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Waveguide QED in the dipole gauge
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In recent studies on ultrastrong coupling between matter and light in cavities, the significance of gauge
choice when employing the widely used two-level approximation has been highlighted. Expanding upon these
investigations, we extend the analysis to waveguide QED, where we demonstrate that truncations performed in
the dipole gauge also yield accurate results. To illustrate this point, we consider the case of a dipole coupled to
a cavity array. Various numerical and analytical techniques have been employed to investigate the low-energy
dynamics of the system. Leveraging these theoretical tools, we argue that single-photon scattering is an ideal
method for investigating gauge-related issues. Our findings reveal two effects in the scattering spectra, which
cannot be reproduced in a truncated model using the Coulomb gauge. First, the primary resonance is modified
due to a Lamb shift contribution. Second, we observe asymmetric transmission amplitudes surrounding this
resonance, reflecting the asymmetry of the spectral density in this model. Additionally, we explore other features
in the scattering spectra resulting from ultrastrong couplings, such as the emergence of Fano resonances and
inelastic channels. Finally, we propose an experimental test of our ideas in the context of circuit QED.
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I. INTRODUCTION

Photons usually interact weakly with matter, which has
lead to the adoption of several approximations in quantum
optics. The most common ones include the rotating-wave
approximation, truncating the matter description to its lowest
energy levels, neglecting the A2 term, and the Markovian
approximation for computing spontaneous emission, among
others. However, numerous experiments have demonstrated
that discrete quantum emitters can couple to light beyond the
limitations of perturbative coupling. This breakthrough has
been achieved by coupling these emitters to cavities [1–3] and
waveguides [4–7].

It has been demonstrated that, in certain cases, the inter-
action energy can be comparable to the energies of light and
matter. As a consequence, many approximations break down,
indicating that the coupling strength has entered the ultra-
strong regime (USC). One of the primary noticeable effects
of entering the USC is the significant emergence of processes
that go beyond the interchange of a single photon and matter
excitation.

As a result, the widely used rotating-wave approxima-
tion (RWA) for the interaction loses its validity, leading
to the renormalization of the bare emitter parameters and
the emergence of a nontrivial ground state. Several inter-
esting phenomena have been discussed in relation to the
latter, including the possibility of converting virtual photons
into real ones through ground-state perturbations [8–13], the
localization-delocalization transition [14,15], and the poten-
tial for performing nonlinear optics at the limits of single and
zero photons [16–21]. To gain comprehensive insights into
light-matter interactions in the USC regime, see Refs. [22,23].

More recently, it has been discovered that the USC
regime introduces additional complications for conventional
approaches used to describe light-matter systems. The

commonly employed two-level approximation (TLA) for the
matter subsystem has been found to lack gauge invariance
in certain descriptions. In fact, truncating a momentumlike
coupling operator has been shown to cause significant incon-
sistencies between complete and truncated models [24–26].
Instead, employing position-based interactions yields more
reliable results when combined with the TLA. This research
area has sparked numerous studies focusing on different ap-
proaches to truncating the matter level subsystems [27], and
also on the truncation of photonic levels or the number of
modes [28,29]. Correctly applying the two-level approxima-
tion has significant implications for a wide range of system
properties. It affects not only the energy levels [24], but also
the ground state [30], emission spectra [31,32], spectral den-
sity [32], and various other observables [30,32].

In this paper, we build upon previous approaches to ensure
gauge invariance in cavity quantum electrodynamics and ap-
ply them to the domain of waveguide QED. We propose that,
for a dipole coupled to a waveguide, employing the dipole
gauge is more suitable for matter truncation. To illustrate this,
we focus on the case of a single dipole coupled to a cavity
array and conduct both numerical and analytical calculations.
Notably, we demonstrate that scattering experiments are ideal
for testing gauge-related issues. Specifically, we reveal that
the transmittance minimum exhibits a redshift as the cou-
pling strength increases, even within the lower range of the
ultrastrong-coupling regime. This redshift effect arises from
the contribution of Lamb shifts, which contrasts with the
constant resonance observed when truncation is performed in
the Coulomb gauge. This key result highlights a qualitative
distinction between truncation approaches carried out in two
different gauges. Furthermore, our analysis reveals that in-
cluding counter-rotating terms enables the occurrence of Fano
resonances and inelastic-scattering processes.
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The rest of the paper is organized as follows. In Sec. II,
we present a general gauge-invariant description of a single
particle interacting with the electromagnetic field. We apply
this description to the case of waveguide QED and particu-
larize it to a cavity array waveguide. Section III introduces
the framework used to address the scattering processes in
these systems and discusses how gauge invariance affects their
description. The different theoretical methods employed in the
scattering computations are described in Sec. IV. In Sec. V,
we present and analyze the numerical results for the scattering
spectra both within and beyond the rotating-wave approxima-
tion. Section VI proposes an implementation of this setup in
a circuit QED platform. Finally, we conclude in Sec. VII. The
paper also includes four appendices: Appendix A analyzes
gauge invariance in the weak-coupling limit. Appendix B
provides the analytical computation of the self-energy in the
RWA. Appendix C discusses the convergence of Coulomb
gauge and dipole gauge simulations. Appendix D deals with
the continuous limit of the dipole gauge model.

II. GAUGE INVARIANT FORMULATION
OF WAVEGUIDE QED

A. Preliminaries

In this section, we present a formalism that describes the
interaction between a single dipole and the electromagnetic
field. From a historical standpoint, within the classical do-
main, light-matter arises from the Lorentz force, leading to the
well-known minimal coupling (p − qA)2 and giving rise to
the momentum-vector potential interaction: ∼p · A. Another
representation of the interaction stems from the equivalence
of Lagrangians differing by a global derivative. Following
Göpper-Mayer [33], the inclusion of the term q[d (x · A)/dt]
generates an equivalent Lagrangian, where the interaction is
now expressed as qx · [dA/dt] = qx · E, E being the electric
field and x the distance between the dipole charges. Both
depictions are synonymous by construction, a fact that can
be comprehended through gauge invariance. A convenient
approach to introducing gauge-invariant light-matter systems
can be found in Refs. [25,27,34]. In the Coulomb gauge, the
Hamiltonian is expressed as

HC = Hph + U †HmU . (1)

Here, Hph represents the quantized Hamiltonian for the elec-
tromagnetic field, which will be specified below, and Hm refers
to the matter Hamiltonian. The unitary operator U , which
represents a gauge transformation itself, is given by

U = eiqA(x)·x/h̄, (2)

where A(x) is the vector potential and q denotes the emitter
charge. The variable x corresponds to the position operator of
the emitter. It is worth noting that A(x) can explicitly depend
on this position.

