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We derive tight nonclassicality criteria for an unbalanced Hanbury Brown–Twiss measurement scheme, where
an input optical beam is split into two outputs on an unbalanced beam splitter. The outputs are measured with
binary click detectors, such as avalanche photodiodes, that can distinguish the presence and absence of photons.
Our nonclassicality criteria have the form of tight lower and upper bounds on probability pAB of simultaneous
no-clicks of both detectors for given probabilities pA and pB of no-clicks of the single detectors. These criteria are
applicable to realistic detectors with limited detection efficiency. We show that the obtained criteria can detect
nonclassicality of single-mode squeezed vacuum states.
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I. INTRODUCTION

Nonclassical states of light have attracted significant at-
tention since the early days of quantum optics and they
represent important resources in optical quantum technolo-
gies and quantum metrology. Nonclassical states of light
are defined as states that cannot be expressed as mixtures
of coherent states, i.e., the states for which the Glauber-
Sudarshan P representation does not satisfy the properties of
ordinary probability distribution. Characterization of nonclas-
sical states of light and certification of their nonclassicality
has a very long history yet it is still an important and active
research topic today. The nonclassical states include impor-
tant classes of states such as quadrature squeezed states or
states with sub-Poissonian photon number distribution. Over
the years a large number of nonclassicality criteria have been
developed and experimentally tested based on photon statis-
tics and photon counting measurements [1–12], moments of
operators [13–18], phase-space quasidistributions and charac-
teristic functions [19–25], or quantum coherence [26]. Various
measures of nonclassicality have been proposed [27–30] and
a resource theory of nonclassicality has been formulated [31].
Moreover, the concept of nonclassical states was extended to
nonclassical measurements [32] that are defined as measure-
ments the positive operator-valued measure (POVM) elements
of which are not described in phase space by a positive well-
behaved Glauber-Sudarshan P representation.

One of the conceptually simplest yet very important ap-
proaches is based on the Hanbury Brown–Twiss (HBT)
measurement scheme [33], where the signal is split at a
balanced beam splitter and the outputs are measured with
single-photon detectors [1–3,18] (see Fig. 1). For the input
single-photon state one does not observe any coincidence
clicks of the two detectors; only one of the detectors can
click. This antibunching is a signature of nonclassicality and
the measurement can be linked to detection of the normalized
second-order correlation function g(2)(τ ), with the nonclassi-
cality criterion g(2)(0) < 1. One can even establish a lower

bound on the single-photon fraction in the state based on the
value of g(2)(0) [18]. Going beyond nonclassicality, the HBT
setup can be also used to certify quantum non-Gaussianity of
the probed optical states [34]. In experiments with weak quan-
tum light, detectors that can only distinguish the presence and
absence of photons are commonly employed. The symmet-
ric Hanbury Brown–Twiss setup then yields two independent
probabilities that characterize the state: the probability that
one of the detectors clicks (irrespective of the response of the
other detector) and the probability that both detectors click
simultaneously.

Interestingly, the information extractable from this mea-
surement setup can be increased by using an unbalanced beam
splitter, which breaks the symmetry [35]. This provides one
additional parameter, because the probabilities of clicks of
detectors DA and DB in Fig. 1 will no longer be the same.
We thus get three independent parameters that characterize
the observed state. In the present paper, we derive tight non-
classicality criteria based on full information extracted from
an unbalanced Hanbury Brown–Twiss setup with binary click
detectors. Formulation of the criteria is based on identification
of the boundary of a convex set of probabilities of measure-
ment outcomes that can be observed for classical states. In
mathematical terms, this amounts to construction of a convex
hull of a curve in a three-dimensional space [36–38].

Previously, nonclassicality criteria based on pairs of prob-
abilities recorded with the Hanbury Brown–Twiss setup with
click detectors were derived [6]. Also, nonclassicality criteria
based on probability triples were obtained, by considering
the probabilities of vacuum, single-photon, and two-photon
states [11]. Finally, other nonclassicality criteria in multipa-
rameter spaces were proposed very recently by going beyond
the photon-number statistics and considering coherence-based
criteria [26].

The rest of the paper is organized as follows. In Sec. II
we review some basic facts and properties of nonclassicality
detection with the HBT setup and binary click detectors. In
Sec. III we provide general formulation of the nonclassicality
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FIG. 1. Hanbury Brown–Twiss measurement scheme with click
detectors. The input signal is split on a beam splitter BS into two
output modes that are measured with binary on-off detectors DA

and DB (such as avalanche photodiodes) that can distinguish the
presence and absence of photons. Classical signals from detectors
are processed to determine probabilities of clicks and no-clicks of
various combinations of detectors. T and R denote the beam splitter
intensity transmittance and reflectance, respectively. The auxiliary
input port of BS is in a vacuum state.

criteria and relate them to the construction of convex hulls
of specific three-dimensional curves. In Sec. IV we discuss
the nonclassicality criteria for a specific setting with beam
splitter transmittance T = 1/3 as in this case the calculations
become particularly simple. We then generalize our analysis
to arbitrary T in Sec. V. In Sec. VI we apply our criteria to
certification of nonclassicality of the single-mode squeezed
vacuum state and we show that the criteria based on triples of
probabilities are more powerful than criteria based on pairs of
probabilities only. Finally, Sec. VII contains a brief summary
and conclusions.

