, we identify appropriate values for the various system
parameters and perform master equation simulations of the
circuit QED model. In our modeling, we include the Hilbert
space of the transmons as well as the auxiliary resonators,
while we choose to model the coupler as a phenomenological
tunable coupling term between the two transmons. Our choice
is motivated by the multiple demonstrations of tunable cou-
plers [31–33], making them a standard component in circuit
QED systems. The details of the master equation simulations
and the chosen parameter values are presented in Appendix E.
These parameters are feasible with current technology.

The phase response and synchronization metrics can be
measured in experiments. The off-diagonal matrix elements
of the individual qubits can be straightforwardly measured
by coupling individual readout resonators to each qubit (not
shown) and performing additional single-qubit gates. Further-
more, the complete density matrix of the combined two-qubit
system can be extracted in experiment by performing
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FIG. 10. Phase response of individual qubits in the circuit QED
implementation, showing |〈Ŝ+〉| for the two qubits with (a) wA/γA =
0 and wB/γB ≈ 3.2 and (b) wA/γA ≈ 0.27 and wB/γB ≈ 4.5. The
closed markers (solid lines) show the results from the circuit QED
model (qubit model, discussed in Sec. III). The open markers (dashed
lines) are the corresponding results in the presence of an additional
dephasing channel. The parameters for the simulations are presented
in Appendix E.

tomography using multiple single- and two-qubit gates as
done, e.g., in Ref. [34]. To infer the synchronization measure
�, the steady-state density matrices in the presence (ρ̂) and
absence (ρ̂u) of the external drive can be extracted, which
together enable the construction of ρ̂diag. Subsequently, �

[Eq. (11)] can be evaluated by computing the entropies of the
experimentally estimated ρ̂ and ρ̂diag matrices.

We now turn to the simulation results, which demonstrate
that our proposed system indeed operates as a composite
two-qubit oscillator that can be used to explore the features
discussed in Sec. III. In Fig. 10 we study the response of
the individual qubits to the external drive by plotting the
coherence |〈Ŝ+〉| of the two qubits. The two panels correspond
to two different sets of gain and loss rates for the two qubits.
The results from the circuit QED model (markers) are in very
good agreement with the expectations from the qubit model
(lines) studied in Sec. III. In addition, we simulate the system
in the presence of intrinsic transmon dephasing (open markers
and dashed lines) and find that it does not change the behavior
qualitatively even when the dephasing rates are comparable

FIG. 11. Synchronization of the composite oscillator in the cir-
cuit QED implementation, showing the synchronization measure �

[Eq. (11)] for (a) wA/γA ≈ 0.27 and wB/γB ≈ 4.5 and (b) wA/γA ≈
0.71 and wB/γB ≈ 0.28. The closed markers (solid lines) show the
results for the circuit QED model (qubit model, discussed in Sec. III).
The open markers and dashed lines are the corresponding results in
the presence of an additional dephasing channel. The parameters for
the simulations are presented in Appendix E.

to the relaxation rates γA and γB. In Fig. 11 we compare the
synchronization measure � obtained from the circuit QED
model to the predictions from the qubit model and once again
find excellent agreement for two different sets of gain and
loss parameters. Our results suggest that features such as the
zero crossing in the coherence of the individual qubits and
the enhancement or suppression of quantum synchronization
as a result of qubit-qubit interactions can be observed in a
circuit QED experiment and are robust against effects such
as dephasing.

V. CONCLUSION AND OUTLOOK

We have introduced and studied a minimal model of a
composite self-sustained oscillator consisting of two interact-
ing qubits coupled to each other as well as to independent
thermal baths. Such a model provides a first step towards
engineering a wide variety of quantum synchronizing systems
from basic units available on current quantum hardware. We
studied the response of this system when a weak external drive
is applied to one of the qubits. Specifically, we showed how

033718-10



EXPLORING QUANTUM SYNCHRONIZATION WITH A … PHYSICAL REVIEW A 109, 033718 (2024)

the interplay of gain, loss, and qubit-qubit interactions affects
the phase response of the constituent qubits as well as the
tendency of the composite system, as a whole, to synchronize
to the drive. Furthermore, we demonstrated the experimental
feasibility of our model by proposing and analyzing a circuit
QED implementation using transmons coupled to resonators
as well as to each other.