Given Hm = p2/2m + V (x), Eqs. (1) and (2) result in the
minimal coupling Hamiltonian

HC = 1

2m
(p − qA)2 + V (x)+Hph. (3)

This way of expressing HC also offers a straightforward under-
standing of the dipole gauge. In fact, the Hamiltonian in the

dipole gauge can be represented by a gauge transformation,
equivalent to the Power-Zienau-Woolley one, as cf. Eq. (1)

HD = Hm + UHphU †. (4)

Within this formulation, it is evident that HD = UHCU †,
ensuring gauge invariance. Furthermore, the light-matter cou-
pling transforms the bare matter Hamiltonian in the Coulomb
gauge, while in the dipole gauge, it transforms the free elec-
tromagnetic field Hamiltonian. Up to this point, there should
be no ambiguity about working in one gauge or the other.
However, in practical calculations, we often need to make ap-
proximations in the Hamiltonians, especially when focusing
on low-energy dynamics. In such cases, we typically truncate
the matter Hamiltonian to some minimum-energy states, us-
ing methods like the two-level approximation or the single
band limit, among others. The problem of gauge ambiguities
arises when making these truncations, since applying approx-
imations on the matter subsystem in one gauge may lead to
different results than in another.

The reason for this discrepancy lies in the difference be-
tween the origins of the coupling terms. In the Coulomb
gauge, the interaction is constructed using the minimal re-
placement rule p → p − qA. However, when truncating, the
local potential V (x) becomes nonlocal. Since a nonlocal po-
tential in the position representation functions as an integral
operator, it does not commute with the position operator and
can be expressed as a local momentum-dependent operator,
V (x, p). Consequently, in the truncated description, the re-
placement must also be applied to the potential part. This issue
does not arise in the dipole gauge. For an in-depth discussion
of these concepts, we refer readers to Refs. [25,35]. The direct
application of truncation without considering this dependence
is the root cause of gauge discrepancies [25,35,36]. This same
discrepancy is expected to occur in waveguide QED, as dis-
cussed below.

B. Waveguide QED Hamiltonian

Electromagnetic quantization is convenient in the Coulomb
gauge. In what follows, we will assume that the position of the
emitters is fixed. This is the case in the majority of situations
and facilitates the discussion. To be more precise, we will
assume that the emitter position can be written as x = x0 + δx
(x0 is not an operator but a vector position). For all the relevant
energy scales A(x) ∼= A(x0), which is the long-wavelength
approximation. In this scenario, A acts only on the Hilbert
space of the photons (see Ref. [37], Sec. III):

A⊥(x0) = 1√
L

∑
k

[λk (x0, y0) akeikz0 + H.c.]. (5)

We have added the suffix ⊥ to emphasize that the potential
vector has only transverse components in the Coulomb gauge.
In this paper, we focus on waveguide QED, which fixes a
propagation direction, denoted as z (see, the exponentials and
the scalar character for the wave vector k). Additionally, this
constrains λk to the xy plane, which can be expressed as

λk ≡
√

h̄

2ωkε0
uk, (6)
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with uk normalized functions, satisfying
∫
R2

dxdy |uk|2 = 1,
and providing the space dependence of A around the waveg-
uide. The waveguide is assumed to be surrounded by vacuum,
hence the appearance of ε0 above. The frequencies of the
different waveguide modes are denoted as ωk:

Hph =
∑

k

h̄ωka†
kak . (7)

Up to this point, we have assumed a waveguide of length L,
using a discrete number of modes k = m × π/L, where m =
0,±1, . . . . However, the continuum limit can be obtained by
taking L → ∞.

At this point, it becomes evident that continuing to use
the Coulomb gauge comes with certain obstacles. The most
evident is the fact that the minimal coupling introduces the A2

term which, after Eq. (5), couples all the waveguide modes,
resulting in terms like akak′ + a†

kak′ + H.c. As a consequence,
the photonic part should be diagonalized using a Bogoliubov
transformation.

Alternatively, we can switch to the dipole gauge (4). To
achieve this, we just need to know how ak transforms under U
in (2):

UakU
† = ak − iq

1√
L

λke−ikz0 · x. (8)

Therefore, the waveguide QED Hamiltonian in the dipole
gauge can be written as

HD = Hm +
∑

k

h̄ωka†
kak − iq

1√
L

x
∑

k

(λk h̄ωkeikz0 ak − H.c.)

+ q2

L

∑
k

h̄ωk|λkeikz0 · x|2. (9)

The last term in Eq. (9) can be absorbed into Hm, resulting in a

modified matter Hamiltonian H ′
m = Hm + q2

L

∑
k h̄ωk|λkeikz0 ·

x|
2
. If H ′

m can be described using its two lowest states, say
{|0′〉, |1′〉}, HD can be expressed in the form of a spin-boson
model:

HD = h̄�′

2
σz +

∑
k

h̄ωka†
kak + σx

∑
k

(h̄gkak + H.c.) (10)

where

gk = ωk√
L

〈0′|d|1′〉 · λk, (11)

with h̄�′ being the transition energy between the two states
and d = qx. Here and throughout the paper, we use the nota-
tion HD to distinguish the truncated Hamiltonian in Eq. (10)
from the full model HD in (9). It is customary to define the
spectral density for spin-boson models as

JD(ω) = 2π
∑

k

|gk|2δ(ω − ωk ). (12)

Here, we have used the suffix D to emphasize that the spectral
density is gauge dependent since it depends on the light-matter
coupling (11).

As mentioned earlier, the A2 term in the Coulomb gauge
prevents us from explicitly expressing the Hamiltonian in the
form of (9) and/or (10). However, at low and intermediate

FIG. 1. Schematic representation of a one-dimensional array of
coupled cavities via the hopping parameter ξ . The dipole lies within
the center cavity with a relative distance between its charges x.

couplings, the A2 is usually neglected. By doing so, one can
obtain a spin-boson model, but with a different transition
frequency � [the last term of (9) has been absorbed into Hm]
and a different spectral density. Since the spin-boson model is
determined by its the spectral density, the Coulomb and dipole
gauges are not equivalent after truncation, similar to the case
in cavity QED. Despite this, it is possible to show that

lim
|λk |→0

JC (�) → JD(�). (13)

The proof is provided in Appendix A.
Thus, truncation can be safely done in both gauges in the

usual scenario of waveguide QED, in which the light-matter
coupling is small. However, entering the USC regime requires
more caution, and as we will discuss in detail later, the dipole
gauge proves to be quite convenient. In addition, we will
explore the physical consequences of working in the USC
regime and how they manifest in standard experiments, such
as single-photon scattering.

