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Efficient transfer of quantum information between remote parties is a crucial challenge for quantum communi-
cation over atmospheric channels. Random fluctuations of the channel transmittance are a major disturbing factor
for its practical implementation. We study correlations between channel transmittances at different moments
of time and focus on two transmission protocols. The first is related to the robustness of both discrete- and
continuous-variable entanglement between time-separated light pulses, showing a possibility to enlarge the
effective dimension of the Hilbert space. The second addresses a selection of high-transmittance events by
testing them with bright classical pulses followed by quantum light. Our results show a high capacity of the
time-coherence resource for encoding and transferring quantum states of light in atmospheric channels.
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I. INTRODUCTION

Quantum technologies are opening up fascinating perspec-
tives, but they also face a serious problem: the fragility of
quantum information against environmental noise. For in-
stance, in various tasks of quantum communication [1–8], as
well as in fundamental studies [9,10], we use quantum light
as a natural carrier for the transmission of quantum states
over large distances. The nature of this noise is well studied
and theoretically described, but importantly, it is strictly de-
pendent on the type of communication channel—an optical
fiber or free space. The latter has many practical advan-
tages, such as the possibility of establishing satellite-mediated
global communication, communication with moving objects
and through hard-to-access regions, and so on; see, e.g.,
Refs. [9–35] for various implementations. However, in this
scenario, quantum protocols are seriously affected by atmo-
spheric turbulence and stray light.

Theoretical description of quantum light distributed
through the turbulent atmosphere relies on methods [36–40]
of classical optics. Nevertheless, the theoretical techniques are
different depending on the light degrees of freedom and mea-
surements involved in the transmission protocol. For example,
a group of protocols [11,12,16,41–59] deals with continuous-
variable (CV) quantum states of a quasimonochromatic field.
In this case, the quantum state is modified by fluctuating losses
caused by passing the randomly shaped beam through the
transmitter aperture [60–68]. A similar description [69,70] is
employed for transmission protocols involving the polariza-
tion degree of freedom, often used, e.g., for Bell inequality
tests [9,10].

Spatial structure of light beams represents another resource
for encoding quantum states of light sent through the turbu-
lent atmosphere. First, spatial modes that are different from

Gaussian beams can show a better transmittance for particular
realizations of free space channels [71,72]. Second, single
photons and photon pairs can also encode more quantum
information, by considering, for example, the optical angular
momentum [73–79]. Third, higher-order light modes, such as
Hermite-Gaussian modes, have the potential to increase the
effective dimensionality of the Hilbert space of transferred
states.

An alternative approach is to use the time instance of light-
pulse generation as a degree of freedom for encoding quantum
states. For example, in Refs. [80,81] time-bin entanglement
is considered for photons propagating in different directions.
In a sense, time encoding was also used in the experiment
reported in Ref. [10], where both entangled photons were
copropagated with a small time delay through the 144 km
quantum channel in the Canary Islands. In this case, one can
say that the effective dimension of the Hilbert space for the
transmitted light is doubled by using two light pulses (time
modes) [82].

As shown in Refs. [69,70] and Ref. [57], correlations
between the transmittances of two modes are essential for
preserving discrete- and continuous-variable entanglement,
respectively. In the case of pulse copropagation, they corre-
spond to time correlations between the transmittances of two
(or more) pulses. In this paper, we study the dependence of
these correlations on the time between pulses and their impact
on the entanglement robustness. This protocol can also be
considered as a way to enlarge the effective dimension of the
Hilbert space [82] for the transmitted states.

We also consider time correlations as a resource for adap-
tive real-time selection protocols, proposed and implemented
in Refs. [83,84] in the context of quantum-key distribution.
In this scenario, a bright pulse of classical light is used to
test the channel transmittance. If it exceeds a predetermined
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value, the quantum light pulses are then sent and ana-
lyzed at the receiver. Specifically, we consider preserving
nonclassical properties of photocounting statistics. As is dis-
cussed in Refs. [62,67], the sub-Poissonian character of the
photon-number statistics is sensitive to atmospheric turbu-
lence. However, an application of recently proposed methods
[85,86] has shown that the photocounting statistics, or more
specifically click statistics, retain their nonclassical properties
even when estimated by detectors with realistic photon-
number resolution.

