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Phase-engineered photon correlations in weakly coupled nanofiber cavity QED
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A recent experiment [H. S. Han et al., Phys. Rev. Lett. 127, 073604 (2021); see also accompanying online
supplemental material] shows that when a three-level V -type atom with two closely lying upper states interacts
with the same vacuum radiation field, its excited states enable vacuum-induced coupling (VIC) owing to the
quantum interference between the spontaneous emission pathways. Here, we propose a feasible scheme for
phase-engineered photon correlations in the presence of the VIC in an optical nanofiber (ONF) cavity quantum
electrodynamics (QED) system. Specifically, we show that a phase-dependent strong photon antibunching with
high brightness can be generated in the weak-coupling regime of light-atom interactions. This occurs because
of the VIC, leading to both the destructive quantum interference between the different pathways for two-photon
excitation and the total closed-loop coupling phase. Different types of purely quantum correlations, such as
single- and two-photon blockades, can occur by properly tuning the total closed-loop coupling phase adhering
on the VIC, and the switch from photon blockade to photon induced tunneling is revealed as well. On the other
hand, the strong photon antibunching can be achieved in a broad driving frequency range, which relaxes the
requirement for the driving frequency in the ONF cavity QED system. In addition, we compare the analytical and
numerical results of the second- and third-order intensity correlation functions, and they are in good agreement.
The present study may provide an alternative route to manipulate the few-photon states and have potential
applications in single-photon sources and quantum communications.
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I. INTRODUCTION

Quantum coherence and interference effects form the
foundation of many quantum optical phenomena [1–3]. One
method of generating quantum interference is related to relax-
ation processes such as spontaneous emission, i.e., vacuum-
induced coupling (VIC), which is also known as sponta-
neously generated coherence [4–7]. It is generated by the
quantum interference between the spontaneous emission path-
ways from the excited doublet to a common ground state [8].
The manifestation of the VIC in atomic systems has attracted
much attention and given rise to many interesting phenomena,
such as resonance fluorescence [9–11], coherent population
trapping [12], lasers without inversion [13,14], and so on.
So far, the VIC has been investigated theoretically in several
systems, including V -type systems [10,15], �-type systems
[12,16], and ladder-type systems [17] and has been demon-
strated experimentally in atomic ensembles [7,16,18–20].

Recently, there has been much interest in various new
phenomena originating from quantum interference effect,
for example, unconventional photon antibunching caused by
destructive quantum interference between the two or more
different quantum pathways from a one-photon state transit-
ing to a two-photon state [21,22]. Photon antibunching, also
called photon blockade, refers to the fact that the admission
of a first photon into the cavity diminishes the probability
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for subsequent photons to enter the cavity, which is a purely
quantum effect [23,24]. The photon antibunching effect can
be useful in achieving single-photon sources device, which
is a valuable application in modern quantum optics [25–27].
As compared with conventional photon antibunching induced
by the anharmonic energy-level spacing in a quantum optical
system with strong nonlinearity, the unconventional photon
antibunching caused by the destructive interference can op-
erate in weak nonlinearity, which relaxes the requirements
for system nonlinearity [28–31]. Although previous studies
of unconventional photon antibunching have mainly focused
on employing coherent fields, e.g., laser fields [32,33] and
microwave fields [34,35], to generate the destructive inter-
ference, employing incoherent processes, i.e., the VIC, to
generate the destructive interference in unconventional photon
antibunching remains mostly unexplored.

Inspired by previous work [7] that experimentally observed
the VIC in a V -type system, here we put forward a phase-
engineered unconventional photon antibunching scheme em-
ploying the VIC to generate quantum destructive interference.
To be specific, the proposed cavity quantum electrodynamics
(QED) system consists of a single three-level V -type atom
characterized by two closely lying upper states |1〉 and |2〉
and one ground state |0〉 (see Fig. 1 for a sketch). The atom
is trapped inside a tapered optical-nanofiber-based (ONF-
based) [36–39] single-mode cavity. The two upper states and
one ground state form the so-called �-type transition and
closed-loop coupling via the VIC. Based on experimental real-
istic atom-cavity parameters, we numerically and analytically
calculate the steady-state second- and third-order intensity
correlation functions g(2)(0) and g(3)(0) of the cavity field, and
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FIG. 1. Schematic illustration of the ONF cavity QED sys-
tem under consideration. A single three-level V -type atom (the
small golden filled circle) is installed in the vicinity of a tapered
ONF-based cavity. The atomic level structure, corresponding laser
coupling and relevant damping involved in the scheme are shown in
the top-left inset. The atomic level structure is composed of a ground
state |0〉 as well as two excited states |1〉 and |2〉. The external input
probe field with the central frequency ωp and the amplitude Ep is
applied to coherently drive the cavity mode via the left-hand cavity
mirror along the axial (z) direction. The cavity mode is coupled to the
atomic transition |2〉 ↔ |0〉 with the resonance frequency ωc and the
cavity-atom coupling coefficient g20eiφ20 . The free-space control field
drives the atomic transition |1〉 ↔ |0〉 with the control-field–atom
coupling coefficient �10eiφ10 from the open side of the cavity along
the vertical (x) direction. Here �11 and �22 represent the damping
rates of excited states |1〉 and |2〉 to ground state |0〉, and �12 denotes
the cross-damping rate between the excited states |1〉 and |2〉 (i.e.,
the VIC). The total closed-loop coupling phase �φ = φ10 − φ20 is
shown in the top-right inset, where φ10 represents the control phase
and φ20 denotes the cavity-atom coupling phase. We can tune �φ in
situ by setting, for example, the control phase φ10. By employing one
ordinary 50 : 50 nonpolarizing beam splitter and two single-photon
detectors, the second-order intensity correlation function g(2) of the
transmitted field through the right-hand cavity mirror can be mea-
sured [see inset (a)]. Similarly, the third-order intensity correlation
function g(3) can be measured by using two nonpolarizing beam
splitters and three single-photon detectors [see inset (b)]. The total
damping rate of the cavity is given by κ = κe1 + κe2 + κi, where κe1

and κe2 represent the damping rates of the left- and right-hand cavity
mirrors, and κi denotes the inner damping rate of the cavity. The
physical meaning of the other symbols used is described in the text.

they are in good agreement. By tuning the total closed-loop
coupling phase adhering on the VIC, quantum correlations
of photons can be well tuned from antibunching to bunching
regimes. We also find that single-photon blockade (1PB), two-
photon blockade (2PB), and photon-induced tunneling (PIT)
can be achieved by adjusting the total closed-loop coupling
phase in a weak-coupling regime of ONF cavity QED. Fur-
thermore, it is possible to obtain the switch from 1PB to 2PB
and the switch from 2PB to PIT.

On the other hand, we find that the strong photon anti-
bunching can occur concurrently with high brightness in the

weak-coupling “bad-cavity” regime of cavity QED, offering
a guiding significance for practical experimental design to a
certain extent and making the experimental realization of our
scheme friendly. Moreover, we find that the strong photon
antibunching can be achieved in a broad parameter region
of driving detuning, which can relax the requirement for the
driving frequency in the ONF cavity QED system. We also
explore the experimental feasibility of the proposed scheme
with existing state-of-the-art ONF cavity QED architecture.
By tuning the total closed-loop coupling phase adhering on
the VIC, the statistical properties of the cavity field can be
easily controlled, which may be useful for the construction of
single-photon sources and may have potential applications in
quantum information processing [40,41] and quantum com-
munications [42,43].

Such an ONF cavity QED system has been studied pre-
viously [44]. However, differently from our previous work
[44], our present scheme introduces an additional degree of
freedom in the ONF cavity QED system with VIC, namely,
an in situ tunable phase, due to the closed-loop coupling con-
figuration (see inset of Fig. 1). We focus on the influence of
this phase on photon correlation. We find that the introduced
closed-loop phase plays an important role in modifying the
photon statistical properties of the system. By tuning the phase
appropriately, the photon statistics properties of the system
can be engineered and the switching between bunching and
antibunching can be realized. This indicates that these phase-
dependent results offer a more flexile control method to tune
and engineer photon statistics, where we can achieve selective
photon antibunching. Besides this, the phase-sensitive higher-
order (like third-order) intensity correlation behaviors are also
explored.

The paper is organized as follows: Section II details the
theoretical model and the Hamiltonian of the ONF cavity
QED system. Section III discusses the experimental feasibility
of our proposed scheme and introduces the choice of typical
ONF cavity QED system parameters in detail. Section IV pro-
vides the closed-form solutions for the second-order intensity
correlation function in the limit of weak driving. Section V
presents the in-depth results of the photon statistics for the
cavity field. Finally, the paper is summarized in Sec. VI. In
Appendix A, we compare the second-order intensity correla-
tion function versus the total closed-loop coupling phase with
the VIC and without the VIC. In Appendixes B and C, we
provide a detailed derivation for the closed-form solutions for
the phase-dependent second- and third-order intensity corre-
lation functions in the limit of weak driving. In Appendix D,
we present an analysis of the slight discrepancy between the
analytical and numerical results.