C. Cavity array case

Up to this point, we have not specified the particular
waveguide or emitter we are considering. Moving forward,
we will analyze a model that allows for both exact numerical
treatments and analytical estimates. To describe the emitter,
we will assume it to be spherically symmetric dipole, which
enables us to use a one-dimensional model with position x and
momentum p operators to represent its Hamiltonian. On the
other hand, we will focus on a cavity array for the waveguide,
where the emitter is coupled to a single cavity (specifically,
the n = 0 cavity). We will also assume that the cavities in
the array are single mode, with the vector potential aligned
with the dipole in the Coulomb gauge. This setup ensures
that the model remains fully one dimensional. A schematic
representation of this system is shown in Fig. 1. As we will
discuss, these simplifications can be justified within the circuit
QED architecture, where the USC regime has been reached
[3,4,7], and our proposed ideas may be implemented. Then,
the resulting full light-matter Hamiltonian in the Coulomb
gauge can be expressed as

HC = [p − qA0(a0 + a†
0)]2

2m
+ V (x)

+ h̄ωc

N∑
n

a†
nan + h̄ξ

N∑
n

(ana†
n+1 + a†

nan+1). (14)

In this model, we consider identical N cavities, each with a
resonance frequency ωc. The cavities are coupled to their left
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and right neighbors with a strength ξ in a tight-binding fashion
[last term of Eq. (14)]. Regarding the dipole, we choose to
describe it using a double-well potential

V (x) = −μ
x2

2
+ λ

x4

4
, (15)

this and other potentials have been explored in the literature
for cavity QED systems [36].

To obtain the dipole gauge description in position space,
as we will employ this representation in our scatter-
ing calculations, we can apply the unitary transformation
U = eiqA0(a0+a†

0 )x [see Eq. (2)] to Eq. (14):

HD = H ′
m + h̄ωc

∑
n

a†
nan + h̄ξ

∑
n

(a†
nan+1 + H.c.)

− ih̄ωcqA0(a†
0 − a0)x − ih̄ξqA0[(a†

1 − a1)

+ (a†
−1 − a−1)]x, (16)

where H ′
m = p2/2m + V (x) + h̄ωcq2A2

0x2. The gauge trans-
formation intertwines light and matter; hence, in this new
gauge, the dipole also couples to the adjacent cavities n =
−1, 1, which, in the Coulomb gauge, are the ones coupled to
cavity n = 0 via the hopping term.

Our simulations consider both the nontruncated (which
we call the full model) and the truncated version where
only the two lowest states {|0′〉, |1′〉} of H ′

m are retained.
In the latter case, the model to consider is the spin-boson
one (10), obtained by moving to the momenta space ak =
1/

√
N

∑
n aneikn with

gk = ωcqA0|〈1′|x|0′〉|√
N

ωk

ωc
, (17)

and then from Eq. (12)

JD(ω) = 2g2√
4ξ 2 − (ω − ωc)2

ω2

ω2
c

, (18)

and to quantify the coupling regime of the system in the
truncated dipole gauge we define the coupling strength
g = qA0ωc|〈1′|x|0′〉|.

D. Truncation of matter levels in both gauges

In general, Hamiltonians HD, HC , or even the truncated ver-
sion HD are nonintegrable. Besides, the numerical calculation
of the spectrum is rather challenging. Hence, performing a
benchmark of the truncation in different gauges with the full
model is not viable. To illustrate how the truncation affects
gauge invariance, we present the eigenenergies of a minimal
system composed of a dipole coupled to three cavities. These
are obtained in a gauge invariant nontruncated representation
and within the two-level approximation in both the Coulomb
and dipole gauges in Fig. 2.

References [24,25] introduce a convenient dimensionless
notation for the matter Hamiltonian, which we also follow in
the diagonalization procedure to obtain the spectra of Fig. 2.
By defining a length scale x0 = [h̄2/(λm)]1/6, we work with
the dimensionless variable z = x/x0, allowing us to rewrite

FIG. 2. The energy spectra of an array of three cavities with the
central one coupled to the dipole, shown for the full model (solid
black line), the truncated dipole gauge (dashed red line), and the
truncated Coulomb gauge (dashed-dotted blue line). In this plot, we
choose β = 3.8 and Edip/(h̄ωc ) = 63.812 such that at zero coupling,
there is a resonance between the cavity energy ωc and the first bare
dipole transition �. The hopping parameter is given by ξ/ωc =
−1/π . For the full model diagonalization, we consider 18 dipole
levels and 18 photonic levels in each of the three cavities, while the
truncated cases use the same number of photonic excitations and two
dipole levels.

the bare matter Hamiltonian Hm as

Hm = Ed

[
p2

z

2
− βz2

2
+ z4

4

]
, (19)

where β = mμx4
0/h̄2, pz = −ih̄∂/∂z.

Figure 2 demonstrates that truncation without account-
ing for the nonlocality in V (x) in the Coulomb gauge leads
to failure. The figure also illustrates how the dipole gauge
can be truncated while accurately matching the full model.
The latter is essentially a simulation comprising a sufficient
number of levels, allowing the system to be considered as
nontruncated. We have confirmed that both gauges yield the
same results, ensuring the convergence of our findings. This
consistency aligns with results obtained in the single cavity
scenario [24,25].

III. SCATTERING: SETTING THE PROBLEM

A caveat in USC is that the distinction between “light” and
“matter” subsystems becomes less clear. This is not only due
to the creation of strongly correlated light-matter states but
also because the definition of these subsystems is gauge de-
pendent. While physical observables remain gauge invariant,
the choice of matter or light observables can be ambiguous. To
overcome these subtleties and provide clear and measurable
signatures of truncation issues in different gauges, this paper
focuses on studying scattering phenomena. Scattering serves
as an ideal testbed for highlighting gauge-related problems.
The scattering problem can be simplified as follows. The input
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state, representing our initial condition, is chosen to be the
non-normalized quantum state,

|�in〉 = (a†
φ )N |GS〉, a†

φ =
∑

x

φin
x a†

x , (20)

where |GS〉 is the ground state of the system and φin
x is a

Gaussian wave packet centered in xin with spatial width θ :

φin
x = exp

(
− (x − xin )2

2θ2
+ ikinx

)
. (21)

Typically, we consider xin located on the left-hand side of the
scatterer, with the wave packet moving to the right towards
it. The wave packet (21) is exponentially localized around kin,
with a width of approximately θ−1.