II. SETUP DESCRIPTION

Consider the detection scheme illustrated in Fig. 1. The
input signal impinges on an unbalanced beam splitter with
transmittance T and reflectance R = 1 − T and is split into
two output modes A and B. Each output mode is measured
with a photodetector that can discriminate the absence or
presence of photons. Such click detector is described by a
two-component POVM:

�̂0 = |0〉〈0|, �̂1 = Î − |0〉〈0| (1)

where |0〉 denotes the vacuum state. In practice, the detectors
exhibit nonunit detection efficiency η. Detection with ineffi-
cient detectors is equivalent to transmission of the input state
over a lossy channel Lη with transmittance η, followed by
detection with perfect detectors. A lossy channel with trans-
mittance η transforms a coherent state |α〉 onto an attenuated
coherent state |√ηα〉. Thus, the criteria derived below for per-
fect detectors are equally valid also for detectors with nonunit
detection efficiency η, because the lossy channel maps the set
of all coherent states and their mixtures onto the same set.
If the detection efficiencies of the two detectors DA and DB

differ, ηA �= ηB, then one only has to carefully calibrate the
setup and use an effective beam splitter transmittance [39]:

T̃ = ηAT

ηAT + ηB(1 − T )
. (2)

In what follows, we therefore focus on the case of perfect
detectors.

With the measurement scheme in Fig. 1 one can record
the number of clicks of detector DA and detector DB, and
the number of coincidence counts of DA and DB for some
total number of measurements N . In case of pulsed sources,
each elementary detection can be triggered by a signal from
the source. The measurements can be performed also for
continuous-wave sources, for instance by recording the sig-
nals from the detectors with a time tagger. N elementary
windows of width �t can be defined within the total measure-
ment time and for each detection window it can be decided
from the recorded data whether a given detector clicked or not
within that window.

For our purposes, it is convenient to consider the probabil-
ity pAB that none of the detectors DA and DB clicks, probability
pA that the detector DA does not click (irrespective of the
response of DB), and probability pB that the detector DB does
not click. These latter probabilities can be straightforwardly
obtained from the probabilities of clicks of single detectors
and the probability of coincidence clicks. For the input coher-
ent state with complex amplitude α we get

pA = e−T |α|2 , pB = e−(1−T )|α|2 , pAB = e−|α|2 . (3)

More generally, for input state ρ̂ the probability of no-
click p j is equal to the probability of vacuum in a state
transmitted through a lossy quantum channel with specific
transmittance η j :

p j = 〈0|Lη j (ρ̂)|0〉, (4)

where ηA = T , ηB = 1 − T , and ηAB = 1.
The Hanbury Brown–Twiss setup in Fig. 1 is the sim-

plest case of photodetectors based on spatial or temporal
multiplexing that can be used to efficiently probe quantum
statistical properties of light and achieve partial photon num-
ber resolution with binary on-off detectors (1) [5,35,40–49].
In particular, arrays of photodetectors provide specific pos-
sibilities for probing the nonclassicality [5,7,8] and quantum
non-Gaussianity [50–52] of light. There is an interesting con-
nection between the unbalanced two-detector scheme in Fig. 1
and measurements with a balanced array of N binary click
detectors (see Fig. 2). If we employ the balanced N-detector
scheme, we can split the detectors into two groups. The first
group is formed by k detectors and the other is formed by
the remaining N − k detectors. The probability pA can then
be defined as the probability that none of the k detectors
in the first group clicks, irrespective of the response of the
detectors in the other group. The probability pB can be defined
similarly as the probability that none of the N − k detectors
in the other group clicks, irrespective of the response of the
detectors in the first group. Finally, pAB can be defined as
the probability that none of the N detectors clicks. With this
assignment we obtain the measurement probabilities for the
effective unbalanced two-detector scheme with T = k/N .