The rest of the paper is organized as follows. In Sec. II we
describe the transmission protocols considered in this paper
and introduce the input-output relations between quantum
states at the transmitter and receiver. Numerical simulations of
the two-time probability distribution of transmittance (PDT),
which is the main channel characteristic for the discussed
protocols, are reported in Sec. III. In Secs. IV and V we
consider the distribution of Gaussian and discrete-variable
entanglement of two consecutive pulses, respectively. The
adaptive real-time selection protocol is considered in Sec. VI.
Summary and concluding remarks are given in Sec. VII.
Supplemental Material [87] include the Python 3 code and
numerically simulated data.

II. TRANSMISSION PROTOCOLS

The first group of transmission protocols considered in this
paper assumes encoding quantum states in two optical pulses
separated by the time interval τ . Each pulse can be considered
as a quasimonochromatic mode, e.g., prepared in the form of a
Gaussian beam; see Ref. [68]. Moreover, one can additionally
use the polarization degree of freedom for each pulse, such
that the total number of modes is four. We aim to find the
time intervals τ for which quantum correlations between two
pulses, such as entanglement, are still preserved.

Atmospheric turbulence randomly changes the shapes of
propagating beams. As a result, the light pulses pass through
the receiver aperture with fluctuating transmittances η0 and ητ

at the time instances t = 0 and t = τ , respectively. It is worth
noting that the transmittances for two polarization modes at
the same time instance are almost perfectly correlated due
to the negligible depolarization effect in the atmosphere [36].
The methods of Refs. [62–68] yield the input-output relation
between the quantum states of the pulses at the receiver and
the transmitter,

ρ̂out =
∫

�

dηP (η)L[η](ρ̂in ). (1)

Here η = (η0 ητ ) is the vector of two transmitances, � =
[0, 1] × [0, 1] is the domain of their integration, ρ̂in and ρ̂out

are the density operators at the transmitter and receiver, re-
spectively, L[η](ρ̂in ) is the superoperator describing the effect
of linear losses with transmittances η on the density operator
ρ̂in, and P (η) is the two-time probability distribution of trans-
mittances (PDT).

The action of the superoperator L[η] can be conveniently
expressed in the Glauber-Sudarshan P representation [88,89].
If Pin(α) corresponds to the density operator ρ̂in, then it is

FIG. 1. Sketch of the adaptive real-time selection protocol. A
bright classical pulse is sent through the channel to test the trans-
mittance at the time instance t = 0. If it exceeds the predetermined
value ηmin, then a quantum-light pulse is sent at t = τ . The distance
between pulses is then cτ with c being the speed of light.

given by

L[η]Pin(α0, ατ ) = 1

η0ητ

Pin

(
α0√
η0

,
ατ√
ητ

)
. (2)

If two polarization modes are involved for each of time in-
stances, then

L[η]Pin(αh0, αv0, αhτ , αvτ )

= 1

η2
0η

2
τ

Pin

(
αh0√
η0

,
αv0√
η0

,
αhτ√
ητ

,
αvτ√
ητ

)
. (3)

Here the indices h and v indicate the modes with horizontal
and vertical polarization, respectively.

The second group of transmission protocols (see
Refs. [83,84]) assumes that the channel transmittance η0

is measured with a classical pulse, and, if it exceeds a
predetermined threshold ηmin, it is followed by a pulse of
quantum light whose transmittance is ητ ; see Fig. 1. A key
question here is the time interval τ for which nonclassical
properties of light are preserved. Input-output relations for
this case are given by the conditional version of Eq. (1),

ρ̂out =
∫ 1

0
dητP (ητ |η0 � ηmin)L[ητ ](ρ̂in ). (4)

Here

P (ητ |η0 � ηmin) = 1

F (ηmin)

∫ 1

ηmin

dη0P (ητ , η0) (5)

is the conditional PDT and

F (ηmin) =
∫ 1

ηmin

dη0P (η0) (6)

is the single-time complementary cumulative probability dis-
tribution function (exceedance) at the point η = ηmin, which
characterizes the overall efficiency of the adaptive real-time
selection procedure. The function

P (η0) =
∫ ∞

0
dητP (ητ , η0) (7)

is the single-time PDT, considered in Refs. [62–68].
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III. TWO-TIME PDT

As discussed in Refs. [62–68], the PDT has the same form
in both quantum and classical optics, and, consequently, its
derivation is based on purely classical methods. Atmospheric
turbulence leads to random fluctuations in space and time
of the refractive index n(r, z; t ). The random value of the
transmittance for the pulse at the time instance t reads

