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Phonon superradiance with time delays from collective giant atoms
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The giant atom regime where the wavelength of the phonon field is smaller than the atomic size opens up
new opportunities for exploring exotic phenomena and developing powerful quantum technologies. Here, we
explore the radiation dynamics of a hybrid system consisting of a superconducting giant atomic ensemble and
an acoustic waveguide. In particular, we show how to design the delayed feedback of the slow acoustic field
on the giant atomic ensemble. This modulates the phonon superradiant dynamics into engineerable revival
modes and unconventional scaling laws with respect to the number of giant atoms. These are a distinctive
feature of time-delayed collective processes that have no analog in other settings. The recipes we provide for
harnessing collective giant atoms can be exported to other platforms, laying the foundation for a variety of

quantum simulations and applications.
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I. INTRODUCTION

The exploration and design of field-matter interactions is a
central component in both fundamental quantum physics and
powerful quantum technologies, including rich quantum opti-
cal phenomena and quantum simulations, distributed quantum
information processing, and quantum networks [1-5]. Studies
of the interaction of optical fields and matter have typically
focused on the regime where the wavelength of the field is sev-
eral orders of magnitude larger than the atomic size. Recently,
impressive breakthroughs have been made in the coupling of
superconducting artificial atoms and acoustic fields [6—12].
The properties of the acoustic field offer the unique oppor-
tunity to explore regimes that are not accessible to the optical
field. In particular, because of the slower speed of acoustic
waves, it is possible to access the vastly different “giant atom”
regime where atoms interact with fields whose wavelengths
are shorter than the atomic size [13-24]. In this case, the field
has a coherent delayed feedback to the atoms, changing the
system dynamics with no analog in conventional atom-field
systems.

Superradiance is a paradigmatic collective effect where
radiation is amplified by the coherence of multiple emitters.
This cooperative effect when optical fields and atoms interact
have been extensively studied and experimentally observed in
a range of physical systems [25-34]. Exploring the interest-
ing interplay of two important processes, the giant atom and
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collective radiation, will allow relevant quantum simulations
and applications to show their full power. However, this new
regime has not been explored in the context of field-matter
interactions.

In this article, we design a hybrid system consisting of
an ensemble of superconducting giant atoms and an acoustic
waveguide that can be harnessed to generate and observe
time-delayed collective dynamics induced by phonons. The
collective effect of the giant atomic ensemble enhances the
radiative decay of these emitters, leading to the superradiance
of phonons. More interestingly, due to the slow propagation of
phonons, the giant emitters are effectively coupled to several
acoustic field positions. In contrast to the usual Dicke superra-
diance of the optical field, this delayed coupling modifies the
features of the system dynamics and leads to unconventional
collective atom-field interactions and unconventional phonon
emission patterns. Since the delay time is customizable, un-
explored parameter regimes in field-matter interactions can
be realized and characterized. Furthermore, this time-delayed
collective behavior establishes a controlled information back-
flow between the two subsystems, phonons and giant atoms,
and thus has potential applications in the quantum information
processing based on hybrid systems.

II. SETUP AND MODELS

We propose a tunable hybrid system composed of super-
conducting giant atoms and a phononic waveguide. As shown
in Fig. 1, the giant atomic ensemble is realized by a number
of superconducting transmon qubits connected in parallel and
coupled to two points of a waveguide via capacitances. For
clarity, we consider two coupling points here since wiring

©2024 American Physical Society
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FIG. 1. Schematic of the hybrid setup. A superconducting giant
atomic ensemble is coupled to two points x,,, X,,+1 of a phononic
waveguide via capacitances. The superconducting artificial atoms
and phonon fields can be controlled and detected by the external
gates. The time-delayed nature of the system arises from the inter-
ference in the nonlocal points.

up to multiple coupling points becomes complicated. The
phononic waveguide is constructed by propagating surface
acoustic waves on a piezoelectric substrate. This hybrid sys-
tem has a wide range of tunable parameters, including driving
atomic ensembles and detecting phonon fields by the external
gates. All elements of our proposal can be implemented in the
current experimental setups [35-38]. The Hamiltonian of this
hybrid system is