II. PHYSICAL SYSTEM
AND THEORETICAL FRAMEWORK

As depicted schematically in Fig. 1, the investigated ONF
cavity QED system consists of a single three-level V -type
atom (the small gold sphere) with one ground state |0〉 as well
as two excited states |1〉 and |2〉 trapped in a tapered ONF-
based cavity, which is similar to that adopted in Ref. [44]. The
damping rate �i j of atomic levels induced by the second-order
coupling between |i〉 and | j〉 (i, j = 1, 2) can be expressed as
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�i j = �di0 · �d j0ω
3
i0/(3πε0 h̄c3) [7], where i and j represent the

atomic levels. Here, �di0 and ωi0 denote the transition electric-
dipole moment and the excited resonance frequency between
|i〉 and |0〉 (the same applies to �d j0), ε0 stands for the permittiv-
ity of vacuum, h̄ represents the reduced Planck constant, and
c is the speed of light. The VIC on |1〉 ↔ |2〉 is subject to de-
phasing at the rate �12, where �12 denotes the cross-damping
rate between the excited states |1〉 and |2〉 [7]. Meanwhile, �11

and �22 represent the damping rates of the excited states |1〉
and |2〉 to the ground state |0〉, respectively. Assuming that
all the transition dipole moments are parallel to each other
and real, we can obtain �12 � √

�11�22 like Refs. [7,19,45].
The atomic transition |2〉 ↔ |0〉 is coupled to the cavity mode
with frequency detuning �c = ω20 − ωc (ω20 is the excited
resonance frequency of the atomic transition |2〉 ↔ |0〉 and
ωc is the resonance frequency of the cavity mode) and the
cavity-atom coupling coefficient g20eiφ20 , where g20 represents
the cavity-atom coupling strength and φ20 denotes the cavity-
atom coupling phase. The cavity mode is driven by an external
laser field with the central frequency ωp and the amplitude
Ep via the left-hand cavity mirror along the horizontal ax-
ial direction (axis z). The frequency detuning of the driving
laser from the cavity mode is �p = ωc − ωp. In addition, the

free-space control field �E10(t ) = �eE10e−iωt+i�k·�r+iφ10 is used to
drive the atomic transition |1〉 ↔ |0〉 with frequency detuning
� = ω10 − ω (ω10 is the excited resonance frequency of the
atomic transition |1〉 ↔ |0〉 and ω is the central frequency of
the control field) in the vertical direction (axis x), where �e is
the unit polarization vector of the control field and denotes its
polarization direction, E10 is the amplitude of the control field,
�k · �r denotes the spatial distribution of the control field and can
be ignored in the electric-dipole approximation, and φ10 rep-
resents the control phase (i.e., the initial phase of the control

field). The atomic transitions |0〉 �10eiφ10←→ |1〉 �12←→ |2〉 g20eiφ20←→ |0〉
form a closed-loop configuration (see the top-right inset of
Fig. 1), in which �10 represents the control-field Rabi fre-
quency. The various coupling phases are linked to each other
through the closed-loop configuration, leading to the total
closed-loop coupling phase �φ = φ10 − φ20 playing a crucial
role, as will be elaborated below.

Based on the above description, the total Hamiltonian of
the ONF cavity QED system with the rotating-wave and
electric-dipole approximations can be expressed as (assuming
the Hamiltonian will be taken to have units of frequency here
and hereafter)

Ĥtot = ωcâ†â + ω10σ̂11 + ω20σ̂22 + (g20eiφ20 âσ̂
†
02

+�10e−iωt+iφ10 σ̂
†
01 + iηe−iωpt â† + H.c.), (1)

where σ̂lm = |l〉〈m| (l, m = 0, 1, 2) denotes the raising
(l > m), lowering (l < m), or population (l = m) operator for
the atom, with σ̂

†
lm = |m〉〈l| = σ̂ml ; â and â† are the pho-

ton annihilation and creation operators of the internal cavity
mode, satisfying the bosonic commutation relations [â, â†] =
1, [â†, â†] = 0, and [â, â] = 0. Above, the symbol H.c. stands
for the Hermitian conjugate. The parameter g20 is the cavity-
atom coupling strength (φ20 is the cavity-atom coupling
phase) for the atomic transition |2〉 ↔ |0〉, yielded by g20 =
d20

√
ωc/(2h̄ε0V ), where d20 represents the electric-dipole

moment of the corresponding transition |2〉 ↔ |0〉 and V
denotes the mode volume of the ONF cavity. The parameter
�10 is the control-field Rabi frequency (φ10 is the control
phase) for the atomic transition |1〉 ↔ |0〉, obtained from
�10 = d10E10/(2h̄) (our definition of the control-field Rabi
frequency �10 corresponds to half of the standard definition of
the Rabi frequency), where d10 represents the electric-dipole
moment of the corresponding transition |1〉 ↔ |0〉 and E10 de-
notes the amplitude of the control field. Finally, the parameter
η is the strength of the external driving laser to populate the
cavity mode â, expressed as η = √

κe1Ep = √
Ppκe1/(h̄ωp),

where Pp represents the pump power of the external driving
laser [46,47].

By applying a unitary transformation to a rotating co-
ordinate frame described by the unitary operator Û (t ) =
exp(−iĤ0t ), where Ĥ0 = ωpâ†â + ωσ̂11 + ωpσ̂22, and utiliz-
ing the relationship Ĥrot = Û †(t )ĤtotÛ (t ) − iÛ †(t )∂Û (t )/∂t
[48], eventually we can rewrite the total Hamiltonian (1) as

Ĥrot = �pâ†â + �σ̂11 + (�p + �c)σ̂22 + (g20eiφ20 âσ̂
†
02

+�10eiφ10 σ̂
†
01 + iηâ† + H.c.), (2)

where the detunings are defined as �p = ωc − ωp (referred to
as the driving detuning), � = ω10 − ω (referred to as the con-
trol detuning), and �c = ω20 − ωc (referred to as the cavity
detuning).

Without loss of generality, we can set the transformation
σ̂01 → σ̂01eiφ10 and σ̂02 → σ̂02eiφ20 , which leads to the total
closed-loop coupling phase �φ = φ10 − φ20 playing a cru-
cial role in engineering quantum correlation behaviors of the
system. Based on this transformation and taking the incoher-
ent (dissipative) processes into consideration, the complete
dynamics of the ONF cavity QED system with the joint atom-
cavity density-matrix operator ρ̂ is described by the Lindblad
master equation in the Born-Markov approximation [7,48–
51]:

∂ρ̂

∂t
= −i[Ĥtra, ρ̂] + κD(â)ρ̂ + �11D(σ̂01)ρ̂ + �22D(σ̂02)ρ̂

+�12ei�φ (σ̂01ρ̂σ̂
†
02 − σ̂

†
02σ̂01ρ̂/2 − ρ̂σ̂

†
02σ̂01/2)

+�12e−i�φ (σ̂02ρ̂σ̂
†
01 − σ̂

†
01σ̂02ρ̂/2 − ρ̂σ̂

†
01σ̂02/2), (3)

with

Ĥtra = �pâ†â + �σ̂11 + (�p + �c)σ̂22

+ (g20âσ̂
†
02 + �10σ̂

†
01 + iηâ† + H.c.), (4)

where κ represents the total damping rate of the ONF cavity
(i.e., κ = κe1 + κe2 + κi), �11 and �22 denote the damping
rates of excited states |1〉 and |2〉 to ground state |0〉, �12

stands for the VIC, and the brackets [·, ·] indicate the commu-
tator. The above Lindblad superoperator D(Ô) describes the
dissipative coupling to the environment and is given by the
form D(Ô)ρ̂ = Ôρ̂Ô† − Ô†Ôρ̂/2 − ρ̂Ô†Ô/2 for the collapse
operator Ô corresponding to the specific dissipation process.
More specifically, the first term on the right-hand side (RHS)
of Eq. (3) generates a coherent unitary evolution of the whole
system. The second term denotes the decoherence effect of
the environment on the system with the total damping rate κ

of the ONF cavity and generates the corresponding incoherent
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dynamics of the system. The third and fourth terms on the
RHS of Eq. (3) correspond to the dissipation of the excited
states |1〉 and |2〉 into the environment with the damping rates
�11 and �22, respectively. Finally, the last two terms on the
RHS of Eq. (3) stand for the VIC effect resulting from the
dissipative coupling between the excited states |1〉 and |2〉 into
the environment with the cross-damping rate �12 [7].

Here, the dynamics of the full atom-ONF-cavity compos-
ite system is modeled by the Lindblad master equation [see
Eq. (3)]. Note that, both the external “huge”1 vacuum environ-
ment and the ONF-cavity environment simultaneously affect
the atomic spontaneous emission rate. In deriving Eq. (3),
according to the standard method [48–52], we have taken
the trace over the external huge vacuum environment, which
accounts for the atomic spontaneous emission and the ONF-
cavity photon loss and which corresponds to the Lindblad
superoperator parts [see the second to sixth terms on the right-
hand side of Eq. (3)] describing the dissipation of the system.
However, we do not further trace out the degrees of freedom
of the ONF-cavity mode to only study the atomic subsystem,
due to its “small” ONF-cavity environment in the considered
system. That is to say, the Lindblad master equation (3) has
included the obvious influence of the ONF-cavity mode on
the atomic spontaneous emission rate. In this sense, the ONF-
cavity subsystem belongs to the internal component of the
whole system under study. On the other hand, when we take
the trace over the ONF-cavity mode under certain conditions
(if the ONF-cavity mode is regarded as an external environ-
ment like the vacuum mode), indeed the atomic spontaneous
emission rate is significantly modified and correspondingly
the form of the Lindblad master equation (3) is also changed
where an effective spontaneous emission rate can be obtained
[52]. This effective spontaneous emission rate of the isolated
atom is composed of two parts: (i) the emission rate of the
atom to its original vacuum environment and (ii) the emission
rate of the atom through the ONF-cavity mode into the cavity
environment. The ratio of the latter to the former is called the
Purcell factor [53]. Nevertheless, the above handling method
after taking the trace over the ONF-cavity environment is not
necessary for the problem we are studying, because it actually
complicates the problem. So, under the form of Eq. (3) given
here, the atomic spontaneous emission rate resulting from the
vacuum environment is kept unchanged.

There are a few remarks in order here. The various
coupling phases are interconnected through the closed-loop

configuration |0〉 �10eiφ10←→ |1〉 �12←→ |2〉 g20eiφ20←→ |0〉 (see the top-
right inset of Fig. 1), resulting in the total closed-loop
coupling phase �φ adhering on the VIC (i.e., �12). In any
observables resulting from Eq. (3), the total closed-loop cou-
pling phase �φ adhering on the VIC is important.

Alternatively, it can be clearly seen from the atomic level
structure of the top-left inset in Fig. 1 that two possible path-

ways from state |0〉 to state |2〉 exist: the direct one |0〉 g20eiφ20←→
|2〉 and the indirect one |0〉 �10eiφ10←→ |1〉 �12←→ |2〉. The role of
the total closed-loop coupling phase �φ on the quantum

1“Huge” indicates that the environment contains a sufficiently large
number of modes.

correlation behaviors in the closed-loop three-level system
can be explained from quantum interference induced by these
two pathways. From Eqs. (3) and (4), one can see that only the
total closed-loop coupling phase �φ is important and no indi-
vidual phase-dependent terms appear. In addition, in the cases
of the total closed-loop coupling phase �φ adhering on the
cavity-atom coupling strength g20 and the control-field Rabi
frequency �10, there are still no individual phase-dependent
terms appearing. We also verify the equivalence for the total
closed-loop coupling phase adhering on three different posi-
tions (not shown here). It is worth emphasizing that the phase
dependence would vanish provided that either of the cavity-
atom coupling strength g20, the control-field Rabi frequency
�10, and the VIC (i.e., �12) is switched off (see Appendix A).