ηt =
∫
A

d2r|ut (r, zap)|2. (8)

Here |ut (r, z)| is the field amplitude amplitude, the coor-
dinate z is chosen in the propagation direction, r is the
two-dimensional vector of the transverse coordinates, z = zap

is the channel length, and A is the receiver-aperture opening
area. As discussed in Appendix A of Ref. [68], the transmit-
tance (8) does not depend on the pulse (quasimonochromatic
mode) time shape (spectrum). The field amplitude ut (r, z) is
a solution to the paraxial equation with the inhomogeneous
refractive index nt (r, z) = 1 + δnt (r, z),

2ik
∂ut (r, z)

∂z
+ 	rut (r, z) + 2k2δnt (r, z)ut (r, z) = 0, (9)

where k is the wave number. Since the evolution time of
the atmosphere is several orders of magnitude larger than
the pulse propagation time, the refractive index for a given
pulse can be considered independent of time. However, the
time evolution of nt (r, z) between successive pulses should
be taken into account. Moreover, δnt (r, z) is a fluctuating part
of the refractive index with zero mean.

According to Taylor’s frozen turbulence hypothesis [90],
the time evolution of the refractive index can be described
by a wind-driven shift, compared to which the proper time
evolution of the turbulence eddies is much slower. We assume
that the longitudinal and transverse components of the wind
velocity are comparable. As discussed in Ref. [37], the lon-
gitudinal component does not contribute significantly to the
radiation-field statistics if its ratio to the transverse compo-
nent is much smaller than

√
zap/λ, where λ = 2π/k is the

wavelength. In the considered scenario, this conclusion is also
supported by another argumentation. During the time when
the refractive-index field is shifted transversely by the size
of the aperture opening, its longitudinal shift is insignificant
compared to the channel length. Therefore, we consider only
the transverse component of the wind shift.

To solve the paraxial equation (9) numerically, we use the
phase-screen method [91–94]; see also Refs. [71,72,78,79]
for its recent applications. This method can be summarized
as follows: (i) the propagation distance is divided into M
intervals; (ii) at the center of each interval, one samples a
random phase screen that corresponds to a given realization
of the refractive index; (iii) the field amplitude is simulated
according to the vacuum propagation [δnt (r, z) = 0] between
the phase screens; (iv) on each phase screen, the r-dependent
phase is incremented. Similar to Ref. [68], we apply the
sparse-spectrum model [95–97] of the phase-screen method.

In the context of this paper this model has two advantages.
First, it enables the generation of long phase screens, which
are directly used to model the wind shift. Second, the phase-
perturbation statistics obtained with this model are in good
agreement with the analytical expression over the entire length
of the phase screen.

The two-time PDT is a more general characteristic of at-
mospheric quantum channels than the single-time PDT (7)
(cf. Refs. [62–68]) since it includes information about time
correlations. We sample the two-time PDT by using the
sparse-spectrum model of the phase-screen method. Let us
choose the long sides of the phase screens to be directed
along the x axis, i.e., along the direction of the transverse
component of the wind velocity. We start simulations with
the time instance t = 0. In this case, the beam crosses the
phase screens near one of their short sides. This gives us
the field amplitude u0(r, zap) at the receiver plane. Next, ac-
cording to Taylor’s hypotheses, we shift the phase screens
along the x axis on the distance s = vτ , where v is the trans-
verse wind velocity and repeat simulations in order to obtain
uτ (r, zap). Finally, we apply Eq. (8) to find a random vec-
tor η = (η0 ητ ). This procedure is repeated multiple times
with newly generated phase screens in order to accumulate
a sampling set of η, which we use for the estimation of the
two-time PDT.

Our procedure involves a method to overcome the com-
putational complexity associated with the generation of long
phase screens. Within the sparse-spectrum model of the
phase-screen method, we first generate and store the spectra
for each of M phase screens. These spectra are used to gener-
ate the square-shaped phase screens centered on the z axis for
an arbitrary time instance t . This procedure is equivalent to
the generation and subsequent shifting of long phase screens.
The sampled data and Python 3 codes can be found in the
Supplemental Material [87].

Our model assumes that the transverse wind velocity is
constant for the whole propagation distance. In real condi-
tions, it may vary randomly for different parts of the quantum
channel and during the data-collection time. These conditions
are related to a particular micro-meteorological situation. We
restrict our consideration to the simplest scenario with the aim
to understand the general role of time correlations in quantum
communication through atmospheric channels. Moreover, our
results can be easily extended to any particular wind-velocity
distribution.