N 2
Q;
H = E Taiz—l—/a)ka,jakdk—i— E /g()
i=1

m=1

N N
y (eikxmak Zoi+ + emiongt Zgi_>dk_ (D
i=1 i=1

Here o is the Pauli operator of the superconducting qubit
and a™ and a are the creation and annihilation operators of
the phonon field. The subscript i denotes the qubit while the
subscript m labels the coupling point of the atomic ensemble
to the waveguide. The parameter €2 is the transition frequency
of the qubit and w; and k are the frequency and wave vector
of the phonon mode. The propagation time of the phonon field
between two adjacent points is 7y = (X;u1 — X )/v, Where
v is the wave velocity of sound. Thus the interaction of the
giant atomic ensemble and the phonon field has a delay time
7. This characteristic time leads to interference between the
nonlocal coupling points, which brings substantial changes in
the system dynamics. For a detailed derivation of this Hamil-
tonian, see the Appendix A.

III. SUPERRADIANCE OF PHONONS

First we consider the usual case of small atoms. When the
wave speed is very large, for a given frequency the wavelength

of phonon field is much larger than the size of the supercon-
ducting circuit. In this case, the hybrid system is approximated
as the interaction of N artifical atoms and a single-mode field

Hy = Z %O’iz +wata+ £0 (a Zmur +a* Zm)-

1

2)
To explore this hybrid system, we apply a pulse to drive the
superconducting artificial atoms. Initially the atomic ensem-
ble is in the ground state and by the driving pulse the atomic
ensemble achieves an inversion. Due to the coupling of the
atomic ensemble to the phonon field, the atomic excited state
is transferred to the phonon mode, which manifests itself as
phonon radiation.

Since phonon radiation is the result of the collective decay
of artificial atoms, it is of interest to study the dynamics of
the system operators during this process. For an ensemble of
artificial atoms, we can make two approximations as follows.
First, the atoms have the same transition frequency. Second,
the coupling strengths of the atoms and phonon fields are also
the same. Thus the ensemble can be described by a collective
atom operator § = ) _ 0;.

However, relaxation and dephasing affect the coherence of
the atomic ensemble and thus reduce the intensity of phonon
radiation. To account for these decoherence processes, we use
the master equation

L;—f = —%[Ho, pl+«kLlal + 7 ZL[oi_] + Ve Xi:L[Uiz]-
3)

Here p is the density matrix of the system, L is the Lindblad
operator L[O] = OpO — 1/2(0T0p — pOT0), and k, 1, v
are the leakage rate of the phononic waveguide, the relaxation
rate, and the dephasing rate of the atoms, respectively.

From this model, we can derive the equations of motion for
the expectation value of system operators

d Sz . ES *

fn> = —2igo({a)(S_)* — (@)*(S_)) — 1 ((S2) + N,
dis_

<dt ) = igo{a)(S;) — <% + Ve + iA) (S-),

d

% — —igo(S_) — <g + i8> (a). “)

Here we use the rotating frame as A = Q — w and § = w, —
w, as well as the mean-field approximation, e.g., (aS;) ~
(a)(S;). This approximation is valid because there are a large
number of atoms in the ensemble and their fluctuations can be
neglected [39—43]. We use Eq. (4) to simulate the dynamics of
the hybrid system in the small atom regime. The parameters
in the simulation use the actual values extracted from the
experiments [18-21].

In Fig. 2(a), we give the simulation results for the emitted
phonons from the atomic ensemble. After the driving pulse,
the ensemble reaches an inversion and stays in this highly
polarized state for some time. Then the atoms decay due to
the stimulation of thermal and vacuum fluctuations. Along
with the collective decay of atoms, a burst of phonons is
emitted into the waveguide, which is the characteristic burst of
phonon superradiance. Here we use a typical dephasing time
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FIG. 2. Phonon superradiance in the small atom regime. (a) Time
trace of phonon radiation for different numbers N of atoms in the
ensemble. (b), (c) The maximum value and the burst time of phonon
radiation as functions of N. The parameters are the coupling strength
g0 = 20 MHz, waveguide leakage « = 0.3 GHz, atomic relaxation
and dephasing rates y; = 0.145MHz, y4 = 0.125MHz.

of superconducting qubits, which is comparable to the burst
time of phonons. The dissipation effects play a significant role
in the collective process of atoms, which reduces the intensity
of phonon superradiance.