In the present work, we primarily focus on the statistical
properties of the transmitted photons from the cavity mode â
in this ONF cavity QED system (see Fig. 1). In general, for
a time-independent Hamiltonian (4), the system will tend to-
ward a steady state as t → ∞ corresponding to ∂ρ̂/∂t = 0. In
this circumstance, the statistical properties of the transmitted
field can be expediently characterized by the normalized de-
layed second- and third-order intensity correlation functions
[54,55]

g(2)(τ1) = 〈â†â†(τ1)â(τ1)â〉
〈â†â〉2 , (5)

g(3)(τ1, τ2) = 〈â†â†(τ1)â†(τ1 + τ2)â(τ1 + τ2)â(τ1)â〉
〈â†â〉3 , (6)

where the symbol 〈·〉 represents the quantum expectation
value. Here τ1 represents the delay time between the arrival
of the first and second photons and τ2 denotes the delay time
between the arrival of the second and third photons. When
the system reaches its steady state ρ̂ss (i.e., ∂ρ̂ss/∂t = 0),
the normalized equal-time (or zero-time-delay) second- and
third-order intensity correlation functions can be written as

g(2)(0) = 〈â†â†ââ〉
〈â†â〉2 = Tr(ρ̂ssâ†â†ââ)

[Tr(ρ̂ssâ†â)]2 , (7)

g(3)(0) = 〈â†â†â†âââ〉
〈â†â〉3 = Tr(ρ̂ssâ†â†â†âââ)

[Tr(ρ̂ssâ†â)]3 , (8)

where Tr represents the trace and the normalized equal-time
third-order intensity correlation function g(3)(0, 0) can be sim-
ply expressed as g(3)(0).

For any classical states, the second-order equal-time cor-
relation function satisfies g(2)(0) > 1, which corresponds to
super-Poissonian photon-number statistics often called pho-
ton bunching. The states for which g(2)(0) < 1 correspond to
the sub-Poissonian photon-number statistics, which is a non-
classical effect often called photon antibunching [44,56,57].
The above-mentioned condition is also used to identify the
presence of 1PB [i.e., g(2)(0) → 0], where two photons (or
multiple photons) never occupy the cavity at the same time.
In general, the single-photon component in a sub-Poissonian
light source dominates over the multiphoton states. Specially,
the value of g(2)(0) = 1 is referred to as the coherent-state
photon corresponding to the Poissonian photon-number statis-
tics. For 2PB, the criterion must be met with g(2)(0) > 1
and g(3)(0) < 1, which implies two-photon bunching and
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three-photon antibunching [33,58]. Similar to PIT (i.e., pho-
ton bunching) describes a phenomenon that the admission
of a first photon into the cavity increases the probability for
subsequent photons to enter the cavity, which can be measured
by the conditions of g(2)(0) > 1 and g(3)(0) > 1.

In what follows, we can calculate the normalized equal-
time second- and third-order intensity correlation functions
g(2)(0) and g(3)(0) of the system by numerically solving the
master equation (3) within a truncated Hilbert space under
the steady state. In the weak-driving regime, we take the
truncated photon number N = 10 to obtain the numerical re-
sults, while in the strong-driving regime, we take the truncated
photon number N = 20 for the numerical simulations. The
truncated photon numbers for the weak and strong driving
regimes are sufficient to guarantee the convergence of the
numerical simulations, which will be demonstrated in Ap-
pendix D. Alternatively, we can also calculate the normalized
equal-time second- and third-order intensity correlation func-
tions g(2)(0) and g(3)(0) of the system by analytically solving
the Schrödinger equation (B2) in two-photon excitation and
three-photon excitation in Appendixes B and C. The detailed
quantum correlation results are presented in Figs. 2–10 below
in various parameter spaces.

III. EXPERIMENTAL FEASIBILITY AND TYPICAL
PARAMETERS FOR THE MODEL

To illustrate this ONF cavity QED strategy, we propose
below a possible implementation. On the one hand, as an
example, 85Rb atom (nuclear spin I = 5/2, D2 line, and wave-
length 780 nm) on the 52S1/2 → 52P3/2 transition provides an
ideal candidate for the three-level dipole emitter [7,59]. The
state |52S1/2, F = 3〉 is chosen as the ground state |0〉; the
states |52P3/2, F = 4〉 and |52P3/2, F = 3〉 correspond to the
two excited states |1〉 and |2〉 (see Fig. 1), respectively. Here
F represents the total angular-momentum quantum number,
which marks the hyperfine state. The damping rate of the ex-
cited state |1〉 to the ground state |0〉 is �11 = 2π × 6.1 MHz,
whereas the damping rate of the excited state |2〉 to the ground
state |0〉 is �22 = 5/9 × 2π × 6.1 MHz because the excited
state |2〉 decays to the ground state |0〉 only fractionally
with the branching ratio of 5/9 [7,59,60]. Assuming that
all the transition dipole moments are parallel to each other
and real, the cross-damping rate between the excited states
|1〉 and |2〉 is �12 � √

�11�22 = √
5/9 × 2π × 6.1 MHz

(i.e., the VIC) [7].
On the other hand, a tapered ONF-based cavity provides

an ideal fiber-in-line platform for the experimental implemen-
tation of the ONF cavity QED system [39]. Technique for
the fabrication of the tapered ONF is to heat a commercial
single-mode optical fiber to soften the silica sufficiently that
it can be pulled and tapered [38]. The ONF-based cavity can
be produced by introducing two photonic crystal (PC) defect
structures into the ONF using a femtosecond laser ablation
method [61,62], referred to as the PC nanofiber cavity. Alter-
natively, the ONF-based cavity can be formed by laser-writing
two fiber Bragg gratings (FBGs) into the ONF (i.e., by drilling
periodic nanogrooves on the ONF) using a focused ion beam
milling method [63,64], referred to as the FBG nanofiber cav-
ity. A combination of PC and FBG structures in the nanofiber

cavity, referred to as the PC-FBG nanofiber cavity, has also
been reported in Ref. [65].

Furthermore, as shown in Refs. [37,39,66–72], trapping a
single atom in the vicinity of the ONF can be achieved through
currently available technologies. For example, following the
approach introduced in Refs. [37,66,70], a two-color optical
dipole trap can be designed through applying a red- and
blue-detuned evanescent light field around the ONF. First, the
atoms from a background rubidium vapor are loaded into a
standard six-beam magneto-optical trap (MOT). Followed by
sub-Doppler cooling, single atoms are loaded into the two-
color optical dipole trap using an optical molasses stage. After
loading single cold atoms into this nanofiber trap, the MOT
beams are shut off and a waiting time is set to ensure that
only single atoms trapped here are excited or probed with light
launched into the nanofiber. For a detailed description of such
atom cooling and atom trapping in the neighborhood of the
ONF, see Refs. [37,66,70]. Alternatively, adopting the method
described in Refs. [39,71,72], an atom can be cooled and
trapped in the lattice of an optical tweezer, which is coupled
to an ONF cavity.

Finally, it is pointed out that we consider a specific situ-
ation where the cavity is a nanofiber with a pair of built-in
FBGs. In such a cavity, the cavity field is a guided field
strongly confined in the transverse direction, with a small
effective cross-sectional area [61]. Consequently, even in
scenarios where the ONF-based cavity exhibits a relatively
low cavity finesse and long cavity length, it is still possi-
ble to achieve significant atom-field coupling [37,73]. The
motivation for employing the nanofiber cavity is to generate
the guided-mode photon antibunching in a controllable way,
enabling a long-distance transmission for quantum commu-
nication purposes. For instance, the damping rates for the
left- and right-hand cavity mirrors are equal, with the values
κe1 = κe2 = 2π × 1.6 MHz. The inner damping rate of the
ONF cavity mode is κi = 2π × 3.2 MHz. The total damping
rate of the ONF cavity mode is κ = 2π × 6.4 MHz. For
the cavity length L = 33 cm [37], its finesse (roughly the
number of intracavity photon round trips during the cavity
decay time) is F = πc/(κL) = 71 with c being the speed
of light. We select the typical cavity-atom coupling strength
g = 2π × (2.9, 7.8) MHz within a reasonable range of exper-
imental parameters [37,73–75].

Without loss of generality, we can set the cavity-atom
coupling phase to zero (i.e., φ20 = 0), so that the total closed-
loop coupling phase �φ = φ10 − φ20 = φ10 is dominated by
the control phase φ10. Before interacting with the atom, the
control field can be individually controlled through an electro-
optic modulator (EOM) and the control phase can be tuned by
phase locking between the GHz microwave generator and the
EOM [76,77]. Alternatively, the control phase can be tuned
by an arbitrary waveform generator with an in-phase and
quadrature mixer [78].

IV. ANALYTICAL INSIGHTS INTO THE
PHASE-DEPENDENT SECOND- AND THIRD-ORDER

INTENSITY CORRELATION FUNCTIONS

Before proceeding with our numerical calculations, we
study analytical solutions and compare them with the
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numerical results to better understand the influence of the VIC
and the total closed-loop coupling phase on the second- and
third-order intensity correlation functions. In the following,
we describe our solutions to the probability amplitude coeffi-
cients Cjn [ j represents the three-level atom in the state of | j〉
( j = 0, 1, 2) and n denotes the photon number (n = 0, 1, 2)
for the Fock state of the cavity mode] for the equations of
motion for our ONF cavity QED system in the limit of weak

driving. We then derive the closed-form expressions for the
second-order (see Appendix B) and third-order (see Appendix
C) intensity correlation functions.