We simulate the two-time PDTs for channels with zap =
50 km. Turbulence is described by the modified von Kármán–
Tatarskii spectrum [38] with three different values of the
refractive-index structure constant (C2

n = 1 × 10−16 m−2/3,
C2

n = 2 × 10−16 m−2/3, and C2
n = 3 × 10−16 m−2/3) and the

inner and outer turbulence scales �0 = 1 mm and L0 = 80 m,
respectively. The wavelength is λ = 808 nm. This implies that
the Rytov parameter σ 2

R, characterizing the strength of the
scintillation, is 5.5, 11, 16.5. At the transmitter side, z = 0,
the beam is chosen in a Gaussian form,

ut (r, 0) =
√

2

πW 2
0

exp
[
− r2

W 2
0

− ik

2F0
r2

]
. (10)
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FIG. 2. The conditional PDT (5) is shown for the transmittance
threshold ηmin = 0.5, refractive-index structure constant C2

n = 2 ×
10−16 m−2/3, aperture radius Rap = 30 cm, and different values of the
wind-driven shift s.

Here the beam-spot and wavefront radii are chosen to be
W0 = 8 cm and F0 = 50 km, respectively. In the Supplemental
Material [87] we also present the results for other channels.

For the numerical simulations we use a spatial grid with
2048 points along each axis. The spatial grid step is 1 mm.
The number of spectral rings is 1024. The inner and outer
bounds of the spectrum are Kmin = 1/15L0 and Kmax = 2/�0.
The number of phase screens is 15, as recommended in
Refs. [94,98]. The number of samples is 5 × 104. For details
see Ref. [68].

The results of the simulations for the conditional PDT [cf.
Eq. (5)] are given in Fig. 2. This distribution preserves mostly
its initial shape at t = 0, if the magnitude of the wind-driven
shift s is within the range up to one centimeter. This corre-
sponds to one millisecond for the time τ under the typical
transverse wind velocity v = 10 m/s. Unless explicitly stated
otherwise, we will use this value of wind velocity in the fol-
lowing considerations, assuming that the time τ for different
values of v can be obtained as τ = s/v. If the magnitude of s
is in the range of a few centimeters (milliseconds for τ ), then
the contribution of the transmittance values η < ηmin becomes
significant. For tens of centimeters for s (tens of milliseconds
for τ ), the correlations vanish and the conditional PDT takes
the form of the single-time PDT (7).

The simulations also reveal that the Pearson correlation
coefficient between two transmittances decreases with the
time τ (wind-driven shift s); see inset in Fig. 3. The aperture-
averaged spatial coherence radius ρ0 can be defined as
the value of s, for which this correlation is equal to e−1;
see, e.g., Ref. [40]. This quantity can be considered as a
maximum wind-driven shift (time) for which correlations are
preserved. It depends on the radius of the receiver aperture as a
monotonically increasing function; see Fig. 3. Hence, we can
expect that the time τ for which nonclassical properties of the
radiation are preserved increases with the receiver-aperture
radius Rap. This result has direct impact on the scenarios
of quantum-state transmission considered in the following
sections.

FIG. 3. Aperture-averaged spatial coherence radius ρ0 as a func-
tion of the aperture radius is shown. The inset demonstrates the
Pearson correlation coefficient between transmittances as a function
of s with the indication of the coherence radius ρ0. The dashed,
solid, and dot-dashed lines correspond to C2

n = 1 × 10−16 m−2/3,
C2

n = 2 × 10−16 m−2/3, and C2
n = 3 × 10−16 m−2/3, respectively.

IV. GAUSSIAN ENTANGLEMENT BETWEEN PULSES

Let us consider the following scenario. The two-mode
squeezed vacuum state (TMSVS)

|ξ 〉 = cosh−2 ξ

+∞∑
n

(− tanh ξ )n|n, n〉 (11)

is generated on the transmitter side, where |n, n〉 is the two-
mode Fock state and ξ is the squeezing parameter. One mode
is sent at the time instance t = 0. The other mode is stored in a
quantum memory (see, e.g., Refs. [99–104]) and sent through
the atmosphere at the time instance t = τ . At the receiver
station, pulses are analyzed. If the corresponding measure-
ment involves homodyne detection, then the local oscillator is
also sent in the same spatial but orthogonally polarized mode
[11,12,63].