Further, we study the scaling behavior of phonon super-
radiance. In Fig. 2(a), we show the dynamics of phonon
radiation for different numbers N of atoms in the ensemble.
From the figure we find that the maximum intensity and the
peak time of the phonon burst change as the number of atoms
increases. In Figs. 2(b) and 2(c), we can fit the height and time
of the phonon burst as a function of N. This scaling law with
respect to the atom number clearly shows the collective nature
of phonon emission from atomic ensembles.

The above phonon superradiance can be analyzed in a
simple case to obtain an intuitive physical picture. In the
fast waveguide limit, we can derive an effective equation of
motion of the atomic ensemble

451 _ 8,
dt «

The first term shows that the dynamics of the ensemble po-
larization (S;) depends on the coherence of the ensemble
(S4+S_). The coefficient of this term is the usual Purcell factor
4g% /i, which is the decay rate of a single atom through the
phonon emission channel. Since the coherence of the ensem-
ble is proportional to the number of atoms in the ensemble
(S, S_) ~ N2, its decay rate, and the corresponding phonon
emission rate are greatly enhanced compared to the case of a
single atom. Figure 2(a) clearly shows this enhancement due
to the collective effect of atoms in the ensemble.

This effective equation of motion also accounts for the
behavior of the scaling law. Ideally, the coherence of the
ensemble in Eq. (5) is proportional to N2. However, other

S+8-) = n((Sz) +N). ®)

dissipation channels exist, such as the second term in Eq. (5).
The competition between different decay channels leads to a
deviation of the phonon radiation from the scaling law of N2,
showing a smaller scaling law. For the derivation of the effec-
tive equation and the analysis of various dissipative effects,
see Appendixes B and C, respectively. The enhanced radiation
and scaling laws due to collective effects are consistent with
the expectations of the effective equation of motion and are
indicators of phonon superradiance.

IV. COLLECTIVE RADIATION WITH TIME DELAYS

When the speed of acoustic waves is slow, it is possible
to access the giant atom regime. The propagation time t,; of
phonons between two adjacent points can be much larger than
the decay time of the giant atomic ensemble. In this case, the
phonons emitted to the waveguide at one coupling point due
to giant atoms may later be reabsorbed at a second coupling
point. Thus, starting from the complete Hamiltonian Eq. (1)
we derive its equations of motion as

d(s, - ,
;t ) _ —2igo; / (™ (ar)(S_)*

— e @) (S kldk = 71 ((S2) + N),

d(s_ 2 .
S - ig0(S:) ) / *n () Tkldk
m=1

- (% e+ iA) (S_).

d 2
Z;k) = —igo<S—>\/mm2:; ek (g + i8k> {ar). (6)

We use Eq. (6) to model the dynamics of the hybrid system in
the giant atom regime.

Before the numerical simulation of Eq. (6), to represent the
effect of slow phonons more clearly, we derive an effective
equation for the evolution of (S_),

d(S_
M — lA(SL) - )/m<SZ)(Sf) - <% + y¢> (Si)

dt
= Ym{S)(S_)(t — w)OU — 7). (7N

Here y,, = 4n(%)29 is the phonon emission rate at a single
coupling point. the first term describes the coherent evolution
of the atomic ensemble, the second term describes the relax-
ation process in the environment, and the third term describes
the process of emitting phonons from the atomic ensemble.
The last term contains a Heaviside function ® that describes
the delayed feedback on the atomic ensemble at time t; due
to the slow propagation of the phonon field. In contrast to the
case where the delay time 7, is not considered, the dynamics
of the giant atomic ensemble as in Eq. (7) clearly introduces
a delayed coupling term. For a detailed derivation of these
equations see Appendix C.

First we study the system behavior in the time domain.
In Figs. 3(a) and 3(b) we show the simulation results of
phonon radiation and giant atomic ensemble polarization, re-
spectively. The dynamics of phonon superradiance exhibits a
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FIG. 3. Dynamics of time-delayed phonon superradiance. (a, b)
Time evolution of the phonon radiation and the polarization of the
giant atomic ensemble. (c) Intensity of phonon radiation of giant
atom ensembles as a function of evolution time and delay time.
The parameters are the number of giant atoms N = 20, coupling
strength go = 50 MHz, waveguide leakage x = 10 MHz, delay time
7, = 100 ns, and other parameters are the same as in Fig. 2.

multipeak structure, which is very different from the usual
single-peak structure in the case of small atoms with 7; =0
(Fig. 2). The first radiation burst is followed by a series of
smaller ones. The polarization of the giant atomic ensemble
corresponds one-to-one to the phonon emission, and both have
the same feature: the time spacing of the peaks is t;. The
accumulated phase of the phonons during their propagation
between the two coupling points induces the interference ef-
fects that produce these peaks.