More generally, the measurement with the balanced
N-detector scheme enables us to simultaneously estimate
probabilities of no-clicks for N transmittances T = k/N , k =
1, . . . , N [52]. In principle, all these data can be used simul-
taneously to characterize the nonclassicality of the measured
state, extending the scenario considered in the present paper.
The setup where the signal is evenly split among N detectors
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FIG. 2. Connection between an unbalanced two-detector scheme
and a balanced detector array scheme where the input signal is evenly
split by an interferometer IF among N detectors that can distinguish
the presence and absence of photons. If we divide the detectors into
two groups containing k and N − k detectors, respectively, then we
can measure the probabilities pA, pB, and pAB for effective trans-
mittance T = k/N . A balanced Hanbury Brown–Twiss setup with
T = 1

2 represents the simplest instance of the balanced detector array
with N = 2. See text for details.

is actually very degenerate. We can imagine an unbalanced
setup with N binary on-off detectors, where the effective
transmittance of a path that leads from the input to the jth
detector reads Tj = 2− j/(1 − 2−N ), so that the transmittances
sum up to 1. By considering various groups of detectors, we
can simultaneously measure the probabilities of no-clicks (4)
for 2N − 1 different nonzero transmittances. However, such
approach may require extremely precise calibration of the
transmittances to fully and correctly utilize all the available
measurement channels.

III. CONVEX HULL CONSTRUCTION

The probabilities of no-clicks (3) specify a point in a three-
dimensional space, and we can define a corresponding vector:

�r = [pA, pB, pAB]. (5)

The points in this three-dimensional space that correspond to
coherent states form a curve that is parametrically described
by Eq. (3), where |α| ∈ [0,∞) [see Fig. 3(a)]. Consider now
an arbitrary state ρ̂ and the associated probabilities �rρ . For any
state σ̂ that is a coherent state or a convex mixture of coherent
states, the point �rσ lies in the convex hull of the curve (3),
because the probability triplet �rσ can be expressed as a convex
mixture of the points (3):

�rσ =
∫ ∞

0
P(|α|)[e−T |α|2 , e−(1−T )|α|2 , e−|α|2]d|α|, (6)

where P(|α|) denotes probability distribution. Conversely, if
the point �rρ does not belong to the convex hull of the curve
(3), then the state ρ̂ is nonclassical. Therefore, to establish
a nonclassicality criterion based on the triplet o probabilities
pA, pB, and pAB, we need to construct the convex hull of
the set (3) [11]. Recall that the convex hull of a set S is the
smallest convex set that contains S. The convex hull is fully
characterized by its boundary and in what follows we focus
on the construction of this boundary.

Without loss of generality, we shall assume T < 1/2. Let
us first consider just the pair of probabilities [pA, pB]. All pairs
of probabilities pA and pB that can be observed for classical
states form a two-dimensional convex set that is bounded by
the curve pB = p(1−T )/T

A and by the line pB = pA [6]. We thus
obtain a two-dimensional convex set of probability pairs pA

and pB compatible with classical states [6,12] [see Fig. 4(a)].
The convexity of this two-dimensional set is ensured by the
fact that (1 − T )/T > 1 for T < 1/2. If the measured pair
of probabilities [pA, pB] lies outside this set, then the state is
certified to be nonclassical.

Suppose now that the pair [pA, pB] is compatible with clas-
sical states and let us take into account the third probability
pAB. In order to decide whether the point [pA, pB, pAB] lies in
the convex hull of (3) or not, we can compare the actual value
of pAB with the maximum and minimum values of pAB that
can be obtained, for given values of pA and pB, by measure-
ments on classical states [11]. The resulting dependence of

FIG. 3. (a) Three-dimensional curve (10) of coherent-state probability triples [pA, pB, pAB] for an unbalanced Hanbury Brown–Twiss
detection scheme with T = 1/3. (b) The lower boundary of the convex hull of the curve is a surface formed by straight lines that connect
the point [0,0,0] with all other points of the curve. (c) Similarly, the upper boundary of the convex hull is a surface formed by straight lines
that connect the point [1,1,1] with all other points of the curve [36].

033713-3



JAROMÍR FIURÁŠEK PHYSICAL REVIEW A 109, 033713 (2024)

FIG. 4. The area of probability pairs [pA, pB] that can be obtained for classical states when T = 1/3 (a) is plotted together with two
two-dimensional cuts through the convex hull of probability triples (14) obtained at pB = 0.5 (b) and pA = 0.5 (c).

maximum and minimum values of pAB on pA and pB specifies
two surfaces that form two parts of the boundary of the convex
hull of (3). We can thus succinctly express the conditions that
a given triplet [pA, pB, pAB] lies in the convex hull of (3) as
follows:

p1/T −1
A � pB � pA (7)

and

pAB,min(pA, pB) � pAB � pAB,max(pA, pB). (8)

The lower and upper bounds pAB,min and pAB,max, which
are functions of pA and pB, can be found using the results of
Ref. [36] where the problem of constructing the convex hull of
a curve was addressed by a geometric approach for so-called
curves with totally positive torsion (see also Refs. [37,38]).