The wave packet evolves in time as

|�(t )〉 = U (t, 0)|�in〉 = e−iHtott |�in〉. (22)

A final time tout is chosen, which must be sufficiently large
to allow the photons to move freely along the waveguide after
interacting with the scatterers. The evolution is then described
by the S matrix, defined as

|�out〉 = S|�in〉 . (23)

The scattering matrix is characterized by its momentum com-
ponents:

Sp1...pN ′ , k1...kN = 〈GS|ap1 . . . apN ′ S a†
k1

. . . a†
kN

|GS〉. (24)

Some comments are pertinent here. The ground-state wave
function |GS〉 appears in the definition of S. In the ultrastrong-
coupling regime, as discussed before, the ground state differs
from the vacuum state and contains a nonzero number of
excitations [12]. In this regime, the number of excitations is
not conserved, so N ′ �= N in general in Eq. (24). However,
we can expect some simplifications to occur. We special-
ized our discussion to single-photon wave packets, searching
for computational simplicity, and also because in the experi-
ments, when using low-power coherent classical input-output
field states, the transmittance amplitudes coincide with the
single-photon scattering amplitudes. Moreover, it has been
shown [38] that for wave packets far away from the scatterer,
even in the ultrastrong-coupling regime, we can approximate
aN

φ |GS〉 ∼= aN
φ |vac〉, where |vac〉 represents the trivial vacuum

of the waveguide with an|vac〉 = 0 for all n. Lastly, it has
been numerically tested that the probability of having more
than one photon in the output field is negligible [16,17]. As a
consequence, the single-photon amplitudes can be related to
the number of photons as follows:

〈�out|a†
kak|�out〉

〈�in|a†
kak|�in〉

= |Skk|2 ≡ tk . (25)

This equation defines the transmission amplitude tk , which is
a key quantity in this paper.

Within this framework, it is easy to understand how scat-
tering is free from ambiguities in the above-mentioned sense.
Of course, being an observable, the transmission amplitude
is gauge invariant. What makes scattering “special” is that
both the input and output fields have support only on regions
well separated from the scatterer. Consequently, they can be
considered as free photon wave packets created over the QED

vacuum of the waveguide, which remains the same in all the
gauges: U |�in〉 = |�in〉 (the same with |�out〉). Therefore, one
can start with the same initial conditions in both gauges, allow
the system to evolve, compute the amplitude, and compare
the results after performing truncations in both the dipole and
Coulomb gauges.

IV. THEORETICAL METHODS

Let us outline the theoretical methods we employed to
compute the scattering spectra in the USC regime. Our
approaches involve a polaronlike transformation, numerical
simulations based on matrix product states (MPSs), and
matching techniques. The readers already familiar with these
methods, or not interested in technical details, should proceed
to the next section.

A. Polaron picture: Effective single excitation dynamics

The polaron formalism provides an effective description
of the low-energy sector of spin-boson models such as (10).
This approach is based on applying a unitary transform that
disentangles the light and matter subsystems:

UP = exp

(
−σx

∑
k

f ∗
k ak − fka†

k

)
, (26)

where fk represents a set of variational parameters. These
parameters are found by minimizing the ground-state energy,
which is given by the state with zero excitations |�GS

P 〉 =
|0〉 ⊗ |0k〉 (see, e.g., Refs. [12,39–41]).

After applying (26), the effective Hamiltonian in the po-
laron picture is given by

HP =
∑

k

ωka†
kak + �r

2
σz + 2�r

∑
k

( fkakσ
+ + H.c.)

− 2�rσz

∑
k,p

fk f ∗
p a†

kap, (27)

where

�r = exp

(
−2

∑
k

| fk|2
)

(28)

and

fk = gk

(�r + ωk )
. (29)

Here and throughout the paper, we use the convention h̄ =
1 for simplicity. The variational parameters fk and �r are
obtained self-consistently from Eqs. (28) and (29). The
renormalized frequency �r is a well-known result from the
spin-boson model. It tends to vanish as the coupling increases,
eventually leading to the localization-delocalization quantum
phase transition depending on J (ω) [42]. The main advan-
tage of the effective Hamiltonian (27) is that it conserves the
number of excitations, making the single-particle dynamics
relatively straightforward.

B. Matrix product states

Tensor networks have proven to be effective tools
for numerically simulating light-matter systems in the
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FIG. 3. The coupled waveguide is divided into three regions I,
II, and III, which are employed in computing the transmission via
matching methods. Regions I and III are chosen to have negligible
ground-state photonic population, even in the ultrastrong-coupling
regime.

ultrastrong-coupling regime [14,15,17]. Specifically, for our
one-dimensional chain with nearest-neighbor interactions de-
scribed by (16), we utilize matrix product states in conjunction
with a time evolution block decimation algorithm [43] to
simulate wave-packet scattering, as discussed in Sec. III.
By simulating the scattering process for a sufficiently long
duration tout, we can obtain the outgoing eigenstate (23), as ex-
plained in the previous section. Furthermore, with the matrix
product state representation of |�in〉 and |�out〉, the computa-
tion of the transmission amplitude transmittance described by
Eq. (25) can be efficiently implemented.

C. Matching techniques

Lastly, we also use a matching technique to obtain the
transmittance and reflectance amplitudes. The fundamental
concept in this framework involves dividing the coupled
waveguide into three distinct regions, as depicted in Fig. 3.
The central region II encompasses the dipole, the central cav-
ity, and a sufficient number of additional cavities to contain
the virtual photonic excitations resulting from the dressing of
the dipole in the ultrastrong-coupling regime. Ground-state
photons exhibit exponential localization around the emitter,
with 〈a†

nan〉GS ∼ e−κGS|n|/2, where κGS denotes the localization
length (which has been calculated in Ref. [44] but is irrelevant
for our purposes). Consequently, the cavity regions I and
III can be considered, to a good approximation, to not have
photons in the ground state. In other words, in regions I and
III, we assume that 〈a†

nan〉GS = 0.
Bringing everything together, in regions I and II, we de-

scribe single-photon transport using the following state:

|�〉 =
∑
n,α

φn,αa†
n|0ph, αsc〉 +

∑
α

fα|0ph, αsc〉. (30)

Here, |0ph, αsc〉 represents the state with zero excitations in
regions I and III. The label α denotes the eigenstates in region
II, which can be computed numerically. For the parameters
considered in this paper, we have found that up to five or
seven cavities in region II are sufficient to obtain an accurate
description of the transmittance.

The quantity φn,α denotes the amplitude of having a photon
in the nth cavity while the scatterer remains in state α:

φn,α (k) =
{

eikn + rk,αe−ikn, I

tk,αeikn, III
. (31)

FIG. 4. Renormalization of the first dipole transition energy in
the dipole gauge �′ with increasing coupling, presented in units of
the bare energy. The parameters used are the same as in Fig. 2.

By employing the ansatz (30), the time-independent
Schrödinger equation can be solved, resulting in the determi-
nation of the transmittance and reflectance amplitudes.

V. RESULTS

The complete transmittance spectrum is quite intricate,
as we will soon discover. To better understand the gauge
issues and the impact of truncation in different gauges, we
will initially focus on calculating the scattering coefficients
within the rotating-wave approximation. This approach sim-
plifies single-photon scattering and allows for fully analytical
solutions. Subsequently, we will proceed to solve the full
model and comprehensively discuss the complete transmit-
tance spectrum.

A. Transmission under the RWA approximation

In order to isolate the effects of the truncation, we will
apply the following approximations. We apply the two-level
truncation and the RWA such that HD = H0 + HI , with

H0 = �σ+σ− + ωc

∑
n

a†
nan + ξ

∑
n

(a†
nan+1 + H.c.)