With this purpose, the probability amplitude coefficients
C01[�φ] and C02[�φ] ([�φ] represents that C01 and C02

are functions related to �φ) for the second-order intensity
correlation function, whose determination is detailed in Ap-
pendix B, can be explicitly given by

C01[�φ] = iei�φ
[
2ei�φg20�10�12

(
4X01 + �′

p�
2
12

) + η
(−16�′

cY01 + 4Z01�
2
12 − �′

p�
4
12

)]

2g20η�10�12
(
A − �2

12

) + ei�φ
(
16�′B + 4C�2

12 + �′
p

2�4
12

) , (9)

C02[�φ] = −4e3i�φg2
20�

2
10�

2
12 − 4e2i�φg20η�10�12

(
2X02 − �2

12

) − ei�φη2
(
16Y02 + 4Z02�

2
12 + �4

12

)

√
2
[
2g20η�10�12

(
A − �2

12

) + ei�φ
(
16�′B + 4C�2

12 + �′
p

2�4
12

)] , (10)

where

A = 4g2
20 − 4(�′

p + �′)(�′
p + �′

c),

B = [
g2

20 − �′
p(�′

p + �′
c)

][
�2

10�
′
c + (�′

p + �′)

× (
g2

20 − �′
p�

′
c

)]
,

C = �′
p�

′( − 2g2
20 + 2�′

p�
′
c + �′

p
2)

− (�10 − �′
p)(�10 + �′

p)
[−g2

20 + �′
p

(
�′

p + �′
c

)]
,

X01 = (�′
p + �′)

[−g2
20 + �′

p(�′
p + �′

c)
]
,

Y01 = [
�2

10 + �′(�′
p + �′)

][−g2
20 + �′

p(�′
p + �′

c)
]
,

Z01 = �′
p

[
g2

20 + �2
10 − �′

p(�′
p + �′

c)
]

+ �′[g2
20 − �′

p(�′
p + 2�′

c)
]
,

X02 = g2
20 + �2

10 − 2(�′
p + �′)(�′

p + �′
c),

Y02 = [
�2

10 + �′(�′
p + �′)

][
g2

20 + �′
c(�′

p + �′
c)

]
,

Z02 = −g2
20 − �2

10 + �′
p(�′

p + �′
c) + �′(�′

p + 2�′
c), (11)

with �′
p = �p − iκ/2, �′ = � − i�11/2, and �′

c = �p +
�c − i�22/2.

Based on the solutions for the probability amplitude
coefficients C01[�φ] [Eq. (9)] and C02[�φ] [Eq. (10)],
the normalized equal-time second-order intensity correlation
function g(2)(0)[�φ] can be further expressed as

g(2)(0)[�φ] � 2|C02[�φ]|2
|C01[�φ]|4 . (12)

According to Eqs. (9)–(12), the detailed analytical ex-
pression of the second-order intensity correlation function
g(2)(0)[�φ] can be obtained. However, the analytical ex-
pression of the second-order intensity correlation function
g(2)(0)[�φ] is rather cumbersome and, for the sake of brevity,
is not presented here. Nevertheless, it is obvious that the sta-
tistical property of photons is closely related to the VIC (i.e.,
�12) and the total closed-loop coupling phase �φ [cf. Eqs. (9)
and (10)]. From the g(2)(0)[�φ] expression in Eqs. (9)–(12),
we predict that the statistical property of photons is modified
due to the introduction of the VIC and the total closed-loop

coupling phase since it appears in the probability amplitude
coefficients C01[�φ] [Eq. (9)] and C02[�φ] [Eq. (10)]. Also,
we would like to point out that the closed-form solution and
its steady-state behavior under weak driving scenarios are
in good agreement with the direct numerical solution of the
master equation, which will be verified in the next section.

The probability amplitude coefficients for the third-order
intensity correlation function are not shown here. For more de-
tails see Appendix C. The analytical solution of the third-order
intensity correlation function and its steady-state behavior
under weak driving scenarios are in good agreement with the
direct numerical solution of the master equation, which will
also be verified in the next section.

V. RESULTS AND DISCUSSIONS ABOUT
PHASE-SENSITIVE QUANTUM

CORRELATIONS g(2)(0) AND g(3)(0)

In this section, we focus on the influence of the total
closed-loop coupling phase �φ adhering on the VIC for
the ONF cavity QED system. First of all, we present the
normalized equal-time second- and third-order intensity cor-
relation functions g(2)(0) (the red-dotted lines) and g(3)(0)
(the blue-solid lines) as a function of the driving detuning
�p/2π in Figs. 2(a)–2(d), corresponding to the four different
total closed-loop coupling phases �φ = {0, π/2, π, 3π/2}.
The phenomenon of strong photon antibunching corresponds
to single-photon emission, often referred to as 1PB. Mean-
while, the photon antibunching requires the suppression of
the higher-order correlations, such as g(3)(0). The deep dips
of g(3)(0) (the blue-solid lines) in Figs. 2(a)–2(d) demonstrate
that the photon antibunching operates beyond second-order
processes and suppresses multiphoton events. For example,
when �φ = 0 and �p/2π = 0 [see Fig. 2(a)], a strong anti-
bunching [g(2)(0) � 0.05] can be observed, at which point it
exhibits a single-photon purity P = 1 − g(2)(0) = 0.95 in the
ONF cavity QED system [79,80]. The blue area in Figs. 2(b)
and 2(d) indicate the photon bunching [i.e., g(2)(0) > 1],
which is also called PIT. It is obvious from Figs. 2(a)–2(d)
that the photon antibunching and photon bunching (the blue
area) can be achieved by appropriately adjusting the total
closed-loop coupling phase �φ.
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FIG. 2. (a)–(d) The normalized equal-time second- and third-order intensity correlation functions g(2)(0) (the red-dotted lines) and g(3)(0)
(the blue-solid lines) as a function of the driving detuning �p/2π , corresponding to the four different total closed-loop coupling phases
�φ = {0, π/2, π, 3π/2}. The red-dotted lines and the blue-solid lines are the numerical results calculated directly by the quantum master
equation (3). The purple circles are the analytical results of g(2)(0) calculated by the closed-form expressions (9)–(12) and the green triangles
are the analytical results of g(3)(0) calculated by the closed-form expression (C11) (see Appendix C). The blue area in panels (b) and
(d) indicate the photon bunching, which is also called photon-induced tunneling (PIT). (e)–(h) The intensity Ic of the ONF-based cavity
emission light as a function of the driving detuning �p/2π corresponding to panels (a)–(d), respectively. (i)–(l) The deviations of the photon
distribution Pn from the standard Poisson distribution Pn with the photon number n corresponding to the pentagram markers in panels
(a)–(d), respectively. Panels (i) and (k) show single-photon blockade (1PB) (orange bars), while the panels (j) and (l) show PIT (blue bars).
The system parameters for all panels are κ/2π = 6.4 MHz, �11/2π = 6.1 MHz, �22/2π = 5/9 × 6.1 MHz, �12/2π = √

5/9 × 6.1 MHz,
g20/2π = 2.9 MHz, �10/2π = 0.65 MHz, η/2π = 0.01 MHz, �/2π = 0 MHz, and �c/2π = 0 MHz, which are typical values from a recent
experiment [7].

The statistical properties of photon antibunching and pho-
ton bunching can be more intuitively illustrated by comparing
the photon distribution Pn with the standard Poisson distri-
bution Pn. Here, Pn represents the probability of finding n
photons in the ONF-based cavity emission light by Pn =∑

j |Cjn|2/N [ j represents the three-level atom in the state of
| j〉 ( j = 0, 1, 2), n denotes the photon number (n = 0, 1, 2, 3)
for the Fock state of the cavity mode, and N = ∑

jn |Cjn|2
indicates the normalized constant] [81] and the determina-
tion of Cjn is detailed in Appendix C. In the limit of weak
driving, the normalized constant can be reasonably omit-
ted because N � 1. Pn is the standard Poisson distribution,
expressed as Pn = 〈â†â〉n exp(−〈â†â〉)/n! [81–83]. The de-
viations of the photon distribution Pn from the standard
Poisson distribution Pn with the photon number n are shown

in Figs. 2(i)–2(l), corresponding to the pentagram markers
in Figs. 2(a)–2(d), respectively. The pentagram markers in
Figs. 2(a)–2(d) correspond to the driving detunings �p/2π =
{−75,−75, 75, 75} MHz, respectively. The pentagram mark-
ers in Figs. 2(b) and 2(d) are located in the blue area. As
shown in Figs. 2(i) and 2(k), it can be observed that P1 > P1,
P2 < P2, and P3 < P3, which is a clear signature of 1PB
corresponding to the photon antibunching at the pentagram
markers in Figs. 2(a) and 2(c). Furthermore, in Figs. 2(j)
and 2(l), we can find that P2 > P2 and P3 > P3, which rep-
resents PIT corresponding to the photon bunching at the
pentagram markers in Figs. 2(b) and 2(d). By tuning the
total closed-loop coupling phase �φ, quantum correlations
of photons can be well tuned from antibunching to bunching
regimes.
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To compare the analytical solutions of equal-time second-
and third-order intensity correlation functions g(2)(0) and
g(3)(0) derived by the Schrödinger equation (see Appendixes
B and C) in the steady state with the numerical solutions given
by the master equation (3), we also present the fitting results
as shown in Figs. 2(a)–2(d). In Figs. 2(a)–2(d), the red-dotted
lines and the blue-solid lines represent the numerical results,
while the purple circles and the green triangles denote the an-
alytical results. It is revealed that the full numerical solutions
obtained by the master-equation approach can be well repro-
duced by the analytical solutions obtained by the Schrödinger
equation approach in the steady state under weak-driving con-
dition. The slight discrepancy between the analytical solutions
and the full numerical solutions is discussed in Appendix D
below.

In addition, following the standard input-output formalism
from quantum optics [84,85], we can achieve the transmission
amplitude Ŝout of the system, with the form Ŝout = √

κe2â (κe2

is the damping rate of the right-hand cavity mirror). We also
plot the intensity Ic = 〈Ŝ†

outŜout〉 = κe2〈â†â〉 (collected pho-
tons per second, i.e., the so-called source brightness [86]) of
the ONF-based cavity emission light varying with the driving
detuning �p/2π in Figs. 2(e)–2(h), corresponding to the four
different cases of Figs. 2(a)–2(d), respectively. By looking at
Figs. 2(a)–2(h), we find the strong antibunching effect occur-
ring concurrently with high brightness in the ONF cavity QED
system. This implies that the ONF cavity QED system can be
regarded as an effective single-photon source device, offering
a guiding significance for practical experimental design to a
certain extent.