We aim to determine the Gaussian entanglement of the
state at the receiver station. For this purpose we will use the
Simon inseparability criterion [105]. Applying it to the input
state (11) and the input-output relation (1) [cf. also Eq. (2)],
we get that the state at the receiver preserves Gaussian entan-
glement iff the Simon certifier

W = sinh2 ξ [−〈√η0ητ 〉2 cosh2 ξ + 〈η0〉〈ητ 〉 sinh2 ξ ]

× [1 − 〈√η0ητ 〉2

4
sinh2 2ξ + sinh2 ξ (〈η0〉

+ 〈ητ 〉 + 〈η0〉〈ητ 〉 sinh2 ξ )] (12)

is negative, i.e., W < 0. The expectation values 〈√η0ητ 〉 and
the first moments of transmitances, 〈η0〉 and 〈ητ 〉, are calcu-
lated from the numerically simulated data.

Deterministic losses in the channel (0.1 dB/km, see
Ref. [106]) and losses at the optical system should also be
included in the transmittances η0 and ητ . In addition, we incor-
porate the quantum-memory effect by primarily considering
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FIG. 4. Squeezing parameter ξ vs the wind-driven shift s for
the value of the Simon certifier W = 0 is shown. The dashed,
solid, and dot-dashed lines correspond to C2

n = 1 × 10−16 m−2/3,
C2

n = 2 × 10−16 m−2/3, and C2
n = 3 × 10−16 m−2/3, respectively. The

hatched (shaded) areas correspond to the domains, where Gaussian
entanglement is preserved. The aperture radius is Rap = 20 cm.

the writing and reading mapping losses while assuming zero
excess noise. Under the conditions considered, the multiplier
in the second brackets of Eq. (12) is always positive. There-
fore, the sign of the Simon certifier W is determined by the
multiplier in the first brackets of Eq. (12). In this case, all
deterministic losses, including those related to the quantum
memory, do not change the sign of W .

Gaussian entanglement in the turbulent atmosphere has
been analyzed in Ref. [57] in the context of fully correlated
and anticorrelated transmittances. In the considered case, we
deal with the intermediate scenario in which the correla-
tions depend on the time τ between pulses. In Fig. 4 we
show the domain in the space of the squeezing parameter
ξ and the wind-driven shift s, where Gaussian entanglement
is preserved. Counterintuitively, increasing the squeezing pa-
rameter decreases the maximum possible wind-driven shift
for which entanglement is still retained. Hence, the strong
squeezing cannot be considered as a resource for preserving
entanglement in atmospheric channels. However, even for
ξ = 2 (17.4 dB of squeezing) and for C2

n = 2 × 10−16 m−2/3

Gaussian entanglement exists up to s = 6.4 cm (τ = 6.4 ms
for v = 10 m/s). Therefore, Gaussian entanglement between
light pulses is highly stable even if the time interval between
them significantly exceeds 1 ms. At the same time, the abso-
lute value of the Simon certifier (12) can be small due to the
reading mapping losses of the quantum memory.

Let us consider the threshold value of the wind-driven shift,
sth, for which W = 0. Obviously entanglement is witnessed,
i.e., W < 0, only for s < sth. This threshold value can be
considered as a function of the aperture radius Rap. On the
other hand, the coherence radius ρ0 is also a function of Rap;
see Fig. 3. Therefore, we can consider sth as a parametric
function of ρ0, which also depends on the channel parameters
and the squeezing parameter ξ . As shown in Fig. 5, this is a
monotonically increasing nonlinear function. As expected, sth

is smaller for larger squeezing.

FIG. 5. Threshold value of the wind-driven shift, sth (for which
W = 0), is shown as a function of the coherence radius ρ0 for
different values of the squeezing parameter ξ and the refractive-index
structure constant. The dashed, solid, and dot-dashed lines corre-
spond to C2

n = 1 × 10−16 m−2/3, C2
n = 2 × 10−16 m−2/3, and C2

n =
3 × 10−16 m−2/3, respectively.

V. DISCRETE-VARIABLE ENTANGLEMENT
BETWEEN PULSES

In this scenario, a four-mode state is generated at the trans-
mitter side: two polarization modes (horizontal and vertical)
for each time instances, t = 0 and t = τ . In the ideal scenario,
one can consider the polarization-encoded Bell state of two
pulses,

|B〉 = 1√
2

(|h〉0|v〉τ − |v〉0|h〉τ )

= 1√
2

(|1〉h0|0〉v0|0〉hτ |1〉vτ − |0〉h0|1〉v0|1〉hτ |0〉vτ ).