Consider a three-dimensional curve �r(x) parametrized by x ∈
[0, 1]. According to Ref. [36] the curve is said to have totally
positive torsion if all the leading principal minors of the matrix

C =
[

d�r
dx

,
d2�r
dx2

,
d3�r
dx3

]
(9)

are positive for all x ∈ (0, 1).
Let us define x = exp(−|α|2); hence x ∈ [0, 1], where we

include also the point that is obtained in the asymptotic limit
|α| → ∞. The curve (3) becomes parametrized as

�r = [xT , x1−T , x] (10)

and a straightforward calculation yields

C =

⎡
⎢⎣ T xT −1 T (T − 1)xT −2 T (1 − T )(2 − T )xT −3

(1 − T )x−T T (T − 1)x−T −1 T (1 − T )(1 + T )x−T −2

1 0 0

⎤
⎥⎦. (11)

It is easy to verify that all the leading principal minors of
this matrix are positive for all x ∈ (0, 1) and all T ∈ (0, 1/2).
Therefore, the results reported in Ref. [36] are directly ap-
plicable. Specifically, it is shown in Ref. [36] that the lower
boundary pAB,min of the convex hull is formed by a surface that
consists of straight lines that connect the end point [0,0,0] with
all the other points on the curve [see Fig. 3(b)]. A parametric
description of this surface reads

pA = txT , pB = tx1−T , pAB = tx, (12)

where t ∈ [0, 1] and x ∈ [0, 1]. Similarly, the upper boundary
pAB,max of the convex hull is formed by straight lines that
connect the end point [1,1,1] with all the other points on the
curve [see Fig. 3(c)]. A parametric description of this surface
is given by

pA = txT + 1 − t,
pB = tx1−T + 1 − t,

pAB = tx + 1 − t, (13)

where again t ∈ [0, 1] and x ∈ [0, 1].

The boundaries (12) and (13) together with the inequalities
(7) and (8) establish tight criteria of nonclassicality based
on probability triples [pA, pB, pAB] in the sense that for any
probability triple we either find that it is compatible with
some classical state (when it belongs to the convex hull) or
we conclusively certify the nonclassicality of the state (when
it lies outside the convex hull). In the following sections we
discuss the structure of the boundary surfaces (12) and (13) in
more details and provide explicit expressions for the functions
pAB,min and pAB,max, where possible.

IV. CRITERIA FOR THE CASE T = 1/3

In this section we consider the specific case T = 1/3, for
which the treatment becomes particularly simple. For T =
1/3, the formula (3) becomes

pA = x1/3, pB = x2/3, pAB = x, x ∈ [0, 1]. (14)

As discussed in Sec. III, the surface of minimal values of pAB

is formed by straight lines connecting the point [0,0,0] and the
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points [x1/3, x2/3, x]. On inserting T = 1/3 into the general
parametric representation (12) of this surface, we obtain

pA = tx1/3, pB = tx2/3, pAB = tx, (15)

where t ∈ [0, 1] and x ∈ [0, 1].The parameters t and x can be
eliminated, which yields an explicit formula for pAB,min as a
function of pA and pB:

pAB,min = p2
B

pA
. (16)

This surface is plotted in Fig. 3(b).
We can crosscheck that the surface (16) is indeed a part

of the boundary of the convex hull of (14) by investigating
the shape of this surface. Specifically, we can determine the
surface curvature by looking at the eigenvalues of the matrix
of second derivatives of pAB,min:

M =

⎡
⎢⎢⎢⎣

∂2 pAB

∂ p2
A

∂2 pAB

∂ pA∂ pB

∂2 pAB

∂ pA∂ pB

∂2 pAB

∂ p2
B

⎤
⎥⎥⎥⎦. (17)

For the function (16) we explicitly get

M↓ =

⎡
⎢⎢⎢⎣

2p2
B

p3
A

−2pB

p2
A

−2pB

p2
A

2

pA

⎤
⎥⎥⎥⎦. (18)

One eigenvalue of M↓ is equal to zero, which is expected
because the surface is formed by lines. The other eigenvalue
is positive, which confirms that this surface has the required
cup shape ∪ and forms the bottom part of the boundary of the
convex hull of (14), as already proved in Ref. [36].

As discussed in Sec. III, the surface of maximal values
of pAB is constructed similarly as a set of straight lines that
connect the point [1,1,1] and the points [x1/3, x2/3, x] [36].
On inserting T = 1/3 into Eq. (13) we get the parametric
representation of this surface:

pA = tx1/3 + 1 − t, pB = tx2/3 + 1 − t, pAB = tx + 1 − t .