In light of the above analysis, we can see that the total
closed-loop coupling phase �φ has an important influence
on the photon statistics of the ONF cavity QED system.
To more clearly show the influence of the total closed-
loop coupling phase �φ, we plot the normalized equal-time
second- and third-order intensity correlation functions g(2)(0)
(the red-dotted lines) and g(3)(0) (the blue-solid lines) as a
function of the total closed-loop coupling phase �φ/π in
Figs. 3(a) and 3(b), corresponding to the two different cases of
�p/2π = −36 MHz [see Fig. 3(a)] and �p/2π = −12 MHz
[see Fig. 3(b)]. The purple circles and the green triangles
correspond to the analytical results, which are in good agree-
ment with the numerical results (the red-dotted lines and the
blue-solid lines). In the scenario of the nonresonant case,
we explore the existence of 2PB, which can be judged by
the criterion g(2)(0) > 1 and g(3)(0) < 1. By tuning the to-
tal closed-loop coupling phase �φ/π , 2PB can occur (the
pink area) and the photon statistics of the ONF cavity QED
system can be well tuned among 1PB-2PB-PIT regimes [see
Fig. 3(a)]. Furthermore, by adjusting the driving frequency
[i.e., �p/2π = −12 MHz; see Fig. 3(b)], we can see that the
2PB effect can be enhanced and the region where 2PB occurs
can be increased. Our results can be further confirmed by com-
paring the photon distribution Pn with the standard Poisson
distribution Pn. Figures 3(c) and 3(d) show that P2 > P2 and
P3 < P3, which represents 2PB corresponding to the penta-
gram markers at �φ/π = 0.65 in the pink area of Figs. 3(a)
and 3(b). Moreover, it can be seen from Figs. 3(c) and 3(d)
that the 2PB effect is enhanced by adjusting the driving fre-
quency [see Fig. 3(d)], which is consistent with that shown

FIG. 3. (a), (b) The normalized equal-time second- and third-
order intensity correlation functions g(2)(0) (the red-dotted lines)
and g(3)(0) (the blue-solid lines) as a function of the total closed-
loop coupling phase �φ/π , corresponding to the driving detuning
(a) �p/2π = −36 MHz and (b) �p/2π = −12 MHz. The red-dotted
lines and the blue-solid lines correspond to the numerical results,
while the purple circles and the green triangles correspond to the
analytical results. The pink areas in panels (a) and (b) indicate
the occurrence of two-photon blockade (2PB), i.e., g(2)(0) > 1 and
g(3)(0) < 1. The blue areas in panels (a) and (b) indicate the pho-
ton bunching. The inset in panel (a) shows an enlarged view of
the first pink area, where the inset uses the normal vertical axis
to better display the enlarged result. (c), (d) The deviations of the
photon distribution Pn from the standard Poisson distribution Pn

with the photon number n corresponding to the pentagram markers
in panels (a) and (b), respectively. Panels (c) and (d) show 2PB
(pink bars). The other parameters are κ/2π = 6.4 MHz, �11/2π =
6.1 MHz, �22/2π = 5/9 × 6.1 MHz, �12/2π = √

5/9 × 6.1 MHz,
g20/2π = 2.9 MHz, �10/2π = 0.65 MHz, η/2π = 0.01 MHz,
�/2π = 10 MHz, and �c/2π = 20 MHz.

in Figs. 3(a) and 3(b). Physically, the photon antibunching is
due to the quantum interference effect in the three-level �

configuration induced by the VIC. According to the above
coupling and drivings, we display the schematic diagram of
the energy levels and excitation pathways of the coupled
ONF cavity QED system corresponding to the three-photon
manifold, as shown in Fig. 4. From this figure, it is worth
emphasizing that the quantum interference can occur between
the different excitation pathways thanks to the introduction of
the VIC for the closed-loop transition structure. For example,
for two-photon excitation, there exist two different excitation
pathways to the two-photon excitation state |0, 2〉. Pathway (i)
is the direct pathway, where two photons are directly excited

to the two-photon excitation state from |0, 0〉 η−→ |0, 1〉
√

2η−→
|0, 2〉 via the external driving. Pathway (ii) is the indirect
pathway facilitated by the control field and the VIC, from
which the photons are excited to the two-photon excitation

state through |0, 0〉 �10−→ |1, 0〉 η−→ |1, 1〉 �12ei�φ/2−→ |2, 1〉
√

2g20−→
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FIG. 4. Schematic diagram of the energy levels and excitation
pathways of the coupled ONF cavity QED system corresponding
to Fock states up to three photons. Energy-level diagram shows
the zero-, one-, two-, and three-photon states (horizontal gray lines
without arrows) and the transition pathways (color lines with arrows)
leading to the quantum interference in charge of the strong photon
antibunching. States are labeled by | j, n〉 with the first number being
the three-level atom in the state of | j〉 ( j = 0, 1, 2) and the second
number representing the Fock state for the cavity mode with the
photon number n = 0, 1, 2, 3. The yellow double arrows indicate
the different energy-level transitions as a result of the coupling of
the external driving laser with the strength η. The green double
arrows denote the different energy-level transitions caused by the
cavity-atom coupling g20. The blue double arrows mean the dif-
ferent energy-level transitions resulting from the control-field Rabi
frequency �10. The red double arrows represent the different energy-
level transitions induced by the total closed-loop coupling phase
�φ adhering on the VIC (i.e., �12ei�φ). The destructive quantum
interference between the different transition pathways leads to un-
conventional photon antibunching. By tuning the total closed-loop
coupling phase �φ adhering on the VIC, quantum correlations of
photons can be well tuned.

|0, 2〉. The destructive interference of different excitation
pathways (i) and (ii) makes the probability of two-photon
excitation state |0, 2〉 considerably decreasing. As a result,
no photons can occupy the state |0, 2〉, leading to the strong
antibunching effect (i.e., 1PB) in the ONF cavity QED sys-
tem. Similarly, for the other parameters, due to the quantum
interference between different excitation pathways, the pho-
tons cannot occupy the three-photon excitation state |0, 3〉,
while the probability of two-photon excitation state |0, 2〉 is
nonzero, resulting in the existence of 2PB in the ONF cavity
QED system. As can be seen from Fig. 4, the total closed-
loop coupling phase �φ adhering on the VIC (the red double
arrows) can affect the quantum interference between different
excitation pathways (detailed in Appendix A), thus the photon
statistics of the ONF cavity QED system can be well tuned
by adjusting the total closed-loop coupling phase �φ. On

FIG. 5. (a), (b) Contour plot of the normalized equal-time
second-order intensity correlation function g(2)(0) as a function of
the total closed-loop coupling phase �φ/π as well as the driving de-
tuning �p/2π with g20/2π = 2.9 MHz, corresponding to the cavity
detuning (a) �c/2π = 0 and (b) �c/2π = 50 MHz. (c), (d) Contour
plot of the normalized equal-time second-order intensity correla-
tion function g(2)(0) as a function of the total closed-loop coupling
phase �φ/π as well as the driving detuning �p/2π with g20/2π =
7.8 MHz, corresponding to the cavity detuning (c) �c/2π = 0
and (d) �c/2π = 50 MHz. The color bar on the right-hand side
of panels (a)–(d) represent the magnitude of g(2)(0). The other
parameters are κ/2π = 6.4 MHz, �11/2π = 6.1 MHz, �22/2π =
5/9 × 6.1 MHz, �12/2π = √

5/9 × 6.1 MHz, �10/2π = 0.65 MHz,
η/2π = 0.01 MHz, and �/2π = 0 MHz.

the other hand, the above results can operate in the weak-
coupling regime [i.e., g20 < (κ, �1), where �1 = �11 + �12]
[35], which relaxes the requirements on the system parameters
and makes the experimental implementation of this scheme
more accessible.

On the basis of the previous analysis, in order to more
clearly show the influence of the total closed-loop coupling
phase �φ/π and the driving detuning �p/2π on the photon
statistics of the ONF cavity QED system, we plot the two-
dimensional color-scale map of the normalized equal-time
second-order intensity correlation function g(2)(0) as a func-
tion of the total closed-loop coupling phase �φ/π as well
as the driving detuning �p/2π with g20/2π = 2.9 MHz in
Figs. 5(a) and 5(b), corresponding to the two different cases
of �c/2π = 0 [see Fig. 5(a)] and �c/2π = 50 MHz [see
Fig. 5(b)]. From Figs. 5(a) and 5(b), one can observe that
the transformation of photon antibunching (the blue area) to
photon bunching (the red area) can be achieved by appropri-
ately adjusting the total closed-loop coupling phase �φ/π .
In the scenario of the nonresonant case of the control field
[i.e., �c/2π = 50 MHz; see Fig. 5(b)], a stronger photon an-
tibunching effect [g(2)(0) � 0.0001] can occur near �p/2π =
−50 MHz. With the increase of the cavity-atom coupling
strength [i.e., g20/2π = 7.8 MHz; see Figs. 5(c) and 5(d)],
entering into the strong-coupling regime (i.e., g20 > κ), the
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FIG. 6. (a) Contour plot of the normalized equal-time second-order intensity correlation function g(2)(0) as a function of the total closed-
loop coupling phase �φ/π as well as the cavity-atom coupling strength g20/2π with �10/2π = 0.65 MHz and η/2π = 0.01 MHz. (b) Contour
plot of the normalized equal-time second-order intensity correlation function g(2)(0) as a function of the total closed-loop coupling phase
�φ/π as well as the control-field Rabi frequency �10/2π with g20/2π = 2.9 MHz and η/2π = 0.01 MHz. (c) Contour plot of the normalized
equal-time second-order intensity correlation function g(2)(0) as a function of the total closed-loop coupling phase �φ/π as well as the
driving strength η/2π with g20/2π = 2.9 MHz and �10/2π = 0.65 MHz. The color bar on the right-hand side of panels (a)–(c) represents
the magnitude of g(2)(0). The other parameters are κ/2π = 6.4 MHz, �11/2π = 6.1 MHz, �22/2π = 5/9 × 6.1 MHz, �12/2π = √

5/9 ×
6.1 MHz, �p/2π = 0 MHz, �/2π = 0 MHz, and �c/2π = 0 MHz.

photon bunching effect in the ONF cavity QED system is
considerably suppressed (the decrease of the red area), while
the photon antibunching effect is enhanced (the increase of
the dark blue area). Physically, the two-photon transition path-
ways in Fig. 4 can be impacted by choosing the different
cavity-atom coupling strength g20/2π and cavity detuning
�c/2π , as can be seen from Eqs. (9)–(12). This gives rise
to the occurrence of the destructive quantum interference
between the different quantum transition pathways under dif-
ferent conditions of g20/2π and �c/2π , thereby affecting the
photon antibunching effect. The strong photon antibunching
can be achieved in a broad parameter region [see Figs. 5(c)
and 5(d)], which is useful for engineering a tunable single-
photon sources. When �c/2π = 0 [see Figs. 5(a) and 5(c)],
the strong antibunching (the dark blue area) can be observed
around �p/2π = 0. Alternatively, when �c/2π = 50 MHz
[see Figs. 5(b) and 5(d)], the strong antibunching (the dark
blue area) can be observed around �p/2π = −50 MHz. This
pronounced antibunching can occur in both resonant case [see
Figs. 5(a) and 5(c)] and nonresonant case [see Figs. 5(b)
and 5(d)], which can relax the requirements on the system
parameters and may have potential applications in quan-
tum information processing and quantum communications
[87,88].