(13)

Here the indices in the second line indicate the polariza-
tion and time modes, and |h〉t and |v〉t are the single-photon
states in the horizontally and vertically polarized modes, re-
spectively, for the time instance t . In the case of using the
parametric down-conversion (PDC) source, the state at the
transmitter (cf. Refs. [107,108]) is given by

|PDC〉 = (cosh ξ )−2
+∞∑
n=0

√
n + 1 tanhn ξ |�n〉, (14)

where ξ is the squeezing parameter and

|�n〉 = 1√
n + 1

n∑
m=0

(−1)m|n−m〉h0|m〉v0|m〉hτ |n−m〉vτ (15)

is a multipair state such that |�1〉 = |B〉. Measurements with
such a state can be treated as measurements with the Bell
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state [109] in the framework of the so-called squash model
[110–112]. This model claims that a consistent mapping of
continuous-variable PDC states to discrete-variable Bell states
is possible only if one assigns a random value to the mea-
surement outcome at the side where two detectors are clicked
simultaneously.

In fact, we describe a scenario which is similar to the
experiment in Ref. [10]. In that case, the entangled pho-
tons copropagate with the time delay τ , their polarization
is analyzed, and the Bell parameter B in the Clauser-
Horn-Shimony-Holt (CHSH) form [113] is estimated. If the
parameter B > 2, then Bell nonlocality and, consequently,
entanglement is witnessed. In particular, this means that
the channel preserves the quantum correlations between two
qubits and the transferred quantum state belong to the four-
dimensional Hilbert space C4 or is mapped onto it by
the squash model. Thus, using two light pulses instead of
one, whose quantum states belong to the two-dimensional
Hilbert space C2, increases the dimensionality of the Hilbert
space [82].

The time between pulses, τ , in the considered experiment
is 50 ns. This is significantly less than the channel correla-
tion time related to the aperture-averaged coherence radius
ρ0 (see Fig. 3) such that the transmittances remain perfectly
correlated. As discussed in Refs. [69,70], the correlations
of the channel transmittances are a key factor for Bell-type
experiments in atmospheric channels. Therefore, it is impor-
tant to find dependencies of the measured Bell parameter on
such time τ between pulses when the correlations become
imperfect.

We have performed the analysis by directly following
calculations in Ref. [70] but assuming partially correlated
transmittances obeying the numerically simulated two-time
PDT. Similarly to the case of Gaussian entanglement, we
have accounted for the quantum-memory effect as well as
deterministic losses in the atmosphere and in the receiver
optical system. The latter also involves 3 dB of losses at the
beam splitter, which sorts the received photons; see Ref. [10]
for details. The time-dependent reading mapping losses of
the quantum memory are described by an exponential decay,
which is a reasonable approximation to the model discussed
in Refs. [103,104]. For the considered scheme, it is also im-
portant to account for the noise counts related to dark counts
and stray light; see Refs. [114–117].

The dependence of the Bell parameter on the time τ be-
tween the pulses is shown in Fig. 6. For the PDC source [cf.
Eq. (14)] we have found the maximum values of the Bell
parameter, Bm, over all values of the squeezing parameter ξ ;
see inset in Fig. 6. In contrast to the case of Gaussian entangle-
ment, in the considered scenario the dependence on the wind
velocity v plays a more important role due to the trade-off with
the time-dependent reading mapping losses of the quantum
memory. To separate the effect of turbulence from the effect of
quantum memory, we consider two scenarios: with zero and
3 dB/ms losses of the latter. Our results in Fig. 6 show that
the turbulence itself preserves discrete-variable entanglement
for large values of the time τ between pulses. However, time-
dependent reading mapping losses of the quantum memory
play a key destructive role in this scenario. Therefore, the

FIG. 6. Bell parameter B vs the time τ between entangled pulses
is shown for the decay rate of the quantum-memory reading mapping
efficiency of 3 dB/ms and 0 dB/ms. The solid and dashed lines cor-
responds to the transverse wind velocity v = 10 m/s and v = 5 m/s,
respectively. The lines marked by “PDC” and “Bell” correspond to
the PDC [cf. Eq. (14)] and Bell [cf. Eq. (13)] states, respectively.
For the PDC states, the maximum value Bm of the Bell parameter,
as is sketched in the inset, is chosen. The refractive-index structure
constant is C2

n = 2 × 10−16 m−2/3. The mean number of noise counts
is 5 × 10−4. The aperture radius is Rap = 10 cm. The rest of the
deterministic losses are 9.42 dB.

application of this protocol requires the further development
of efficient quantum memory.