(19)

After some algebra, we can eliminate the parameters t and x
and express pAB,max as a function of pA and pB:

pAB,max = pB − (pA − pB)2

1 − pA
. (20)

This surface is plotted in Fig. 3(c). Similarly as before, we
can characterize the shape of the surface (20) by calculating
the matrix of second derivatives (17), which yields

M↑ =

⎡
⎢⎢⎢⎣

− 2(1 − pB)2

(1 − pA)3

2(1 − pB)

(1 − pA)2

2(1 − pB)

(1 − pA)2
− 2

1 − pA

⎤
⎥⎥⎥⎦. (21)

One eigenvalue of M↑ is zero and the other is negative. This
confirms that the surface (20) has the cap shape ∩ and forms
the upper part of the boundary of the convex hull of (14), in
agreement with the results of Ref. [36]. Note that the two

surfaces (16) and (20) are connected at the boundary curve
[x1/3, x2/3, x], x ∈ [0, 1] and also at the boundary line [t, t, t],
t ∈ [0, 1].

The gray area in Fig. 4(a) represents a top view on the
convex hull of probability triples (14). To further visualize the
convex hull, we plot in Figs. 4(b) and 4(c) two-dimensional
cuts through this three-dimensional set. The upper and lower
boundaries in Figs. 4(b) and 4(c) are given by Eqs. (20) and
(16), respectively.

V. GENERALIZATION TO ARBITRARY T

Here we analyze the lower and upper boundaries pAB,min

and pAB,max for arbitrary T < 1/2. Let us first consider the
lower bound pAB,min, where an explicit analytical expression
can be obtained for any T . Parametric description of the sur-
face pAB,min is given by Eq. (12). The parameters t and x can
be eliminated, which yields an explicit expression for pAB,min:

pAB,min =
(

p1−T
B

pT
A

) 1
1−2T

. (22)

The matrix M of second derivatives, defined in Eq. (17), reads

M↓ = T (1 − T )

(1 − 2T )2

(
p1−T

B

pT
A

) 1
1−2T

⎡
⎢⎢⎢⎣

1

p2
A

− 1

pA pB

− 1

pA pB

1

p2
B

⎤
⎥⎥⎥⎦. (23)

Similarly as for the special case T = 1/3 we find that one
eigenvalue of M↓ is zero while the other is positive, which
confirms that the surface is convex and has the required cup
shape ∪.

The situation becomes slightly more complicated for the
upper bound pAB,max. We reproduce here for convenience
the parametric description of this surface, which is given by
Eq. (13):

pA = txT + 1 − t,

pB = tx1−T + 1 − t,

pAB = tx + 1 − t . (24)

By combining formulas for pA and pB we obtain the equa-
tion for parameter x:

1 − pA

1 − pB
= 1 − xT

1 − x1−T
. (25)

Generally, this equation can be solved only numerically. If
T is a rational number, then (25) can be transformed into
a polynomial equation. In particular, for T = 1/3 Eq. (25)
becomes a linear equation for x1/3, which explains why we
can obtain an explicit analytical formula for pAB,max for this
particular transmittance. If we experimentally determine the
probabilities pA, pB, and pAB then we can numerically solve
Eq. (25) for x and subsequently determine t from the para-
metric expression for pA. Finally, we can calculate the upper
bound on pAB as pAB,max = xt + 1 − t .

As discussed in Sec. III, the proof that Eq. (24) represents a
part of the boundary of the convex hull of the curve (3) is pro-
vided in Ref. [36] for the general class of curves with totally
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positive torsion. Nevertheless, for completeness we provide
here an analysis of the curvature of the surface (24), which
provides an independent confirmation of the validity of this
boundary construction. We make use of standard techniques
from differential geometry [53] and calculate the normal vec-
tor to the parametric surface (24) and its two curvatures. In
what follows we will extensively utilize the probability vector
�r, which now depends on t and x:

�r =

⎡
⎢⎣ txT + 1 − t

txR + 1 − t
txR+T + 1 − t

⎤
⎥⎦. (26)

Here R = 1 − T and it will be convenient to keep R explic-
itly in the definition of �r. A normal vector to the parametric
surface (24) can be constructed as

�n = 1

w

∂�r
∂t

× ∂�r
∂x

, (27)

where

w =
∣∣∣∣∂�r
∂t

× ∂�r
∂x

∣∣∣∣ (28)

is a positive normalization factor. On inserting the explicit
expression (26) for vector �r into Eq. (27) we get

�n = t

wx

⎡
⎢⎣ xR(R − xT + T x)

xT (xR − T − Rx)
T xT (1 − xR) − RxR(1 − xT )

⎤
⎥⎦. (29)

Recall that we assume that T < 1/2. The third compo-
nent of the vector �n is then positive. We can rewrite this
component as

n3 = T Rt

w

[
1 − xR

RxR
− 1 − xT

T xT

]
. (30)

Consider the function

f (x, z) = 1 − xz

zxz
(31)

where z ∈ (0, 1). We have

∂ f (x, z)

∂z
= x−z

z2
(xz − 1 − z ln x). (32)

If we set a = −z ln x > 0 and use the inequality e−a > 1 − a
valid for all positive a, we can conclude that the partial deriva-
tive (32) is positive. Since we assume that R > T , this implies
that n3 is positive.