Now we explore how the cavity-atom coupling strength
g20/2π , the control-field Rabi frequency �10/2π , and the
driving strength η/2π affect the statistical property of the
ONF cavity QED system. Based on the numerical approach
given by the quantum master equation (3), we plot the two-
dimensional color-scale map of the normalized equal-time
second-order intensity correlation function g(2)(0) in Fig. 6.
It can be clearly seen from Figs. 6(a) and 6(b) that the pho-
ton antibunching can occur at a certain cavity-atom coupling
strength g20/2π and control-field Rabi frequency �10/2π

(the blue area), while the photon bunching exists at a weak
cavity-atom coupling strength g20/2π and control-field Rabi
frequency �10/2π (the yellow and red areas). This implies
that the occurrence of the destructive quantum interference
between the different transition pathways (see Fig. 4) requires

the system to satisfy a certain cavity-atom coupling strength
g20/2π and control-field Rabi frequency �10/2π . Conversely,
in looking at the result of Fig. 6(c), we find that the pho-
ton antibunching can occur at a weak-driving strength η/2π

(the blue area), while the photon bunching exists at a certain
driving strength η/2π (the yellow and red areas). In the weak
driving regime, the multiphoton states are rarely excited and
the multiphoton events are suppressed, leading to the occur-
rence of the photon antibunching (the blue area). In the case
of the strong driving, the multiphoton states have an important
impact on the photon statistical properties of the system, re-
sulting in the occurrence of the photon bunching (the yellow
and red areas) when the ONF cavity QED system goes beyond
the weak drive limit. The impact of the multiphoton states on
the photon statistical properties of the system under different
driving conditions will be demonstrated in Appendix D. By
tuning both the cavity-atom coupling strength g20/2π , the
control-field Rabi frequency �10/2π , the driving strength
η/2π and the total closed-loop coupling phase �φ/π appro-
priately, the strong photon antibunching (the dark blue area)
can be well generated in the present ONF cavity QED system.

VI. CONCLUSIONS

In summary, we have demonstrated a feasible phase-
engineered scheme for realizing strong photon antibunching
accompanying with large brightness in a coupled ONF cavity
QED system with the VIC. By tuning the total closed-loop
coupling phase adhering on the VIC, quantum correlations
of photons can be well tuned from antibunching to bunching
regimes. We find that 1PB, 2PB, and PIT can be achieved
by adjusting the total closed-loop coupling phase appropri-
ately. We have also investigated the deviations of the photon
population and the standard Poisson distribution, whose re-
sults also demonstrated that the 2PB effect can occur in our
scheme. Moreover, it is possible to obtain the switch from
1PB to 2PB and the switch from 2PB to PIT. Due to (i) the
destructive interference between different transition pathways
for the two-photon excitation and (ii) the total closed-loop
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coupling phase induced by the VIC, a strong photon anti-
bunching can be generated even within the weak-coupling
“bad-cavity” regime (without the need of the strong-coupling
condition), which relaxes the requirements on the system pa-
rameters and makes the experimental implementation of this
scheme more accessible. In this regime, the enhanced photon
antibunching can occur concurrently with high brightness in
the ONF cavity QED system, offering a guiding significance
for practical experimental design to a certain extent. Further-
more, we find that the strong photon antibunching can be
achieved in a broad parameter region of driving detuning,
which can relax the requirement for the driving frequency in
the ONF cavity QED system. In addition, we compare the
analytical solutions of the second-order and third-order in-
tensity correlation functions with the numerical solutions and
find that the agreement between them is reasonably good. We
also address the experimental feasibility of the present phase-
engineered scheme with existing state-of-the-art ONF cavity
QED architecture. The obtained results may be meaningful
in engineering single-photon sources [89,90]. Single-photon
sources are the basic units of quantum communication. Its
strong security and low susceptibility to interference are there-
fore considered very important in quantum communication
[91]. Single-photon sources can also be used in the fields such
as quantum imaging and quantum sensing, serving as carriers
of quantum information and playing a fundamental role in
achieving higher-level quantum technology [92].
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APPENDIX A: COMPARISON BETWEEN CORRELATION
g(2)(0) VERSUS PHASE �φ WITH AND WITHOUT THE VIC

By applying a unitary transformation to a rotating coordi-
nate frame, we can rewrite the total Hamiltonian Ĥtot of Eq. (1)
in the main text as

Ĥrot = �pâ†â + �σ̂11 + (�p + �c)σ̂22 + (g20eiφ20 âσ̂
†
02

+�10eiφ10 σ̂
†
01 + iηâ† + H.c.), (A1)

which is exactly Eq. (2) in the main text. By transforming
σ̂01 → σ̂01eiφ10 and σ̂02 → σ̂02eiφ20 , the total closed-loop cou-
pling phase �φ = φ10 − φ20 can adhere on the VIC and the
quantum master equation (3) in the main text can be obtained.
To illustrate the photon statistical properties of the ONF cav-
ity QED system varying with the total closed-loop coupling
phase �φ under both the presence and absence of the VIC,
we can also transfer the total closed-loop coupling phase �φ

to the cavity-atom coupling strength g20.

Based on the closed-loop transitions |0〉 �10eiφ10←→ |1〉 �12←→
|2〉 g20eiφ20←→ |0〉 (see the top-right inset of Fig. 1), we can set the

transformation |0〉 → |0〉eiφ10 , and then the Lindblad master
equation can be expressed as

∂ρ̂

∂t
= −i[Ĥ ′

tra, ρ̂] + κD(â)ρ̂ + �11D(σ̂01)ρ̂ + �22D(σ̂02)ρ̂

+�12(σ̂01ρ̂σ̂
†
02 − σ̂

†
02σ̂01ρ̂/2 − ρ̂σ̂

†
02σ̂01/2)

+�12(σ̂02ρ̂σ̂
†
01 − σ̂

†
01σ̂02ρ̂/2 − ρ̂σ̂

†
01σ̂02/2), (A2)

with

Ĥ ′
tra = �pâ†â + �σ̂11 + (�p + �c)σ̂22 + (g20e−i�φ âσ̂

†
02

+�10σ̂
†
01 + iηâ† + H.c.). (A3)

It is worth emphasizing that the existence of the VIC ef-
fect is important for the photon statistical properties of the
ONF cavity QED system. In the following, we take Fig. 3(a)
as an example and plot the normalized equal-time second-
order intensity correlation function g(2)(0) as a function of
the total closed-loop coupling phase �φ/π with the VIC (the
purple-dotted line) and without the VIC (i.e., �12 = 0; the
pink-solid line) numerically calculated by the master equa-
tion (A2) in Fig. 7. When the VIC is present (the purple-dotted
line), quantum correlations of photons can be well tuned
from antibunching to bunching regimes by adjusting the total
closed-loop coupling phase. On the contrary, in the absence of
the VIC (the pink-solid line), the system shows coherent-state
photons [i.e., g(2)(0) = 1] and the photon antibunching disap-
pears. This is because, in the absence of the VIC, the quantum
interference between different pathways of two-photon exci-
tation disappears (see the red double arrows in Fig. 4). At
the same time, the closed-loop configuration of the system is
destroyed and so the phase-dependent effect disappears.

For two-photon excitation, there exist two different ex-
citation pathways to the two-photon excitation state |0, 2〉,

FIG. 7. The normalized equal-time second-order intensity corre-
lation function g(2)(0) as a function of the total closed-loop coupling
phase �φ/π with the VIC (the purple-dotted line) and without the
VIC (the pink-solid line), numerically calculated by the master equa-
tion (A2). The other parameters are κ/2π = 6.4 MHz, �11/2π =
6.1 MHz, �22/2π = 5/9 × 6.1 MHz, �12/2π = √

5/9 × 6.1 MHz,
g20/2π = 2.9 MHz, �10/2π = 0.65 MHz, η/2π = 0.01 MHz,
�p/2π = −36 MHz, �/2π = 10 MHz, and �c/2π = 20 MHz.
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that is to say, direct pathway (i) |0, 0〉 η−→ |0, 1〉
√

2η−→ |0, 2〉
and indirect pathway (ii) |0, 0〉 �10−→ |1, 0〉 η−→ |1, 1〉 �12ei�φ/2−→
|2, 1〉

√
2g20−→ |0, 2〉 (see Fig. 4). The introduction of the VIC

(i.e., �12) has an important influence on the indirect pathway

(i.e., |1, 1〉 �12ei�φ/2−→ |2, 1〉; see the red double arrows in Fig. 4),
thereby affecting the quantum interference between different
pathways of two-photon excitation. To intuitively analyze the
influence of introducing the VIC, we can obtain the probabil-
ities |C11|2 and |C21|2 corresponding to the states |1, 1〉 and
|2, 1〉 through numerical calculations. As an example, when
�φ = 0 (see Fig. 7), in the presence of the VIC, the prob-
abilities are |C11|2 = 3.8 × 10−11 and |C21|2 = 3.4 × 10−12,
representing that the probability of the state |2, 1〉 is only one
order of magnitude smaller than that of the state |1, 1〉. In con-
trast, in the absence of the VIC, the probabilities are |C11|2 =
2.9 × 10−10 and |C21|2 = 2.0 × 10−16, where the probability
of the state |2, 1〉 is six orders of magnitude smaller than
that of the state |1, 1〉. From the results mentioned above,
we can see that the introduction of the VIC bridges the in-

direct pathway |1, 1〉 �12ei�φ/2−→ |2, 1〉, enabling the transfer of
photons from state |1, 1〉 to state |2, 1〉. By introducing the
VIC, the quantum interference between different pathways
of two-photon excitation can be generated and the photon
antibunching can be achieved, which may be useful for the
energy-transfer studies [4–6].