(32)
and

HI = g(iσ−a†
0 + H.c.) + ξg

ωc
[σ−(ia†

1 + ia†
−1) + H.c.]. (33)

σ± are the two-level system ladder operators and g =
ωcqA0|〈0′|x|1′〉|. We emphasize that the rotating-wave ap-
proximation is valid only in the weak-coupling regime, but
here we extend our computations to larger couplings to com-
pare the RWA results directly with those obtained from the
full model, thereby revealing the role of the counter-rotating
terms.

Furthermore, we neglect the terms of second order in the
couplings, specifically the x2 term in the dipole Hamiltonian.
As mentioned, this term introduces a dependency on the cou-
pling strength g to the TLS transition �′ in Eq. (10). However,
as shown in Fig. 4, �′ increases with g but we note that
this change is relatively small compared to the other effects
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discussed in this section. Therefore, for the RWA calculations,
we will not consider this effect to gain a qualitative under-
standing.

The rotating-wave approximation offers several advan-
tages. First, the ground state becomes trivial, with |GS〉 =
|0〉, implying zero excitations in both the waveguide and the
dipole. Moreover, within the RWA, we can work within the
single excitation manifold since the number of excitations is
conserved, i.e., [HD, N] = 0, where N = ∑

n a†
nan + σ+σ−.

In this case, the matching method introduced in Sec. IV C
becomes exact using the general ansatz for a quantum state
in the single excitation manifold:

|ψ〉 =
∑

n

φn(k)a†
n|0〉 + φqσ

+|0〉. (34)

The eigenvalue problem, HD|ψ〉 = E |ψ〉, leads to a dipole
excited-state amplitude given by

φq = g

E − �

[
φ0(k) + ξ

ωc
[φ1(k) + φ−1(k)]

]
. (35)

In order to find the scattering eigenstates, we use the ansatz
for the photonic amplitude at sites n �= 0 as follows [45]:

φn(k) =
{

eikn + rke−ikn, n < 0

tkeikn, n > 0
. (36)

Using the continuity of the wave function, φ0+ (k) = φ0− (k),
the solution for the transmittance amplitude is

tk =
� − ωk − g2

ω2
c
(ωc + ωk )

ωk − � − i g2ω2
k /ω

2
c√

(2ξ )2−(ωk−ωc )2
+ g2

ω2
c
(ωk + ωc)

. (37)

An equivalent computation can be performed for the
Coulomb gauge, assuming the same approximations men-
tioned in Sec. II B to obtain a spin-boson model, that is,
neglecting the A2 term and considering the RWA. By applying
these transformations to Hamiltonian (14), we obtain a model
that also conserves the number of excitations. Further details
about the resulting model can be found in Appendix A. With
this derived number-conserving description of our system in
the Coulomb gauge, we can use the ansatz (34) to obtain tk . It
yields the following expression [compare with Eq. (37)]:

tk = � − ωk

ωk − � − ig2
C√

(2ξ )2−(ωk−ωc )2

, (38)

where gC = qA0〈0|p|1〉/m is the coupling strength in the
Coulomb gauge (see Appendix A for more details).

Figure 5 compares both formulas (37) and (38), with the
transmittance T = |tk|2, as a function of the coupling strength
g in the dipole gauge and the incoming photon frequency ωk .
In the truncated Coulomb gauge, it is a known result [16,45]
that the resonance frequency always occurs at the dipole tran-
sition, and the width of the transmittance minima increases as
g2 as plotted in Fig. 5(a).

The equivalent computation in the truncated dipole gauge
is presented in Fig. 5(b). A notable feature in the dipole gauge
is that the resonance moves to lower frequencies as g in-
creases. The resonant frequency can be obtained by imposing

FIG. 5. Transmittance spectra of a single photon within the
rotating-wave approximation in both the truncated Coulomb gauge
(a) and the truncated dipole gauge (b). The dipole gauge resonant
frequency obtained in Eq. (39) is shown as a dotted cyan line. The
parameters defining the system are the same as in Fig. 2.

tk = 0 in Eq. (37), leading to the formula

ωRWA
res = ωc

�ωc − g2

ω2
c + g2

. (39)

This dependence is represented by the dotted cyan line in
Fig. 5(b). The resonant frequency shift is a consequence of
the coupling-dependent term in the numerator of Eq. (37),
which arises from the couplings to the adjacent cavities in
the real-space Hamiltonian (16). This frequency shift will be
confirmed with the full model in the next section. Another
effect of the correct truncation is the modification of the width
of the resonance, as given by the imaginary term in (37). In
Fig. 5(b), we can observe a transmittance imbalance at both
sides of the redshifted minima. For a given coupling value,
the transmittance is higher at frequencies below the resonance
than at frequencies above.

To gain a deeper understanding of the resonance shift, we
employ the resolvent operator method [46]. This approach
allows us to identify the change in resonance as a Lamb shift.
The self-energy of our spin-boson model within the RWA can
be expressed as

�(E ) =
∑

k

|gk|2
E − ωk

= g2

Nω2
c

∑
k

ω2
k

E − ωk
. (40)

In the continuum limit, this summation can be written in terms
of known integrals [47,48]. Further details on this compu-
tation can be found in Appendix B. After performing some
manipulations, the self-energy of the system can be expressed
as follows:

�(E ) = − g2

ω2
c

(ωc + E ) + i
g2√

(2ξ )2 − (E − ωc)2

E2

ω2
c

. (41)
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The real part of the self-energy represents the Lamb shift,
causing the redshift proportional to the square of the normal-
ized coupling strength g/ωc, as given in Eq. (37). Similarly,
the imaginary part of (41) corresponds to half of the sponta-
neous emission rate, which can also be obtained by evaluating
the spectral density JD(ω) at the dipole transition �, as shown
in Eq. (18).

The shift in the resonance frequency (39) is one of the
primary findings of this paper. Although it has been calculated
under the rotating-wave approximation, we will observe a
similar effect in the full model. Importantly, this shift is a
measurable quantity that sheds light on the issues associated
with truncating the matter in the Coulomb gauge.

B. Beyond RWA

Having established that the truncation within the Coulomb
gauge cannot account for the Lamb shift and the resonant fre-
quency dependence on the coupling, we now turn our attention
to the full model without applying the RWA. This allows us to
study the transmission in a wide range of parameters.

To ensure the accuracy of our results and interpretations,
we performed simulations using the matching technique by
truncating to different numbers of levels in the dipole gauge.
Additionally, we conducted MPS simulations, as presented
in Appendix C, where it can be observed that truncating the
dipole gauge to two levels yields the correct results. There-
fore, in the main text, we will only describe this specific
case. Without the RWA, the number of excitations is no
longer conserved. As a result, processes that involve differ-
ent numbers of photons between the input and output fields
become possible. However, after conducting thorough numer-
ical investigations, we have found that these processes have
negligible magnitudes. Therefore, in this paper, we can focus
on the single-photon transmission without significant loss of
accuracy.