The first fundamental form that characterizes the surface
(24) is specified by parameters [53]

E = ∂�r
∂t

· ∂�r
∂t

, F = ∂�r
∂t

· ∂�r
∂x

, G = ∂�r
∂x

· ∂�r
∂x

. (33)

The second fundamental form is characterized by

L = ∂2�r
∂t2

· �n, M = ∂2�r
∂t∂x

· �n, N = ∂2�r
∂x2

· �n. (34)

After some algebra we find that L = 0 and M = 0, which is
consistent with the fact that the studied surface is formed by

straight lines and one of its principal curvatures vanishes. The
other principal curvature reads

κ = EN

EG − F 2
. (35)

Since
E

EG − F 2
> 0 (36)

by definition [53], it suffices to study the sign of N to deter-
mine the shape of the surface. Explicitly, we have

N = R2T 2t2

wx2
(1 + xR)(1 + xT )

[
1 − xR

R(1 + xR)
− 1 − xT

T (1 + xT )

]
.

(37)

We proceed similarly as before when we have analyzed the
sign of n3. Let us define a new function

g(x, z) = 1 − xz

z(1 + xz )
(38)

and analyze its partial derivative

∂g(x, z)

∂z
= x2z − 1 − 2zxz ln x

z2(1 + xz )2
. (39)

Upon making substitution a = −z ln x � 0 we can rewrite the
term in the numerator of Eq. (39) as

e−2a − 1 + 2ae−a = 2e−a[a − sinh a] � 0, (40)

which holds for all a � 0. We have those proved that the
partial derivative (39) is negative for all x ∈ (0, 1) and z > 0.
Since we assume that T < 1/2, hence R > T , this implies that

1 − xR

R(1 + xR)
<

1 − xT

T (1 + xT )
. (41)

Therefore, N < 0 and the curvature (35) is negative. This
confirms that the upper boundary surface has the cap
shape ∩.

For the sake of completeness we note that the convex hull
of the set (3) can be equivalently characterized by its tangent
planes. Each tangent plane corresponds to a nonclassicality
witness. The nonclassicality witnesses are similar in spirit
to entanglement witnesses or Bell inequalities [12,54–56],
because in all cases the goal is to prove that certain states
lie outside some convex set. Specifically, we can consider a
witness

W = n1 pA + n2 pB + n3 pAB (42)

associated with the unit normal vector �n and seek the maxi-
mum of W over all classical states. It suffices to maximize W
over the coherent states, which means that we need to find the
maximum of

W = n1xT + n2x1−T + n3x, x ∈ [0, 1]. (43)

We need to identify potential local extrema of W by solving

T n1xT −1 + (1 − T )n2x−T + n3 = 0. (44)

In addition, we also have to consider the boundary points x =
0 and 1. The roots of (44) can easily be found numerically.
For T = 1/3 this equation becomes equivalent to a quadratic
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equation for x1/3. More generally, the function on the left-hand
side of Eq. (44) has at most a single local extremum in the
interval (0,1), hence Eq. (44) has at most two roots in this in-
terval. The construction of the boundary surface (24) implies
that the tangent plane associated with the normal vector (29)
touches the surface along a whole line and passes through the
point [1,1,1]. Therefore, the maximum value of W is achieved
at x = 1 and we obtain a nonclassicality condition

n1 pA + n2 pB + n3 pAB > n1 + n2 + n3 (45)

valid for normal vectors (29).
Using Eq. (27) we can determine also the normal vector to

the lower boundary surface (12):

�m = 1

wm

⎡
⎢⎣ T x1−T

(T − 1)xT

1 − 2T

⎤
⎥⎦, (46)

where

wm = [
T 2x2−2T + (1 − T )2x2T + (1 − 2T )2

]1/2
. (47)

We assume T < 1/2, hence m3 > 0. The associated tangent
planes again touch the surface along straight lines and pass
through the point [0,0,0]. Therefore, m1 pA + m2 pB + m3 pAB

is bounded by zero and the state is certified as nonclassical if

m1 pA + m2 pB + m3 pAB < 0 (48)

for the normal vectors (46). We have cross-checked the non-
classicality thresholds (45) and (48) by numerical calculations
and we have obtained full agreement with analytical results.
The nonclassicality witnesses (45) and (48) are tight by con-
struction, because the associated tangent planes touch the
surface of the convex hull along straight lines.