VI. ADAPTIVE REAL-TIME SELECTION
FOR NONCLASSICAL STATES

This protocol assumes that the channel transmittance η0

is tested by a strong classical pulse at the time instance
t = 0. If this transmittance exceeds a predetermined threshold
value ηmin, the pulse of nonclassical light at the time instance
t = τ is sent and analyzed; see Fig. 1. We aim to find such
time τ , for which nonclassical properties of the light are still
preserved at the receiver. This technique has been proposed
and implemented in Refs. [83,84] to increase the efficiency of
quantum-key distribution protocols.

We consider amplitude-squeezed coherent states |α0, ξ 〉 =
D̂(α0)Ŝ(ξ )|0〉. Here D̂(α0) and Ŝ(ξ ) are the displacement and
squeeze operators, respectively, with α0 ∈ R and ξ < 0. This
state represents a well-known example characterized by non-
classical photocounting statistics with negative values of the
Mandel Q parameter [118,119],

Q =
〈
	n2

〉
〈n〉 − 1. (16)

Here 〈n〉 and 〈	n2〉 are the expectation value and variance
of the number of photons, respectively. As is shown in
Refs. [62,67], the Mandel Q parameter for the state at the
receiver becomes positive for 〈n̂〉in/|Qin| > 〈η2〉/〈	η2〉. Here
Qin is the Mandel Q parameter and 〈n̂〉in is the mean number
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of photons at the transmitter. For the considered experiment,
the statistical moments of the transmittance are estimated with
the conditional PDT given by Eq. (5).

The Mandel Q parameter is applicable only to the detectors
with the ideal photon-number resolution. Let us consider a
more realistic case of click detectors that involve spatial or
temporal splitting of the light beam and then detecting each
part of them by on-off detectors; see Refs. [120–126]. The
number of triggered detectors is equal to the number of clicks.
The click-number distribution for the coherent state |α〉, i.e.,
Q symbols of the positive operator-valued measure (POVM)
(cf. Ref. [127]) for such detectors reads

�(n|α) =
(

N

n

)
(1 − e−|α|2/N )ne−(N−n)|α|2/N , (17)

where N is the total number of detectors. A measure
of nonclassicality of click statistics for such detectors,
known as the Binomial Q parameter, was introduced in
Ref. [128],

QN = N
〈	c2〉

〈c〉(N − 〈c〉)
− 1. (18)

Here 〈c〉 and 〈	c2〉 are the expectation value and the variance
for the number of clicks, respectively. For N → +∞ this pa-
rameter becomes the Mandel Q parameter. The values QN < 0
witness nonclassicality of photocounting (click) statistics ob-
tained with click detectors.

For our purposes, we also witness nonclassicality of
click statistics with the method proposed in Ref. [85]. This
technique can be applied to the detectors with realistic photon-
number resolution. As discussed in Refs. [85], the click
statistic is nonclassical—i.e., it cannot be reproduced with
the classical electromagnetic radiation [118,119,129–135]—
iff there exists such λ(n) that the inequality

N−1∑
n=0

λ(n)P(n) � sup
α∈C

N−1∑
n=0

λ(n)�(n|α) (19)

is violated. Here P(n) is the click distribution for the state
under study. We use the optimal set of λ(n), representing the
tight subset of inequalities (19), cf. Ref. [86].

The maximum violation of inequality (19), i.e., the differ-
ence of left- and right-hand sides, as a function of the time
τ (the wind-driven shift s) between the classical test pulse
and nonclassical pulse and the values of s related to Q = 0
and QN = 0 are shown in Fig. 7. For the given conditions,
the Mandel Q parameter becomes positive for s = 7.2 cm
(τ = 7.2 ms). However, the click statistics are still nonclas-
sical even far beyond this threshold for the considered values
of parameters. This can be observed even with click detectors
having small N employing both methods: one based on the
parameter QN and the other on inequalities (19). For exam-
ple, for N = 2 both tests show vanishing nonclassicality at
s = 14.2 cm (τ = 14.2 ms).