Since the introduced delay time is deterministic, we can
design this hybrid system. In Fig. 3(c), we show the simula-
tion results for phonon radiation with different delay times.
We find that the revival peaks after the first radiation burst
appear sequentially at integer multiples of the delay time
74. In the present case, the giant atom subsystem and the
phonon subsystem have a structured coupling. The phonon
field acquires a longer memory time than the decay time of
the giant atomic ensemble, producing a delayed feedback to
the atomic ensemble. This manifests itself as a revival in the
time trajectory.

The study of the scaling behavior of the collective radia-
tion in the giant-atom regime can bring additional insight. In
Fig. 4, we show the scaling behavior of the maximum intensity
of the second phonon peak with respect to the number of giant
atoms N in the ensemble at different delay times. The scaling
law of the phonon superradiance changes significantly with
the delay time. This is because as the delay time increases,

60 T T
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—e—rd:150ns
40 —»—7,=200ns

Intensity of the second peak

10 20 30 40
Number of atoms

FIG. 4. Scaling laws for non-Markovian phonon superradiance.
The phonon field intensity of the second peak are displayed as a
function of giant atoms in the ensemble at different delay times. The
parameters are the same as in Fig. 3.

the phonon radiation peak appears later, leading to a decrease
in its intensity due to dissipation effects. For the combined
effects of various dissipation times and delay times, see
Appendix D.

V. DISCUSSION AND CONCLUSION

To realize our scheme in a realistic device, we analyze
the effect of disorder in the atomic energies and in the atom-
waveguide couplings.

First, in the equation of motion for our system, there is a

collective emission term i—%(S+S _). It is this term that induces
superradiant emission, as given by the radiation intensity

I~N %. Here N is the number of excitations in the atomic
ensemble, gy is the atom-waveguide coupling strength, and k
is the decay rate of the waveguide. One can expect to observe
such superradiance phenomena when the emission rate is
larger than the inhomogeneities §€2, §g in the atomic energies
and atom-waveguide couplings. In practice, as the number of
superconducting qubits increases, one can observe superradi-
ance even with large values of inhomogeneity. For example,
using realistic parameters in current experiments [35-38],
N =20, go = 50 MHz, xk = 10MHz, §2 = 0.2MHz, §gy =

1 MHz, we can find that the value of emission rate N i—%’ is
much larger than that of the inhomogeneities 52, g¢ in the
atomic energies and atom-waveguide couplings.

Second, the dephasing time of the atomic system is dom-
inated by the inhomogeneity 62 of the atomic energies. We
can assess the effect of the dephasing time of giant atoms on
the superradiance behavior. As detailed in Appendix D, the
simulation results indicate that the atomic dephasing time has
a slight effect on the phonon superradiance.

Finally, one of obstacle of applications of an ensemble
of superconducting qubits is the inhomogeneity of atomic
energies. As pointed out in Ref. [41], the inhomogeneity of
superconducting qubits can be effectively suppressed by ap-
plying an external magnetic flux.
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In summary, we propose a method to engineer effective
delayed field-matter couplings using superconducting giant
atomic ensembles and acoustic waveguides. We also illus-
trate that this implementation yields unconventional collective
quantum phononic behavior. In particular, exotic phonon
emission patterns and collective atomic interactions are ob-
tained, such as the decay-recovery structure of the system
dynamics. These methods can be applied to other hybrid
platforms, offering a flexibility to interact coherently with
different quantum systems [44—46]. In addition to the funda-
mental interest of these phenomena, there are many possible
applications. In quantum simulations, the setup provides
a flexible platform for probing nonequilibrium many-body
physics [47-49]. In addition, one can exploit the tunability
of phonon feedback to encode quantum information into de-
coherence free subspaces or into cluster states, which can
be used for fault-tolerant quantum computing [16,50,51].
This controlled collective radiation effect also enables highly
sensitive phonon-based measurements and narrow bandwidth
phonon radiation [52-54].
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APPENDIX A: TOTAL HAMILTONIAN OF THE HYBRID
SYSTEM

We give detailed derivations of the Hamiltonian (1) used
in the main text. When multiple superconducting transmon
qubits are coupled to a phonon waveguide via capacitances,
the total Hamiltonian of the hybrid system is given by [37]

n=X G

1

=Y (4Ech} — E; cos §; — BEchh, + 4Ech?). (Al)

ns)z Z EJ COos (ﬂz

On the one hand, 7; is the charge number operator of the ith
transmon qubit, 71, is the offset charge, both measured in units
of the Cooper pair charge 2e, Ec = ¢*/2C; is the charging
energy, and C; is the total capacitance of the transmon qubit.
On the other hand, @; is the phase operator of the ith transmon
qubit and Ej is the Josephson energy.