The complete elastic transmittance spectra obtained in
the Coulomb and dipole gauges are depicted in Figs. 6(a)
and 6(b), respectively. In the Coulomb gauge spectra shown
in Fig. 6(a), the transmittance minimum remains constant,
much like in the number-conserving transmittance spectra
in Fig. 5(a). One notable feature arising from the counter-
rotating terms in the Coulomb gauge is a Fano resonance near
the center of the band for all coupling strengths.

The corresponding transmittance spectra in the dipole
gauge are plotted in Fig. 6(b). Several features can be ob-
served in this plot. First, let us discuss the resonance frequency
shift, which already occurs within the RWA, as detailed above.
To understand this shift in the full model, we can employ the
polaron picture and the effective Hamiltonian HP (27). This
transformed Hamiltonian is number conserving, enabling us
to compute the self-energy similarly to the previous section.
In this case, the self-energy is given by

�P(E ) =
∑

k

4�2
r | fk|2

(E − ωk − 2�r
∑

l,p fl fp)
. (42)

The equation for the resonance is now given by [cf. Eq. (39)]

ωk − �r + Re[�P(ωk )] = 0 . (43)

FIG. 6. (a) Elastic transmittance spectra for a single photon
propagating in a coupled cavity array, including all the interaction
terms of the truncated Coulomb gauge, as a function of the dipole
gauge coupling strength and the incoming photon frequency. The
red dashed line indicates the scatterer transition relevant to the pho-
ton transport in this gauge. (b) Equivalent spectra computed in the
dipole gauge. The red and orange dashed lines depict the transition
energies of the scatterer in the dipole gauge that play a role in the
transmission process. Additionally, we plot the resonance predicted
in the rotating-wave approximation in a dotted cyan line, as given
in Eq. (39). The resonance predicted utilizing polaron techniques, as
described in Sec. V, is depicted with a dashed white line.

Here, �r represents the renormalized transition frequency
(28). In Fig. 6(b), the frequency shift is depicted as a white
dashed line, matching the numerical results, and for compar-
ison, we also plot the RWA result (39) with a cyan dotted
line. The shift is smaller than in the RWA case, which is due
to the competition of two effects. On the one hand, we have
the renormalized dipole frequency �r from (28). On the other
hand, there is Re[�P(ωk )], which tends to shift towards higher
frequencies.

The main result of this paper is confirming the resonance
shift in the full model, which provides a qualitatively measur-
able feature to test gauge issues related to the truncation of
dipole energies.

Furthermore, Fano resonances also appear in the spec-
tra. The first resonance occurs at intermediate frequencies
and spans most of the range of g values. Another resonance
appears at larger coupling strengths and for the higher fre-
quencies of the band. These Fano resonances can be explained
by considering the interaction between the flying photon and
the dipole, which is allowed to access subspaces with a larger
number of excitations due to the inclusion of counter-rotating
terms [7,16]. As a result, the flying photon can resonate with
eigenstates of the scatterer (defined as region II in Sec. IV C)
having different numbers of excitations. In Fig. 7, we plot the
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FIG. 7. Lowest eigenenergies of region II, which includes the
dipole and the five central cavities, as introduced in Sec. IV C.

eigenstates of region II as a function of the coupling strength.
Two localized eigenstates with odd parity, corresponding to
three and five excitations, are identified and denoted as E3 and
E5, respectively. We also plot the energy differences between
these states and the ground state, i.e., E3 − E0 and E5 − E0,
in Fig. 6(b) as dashed lines in red and orange, respectively.
A similar analysis can be done in the Coulomb gauge, where
a three-excitation eigenstate can be associated with the Fano
resonance observed in that spectrum. The agreement with
the numerical results confirms our argument explaining the
presence of the Fano resonances.

Lastly, the full model exhibits inelastic scattering. The
presence of bound states originating from the ultrastrong cou-
pling allows for scattering processes that leave the scatterer
in an excited state. In Fig. 8, we present the inelastic trans-
mittance spectra obtained from the dipole gauge computation,
which reaches a maximum value of 0.25, a fundamental bound
as explained in Ref. [16].

These inelastic processes correspond to Raman scattering,
leaving the dressed dipole in an excited bound state. To delin-
eate the parameter range where inelastic transmission occurs,

FIG. 8. Inelastic transmittance (1 − T − R)/2 in the dipole
gauge. The orange dashed line indicates the same Fano resonance
as in Fig. 6. The red solid line indicates the minimum energy of the
incoming photon required for inelastic scattering to occur, as given
by Eq. (45).

FIG. 9. Cavity array implemented in a superconducting circuit
QED platform. Individual LC oscillators are coupled inductively to
their neighbours, while the transmon is directly connected to the
capacitance of the central oscillator, labeled 0.

we use the energy conservation condition:

ωin
k + E0 = En + ωout

k , (44)

where ωout
k ∈ [ωc − 2ξ, ωc + 2ξ ], and E0 and En are the en-

ergies of the ground state and bound states for the dressed
dipole. The solid red line in Fig. 8(c) represents the minimum
energy of the incoming photon for which inelastic scattering
is possible, given by Eq. (45):

ωmin
ine = E2 − E0 + ωc − 2ξ . (45)

Our numerical computations verify this condition, providing
the separation line beyond which inelastic transmission is
possible.

VI. IMPLEMENTATION

Finally, we propose a circuit QED architecture that pro-
vides an experimental platform to test the ideas developed in
this paper. Our proposed circuit, illustrated in Fig. 9, consists
of an array of N LC circuits coupled inductively in series.
The central circuit contains a superconducting qubit (such as
a transmon) capacitively coupled to the LC circuit, as shown
in the same figure.

By considering the Kirchhoff equations of motion and
selecting φ0 and φq as variables, we can express the current
through the capacitor Cr as Cr (φ̈0 − φ̈q), which leads to a
light-matter coupling via momentum, analogous to the min-
imal coupling in Eq. (1). The Hamiltonian for this circuit is
given by [49,50]

Hch =
∑

n

[
Q2

n

2Cr
+ φ2

n

2L�

+ φnφn−1

Lc

]
+ (Q0 + Qq)2

2CJ

+ EJ cos(φq), (46)

where 1/2L� = 1/2Lr + 1/Lc. The suffix “ch” indicates that
this Hamiltonian is obtained in the charge gauge, resulting
from the choice of dynamical variables φ0 and φq. The pres-
ence of the minimal couplinglike feature in this circuit makes
it analogous to the light-matter Hamiltonian in the Coulomb
gauge (14).

Similar to dipolar systems, a unitary transformation can
also be applied in this case [cf. Eq. (2)] [24]:

U = eiφqQ0/h̄. (47)
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Physically, this transformation changes the dynamical vari-
ables (for the Kirchhoff equations) from {φ0, φq} to {δφ, φq},
where δφ = φ0 − φq.