With increasing the number N of on-off detectors, the
method of inequalities (19) witness nonclassicality for larger
values of the time τ , compared to the Binomial Q parameter.
At the same time, the value of τ for which QN = 0 de-
creases and tends to the threshold for Q = 0 as N → +∞. For
example, in the case of N = 3 such nonclassicality van-

FIG. 7. Maximum violation of inequality (19), i.e., the difference
of its left- and right-hand sides, for click detectors vs the wind-
driven shift s in the adaptive real-time selection technique is shown
for the amplitude-squeezed state with α0 = 1.15 and ξ = 0.59. The
symbols Q and QN indicate the thresholds of s for which Q = 0
(dash-dotted line) and QN = 0, respectively. The dotted, dashed, and
solid vertical lines and curves correspond to N = 2, N = 3, and
N = 5, respectively. The refractive-index structure constant is C2

n =
2 × 10−16 m−2/3. The aperture radius is Rap = 30 cm, the overall de-
terministic losses are 6 dB. The threshold transmittance is ηmin = 0.1.
The confidence intervals correspond to 106 selected samples. The
overall selection efficiency (6) is F (ηmin ) = 0.58.

ishes for s = 19.6 cm (τ = 19.6 ms) and s = 11.4 cm (τ =
11.4 ms), while witnessing with Bell-like inequalities and
the Binomial Q parameter, respectively. For N = 5 non-
classicality of click statistics is always preserved in the
range of our simulation parameters, i.e., up to s =
28 cm (τ = 28 ms), while witnessing with inequalities (19).
Meanwhile, the threshold for Q5 = 0 is s = 9.7 cm (τ =
9.7 ms). Therefore, the adaptive real-time selection tech-
nique gives a possibility to preserve nonclassical prop-
erties of the electromagnetic radiation for long times
between classical and quantum pulses. Moreover, this prop-
erty can be verified also with realistic click detectors.

It is also worth noting that the photon-number resolution
may become more significant for other values of parameters
(e.g., α0 = 1.4 and ξ = 0.16). In such cases, the values of
s for which QN = 0 are smaller than the values of s for
Q = 0. However, the method of inequalities (19) still gives
better results compared to the method based on the parameter
QN for N = 3 and N = 5.

VII. SUMMARY AND CONCLUSIONS

We have demonstrated that correlating atmospheric-
channel transmittances at distinct time intervals represent a
significant resource for quantum-information transfer. Under
typical atmospheric conditions, the correlation times can be
on the order of a few milliseconds and are significantly in-
fluenced by the receiver-aperture radius. This paves the way
for the development of efficient transmission protocols. A key
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characteristic of such channels is the multitime probability
distribution of transmittance (PDT), which we have simulated
numerically for the two-time case and applied to typical trans-
mission scenarios.

The first scenario is related to transferring continuous- and
discrete-variable entanglement of two time-separated pulses.
The use of this resource requires quantum memory in order to
store the quantum state of one of them. On the other hand,
it results in additional losses. Nevertheless, we show that
continuous- and discrete-variable entanglement is stable for
long-time intervals between light pulses. Counterintuitively,
Gaussian entanglement becomes less stable as the squeezing
parameter increases. Discrete-variable entanglement is pre-
served by the atmospheric turbulence itself for long times
between pulses. However, in this case, the reading mapping
losses of the quantum memory play a key destructive role,
pointing to the need for its further improvement for use in
such protocols.

In the second scenario, the adaptive real-time selection
protocol, the channel transmittance is tested with a bright
classical pulse, and if it exceeds a predetermined value, the
pulses of nonclassical light are sent. We have checked whether
such a technique can efficiently preserve nonclassicality

verified with realistic click detectors. The use of inequalities
testing nonclassicality of click statistics enables us to verify
it for significantly long-time intervals between the classical
and quantum pulses. Moreover, there are scenarios where this
nonclassicality is preserved for times well beyond those for
which the proper photon-number statistics are sub-Poissonian.

We hope that our results will find their application in
both theoretical and experimental research for improving the
capacity of free-space quantum channels. In particular, our
results show that long correlation times in the atmosphere can
also be used to transmit multipartite entanglement between
light pulses. This resource could be used to increase the
effective dimension of the Hilbert space for transmitted
quantum states.
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[126] J. Řeháček, Z. Hradil, O. Haderka, J. Peřina, Jr., and M.
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