We introduce the Pauli operators o_ and o of the trans-

mon qubit via @ = \/g(o*_ +oy)and i = —i /ﬁ(a_ —0y)
with n = /8E¢/E;. Therefore, the Hamiltonian of the super-
conducting artificial atomic ensemble can be expressed as

Hqs = Z (4Ecﬁ12 — Ej Cos (p,)
i

1
~ Z oo (ai+a,~_ + E) - Z X (G + o), (A2)

where wy = +/8EcE;/h is the transition frequency of the
transmon qubit and ¥ = E¢/12 is the nonlinear term.

The electric potential field & (x, 7) in the phonon waveguide
is described by

[hZyv [ .
E(x,t) = —i 40” / dkJor(age” @) _Hc).
s —00

(A3)

Here a; is the annihilation operator of the phonon mode

with wave vector k, Z is the characteristic impedance of

the phonon waveguide, v is the velocity of surface acoustic

wave (SAW) phonons, which satisfies the dispersion relation
= |k|v.

In Eq. (Al), the interaction between the superconducting
artificial atomic ensemble and the phonon waveguide is de-
scribed by the following term Hip = ), —8E¢#;i,. The offset
charge is 71, = (2e)~! Z | Ceé (x, t) where C, and x,, are
the coupling capacitance and position of each couphng point,
respectively [7,18,19]. Thus, we can calculate the interaction
Hamiltonian as follows:

x (are™ —H.c.)(oj- — 0j4)

~ Z Z / go(aroj €™ 4 H.e)y/|kldk. (A4)

j=1 m=1

In the above derivation, we use the rotating-wave approx-
imation (RWA) to neglect the counterrotating terms a,o
and a;o_. In addition, we define the coupling strength gy =

4EC / 277‘/ Zf,o vC, and use the linear dispersion relation wy =
vlkl

Putting things together, we obtain the total Hamiltonian in
the main text as

N oo .
H = Z ?oiz + | waf ardk
i=1
2
+ Z / 80 (eikx'”ak Z 0ip + e Fngf Z o,-_)dk
m=1 i i

(AS5)

APPENDIX B: THEORY OF PHONON SUPERRADIANCE
IN THE SMALL ATOM REGIME

We present detailed derivations of Egs. (2) to (5) used in
the main text.

1. Hamiltonian

We begin with the usual case of small atoms. When the
velocity of SAWs is very large, for a given frequency the
wavelength of phonon field is much larger than the size of
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the superconducting circuit. In this case, the hybrid system is
described by a Tavis-Cumming Hamiltonian with N artificial
atoms coupled to a single-mode phonon field [39-43]

Hy, = Xl: %O’iz +wata+ go (a Xi:GH_ +at Xi:m_).
(BI)
In a rotating frame with frequency w, the above Hamiltonian
is given by

Hy = Z %O'iz +38ata+ go <“ZUI'+ +a* ZG">’

' (B2)
where the detunings are A = Q2 — w and § = w, — w, respec-
tively.

2. Equations of motion

Relaxation and dephasing will significantly affect the co-
herence of the atomic ensemble. In the presence of dissipation,
the dynamics of the hybrid system is described by the master
equation

g——ﬂhm+mz}M]+m§de+dH
(B3)
where the dissipation effects are included in the Lindblad term
L[O] = OpOt — 1/2(0%0p — pO*0) and k, 1, y, are the
leakage rate of the acoustic waveguide, the relaxation rate and
the dephasing rate of the atoms, respectively.
We use the collective spin operator to describe the atomic
ensemble, which is defined as S¢; 4 —) = Y_ 0i¢; +.—). From the

1
master equation, we can derive the equation of motion for the
expectation value of the system operator as follows [55]:

dgh?ﬂwﬁw—mw+@>
= —2g0((aSy) — (@*S_)) — yi(N + (S.)). (B4)
d(S_
;ﬂ —MSﬂm—<%+myS)
= —iA(S_) +igo(aS;) — (% + V¢) (§-), (B5)
d{a)

—i(la, Hyl) — = (a) = —id(a) —

_ ion (S K
e > igo(S-) — = (a).