Our study reveals that certain phase response and synchro-
nization effects occur only when the baths for the two qubits
are inverted, i.e., when gain dominates loss for one qubit and
loss dominates gain for the other. In this situation, the phase
response of the individual qubits to the external drive under-
goes an abrupt phase shift of π as the qubit-qubit coupling
strength increases. Remarkably, at the crossover points for
either qubit, which we term zero-crossing points, we observe a
blockade phenomenon: The off-diagonal element (coherence)
of its reduced density matrix vanishes, restoring an azimuthal
phase symmetry in the corresponding phase-space distribu-
tion. We also studied the behavior of an information-theoretic
measure of quantum synchronization, which captures the ten-
dency of the oscillator, as a whole, to synchronize to the
drive. We found that when the gain and loss rates for the
driven qubit are comparable, interactions with the second
qubit can significantly enhance the coherence induced in the
system by the drive. This enhancement occurs irrespective of
whether the baths are inverted or not. On the other hand, a
suppression of the synchronization response occurs only in
parameter regimes where the baths are inverted, similar to
the occurrence of zero-crossing points in the response of the
constituent qubits of the system.

Our model naturally generalizes to higher-dimensional
spins, which may however be more challenging to implement
in practice. In Appendix D we study a two-qutrit oscillator
and show that the behavior of this system is qualitatively
similar to the two-qubit oscillator. An interesting observation
in the qutrit system is the occurrence of a zero crossing in the
expectation values of higher-order spherical tensor operators
at specific qutrit-qutrit coupling strengths, which can be inter-
preted as a generalized blockade phenomenon.

Finally, let us note that our model and circuit QED pro-
posal are complementary to, and build upon, previous studies
of quantum synchronization with pairs of qubits in NMR
platforms [14]. In contrast to these studies with an Ising
interaction between the qubits, our model considers a spin-
exchange-type interaction between them. Furthermore, the
qubit-qubit coupling strength and the individual qubit gain-to-
loss ratios in our circuit QED proposal are tunable, allowing
for control on the interactions and the local temperatures of
each qubit. This enables the exploration of a wide variety
of quantum synchronizing behaviors. More broadly, our pro-
posal offers the potential to controllably scale up quantum
self-sustained oscillators and thereby experimentally probe
the emergence of classical notions of synchronization from
the underlying quantum system. For example, the properties
of macroscopic synchronizing systems, such as superradiant
lasers composed of several thousands to millions of atoms
[35–37] and analogous systems [38,39], can be understood
as the response of a large collective dipole, which can be
analyzed with semiclassical mean-field-type theories. Theo-
retical analysis of scaled-up extensions of our model can be

performed rigorously using recently introduced tools [40].
Our proposal may also find applications in studying complex
thermal heat engines [21,29] including exotic variants, e.g.,
that operate between negative and positive temperature baths
[41].
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APPENDIX A: PHASE RESPONSE METRICS BASED ON
THE Q FUNCTION

In Sec. III A we studied the phase response of the indi-
vidual qubits using the off-diagonal element of the respective
reduced density matrices. This metric was motivated in
Sec. II C using the Husimi Q function. This approach can be
generalized to study the phase response of individual qudits in
a two-qudit oscillator by expanding the Q function in terms of
spherical tensor operators. Specifically, the Q function can be
expressed as the sum [43,44]

QS (θ, ϕ) =
2S∑

k=0

k∑
q=−k

ck,qPq
k (cos θ )eiqϕ

〈
T̂ −q

k

〉
, (A1)

where Pq
k (cos θ ) are associated Legendre polynomials, T̂ q

k are
spherical tensor operators, 〈Ô〉 = Tr{Ôρ̂} denotes the expec-
tation value of an operator Ô, and ck,q are weight factors given
by

ck,q =
√

(2k + 1)(k − q)!

(k + q)!

(2S)!

[(2S − k)!(2S + k + 1)!]1/2
.

