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Controllable excitation transfer based on the coupling of an atom with a finite-size
Su-Schrieffer-Heeger chain
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We propose a scheme to control excitation transfer between an atom and the ends of the Su-Schrieffer-Heeger
(SSH) chain. When the finite SSH chain is in the topological phase, and the frequency of the atom is resonant
with the center frequency of the SSH chain, an effective transition between the atomic excited state and the
band-gap states can be obtained. The system can be equal to the three-states model. Under this case, we can
adiabatically transfer the atomic excitation to one of the ends of the SSH chain. Which end of the SSH chain
is the receiver depends on which sublattice of the cell the atom is coupled to. Furthermore, the excitation can
also be transferred from the atom to the ends of the chain by fixing the parameters under the dynamic evolution.
Our paper provides a method for realizing controllable quantum information transfer based on the coupling of
an atom with topological matter.
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I. INTRODUCTION

Topological systems have attracted a great deal of interest
and attention in quantum physics due to their many interesting
properties, including robustness to local decoherence and po-
tential applications in quantum information processes [1–4].
The chiral edge states of topological photonic systems yield
directional transport of photons and phonons, which has been
exploited in the design of amplifiers and topological lasers
[5–8]. The transport phenomena in dissipative systems char-
acterized by topological winding numbers have been studied
in [9,10]. The Su-Schrieffer-Heeger (SSH) model originally
used to describe the transport properties of conducting poly-
acetylene [11,12] has attracted increasing attention due to its
simplest topological insulator model with a simple structure
but rich physical pictures [9,13–15]. The SSH chain and its
various extensions have been investigated in quantum state
transfer [16–21] and topological transmission device con-
structions such as topological beam splitters and topological
routers [22–25].

Waveguide quantum electrodynamic systems involving the
coupling of atoms and one-dimensional propagation fields
have become important physical platforms for realizing quan-
tum information processing [26–35] and quantum simulation
[36–39]. If the waveguide is designed with finite bandwidths,
the physics of light-matter interactions in one dimension
becomes complicated and interesting such as with coupled
cavity arrays described by the tight-binding model [40,41]
and one-dimensional topological photonic lattices described
by the SSH model. When the transition frequency of the
atom is located in the photonic band gap, the photons in
the waveguide are localized around the atom, which forms
the atom-photon bound state, and the overlap in the spatial
distribution of the photons can mediate the coherent interac-
tions between the atoms [42–45]. The interactions between
atoms and waveguide result in many interesting phenomena
and applications such as the generation of long-range atom

entanglement [46,47], chiral interaction [48,49], and the sim-
ulation of topological states [50–52]. Particularly, when the
atom couples to the topological waveguide with the periodic
boundary, both the atom and photons behave in exotic ways
called unconventional quantum optics [33,48,49,53,54]. For
example, the atom can be viewed as an effective boundary
and induce chiral zero-energy modes exhibiting a distribution
of chirality as well as robustness to off-diagonal disorder.

However, little attention has been paid to atom coupling to
finite-size topological waveguides. In this paper, considering
the atom coupling to the finite SSH chain, we aim to control
quantum information transmission by manipulating the atom.
When the SSH chain is in the trivial phase, a bound state
is formed, consisting of the atom in the excited state and
localized waveguide photons, which cannot be used to transfer
information between the atom and the chain. For the system in
the topological phase, when the frequency of the atom is reso-
nant with the center frequency of the SSH chain, an effective
transition between the atomic excited state and the band-gap
states can be obtained. Under the weak-coupling condition,
the system can be equivalently described by the three-state
model consisting of atomic excited states and band-gap states.
In this case, the three-state model exists with a zero-energy
state, allowing us to transfer the excitation of the atoms to the
ends of the chain by adiabatically adjusting the parameters.
And the transfer of excitation to the leftmost or rightmost ends
of the chain depends on which sublattice of the cell the atom
is coupled to. Moreover, we can also realize the transfer of
excitation of the atom to the left or right edges states with
dynamical evolution.

II. ATOM COUPLING WITH THE FINITE SSH CHAIN

We consider an atom coupled to a finite SSH chain at
the pth cell of either sublattice Ap or sublattice Bp with the
coupling strength g shown in Fig. 1. The total Hamiltonian
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FIG. 1. Schematic illustration of the atom coupling to the finite
SSH chains at sublattice Bp with coupling strength g. Alternately, the
atom also can be coupled to the sublattice Ap (not shown here).

can be written as

H = HSSH + HI + ωeσ
†σ, (1)

with

HI = gc†
pσ + H.c., (2a)

HSSH =
N∑

i=1

ωo(a†
i ai + b†

i bi ) + (J1a†
i bi + J2a†

i+1bi + H.c.).

(2b)

HI represents the interaction between the atom and the SSH
chain, where cp = {ap, bp}. The Hamiltonian of the SSH chain
described in Eq. (2b) is a one-dimensional lattice model with
a hopping period of 2. Each cell of the lattice contains two
sublattices A and B with frequencies ωo. The intercell and
extra-cell couplings are J1 = J (1 + cos θ ) and J2 = J (1 −
cos θ ) with θ ∈ [0, 2π ], respectively. Strictly speaking, the
free terms in HSSH partly break chiral symmetry of a standard
SSH chain [4,13], but the quantized Zak phase remains as long
as the frequency of each site is not perturbed [55,56]. We will
use the center frequency of the SSH chain ωo as the reference
energy in the following discussion.