2
(B6)

3. Effective equation of motion and scaling behaviors

We now consider the fast waveguide limit. Since the dy-
namic timescale of the waveguide is much faster than that
of the atomic ensemble, we can assume that <% l = 0, which
gives the steady-state solution for the phonon field amplitude
(a). We substitute this expression back into the above equa-
tions to obtain the effective equation of motion for the atomic

collective operator

dis) _

dt
Note that the coherence term of the atomic ensemble can
be expressed as (S1.5_) = Z(o,+a, + Z (0i40;—). The first

term is the number of polarlzatlons proportlonal to the num-
ber of atoms N in the ensemble. The second term is the
interference between different atoms, which contains N? ele-
ments and leads to a scaling law of the phonon superradiance.
Since there are other decoherence processes, in realistic cases
the exponent of the scaling law is a value smaller than 2.

8
g% (S45_

) = i(N +(S2)). (B7)

APPENDIX C: THEORY OF PHONON SUPERRADIANCE
IN THE GIANT ATOM REGIME

We present detailed derivations of Eqs. (6) and (7) used in
the main text.

1. Hamiltonian

By defining the collective spin operator S, the total Hamil-
tonian Eq. (AS) is written as

Q
H = ESZ —i—/wka,:’akdk
2
+Z/80(€lkx'”ak5+ +e_lk"”'az’S_)\/|k|dk. (CD
m=1

2. Equations of motion

In the presence of environmental dissipations, the dynam-
ics of the hybrid system is described by the master equation

dp . Yo
e —ilH, pl + niL[S-1+ SLIS:1 +«kLlal,  (C2)

where the dissipation effects are included in the Lindblad
term, and «, yi, ¥, are the waveguide leakage rate, the atomic
relaxation rate, and dephasing rate, respectively.

Starting from the above master equation, we can obtain the
equations of motion for the giant atomic ensemble and the
phonon field [55]

dis.)

7 —i{[S:, H]) —

iV +(S;)

= —21802/(€'kx’” a){

m=1

— e ag)" (S Ikldk — yi (S

) +N), (C3)

dis_)
dr

—ms1m—<%+m)5>

2

ﬂmefWWMWM

m=1

<’;‘ + v —|—zA)<S ), (C4)
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d 2
;C;U = —i{[a, H]) — %(a) = _igO<S—>\/mn;e"“m
- (% + i5k><ak>, )

3. Effective equation of motion for (S_)

During phonon radiation, on the one hand, giant atoms
emit phonons, and on the other hand, already emitted phonons
are reabsorbed by giant atoms, leading to a delayed feedback
of phonons to giant atoms. The above equations of motion
are complex, so it is instructive to obtain an effective equa-
tion of motion that obviously includes delayed dynamics. For

J

d(s_)

2 2
— Q{5 +igolS Z f Ve a) Ok + 0250 Y D [ sar [

2 oo )
G = IS TS 1 [ e (a1 (0) — igov/ K] Ze /0

clarity, we neglect the environmental terms in the above euqa-
tions first. We use the following steps to dervie the effective
equation [15].
Step 1: Obtain a formal solution of the phonon field.
Integrating Eq. (CS), we have the formal solution

2
() (t) = e~ [(a)(0) — igov/k| Y _ e~

m=1

X / (S_)(t)H)e' ™ di'). (C6)
0

Step 2: Transform the integral of the wave vector & to the
integral of the frequency w.