APPENDIX B: ANALYTICAL SOLUTIONS
OF THE SECOND-ORDER INTENSITY CORRELATION

FUNCTION IN THE WEAK-DRIVING LIMIT
VIA THE SCHRÖDINGER EQUATION APPROACH

In this Appendix, we present approximate analytical ex-
pressions for the phase-sensitive equal-time second-order
intensity correlation function as an alternative method to char-
acterize the photon statistical properties of the ONF cavity
QED system. The quantum state of the system can be rep-
resented as an expansion based on a Fock state basis. Under
the condition that the external driving laser field is very
weak (i.e., η � g20, κ), the population of the high-photon
excitation states is very low, thus it can be assumed that
the total excitation number of the ONF cavity QED sys-
tem is no more than two [21,22]. Consequently, the wave
function of the ONF cavity QED system can be reason-
ably approximated in the two-excitation manifold with the
ansatz [21,93]

|�(t )〉 � C00|0, 0〉 + C01|0, 1〉 + C02|0, 2〉 + C10|1, 0〉
+C11|1, 1〉 + C20|2, 0〉 + C21|2, 1〉, (B1)

where the state | j, n〉 = | j〉 ⊗ |n〉 means the three-level atom
in the state of | j〉 ( j = 0, 1, 2) and the Fock basis for the
cavity mode with the photon number n (n = 0, 1, 2). Here
the coefficient Cjn represents the probability amplitude of
the corresponding state | j, n〉, for which the corresponding
probability is given by |Cjn|2. In the weak-driving regime,
the system is rarely in an excited state and thus the âρ̂â†

and σ̂lmρ̂σ̂
†
lm (l, m = 0, 1, 2) terms in the Lindblad master

equation can be neglected [94–96]. When they are removed,

the Lindblad master equation (3) is equivalent to the time-
dependent Schrödinger equation

i
∂|�〉
∂t

= Ĥeff |�〉, (B2)

with

Ĥeff = (�p − iκ/2)â†â + (� − i�11/2)σ̂11

+ (�p + �c − i�22/2)σ̂22

− i�12(ei�φσ̂21 + e−i�φσ̂12)/2

+ (g20âσ̂
†
02 + �10σ̂

†
01 + iηâ† + H.c.), (B3)

where the effective non-Hermitian Hamiltonian Ĥeff contains
the optical cavity damping and three-level atomic damping
terms in addition to the original Hamiltonian (4) and whose
steady-state solution yields the photon statistics of the ONF
cavity QED system for zero time delay. More concretely, the
imaginary part (characterizes the dissipative coupling) of the
first term on the RHS of Eq. (B3) denotes that the coupling
of the cavity with a reservoir results in the damping κ . The
imaginary parts of the second and third terms on the RHS
of Eq. (B3) represent that the coupling of the two quantum
transition pathways with a common reservoir results in the
damping rates �11 and �22, respectively. Finally, the imag-
inary part of the fourth term (i.e., the VIC between both
radiative channels) on the RHS of Eq. (B3) indicates that
the coupling with the common reservoir induces a dissipative
coupling �12 � √

�11�22 between these two radiative chan-
nels [7], which is impacted by the total closed-loop coupling
phase �φ.

By substituting the wave function of the ONF cavity QED
system |�(t )〉 [Eq. (B1)] and the effective non-Hermitian
Hamiltonian Ĥeff [Eq. (B3)] into the Schrödinger equa-
tion (B2), the above coefficients Cjn satisfy the equations of
motion (overdots indicate time derivatives)

iĊ00 = �10C10 − iη∗C01, (B4)

iĊ01 = (�p − iκ/2)C01 + g20C20 + �10C11

+ iηC00 − i
√

2η∗C02, (B5)

iĊ02 = 2(�p − iκ/2)C02 +
√

2g20C21 + i
√

2ηC01, (B6)

iĊ10 = (� − i�11/2)C10 − i�12e−i�φC20/2

+�10C00 − iη∗C11, (B7)

iĊ11 = (�p + � − iκ/2 − i�11/2)C11

− i�12e−i�φC21/2 + �10C01 + iηC10, (B8)

iĊ20 = (�p + �c − i�22/2)C20 − i�12ei�φC10/2

+ g20C01 − iη∗C21, (B9)

iĊ21 = (2�p + �c − iκ/2 − i�22/2)C21

− i�12ei�φC11/2 +
√

2g20C02 + iηC20. (B10)

For the case of the one-photon and two-photon states, in the
steady state Ċjn = 0, the equations for the coefficients Cjn can

033709-12



PHASE-ENGINEERED PHOTON CORRELATIONS IN … PHYSICAL REVIEW A 109, 033709 (2024)

be written as

0 = (�p − iκ/2)C01 + g20C20 + �10C11

+ iηC00 − i
√

2η∗C02, (B11)

0 = 2(�p − iκ/2)C02 +
√

2g20C21 + i
√

2ηC01, (B12)

0 = (� − i�11/2)C10 − i�12e−i�φC20/2

+�10C00 − iη∗C11, (B13)

0 = (�p + � − iκ/2 − i�11/2)C11

− i�12e−i�φC21/2 + �10C01 + iηC10, (B14)

0 = (�p + �c − i�22/2)C20 − i�12ei�φC10/2

+ g20C01 − iη∗C21, (B15)

0 = (2�p + �c − iκ/2 − i�22/2)C21

− i�12ei�φC11/2 +
√

2g20C02 + iηC20. (B16)

The coefficients Cjn can be iteratively calculated by solving
the above coupled algebraic equations (B11)–(B16). In the
limit of weak driving, for the probability amplitude coeffi-
cients Cjn we have the relationship C00 � {C01,C10,C20} �
{C02,C11,C21}. Furthermore, like previous works [97,98], it is
reasonable to make the assumption that the vacuum state is
approximately occupied with probability one. In this regard,
we can assume C00 ≈ 1, ηC02 ≈ 0, ηC11 ≈ 0, and ηC21 ≈ 0.
Due to the verbosity of the solutions for the coefficients Cjn,
only C01[�φ] and C02[�φ] ([�φ] represents that C01 and C02

are functions related to �φ) are given by

C01[�φ] = iei�φ
[
2ei�φg20�10�12

(
4X01 + �′

p�
2
12

) + η
(−16�′

cY01 + 4Z01�
2
12 − �′

p�
4
12

)]

2g20η�10�12
(
A − �2

12

) + ei�φ
(
16�′B + 4C�2

12 + �′
p

2�4
12

) , (B17)

C02[�φ] = −4e3i�φg2
20�

2
10�

2
12 − 4e2i�φg20η�10�12

(
2X02 − �2

12

) − ei�φη2
(
16Y02 + 4Z02�

2
12 + �4

12

)

√
2
[
2g20η�10�12

(
A − �2

12

) + ei�φ
(
16�′B + 4C�2

12 + �′
p

2�4
12

)] , (B18)

where

A = 4g2
20 − 4(�′

p + �′)(�′
p + �′

c),

B = [
g2

20 − �′
p(�′

p + �′
c)

][
�2

10�
′
c + (�′

p + �′)
(
g2

20 − �′
p�

′
c

)]
,

C = �′
p�

′( − 2g2
20 + 2�′

p�
′
c + �′

p
2) − (�10 − �′

p)(�10 + �′
p)

[−g2
20 + �′

p(�′
p + �′

c)
]
,

X01 = (�′
p + �′)

[−g2
20 + �′

p(�′
p + �′

c)
]
,

Y01 = [
�2

10 + �′(�′
p + �′)

][−g2
20 + �′

p(�′
p + �′

c)
]
,

Z01 = �′
p

[
g2

20 + �2
10 − �′

p(�′
p + �′

c)
] + �′[g2

20 − �′
p(�′

p + 2�′
c)

]
,

X02 = g2
20 + �2

10 − 2(�′
p + �′)(�′

p + �′
c),

Y02 = [
�2

10 + �′(�′
p + �′)

][
g2

20 + �′
c(�′

p + �′
c)

]
,

Z02 = −g2
20 − �2

10 + �′
p(�′

p + �′
c) + �′(�′

p + 2�′
c), (B19)

with �′
p = �p − iκ/2, �′ = � − i�11/2, and �′

c = �p + �c − i�22/2.

The other coefficients Cjn can also be solved using the
same method; however, for the sake of simplicity, they are
not presented here. Based on the solutions for the probabil-
ity amplitude coefficients C01[�φ] [Eq. (B17)] and C02[�φ]
[Eq. (B18)] in Eq. (B1), the normalized equal-time second-
order intensity correlation function g(2)(0)[�φ] can be further
expressed as

g(2)(0)[�φ] = 〈�|â†â†ââ|�〉ss

〈�|â†â|�〉2
ss

� 2|C02[�φ]|2
|C01[�φ]|4 , (B20)

where the subscript “ss” indicates the expectation values taken
with respect to the steady-state solution, accordingly |�〉
represents the steady-state wave function of the ONF cav-
ity QED system. From the derivations presented above [i.e.,
Eqs. (B17)–(B20)], we can see that the normalized equal-
time second-order intensity correlation function g(2)(0)[�φ]
is closely related to both the VIC (i.e., �12) and the total
closed-loop coupling phase �φ, playing an important role

in generating strong antibunching for the ONF cavity QED
system.