VI. APPLICATION TO SQUEEZED VACUUM STATES

Here we show that the above derived nonclassicality cri-
teria can be used to detect nonclassicality of the single-mode
squeezed vacuum state

|ψ〉 = 1√
cosh s

∞∑
n=0

(− tanh s)n

√
(2n)!

2nn!
|2n〉, (49)

where s denotes the squeezing constant and |n〉 denotes Fock
states. The state (49) is Gaussian with zero mean values of
quadrature operators, hence it is fully characterized by its
covariance matrix

γSV =
(

e−2s 0
0 e2s

)
, (50)

that collects the variances and covariances of quadrature op-
erators x̂ and p̂. The covariance matrix (50) is normalized
such that it is equal to the identity matrix I for the vacuum
state. In order to calculate the probabilities pA and pB we also
need to consider a state transmitted through a lossy channel
with certain transmittance η. The lossy channel preserves the
Gaussian form of the state, and the covariance matrix of the
output state is given by

γout = ηγin + (1 − η)I. (51)

FIG. 5. Certification of nonclassicality of a single-mode
squeezed vacuum state with squeezing constant s via the
nonclassicality condition pAB > pAB,max for T = 1/3. We set
T = 1/3, hence pAB,max is given by Eq. (20). Nonclassicality is
confirmed in the region where �pAB = pAB − pAB,max > 0.

For a single-mode Gaussian state ρ̂ with zero mean value of
quadratures and covariance matrix γ , the vacuum probability
p0 = 〈0|ρ̂|0〉 can be expressed in terms of the covariance
matrix as follows:

p0 = 2√
det(γ + I )

. (52)

This formula can be easily derived with the use of the Husimi
Q function of the state, Q(α) = π−1〈α|ρ̂|α〉, where |α〉 de-
notes a coherent state with amplitude α, because p0 = πQ(0).
The Q function of a Gaussian state with zero mean is a Gaus-
sian distribution centered on the origin with covariance matrix
1
4 (γ + I ).

Using Eq. (52) we obtain the following expressions for the
probabilities pA, pB, and pAB associated with the measurement
of the single-mode squeezed state (49) with the setup in Fig. 1:

pA = 1√
1 + T (2 − T ) sinh2 s

,

pB = 1√
1 + (1 − T 2) sinh2 s

, (53)

pAB = 1

cosh s
.

In Fig. 5 we plot the dependence of �pAB = pAB − pAB,max

on s for T = 1/3. We can see that the nonclassicality of
the squeezed state (49) can be certified for all squeezing
constants up to s ≈ 1.25. By contrast, the nonclassicality of
certain squeezed states cannot be revealed if one considers
only pairs of the detected probabilities. Assume T < 1/2, as
before. Using a pair of probabilities, the state is certified to
be nonclassical if at least one of the following inequalities is
violated [6]:

pB � p1/T −1
A , pAB � p1/T

A , pAB � p1/(1−T )
B . (54)

These nonclassicality conditions directly follow from the
parametrization [xT , x1−T , x] of the set of coherent-state prob-
abilities and from the fact that the function xk is convex
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FIG. 6. Test of nonclassicality of a single-mode squeezed vac-
uum with criteria (56). The quantities �p1 (solid blue line), �p2

(red dashed line), and �p3 (green dot-dashed line) are plotted in
dependence on T for s = 0.5. Nonclassicality of the state cannot be
detected with any of these three criteria.

for k � 1 [see also the discussion in Sec. III and Fig. 4(a)].
Besides the lower bounds (54), one could also consider the
corresponding upper bounds:

pAB � pB � pA. (55)

However, these inequalities are satisfied by all physical states,
therefore they do not represent useful nonclassicality criteria.

As an example, we have evaluated all three criteria (54)
for fixed squeezing s = 0.5 and variable transmittance T . In
Fig. 6 we plot the resulting quantities

�p1 = pB − p1/T −1
A ,

�p2 = pAB − p1/T
A , (56)

�p3 = pAB − p1/(1−T )
B

as functions of T . We can see that the criteria (54) cannot
detect nonclassicality of the squeezed vacuum state with s =
0.5, while the criterion plotted in Fig. 5 clearly detects this
state as nonclassical. This shows that the criteria based on all
three probabilities pA, pB, and pAB are strictly stronger than
criteria based on pairs of probabilities only.