(A2)
As a result, the phase response of individual qudits to an
external drive that breaks the azimuthal phase symmetry can
be studied by probing the expectation value of spherical tensor
operators with q different from zero.
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In particular, for qubits and qutrits, the Q function can be
explicitly expressed as

Q1/2,ρ̂ (θ, ϕ) = 1√
2

P0
0

〈
T̂ 0

0

〉 + 1√
2

P0
1

〈
T̂ 0

1

〉 + P1
1 Re

[〈
T̂ 1

1

〉
e−iϕ

]
,

Q1,ρ̂ (θ, ϕ) = 1√
3

P0
0

〈
T̂ 0

0

〉 + 1√
2

P0
1

〈
T̂ 0

1

〉 + 1√
6

P0
2

〈
T̂ 0

2

〉
+Re

[(
P1

1

〈
T̂ 1

1

〉 + 1
3 P1

2

〈
T̂ 1

2

〉)
e−iϕ

+ 1
6 P2

2

〈
T̂ 2

2

〉
e−2iϕ

]
, (A3)

where we have used Pq
k ≡ Pq

k (cos θ ) for compactness and ex-
pressed the Q function using only the q � 0 terms. Writing the
spherical tensor operators in Q1/2 in terms of spin operators,
we obtain Eq. (7). In the case of spin 1, two multipoles T̂ 1

1 and
T̂ 1

2 contribute to the first harmonic in ϕ, while T̂ 2
2 gives rise to

a second harmonic. We study these quantities in the context of
a two-qutrit oscillator in Appendix D.

APPENDIX B: PARTIALLY COHERENT CANDIDATE
LIMIT CYCLE STATES

In Sec. II D we described a metric [Eq. (11)] for studying
the synchronization of the two-qubit oscillator, which we use
to obtain the results in Sec. III B. This metric is obtained
considering a family of limit cycle states � that is diago-
nal in the eigenbasis {|λ j〉} of the undriven steady state ρ̂u.
We note that the {|λ j〉} are not the eigenstates {|Ej〉} of the
undriven Hamiltonian, i.e., Eq. (4) with ε = 0. Under such
circumstances, Ref. [16] proposes to optimize over a more
general family of limit cycle states that allow for partial co-
herence in the {|Ej〉} basis such that the resulting family of
states respects the structure of ρ̂u expressed in this basis. Here
we demonstrate that in our model and for weak driving, the
metric (11) essentially coincides with the measure obtained by
optimization over such partially coherent limit cycle states.

We first note that, in our model, both sets {|λ j〉} and {|Ej〉}
are eigenstates of the operator Ŝz = Ŝz

A + Ŝz
B. As a result, ρ̂u

can be written in a block-diagonal form in the basis {|Ej〉},
with each block corresponding to a fixed number of total ex-
citations. Under such a situation, � must be chosen as a set of
partially coherent candidate limit cycle states that account for
the intrinsic coherences in each block that are not established
by the drive. On the other hand, the matrix elements of the
external drive [ε term in Eq. (4)] are block off-diagonal in
{|Ej〉}. In other words, ρ̂u respects a global U(1) symmetry,
i.e., it is invariant under unitary transformations of the form
Û (ϕ) = eiϕŜz

, while the weak drive, to leading order, only in-
troduces coherences between different blocks associated with
this symmetry. As a result, for weak driving, we expect the
synchronization measure computed by choosing � as the set
of states diagonal in {λ j} (as done in the main text) to coincide
with the measure computed using the set of states with partial
coherence (as described above) in the {|Ej〉} basis.

In Fig. 12 we demonstrate the excellent agreement be-
tween the two approaches. We compute the synchronization
measure using partially coherent candidate limit cycle states
via numerical optimization of the limit cycle after imposing
the block-diagonal structure in the {|Ej〉} basis. Indeed, we
find that the optimized partially coherent limit cycle state

FIG. 12. Synchronization measure �/ε2 of the composite two-
qubit oscillator computed using the diagonal limit cycle state and
an optimization over the partially coherent limit cycle states. Here
we choose wA ≈ 0.55 and γA ≈ 0.45, and wB ≈ 0.09 and γB ≈ 0.91.
Results are obtained numerically.

coincides with ρ̂diag. In the main text we chose to work with
the metric based on diagonal limit cycle states as they are
conceptually simpler and more intuitive.

APPENDIX C: PHASE RESPONSE OF INDIVIDUAL
QUBITS: ANALYTICAL SOLUTION

In this Appendix we outline our procedure to obtain an-
alytical expressions for the phase response measures |〈Ŝ+

j 〉|,
j = A, B, which we use to rigorously establish the presence
of zero-crossing points in Sec. III.