By utilizing the mode fluxes and charges, φk =
1√
N

∑
n φneikn, Qk = 1√

N

∑
n Qneikn, and αk = ( 1

2L�
+ cos(k)

Lc
),

along with their quantization [49,50],

Qk = −i

√
h̄ωkCr

2
(a†

k − ak ),

φk =
√

h̄ωk

4αk
(a†

k + ak ),

the transformed Hamiltonian Hfl = UHchU † can be written as

Hfl = Q2
q

2CJ
+ EJ cos

(
φq − φext

�0

)
+

∑
k

h̄ωka†
kak

− h̄
∑

k

gk (ak + a†
k )φq + 1

N

∑
k

αk|φq|2. (48)

Here, the dispersion relation is ωk = ωr + 2ξr cos(k), where
ωr = (L�Cr )−1/2 and ξr = ωrL�/Lc. The coupling constants
are given by

h̄gk =
√

h̄

2L�ωcN
ωk . (49)

It is worth noting that gk ∼ ωk as shown in Eq. (17). More-
over, the bare matter Hamiltonian, defined by the first two
terms in (48), is also modified by a term scaling with the
square of the flux operator. Therefore, this circuit Hamiltonian
is equivalent to (4).

VII. CONCLUSIONS

In this paper, we have extended the study of gauge issues
in light-matter coupled systems to the realm of waveguide
QED. Gauge problems present significant technical chal-
lenges when studying waveguide QED, particularly in the
ultrastrong-coupling regime. We have employed various the-
oretical methods, including numerical techniques (matching
and MPS) and analytical approaches (polaron transforma-
tion), to describe the system dynamics and compare truncation
in different gauges. We argued that scattering, a natural quan-
tity in waveguide QED, is ideal for testing different gauges,
and it holds relevance from an experimental perspective.

Our investigations have confirmed that the transmittance
spectrum exhibits both qualitative and quantitative differences
when truncating in different gauges. Numerical results have
provided evidence that the dipole gauge is well suited for
truncation, allowing for accurate transmittance spectra over a
wide parameter range. On the other hand, the Coulomb gauge
is found to be unsuitable for truncation. Figure 6 presents a
clear visual representation of these significant differences.

The main features of correct transmittance spectra in-
clude the coupling-dependent resonant frequency shift, the
emergence of Fano-like resonances, and the occurrence of
nonelastic scattering. These findings constitute important as-
pects of our paper. Furthermore, we have concluded the paper

by proposing an experimental implementation of this physics
using circuit QED.

ACKNOWLEDGMENTS

The authors acknowledge funding from the
Spanish Government under Grants No. PID2020-
115221GB-C41/AEI/10.13039/501100011033 and
No. TED2021-131447B-C21 funded by Grant No.
MCIN/AEI/10.13039/501100011033 and the European
Union “NextGenerationEU”/PRTR, the Gobierno de Aragón
(Grant No. E09-17R Q-MAD), and the CSIC Quantum
Technologies Platform PTI-001.

APPENDIX A: GAUGE INVARIANCE
AT WEAK COUPLING

In this section, we demonstrate that in the weak-coupling
limit, both the Coulomb gauge and dipole gauge formula-
tions can be represented as spin-boson models [see Eq. (10)].
Although their spectral densities are not identical, under the
Wigner-Weisskopf approximation, their spontaneous emis-
sion rates are equal, as indicated in Eq. (13).

By substituting the expression of the vector potential in the
Coulomb gauge, as given in Eq. (5), into the minimal coupling
Hamiltonian (3), we obtain a similar expression to that in the
dipole gauge (9):

HC = Hm +
∑

k

ωka†
kak − q√

L

p
m

∑
k

(λkeikz0 ak − H.c.)

+ q2

2mL

(∑
k

λkeikz0 ak + H.c.

)2

. (A1)

To derive effective models in the weak-coupling regime we
consider the limit λk → 0 in both (9) and (A1) retaining only
the first-order terms in λk . Therefore we neglect the shift in Hm

for the dipole gauge and the A2 term in the Coulomb gauge.
After taking this limit, we project the effective Hamiltoni-

ans into the subspace spanned by the first two energy levels
of the bare matter Hamiltonian Hm, denoted as |0〉, |1〉. This
procedure results in two spin-boson models, one for each
gauge, which can be written in a form similar to the full model
presented in the main text (10).

In this weak-coupling limit, the waveguide modes ωk and
the two-level system transition frequencies are equal for both
models. The difference between the weak-coupling Coulomb
and dipole spin-boson models lies in their mode couplings. In
the dipole gauge, the expression for the full model couplings
is given in (11). For the approximated model in the dipole
gauge, we have

gx,k = qωk√
L

〈0|x|1〉 · λk . (A2)

The corresponding couplings in the Coulomb gauge can be
written as

gp,k = q

m
√

L
〈0|p|1〉 · λk . (A3)
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We can now compute the spectral densities of these two
models using the definition given by Eq. (12), obtaining

JD(ω) = q2ω2

L

|〈0|x|1〉 · λk|2√
4ξ 2 − (ω − ωc)2

, (A4)

JC (ω) = q2

m2L

|〈0|p|1〉 · λk|2√
4ξ 2 − (ω − ωc)2

. (A5)

Utilizing the general relation

〈n|p|l〉 = im�nl〈n|x|l〉, (A6)

where �nl is the transition frequency between states |n〉 and
|l〉, we can derive the following expression for the spectral
density in the Coulomb gauge:

JC (ω) = q2�2

L

|〈0|x|1〉 · λk|2√
4ξ 2 − (ω − ωc)2

. (A7)

This proves that in the weak-coupling limit, the spontaneous
emission rate J (�) is gauge invariant:

lim
λk→0

JC (�) = lim
λk→0

JD(�). (A8)

APPENDIX B: ANALYTICAL COMPUTATION
OF THE SELF-ENERGY OF THE COUPLED DIPOLE

In this Appendix, we provide the derivation of the exact
self-energy of the dipole excited level in the RWA (41). We
begin the derivation from the expression (40) and assume that
the energy E lies within the band E ∈ [ωc − 2ξ, ωc + 2ξ ].
However, the computation can be easily extended to energies
outside the band.