Substituting the formal solution of the phonon field into
Eq. (C4), we have

(@)™ di' )/ k| dk

+00
|k|eik(xm —X,, )Fiwy (t’—t)dk

m=1m'=1 0 o0

+o0
= (s ) +ifs Z / e () (0)d oy

+00
( ) ZZ f )@har! f e e ) 101

m=1m'=1

= —iQ(S_) + z— Z / Jore T a) (0)dwy + <g7°> ZZ / @)t

m=1

+00
x f i [etwkrmm, Fiwy (t'—t) + e—m)krmm, +iawy (t —t)]da)k
0

Here we define the delay time between two coupling points as T

Step 3: Calculate the integral of the frequency w.

m=1m'=1

_ on—x,)
v

According to the Weisskopf-Wigner approximation, the radiation is mainly concentrated at the atomic transition frequency £2.
That is, the frequency wy of the radiation field is concentrated in a very narrow range around €2. Thus we can define the integral

limit of wy as going from negative infinity to positive infinity. Then by using the integral formula f

e day, = 2m8(t), we

get
d(S*) kX, —iwyt 2 2
= RS ) + z— Z 4/_e it (0 (0)d g + Sy Z V(@ )dt'
m=1 m=1m'=1
+oo . . ’ . . ’ 2 .
x / wk[ezwkrmm, iy (t'—1) + T, iy (t —l)]dwk =—iQ(S_) + l— Z/ th,,ﬁlwkt<ak>(0)dwk
oo —
2 22 t
( ) 22/ dr w28 —t + 1, )+ 2w8(t —t — 1, )]
m=1m'=1
+00
= —iQ(S_) + 17 Z/ eI (@) (0)d wy + Z Z/ (S_)Y(Hdt'

m=1

x[B@t' —t+z7, )+ —t—1 )l

Here we define the radiation rate as y,, = 4n(%)29

m=1m'=1
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FIG. 5. Time evolution of the polarization of the giant atomic
ensemble. The solid line is the simulation result of the equation of
motion (6) and the dashed line is the simulation result of the time-
delayed Eq. (7). The parameters are the number of giant atoms
N = 20, coupling strength go = 50 MHz, waveguide leakage « =
10 MHz, delay time 7, = 100 ns, and other parameters are the same
as in Fig. 2.

Step 4: Calculate the integral over time ¢.
Now we use the integral formula fot 8@ —1)dt' =0 —
7) where O is the Heaviside step function, so that we obtain

ais-) _ iQ(S_) — Y (S.)(S_)

dt
= Y {(SHS) (& — 1)OF — 14).

Here the second and third terms on the right-hand side clearly
show that phonons emitted from the first coupling point are
reabsorbed at the second coupling point. In the giant atom
regime, the time-delayed coupling term in the effective equa-
tion gives rise to unconventional collective dynamics, which
is the main result of this paper. Including the dissipation term
from the environment, we can obtain the following effective

(C7)

equation of motion

d{S_)
dt

= iQ(S_) — ym(S)(S_) — (% + y¢)<s_>

= Ym(S)(S)(t — 7)O( — 14).

(C8)

4. Effective equation of motion for (S;)

In the previous section we present the effective equation for
the coherence of the giant atomic ensemble. Here we obtain
the effective equation for the polarization of the giant atomic
ensemble in a similar way

d(S;)
dt

= =2y (S )(S-) —n(S:) +N)

— Y (S (S_)(t — 1)O( — 1)
= Y (SNS1)(t — 1) — 14).

In addition to the above analytical derivations, we nu-
merically calculate the dynamics of the system using the
equation of motion (6) and the effective equation of motion
with time delays (7), respectively. As shown in Fig. 5, there
are some minor differences between the two calculations in a
short period of time, but in a larger time range, the results of
both calculations are in good agreement.

(€9)

APPENDIX D: SIMULATION RESULTS OF PHONON
SUPERRADIANCE

1. Dissipation effects on phonon superradiance in the small
atom regime

By numerically solving the equations of motion (4) of the
hybrid system in the main text, we give the simulation results
of its dynamics in the small atom regime. In Fig. 6(a), we
show the effect of waveguide leakage processes on phonon
radiation. In Fig. 6(b), we show the corresponding dynam-
ics of the polarization of the atomic ensemble. In the slow

(a)12 (c)15 (e)15
r =0.06 GHz ——7, =01 MHz ——,=0.1MHz
10 ----k=0.1GHz
+=0.3 GHz
8 1
o
© 6
4 0.5
2
0 L—<£ o /\/\.f\m 0 b—
0 100 200 300 300
1 1
(b) 1= 0.05 GHz (d)
---k=01GHz
0.5 % =0.3GHz 0.5
pz4
7 0 0
N
? 05 05
1 L e 1
0 100 200 300 0 100 200 300 0 100 200 300
Time (ns) Time (ns) Time (ns)