The master equation for the system, including dephasing
noise on the qubits for a general treatment, is

d ρ̂

dt
= −i[Ĥtot, ρ̂] +

∑
j=A,B

D[
√

w j Ŝ
+
j ]ρ̂

+
∑

j=A,B

D[
√

γ j Ŝ
−
j ]ρ̂ +

∑
j=A,B

D
[√

2γφ Ŝz
j

]
ρ̂, (C1)

where Ĥtot is given by Eq. (4). We treat the drive as a pertur-
bation and expand all observables in orders of ε as

〈Ô〉 = 〈Ô〉0 + ε 〈Ô〉1 + O(ε2). (C2)

At zeroth order in ε, the master equation is U(1) symmetric,
i.e., it is invariant under the transformation Ŝ±

A(B) → Ŝ±
A(B)e

±iϕ .
As a result, only observables that are invariant under this
symmetry are nonzero. There are four such quantities, cor-
responding (at zeroth order) to 〈Ŝz

A〉0, 〈Ŝz
B〉0, 〈Ŝz

AŜz
B〉0, and

〈Ŝ+
A Ŝ−

B 〉0. Their equations of motion constitute a set of linear
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equations given by

Re
(
ig 〈Ŝ−

A Ŝ+
B 〉0

) − �A
〈
Ŝz

A

〉
0 = −wA − γA

2
,

Re
(
ig 〈Ŝ+

A Ŝ−
B 〉0

) − �B
〈
Ŝz

B

〉
0 = −wB − γB

2
,

wB − γB

2

〈
Ŝz

A

〉
0 + wA − γA

2

〈
Ŝz

B

〉
0 − (�A + �B)

〈
Ŝz

AŜz
B

〉
0 = 0,

i
g

2

( 〈
Ŝz

B

〉
0 − 〈

Ŝz
A

〉
0

) − �A + �B + 4γφ

2
〈Ŝ+

A Ŝ−
B 〉0 − i�q 〈Ŝ+

A Ŝ−
B 〉0 = 0, (C3)

where �A(B) = wA(B) + γA(B). At first order in ε, observables with broken U(1) symmetry acquire a nonzero value. In particular,
their equations of motion are sourced by the zeroth-order U(1) symmetric observables as given by

−ig
〈
Ŝz

AŜ+
B

〉
1 − �A + 2γφ

2
〈Ŝ+

A 〉1 + i�d 〈Ŝ+
A 〉1 = i

〈
Ŝz

A

〉
0 ,

−ig
〈
Ŝ+

A Ŝz
B

〉
1 − �B + 2γφ

2
〈Ŝ+

B 〉1 + i(�d + �q) 〈Ŝ+
B 〉1 = 0,

−i
g

4
〈Ŝ+

B 〉1 − �A + 2γφ

2

〈
Ŝ+

A Ŝz
B

〉
1 + wB − γB

2
〈Ŝ+

A 〉1 − �B
〈
Ŝ+

A Ŝz
B

〉
1 + i�d

〈
Ŝ+

A Ŝz
B

〉
1 = i

〈
Ŝz

AŜz
B

〉
0 ,

−i
g

4
〈Ŝ+

A 〉1 − �B + 2γφ

2

〈
Ŝz

AŜ+
B

〉
1 + wA − γA

2
〈Ŝ+

B 〉1 − �A
〈
Ŝz

AŜ+
B

〉
1 + i(�d + �q)

〈
Ŝz

AŜ+
B

〉
1 = − i

2
〈Ŝ−

A Ŝ+
B 〉0

−�A + �B + 4γφ

2
〈Ŝ+

A Ŝ+
B 〉1 + i(2�d + �q) 〈Ŝ+

A Ŝ+
B 〉1 = 0. (C4)

Solving these equations, we arrive at analytic expressions for
〈Ŝ+

A 〉 and 〈Ŝ+
B 〉. However, the general forms of these expres-

sions are not compact and hence we do not reproduce them
here.

APPENDIX D: TWO-QUTRIT OSCILLATOR

Our model can be generalized to explore higher-
dimensional spin systems. In this Appendix we briefly study
an oscillator composed of two interacting qutrits that are each
coupled to separate thermal baths (as shown in Fig. 13).