APPENDIX C: ANALYTICAL SOLUTIONS
OF THE THIRD-ORDER INTENSITY CORRELATION

FUNCTION IN THE WEAK-DRIVING LIMIT
VIA THE SCHRÖDINGER EQUATION APPROACH

In the regime of weak driving, for a clearer and more con-
cise presentation of the explicit expressions for the probability
amplitude coefficients C01[�φ] and C02[�φ], we only trun-
cate the wave function of the ONF cavity QED system to the
two-excitation manifold, as mentioned above in Appendix B.
This truncation provides a clearer insight into the effects
of the VIC and the total closed-loop coupling phase on the
second-order intensity correlation function. In this Appendix,
we present here approximate analytical solution for the equal-
time third-order intensity correlation function. Alternatively,
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the wave function of the ONF cavity QED system under
weak-driving condition can be reasonably approximated in the
three-excitation manifold with the ansatz

|�(t )〉 � C00|0, 0〉 + C01|0, 1〉 + C02|0, 2〉 + C03|0, 3〉
+C10|1, 0〉 + C11|1, 1〉 + C12|1, 2〉
+C20|2, 0〉 + C21|2, 1〉 + C22|2, 2〉. (C1)

In the same manner as Appendix B, the coefficients Cjn

( j, n = 0, 1, 2, 3, similar to the definition in Appendix B)
of the one-photon, two-photon, and three-photon states are
determined by

0 = (�p − iκ/2)C01 + g20C20 + �10C11 + iηC00

− i
√

2η∗C02, (C2)

0 = 2(�p − iκ/2)C02 +
√

2g20C21 + �10C12

+ i
√

2ηC01 − i
√

3η∗C03, (C3)

0 = 3(�p − iκ/2)C03 +
√

3g20C22 + i
√

3ηC02, (C4)

0 = (� − i�11/2)C10 − i�12e−i�φC20/2 + �10C00

− iη∗C11, (C5)

0 = (�p + � − iκ/2 − i�11/2)C11 − i�12e−i�φC21/2

+�10C01 + iηC10 − i
√

2η∗C12, (C6)

0 = (2�p + � − iκ − i�11/2)C12 − i�12e−i�φC22/2

+�10C02 + i
√

2ηC11, (C7)

0 = (�p + �c − i�22/2)C20 − i�12ei�φC10/2

+ g20C01 − iη∗C21, (C8)

0 = (2�p + �c − iκ/2 − i�22/2)C21 − i�12ei�φC11/2

+
√

2g20C02 + iηC20 − i
√

2η∗C22, (C9)

0 = (3�p + �c − iκ − i�22/2)C22 − i�12ei�φC12/2

+
√

3g20C03 + i
√

2ηC21. (C10)

Under the condition of weak driving, we have the
relationship C00 � {C01,C10,C20} � {C02,C11,C21} �
{C03,C12,C22} and thus we can assume C00 ≈ 1. In principle,
the coefficients Cjn can be obtained by directly solving the
above coupled algebraic equations (C2)–(C10). However, the
explicit expressions for the probability amplitude coefficients
Cjn are too long and bulky to be included here. In terms of
the coefficients Cjn, the normalized equal-time third-order
intensity correlation function g(3)(0)[�φ] can be further
expressed as

g(3)(0)[�φ] = 〈�|â†â†â†âââ|�〉ss

〈�|â†â|�〉3
ss

� 6|C03[�φ]|2
|C01[�φ]|6 , (C11)

where the subscript “ss” indicates the expectation values taken
with respect to the steady-state solution, accordingly |�〉 rep-
resents the steady-state wave function of the ONF cavity QED
system.

FIG. 8. The normalized equal-time second- and third-order in-
tensity correlation functions g(2)(0) (the red-dotted lines) and g(3)(0)
(the blue-solid lines) as a function of the driving detuning �p/2π ,
corresponding to the two different total closed-loop coupling phases
(a) �φ = 0 and (b) �φ = π . The red-dotted lines and the blue-
solid lines are the numerical results calculated directly by the
quantum master equation (3). The purple circles are the analytical
results of g(2)(0) calculated by the closed-form expressions (9)–
(12) and the green triangles are the analytical results of g(3)(0)
calculated by the closed-form expression (C11). The comparisons
between the numerical results (the red-dotted lines and the blue-
solid lines) and the analytical results [cyan-dash-dotted lines (i.e.,
the purple circles) and magenta-dashed lines (i.e., the green tri-
angles)] are also shown in the insets, where the insets use the
normal vertical axis to better display the fitting results. The blue
area in panels (a) and (b) indicate the photon bunching. The other
parameters are κ/2π = 6.4 MHz, �11/2π = 6.1 MHz, �22/2π =
5/9 × 6.1 MHz, �12/2π = √

5/9 × 6.1 MHz, g20/2π = 2.9 MHz,
�10/2π = 0.65 MHz, η/2π = 0.01 MHz, �/2π = 0 MHz, and
�c/2π = 0 MHz.

APPENDIX D: ANALYSIS OF THE SLIGHT
DISCREPANCY BETWEEN THE ANALYTICAL

AND NUMERICAL RESULTS

In this Appendix, we mainly focus on how the slight dis-
crepancy between the analytical and numerical results arises.
Before proceeding, according to Fig. 2 in the main text, it
can be observed that the switching between bunching and
antibunching can be realized by adjusting the total closed-loop
coupling phase. It is worth emphasizing that the switching
between bunching and antibunching can also be realized by
adjusting the driving detuning. In what follows, we take
Figs. 2(a) and 2(c) as examples and plot the normalized equal-
time second- and third-order intensity correlation functions
g(2)(0) (the red-dotted lines) and g(3)(0) (the blue-solid lines)
as a function of the driving detuning �p/2π in a broader
parameter region in Fig. 8, corresponding to the two different
total closed-loop coupling phases �φ = {0, π}. The blue area
in Fig. 8 represents the photon bunching [i.e., g(2)(0) > 1].
It can be seen from Fig. 8 that the photon bunching (the blue
area) can occur at �φ = {0, π} as the driving detuning �p/2π

increases. As compared with Figs. 2(b) and 2(d) (i.e., �φ =
{π/2, 3π/2}), the photon bunching effect at �φ = {0, π} [the
blue area in Figs. 8(a) and 8(b)] is relatively weak. This
implies that the joint regulation of the driving frequency and
the total closed-loop coupling phase can better realize the
switching between bunching and antibunching in the ONF
cavity QED system.
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FIG. 9. The normalized equal-time third-order intensity correla-
tion function g(3)(0) as a function of the driving detuning �p/2π .
The blue-solid line is the numerical result calculated directly by the
quantum master equation (3) within a truncated Fock space at photon
number as low as 10 (i.e., the truncated photon number N = 10)
for the ONF cavity mode. The red-dotted line is the numerical
result calculated directly by the Schrödinger equation (B2) within
the truncated photon number N = 10. The green triangles are the
analytical result calculated by the closed-form expression (C11).
The other parameters are κ/2π = 6.4 MHz, �11/2π = 6.1 MHz,
�22/2π = 5/9 × 6.1 MHz, �12/2π = √

5/9 × 6.1 MHz, g20/2π =
2.9 MHz, �10/2π = 0.65 MHz, η/2π = 0.01 MHz, �φ = 0,
�/2π = 0 MHz, and �c/2π = 0 MHz.

In addition, the comparisons between the numerical re-
sults (the red-dotted lines and the blue-solid lines) and the
analytical results (cyan-dash-dotted lines and magenta-dashed
lines) are shown in the insets of Fig. 8, where the insets use
the normal vertical axis to better display the fitting results.
However, by comparing with the logarithmic plot (of base
10), we can find that a slight discrepancy exists between
the analytical and numerical results [e.g., the green triangles
and the blue-solid lines in Figs. 2(a) and 8(a)]. The slight
discrepancy between the analytical results obtained by the
Schrödinger equation (B2) and the numerical results given
by the master equation (3) can be primarily attributed to two
factors: (i) in the weak-driving regime, the analytical results
obtained by the Schrödinger equation ignore the quantum
jump terms âρ̂â† and σ̂lmρ̂σ̂

†
lm (l, m = 0, 1, 2) in the Lindblad

superoperator [94–96], and (ii) the analytical results obtained
by the Schrödinger equation make the truncation approxima-
tion [21,22], ignoring the influence of higher-order photons on
the correlation functions.

In the following, for the purpose of demonstrating the
impact of the quantum jump terms, we plot the normalized
equal-time third-order intensity correlation function g(3)(0) as
a function of the driving detuning �p/2π at �φ = 0 in Fig. 9,
corresponding to numerically calculated by the quantum mas-
ter equation (3) (the blue-solid line), numerically calculated
by the Schrödinger equation (B2) (the red-dotted line), and an-
alytically calculated by the closed-form expression (C11) (the
green triangles), respectively. Under the condition of the same
truncated photon number N = 10, it can be seen from Fig. 9
that there is a slight discrepancy between the numerical result

FIG. 10. The normalized equal-time third-order intensity corre-
lation function g(3)(0) as a function of the truncated photon number
N , corresponding to the two different driving strengths (a) η/2π =
0.01 MHz and (b) η/2π = 5 MHz. The blue-circle-solid lines are
the numerical results calculated directly by the quantum master
equation (3) within the truncated photon number N . The other
parameters are κ/2π = 6.4 MHz, �11/2π = 6.1 MHz, �22/2π =
5/9 × 6.1 MHz, �12/2π = √

5/9 × 6.1 MHz, g20/2π = 2.9 MHz,
�10/2π = 0.65 MHz, �φ = 0, �p/2π = 0 MHz �/2π = 0 MHz,
and �c/2π = 0 MHz.

(the red-dotted line) calculated directly by the Schrödinger
equation (B2) ignoring the quantum jump terms and the nu-
merical result (the blue-solid line) calculated directly by the
quantum master equation (3). In the case of ignoring the
quantum jump terms, the numerical result (the red-dotted line)
calculated directly by the Schrödinger equation (B2) within
the truncated photon number N = 10 is in good agreement
with the analytical result (the green triangles; the truncated
photon number N = 3) calculated by the closed-form expres-
sion (C11). This means that the slight discrepancy between the
analytical results obtained by the Schrödinger equation (B2)
and the numerical results given by the master equation (3) is
primarily attributed to the neglect of the quantum jump terms
in the weak-driving regime.

In the weak-driving regime, we take the truncated photon
number N = 10 to obtain the numerical results given by the
master equation (3), while in the strong-driving regime, we
take the truncated photon number N = 20 for the numerical
simulations. The truncated photon numbers for the weak- and
strong-driving regimes are sufficient to guarantee the conver-
gence of the numerical simulations. To better demonstrate the
convergence of the numerical simulations and the influence of
higher-order photons on the correlation functions, we plot the
normalized equal-time third-order intensity correlation func-
tion g(3)(0) as a function of the truncated photon number N at
�φ = 0 and �p/2π = 0 in Fig. 10, corresponding to the two
different driving strengths η/2π = 0.01 MHz [see Fig. 10(a)]
and η/2π = 5 MHz [see Fig. 10(b)]. In the case of weak
driving [see Fig. 10(a)], the influence of higher-order pho-
tons on the correlation functions (the blue-circle-solid line)
is weak and the blue-circle-solid line quickly converges at
N = 5 (we take N = 10 as sufficient), which is consistent with
that shown in Fig. 9 (the red-dotted line is in good agreement
with the green triangles). From Fig. 10(b), in the strong-
driving regime, one can observe that the blue-circle-solid line
converges at N = 12 (we take N = 20 as sufficient). This
implies that in the strong-driving regime, higher-order pho-
tons have an important impact on the second- and third-order
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correlation functions, that is to say, higher-order processes
are involved in the 1PB, 2PB, and PIT effects when the

ONF cavity QED system goes beyond the weak-driving
limit.
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