FIG. 6. Dynamics of phonon superradiance for different dissipative processes. Except for the parameters specified in the figure, the
remaining parameters are: atom numbers N = 20, coupling strength gy = 20 MHz, waveguide leakage rate ¥k = 0.3 GHz, atomic relaxation

rate y; = 0.145 MHz, atomic dephasing rate y, = 0.125 MHz.
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FIG. 7. Scaling laws of phonon superradiance for different dissipative processes. Except for the parameters specified in the figure, the
remaining parameters are: atom numbers N = 20, coupling strength gy = 20 MHz, waveguide leakage rate k = 0.3 GHz, atomic relaxation

rate y; = 0.145 MHz, atomic dephasing rate y, = 0.125 MHz.

waveguide case, Rabi oscillations occur between phonons
and atomic ensembles, leading to a multipeaked structure of
phonon radiation. In contrast, in the fast waveguide case, the
emitted phonon field appears as a single-peaked structure,
which is characteristic of superradiance. At the same time, the
rapid leakage of the waveguide leads to a decrease in the peak
intensity of the phonon radiation.

In Figs. 6(c) and 6(d), we show the effect of the atomic
relaxation rate on the dynamics of the hybrid system. The
relaxation effect plays a significant role in the process of col-
lective decay of atoms and in the phonon radiation processes.
This leads to the fact that the atomic ensemble does not decay
to the initial ground state and also reduces the peak intensity
of phonon superradiance.

In Figs. 6(e) and 6(f), we show the effect of the atomic
dephasing rate on phonon superradiance. The results show
that the dephasing rate has only a slight effect on the peak
intensity of the phonon field and on the polarization of the
atomic ensemble. This indicates that this collective dynamics
has a coherent behavior and can find potential applications in
quantum information processing.

2. Dissipation effects on scaling laws in the small atom regime

Since phonon superradiance is a coherent process of col-
lective atoms, it is of interest to study the effect of dissipation
on scaling laws. In Figs. 7(a) and 7(b), we show the effect
of waveguide leakage on the scaling law. The results show
that the smaller the waveguide leakage, the stronger the peak
phonon radiation and the shorter the phonon burst time. As
shown in Figs. 7(c) and 7(d), the atomic relaxation shows
a similar effect as the waveguide leakage. These results are
consistent with expectations. After the pulse driving, the atom
ensemble reaches a highly excited state and remains in this
excited state for some time. Then the collective atoms decay
and a burst of phonons flows into the waveguide. When the
atomic relaxation rate or waveguide leakage rate increases, it
stimulates the atomic ensembles to decay out of the highly
excited state faster.

In Figs. 7(e) and 7(f), we show the effect of the atomic
dephasing rate on the scaling laws. The results show that the
dephasing rate has only a slight effect on the scaling laws.
This is consistent with the effect of the dephasing rate on the
dynamics of the hybrid system.

40 40 40

(a) | % =001GHz (b) —,=05MHz (C) ——4,=05MHz
-~ ~=0026Hz - ey, =5MHz ***7;>=5MHZ

30 ‘ =005 GHz 30 : =50 MHz 30 5, = 50 MHz
~ |
© 20t 20 20t

10} 10 10

0 p A Y\ OA_‘..AA. A 0 j\ A
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FIG. 8. Collective dynamics for different delay times and dissipation times. Except for the parameters specified in the figure, the remaining
parameters are: giant atom numbers N = 20, coupling strength gy = 50 MHz, waveguide leakage rate k = 10 MHz, atomic relaxation rate
y1 = 0.145 MHz, atomic dephasing rate y; = 0.125 MHz, delay time 7, = 100 ns.
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3. Competing effects between delay times and various
dissipation times in the giant atom regime

By numerically solving the equations of motion (6) of the
hybrid system in the main text, we give the simulation results
of its dynamics in the giant atom regime. During the process
of phonon superradiance, on the one hand, the giant atoms
emit phonons, and on the other hand, the already emitted
phonons are reabsorbed by the giant atoms. The first process

is determined by the decay time of the giant atoms and the
second by the delay time of the phonon field. These two char-
acteristic times are comparable, so they compete with each
other and lead to a change in the phonon superradiance. In
Fig. 8, we show the time-delayed dynamics for different dissi-
pation times. The results show that the intensity of the phonon
radiation peak decreases as the waveguide leakage rate and
the atomic relaxation rate increase. In contrast, the atomic
dephasing has little effect on the phonon radiation process.
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