1. Phase response of individual qutrits

We study the phase response of the constituent qutrits to
an external drive applied to one of them using the spherical

FIG. 13. Energy-level diagram for the composite two-qutrit os-
cillator, showing the gain and damping channels and the exchange
interaction of the qutrits. The right panel illustrates the exchange
interactions. The white, half-colored, and colored circles represent
the m = −1, 0, 1 states, respectively, of the two qutrits.

tensors framework described in Appendix A. Accordingly, in
Fig. 14(a) we plot the quantities | 〈T̂ 1

1 〉 |, | 〈T̂ 1
2 〉 |, and | 〈T̂ 2

2 〉 |
for qutrit A as a function of the qutrit-qutrit coupling strength
and for a fixed set of gain and loss rates for each qutrit.
Interestingly, we observe that each of the three quantities
undergoes a zero crossing at different coupling strengths. This
observation can be interpreted as a generalized blockade ef-
fect, where the expectation values of specific spherical tensor
multipoles vanish as a result of destructive interference from
the coupling to the second qutrit.

FIG. 14. Expectation values of spherical tensor operators for
qutrit A versus the qutrit-qutrit coupling strength g. Here we choose
wA = 0.25 and γA = 0.75, and wB = 0.75 and γB = 0.25 while fix-
ing wA + γA = wB + γB = 1. Results are obtained numerically.
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FIG. 15. Enhancement and suppression of synchronization of the
composite two-qutrit oscillator. The ratio R [Eq. (13)] is plotted
versus the coupling strength g for the two-qutrit oscillator and for
two different sets of bath parameters, indicated by the wA and wB

values in the legend. Results are obtained numerically.

2. Synchronization of the composite two-qutrit oscillator

In Fig. 15 we plot the quantity R, defined in Eq. (13), as
a function of the qutrit-qutrit coupling strength for two dif-
ferent sets of gain and loss rates for the qutrits. These curves
demonstrate that interactions between the two qutrits can lead
to significant enhancement or suppression of synchronization
in different parameter regimes, similar to the case of the two-
qubit oscillator discussed in the main text.

APPENDIX E: SIMULATIONS OF PROPOSED
CIRCUIT QED REALIZATION

In this Appendix we describe the master equation, param-
eter values, and factors considered in choosing these values,
for the results presented in Sec. IV.

The master equation simulation is performed using QUTIP

[42] for the circuit QED (cQED) system depicted in Fig. 9. We
include three levels for each transmon and auxiliary resonator
for the simulation and choose to work in a frame that is
rotating at the frequencies ωpA and ωpB of the two-photon
pump fields, which are denoted by their Rabi frequencies �pA

and �pB in Fig. 9. The Hamiltonian in such a frame is given
by

ĤcQED =
∑

j=A,B

(ωq j − ωp j )b̂
†
j b̂ j +

∑
j=A,B

α j

2
(b̂†

j b̂ j − 1)b̂†
j b̂ j

+
∑

j=A,B

(ωa j − ωp j )â
†
j â j +

∑
j=A,B

g j (â j b̂
†
j + â†

j b̂ j )

+g(b̂†
Ab̂Bei(ωpA−ωpB )t + H.c.) +

∑
j=A,B

�p j (b̂
†
j + b̂ j )

+ε(b̂Ae−i(ωpA−ωqA )t + H.c.). (E1)

Here â j, â†
j and b̂ j, b̂†

j , j = A, B, are the ladder operators
for the auxiliary resonators and the transmons, respectively.
We note that the coupling and drive strengths in this model
differ by a factor of 2 in comparison to the spin model (4).
The first two lines in Eq. (E1) describe the free Hamilto-

TABLE I. Model parameters.

Parameter Symbol Value

frequency of qubit Aa (Ba) ωqA/2π (ωqB/2π ) 5 GHz
frequency of auxiliary A (B) ωaA/2π (ωaB/2π ) 4.6 GHz
anharmonicity of qubit A αA/2π 400 MHz
anharmonicity of qubit B αB/2π 500 MHz
qubit-qubit coupling gAB/2π 0–350 kHz
qubit A–auxiliary A coupling gA/2π 8 MHz
qubit B–auxiliary B coupling gB/2π 4 MHz
frequency of qubit A pump ωpA/2π 4.8 GHz
frequency of qubit B pump ωpB/2π 4.75 GHz
decay rate of auxiliary A (B) κA/2π (κB/2π ) 60 MHz
decay rate of qubit A (B) γ0,A/2π (γ0,B/2π ) 53 kHz
dephasing rate of qubit A (B) γφA/2π (γφB/2π ) 53 kHz

aFor these quantities, the values reported in this table are approximate
and need to be adjusted according to the detunings given in Table II.