For completeness, in Fig. 7 we plot the dependence of
�pAB on T for a fixed squeezing strength s. It can be seen that
for s = 0.75 the nonclassicality of the squeezed state can be
certified for any 0 < T < 1

2 , and the value of �pAB is finite
and positive for T arbitrary close to 1

2 . At the point T = 1
2

there is thus a discontinuity, because for a precisely balanced
beam splitter the probability pAB achievable by classical states
is upper bounded only by the trivial inequality pAB < pA, and
pB = pA due to symmetry. In order to investigate the behavior
of the nonclassicality criterion pAB � pAB,max for the squeezed
vacuum state (49) in the vicinity of T = 1

2 , we can expand
both sides of Eq. (25) in Taylor series in variable ε = 1

2 − T .
By comparing the leading terms proportional to ε, we find that
in the vicinity of T = 1

2 the parameter x is determined by the

FIG. 7. Dependence of the nonclassicality test �pAB = pAB −
pAB,max on beam splitter transmittance T is plotted for single-mode
squeezed vacuum states with two values of squeezing s = 0.75
(a) and s = 1.25 (b). As discussed in the main text, a discontinuity
occurs at the point T = 1

2 , where the setup becomes degenerate
and pA = pB holds exactly. For example, for s = 0.75 we obtain
�pAB = pAB − pA ≈ −0.0422 at the exact degeneracy T = 1

2 .

following equation:

√
x ln x√
x − 1

= 4 sinh2 s

(4 + 3 sinh2 s)(
√

4 + 3 sinh2 s − 2)
. (57)

This equation has a single root in the interval [0,1], and this
root is strictly positive for s �= 0. Explicit calculations based
on Eq. (13) confirm that the resulting upper bound pAB,max is
strictly smaller than pA. All this breaks down for the perfectly
balanced scheme with T = 1

2 , where the degeneracy deletes
the information that otherwise allows us to establish such a
strict upper bound on pAB.

From the experimental point of view, it is not desirable to
operate in the close vicinity of T = 1

2 , because in such case the
statistical uncertainties of estimations of pA and pB could sig-
nificantly affect the applicability of the nonclassicality criteria
(7) and (8), and the measurement of the no-click probabilities
as well as the calibration of the value of T would have to be
very precise to correctly sample the tiny difference between
pA and pB.

VII. CONCLUSIONS

We have derived tight nonclassicality criteria that fully
exploit information that can be extracted from an unbalanced
Hanbury Brown–Twiss measurement scheme with binary
click detectors. Our nonclassicality criteria are based on com-
plete characterization of the three-dimensional convex set of
probabilities achievable with classical states, which is pro-
vided by explicit description of the boundary of this set.
An equivalent complementary formulation of the nonclassi-
cality criteria based on nonclassicality witnesses was also
considered and we were able to obtain explicit tight bounds
on these witnesses, based on geometric considerations. The
criteria discussed in the present paper conclusively certify
nonclassicality of certain states. However, when some state
is not identified as nonclassical by the present criteria, the
situation is inconclusive and one cannot claim that the state
is classical. For instance, consider a state the nonclassicality
of which is fully encoded into coherence properties, i.e., phase
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shifts of Fock states. As an example take a state generated by
Kerr interaction from a coherent state. Such state would ex-
hibit Poisson photon number statistics, yet it could be highly
nonclassical.

Before closing up, let us briefly discuss imperfections that
can influence the considered measurement. We have already
argued in Sec. II that the obtained nonclassicality criteria are
fully valid also for detectors with limited detection efficiency
η < 1. Additional effects that can influence the observed click
statistics include dark counts and afterpulses. These two ef-
fects can be largely eliminated in gated detection schemes
with pulsed sources, where the measurement is always ac-
tivated only in a short time window that corresponds to the
arrival of the measured optical pulse at the detectors. In situ-
ations where the effects of afterpulses and dark counts cannot
be fully suppressed, they should be carefully characterized.
One can then attempt to recover the true click statistics from
the measured statistics, by correcting for the effects of dark
counts and afterpulses.

In our derivations we have assumed that a single spatiotem-
poral and polarization mode is detected. The single-mode
condition can be imposed by polarization, spatial and spec-
tral filtering, which can however introduce additional losses
that can make it difficult to observe the nonclassicality of
the probed state. If the effective splitting ratio T : R is the
same for all modes involved, then our criteria hold even for
broadband multimode detection. This straightforwardly fol-
lows from the factorized form of multimode coherent states

|α〉 = |α1〉|α2〉 · · · |αk〉 · · · |αK〉 where K denotes the total
number of modes. If T is the same for all modes, we have
for the input multimode coherent state

pA =
K∏

j=1

e−T |α j |2 ,

pB =
K∏

j=1

e−(1−T )|α j |2 , (58)

pAB =
K∏

j=1

e−|α j |2 .

This is fully equivalent to the single-mode expression (3),
where we only need to set |α|2 = ∑K

j=1 |α j |2.
Our findings provide criteria and witnesses available for

verification of nonclassical character of quantum states of
light. It would be interesting to further extend this analysis
to certification of other state properties, such as quantum
non-Gaussianity [34,39,52,57]. However, if we extend the
set of pure extremal states from coherent states to all pure
Gaussian states, the analysis becomes much more involved.
These investigations are therefore left for future work.
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