As mentioned in the main text, expanding the expression
of the dispersion relation in Eq. (40) yields

�(E ) = g2

Nω2
c

∑
k

ω2
k

E − ωk

= g2

Nω2
c

∑
k

[
ω2

c

E − ωk
+ 2ξωc(eik + e−ik )

E − ωk

+ ξ 2(eik + e−ik )2

E − ωk

]
. (B1)

We can convert the summations over modes into integrals by
taking the continuum limit (N → ∞):

�(E ) = g2

2πω2
c

∫ π

−π

[(
ω2

c + 2ξ 2
)
dk

E − ωk
+ 2ξωc(eik + e−ik )dk

E − ωk

+
∫ π

−π

ξ 2(e2ik + e−2ik )dk

E − ωk

]
. (B2)

The entire computation in (B2) relies on valuating integrals of
the form

I (E , n) =
∫ π

−π

einkdk

E − [ωc − ξ (eik + e−ik )]
. (B3)

By performing the variable change z = eik transforms into a
closed integral around a circle of radius |z| = 1 in the complex

plane:

I (E , n) = 1

ξ

∮
|z|=1

zndz

z2 + 2az + 1
(B4)

where we defined a = (E − ωc)/(2ξ ). Since the integral is
around a closed circle, we have I (E , n) = I (E ,−n).

Integral (B4) can be solved using the residue theorem. If
the energy lies within the band (|a| < 1), the corresponding
poles are z± = −a ± i

√
1 − a2. These poles correspond to the

limits limη→0 E ± iη:

lim
η→0

I (E ± iη, n) = ∓2π i
(−a ± i

√
1 − a2)|n|√

4ξ 2 − (E − ωc)2
. (B5)

Writing the self-energy (B2) in terms of the integrals (B4)
gives

�(E ) = i
g2

2πω2
c

[(
ω2

c + 2ξ 2
)
I (E , 0)

+ 4ξωcI (E , 1) + 2ξ 2I (E , 2)
]
. (B6)

From there, after introducing the solution found in (B5),
we can obtain the self-energy as in Eq. (41). The real part of
the self-energy gives the Lamb shift of the resonant frequency,
whereas the imaginary part provides half its spectral width:

Re[�(E )] = − g2

ω2
c

(ωc + E ), (B7a)

Im[�(E )] = g2

ω2
c

E2√
4ξ 2 − (E − ωc)2

= J (E )

2
. (B7b)

APPENDIX C: TRANSMISSION
IN THE COULOMB GAUGE

In this Appendix, we demonstrate the effect of truncation
in both gauges by explicitly computing different transmission
spectra while considering various numbers of dipole levels
Nd . As mentioned in the main text, applying the two-level
approximation in the dipole gauge can accurately approximate
the full model, whereas doing so in the Coulomb gauge does
not yield the expected results. However, we were able to
perform some calculations in the Coulomb gauge for Nd > 2
at the intermediate range of the USC regime.

In Fig. 10, we plot the transmittance spectra in the
Coulomb gauge, including all coupling terms, for different
numbers of dipole levels. Figure 10(a) shows the spectra
obtained using the two-level approximation in the Coulomb
gauge, where the resonance is fixed at ωk = � and an ad-
ditional Fano resonance is observed for all couplings. In
Fig. 10(b), we increase the number of dipole levels, resulting
in a slight redshift of the main resonance and an increase in
the transmittance at lower frequencies around the main reso-
nance while maintaining the Fano resonance. As the number
of dipole levels increases further in Figs. 10(c) and 10(d),
we observe a strong redshift in the transmittance minima and
an imbalance of the transmittance on both sides of the main
resonance. These effects are consistent with what we found
and explained in the main text for the dipole gauge.

In both Figs. 10(c) and 10(d), we also plot the minima of
transmittance obtained in the dipole gauge, as shown in Fig. 6.
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FIG. 10. Transmittance spectra in the Coulomb gauge for a dif-
ferent number of dipole levels Nd . (a) and (b) correspond to the
spectra obtained using the two-level approximation and for four
levels, respectively. For a higher number of dipole levels, such as
in (c) Nd = 5 and (d) Nd = 8, we also plot the RWA resonance as a
dotted cyan line [see Eq. (39)] and the USC resonance line predicted
with the polaron transformation in the dipole gauge.

The blue dotted line represents the analytical solution in the
RWA, as given in Eq. (39), while the white dashed line gives
the solution in the effective polaron picture. It is evident that
capturing the main features obtained in the dipole gauge with
the two-level approximation in the Coulomb gauge requires a
significantly higher number of dipole levels. While the main
resonance seems to be well described, the Fano resonances do
not coincide yet. The Fano resonances directly come from the
eigenenergies of the scatterer, which are well approximated in
the dipole gauge, as introduced in Sec. II D.

However, obtaining an accurate two-level approximation
in the Coulomb gauge from the truncated dipole model is
possible, as observed in the single cavity case [25].

Applying a truncated version of the Power-Zineau-Wooley
transformation (2), U = exp[ig/ωc(a0 + a†

0)σx], we can re-
cover a Coulomb gauge description from HC = UHDU† [cf.
Eqs. (32) and (33)]:

HC =
∑

n

ωca†
nan + ξ

∑
n

(a†
n+1an + a†

nan+1)

+ �′

2

[
cos

(
2g

ωc
(a0 + a†

0)

)
+ sin

(
2g

ωc
(a0 + a†

0)

)]
.

(C1)

APPENDIX D: CONTINUOUS LIMIT OF THE SYSTEM

Cavity array systems can be experimentally implemented
in various platforms, such as photonic crystals and supercon-
ducting systems [7,51], as discussed in Sec. VI. Moreover,
these types of models can also be seen as discretizations of
general waveguide models.

In this Appendix, we derive the continuous real-space de-
scription of our system in the dipole gauge. This model differs
from other standard continuous waveguide QED models [52]
due to the couplings to adjacent cavities.

To begin, we split the momentum space into left and right
propagating momenta as follows:

Hph =
∑

j={L,R}

∫
dk jω(k j )a

†(k j )a(k j ) (D1)

where [a(ki ), a†(k′
j )] = δ(k j − k′

i )δi j .
Next, we introduce creation and annihilation operators for

right or left propagating photons at position x as the Fourier
transform of their momentum counterparts:

a(kR) :=
∫

aR(r)e−ikRrdr, (D2)

a(kL ) :=
∫

aL(r)e−ikLrdr. (D3)

By linearizing the dispersion relation around a probe wave
vector k0,

ωL(k) � ωL(k0) − vg(k0)kL, (D4)

ωR(k) � ωR(k0) + vg(k0)kR, (D5)

with kL = k − k0 and kR = k + k0, we can find an expression
for Hamiltonian (D1) in real space as

Hph =
∫

dra†
R(r)

(
ωR(k0) − ivg

∂

∂r

)
aR(r)

+
∫

dxa†
L(r)

(
ωL(k0) − ivg

∂

∂r

)
aL(r), (D6)

where we have used the relation kReikRr = −i∂reikRr .
After applying the same linearization to the interaction

term the full Hamiltonian reads

HD =
∑

j

∫
dra†

j (r)

(
ω j (k0) − ivg

∂

∂r

)
a j (r) + Hm

+ iqA0x
∑

j

∫
dk j

(
ω j (k0) − ivg

∂

∂r

)
a j (r)

− iqA0x
∑

j

∫
dk j

(
ω j (k0) − ivg

∂

∂r

)
a†

j (r). (D7)
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