nian of the transmons and the auxiliary resonators. The third
line describes the coupling between the transmons and their
respective auxiliary resonators, the fourth line the coupling
between the two transmons, the fifth line the two-photon
pump on the transmons, and the last line the external drive on
transmon A. The master equation for the full system is given
by

d ρ̂

dt
= −i[ĤcQED, ρ̂] +

∑
j=A,B

D[
√

κ j â j]ρ̂

+
∑

j=A,B

D[
√

γ0, j b̂ j]ρ̂ +
∑

j=A,B

D[
√

γφ j b̂
†
j b̂ j]ρ̂. (E2)

Here κ j and γ0, j are the decay rates of the resonators and the
transmons, while γφ j is additional dephasing of the transmons.
The values of the parameters entering Eqs. (E1) and (E2)
are given in Tables I and II. These values are experimentally
achievable with current technology.

A number of factors must be carefully considered in choos-
ing parameters for the cQED model and in order to match
its results with the two-qubit oscillator model discussed in
Sec. III. The off-resonant coupling of the |g〉 ↔ |e〉 transition
to the auxiliary resonator leads to an additional Purcell decay
besides the intrinsic decay channels. The total decay rate γ j

and the effective repump rate w j of each qubit, which are
reported in Figs. 10 and 11, are extracted by decoupling the

TABLE II. Parameters for different figures. Here �pA and �pB

are the Rabi frequencies of the two-photon pump on qubits A and B
respectively, and �A and �B are corrections in the qubit frequency
due to the two-photon pump and the auxiliary resonator, such that the
shifted frequency of the qubit is given by ωq j + � j , j = A, B.

Symbol Fig. 10(a) Figs. 10(b) and 11(a) Fig. 11(b)

ε/2π 20 kHz 20 kHz 40 kHz
�pA/2π 0.0 MHz 5.5 MHz 7 MHz
�pB/2π 8.0 MHz 9.0 MHz 4.1 MHz
�A/2π 160 kHz 763.3 kHz 1135 kHz
�B/2π 1013.72 kHz 1230 kHz 300 kHz

033718-14



EXPLORING QUANTUM SYNCHRONIZATION WITH A … PHYSICAL REVIEW A 109, 033718 (2024)

transmons (g = 0) and fitting the relaxation profiles of the
population from an initial state. While the |g〉 ↔ |e〉 tran-
sitions of the two transmons must be near resonance, the
corresponding |e〉 ↔ | f 〉 transitions must be mismatched in
frequency, which will require different anharmonicities for
the two transmons. The frequency mismatch ensures that the
| f 〉 → |e〉 decay of, say, transmon A does not occur through
the auxiliary resonator of transmon B or vice versa, by virtue
of their coupling. Furthermore, the strength ε of the weak
drive cannot be made arbitrarily small since its effects must
be discernible in the presence of experimental limitations and
residual coherences arising from the pump fields.

A further, important factor is that the auxiliary resonators
and the two-photon pumps introduce shifts to the |g〉 ↔
|e〉 transition frequency of both transmons, which must be
compensated by appropriately tuning their frequencies. The
dispersive shift of the |g〉 ↔ |e〉 transition frequency arising

from the auxiliary resonator is given by g2
j/(ωq j − ωa j ). The

shift due to the two-photon pump was calculated by con-
sidering the Hamiltonian for the pump acting on the lowest
three levels of the transmon. Because of the coupling to the
auxiliary resonator, the decay in the third level, given by
γ f = 4g2/κ [26], is also included in the Hamiltonian, which,
in a frame rotating at the pump frequency, takes the form

H =
⎡
⎣ 0 �p 0

�p α/2
√

2�p

0
√

2�p −iγ f

⎤
⎦, (E3)

where �p is the two-photon pump strength. The shifted |g〉 ↔
|e〉 transition frequency is then obtained by diagonalizing this
Hamiltonian. The net corrections to the transmon frequen-
cies arising from the auxiliary resonators and the two-photon
pumps are listed in Table II.
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