In the single-excited space, we label |Ai〉 = a†
i |G〉 and

|Bi〉 = b†
i |G〉, where |G〉 is the ground state of the SSH chain.

The Hamiltonian (2b) in single-excited space can be writ-
ten as HSSH = ∑N

i=1 ωo(|Ai〉〈Ai| + |Bi〉〈Bi|) + (J1|Ai〉〈Bi| +
J2|Ai+1〉〈Bi| + H.c.). We can diagonalize the Hamiltonian
as HSSH = ∑2N

j=1 Ej |� j〉〈� j |, where Ej and |� j〉 are the
eigenenergies and eigenvectors. |� j〉 can be written as the
superposition of |Ai〉 and |Bi〉 as |� j〉 = ∑N

i=1(ζ2i−1, j |Ai〉 +
ζ2i, j |Bi〉), where ζ2i−1, j = 〈Ai|� j〉 and ζ2i, j = 〈Bi|� j〉 are the
projections of the eigenvectors on the sublattice Ai and Bi.
Conversely the basis |Ai〉 and |Bi〉 can also be written as the
superposition of the eigenvectors as |Ai〉 = ∑N

j=1 ζ ∗
2i−1, j |� j〉

and |Bi〉 = ∑N
j=1 ζ ∗

2i, j |� j〉.
In Fig. 2(a), we plot the energy spectrum varying with

θ under open boundary condition. It can be seen that the
SSH chain possesses two band-gap states |�N 〉 and |�N+1〉
in the gap θ ∈ [0.5π, 1.5π ] (topological phase). The prob-
ability distribution of the band-gap states |�N 〉 varies with
θ shown in Fig. 2(b). It is clear that the band-gap states
are mainly located at the two ends of the chain with the
same probability. The energy of the two band-gap states can
be obtained as EN = −EN+1 = (−1)N+1N2

L J1(J1/J2)N−1 and
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FIG. 2. (a) The energy spectrum of the SSH chain varies with
the variation of θ . (b) The probability distribution of the eigenstates
corresponds to panel (a). The parameters are N = 8 and J = 1.

the corresponding wave function can be written as

|�N 〉 = 1√
2

(|ψL〉 + |ψR〉),

|�N+1〉 = 1√
2

(|ψL〉 − |ψR〉), (3)

where |ψL〉 = NL
∑N

i=1 ca
i |Ai〉 and |ψR〉 = NR

∑N
i=1 cb

i |Bi〉
are the left and right edge states with ca

i = (− J1
J2

)i−1,

cb
i = (− J1

J2
)N−i and the normalization factors NL = NR =

[1 − (J1/J2)2]1/2[1 − (J1/J2)2N ]−1/2. Therefore, we can
obtain ζ2i−1,N = ζ2i−1,N+1 = NLca

i and ζ2i,N = −ζ2i,N+1 =
NRcb

i . When the atom couples the sublattice Bp, the total
Hamiltonian can be rewritten as

H = 	σ †σ +
2N∑
j=1

[Ej |� j〉〈� j | + (gζ ∗
2p, j�

†
j σ + H.c.)], (4)

where 	 = ωe − ωo is the detuning between the atom and the
center frequency of the SSH chain and �

†
j = |� j〉〈G|.

In Fig. 3(a), we plot the energy spectrum of the Hamil-
tonian (1) in the reference frequency ωa varying with 	 for
the chain in the trivial phase with θ = 0.4π . We focus on
the atomic frequency falling within the middle band gap, for
other cases not discussed here. It can be seen that the energy
in the range of [−2J,−0.69J] and [0.69J, 2J] is the scatter
states and the energy in [−0.69J, 0.69J] is the atom-photon
bound state. When 	 = 0 ∈ [−0.69J, 0.69J], θ = 0.4π (triv-
ial phase), we plot the dynamic of the system varying with
time under the initial state of the system in the atomic excited
state as shown in Fig. 3(b). We can see that the excitation
remains in the atom and is not exchanged with the SSH
chain. Meanwhile, in the inset of Fig. 3(b), we display the
distribution of the SSH chain photons on the site. It can be
clearly seen that the photon is localized only exponentially on
the left sublattice A of the atom, which is called the photon
bound state. This phenomenon is similar to the atom coupling
with the SSH chain under periodic boundary condition [48]
and the emission of the photon from the atom to the SSH chain
is prohibited.

For the atom coupling to the finite SSH chain in the topo-
logical phase (θ = 0.65π ), the energy spectrum is shown in
Fig. 3(c), and the enlargement at the region 	 ∈ [−0.05, 0.05]
is displayed in Fig. 3(e). We can see that when 	 = 0
the energy levels of band-gap states exhibit anticrossover
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FIG. 3. [(a), (c)] The energy spectrum of the system vs 	 for the
SSH chain in the (a) trivial phase θ = 0.4π and (c) topological phase
θ = 0.65π . (b) The probability evolution of the atomic excited state
|ψe|2, left edge state |ψL|2, and right edge state |ψR|2 with 	 = 0
and θ = 0.4π (trivial phase), where the inset displays the probability
of the waveguide photons on the sites. (d) The probability of |ψe|2,
|ψL|2, and |ψR|2 with 	 = 0 for 	 = 0.04J in the inset. (e) The
enlargement of panel (c) in the region 	 ∈ [−0.05, 0.05]. [(f), (g)]
The probability distribution of band-gap states corresponding to the
blue dotted line in panel (e) for (f) 	 = 0.04J and (g) 	 = 0. For
panels [(d)–(g)], the parameter θ = 0.65π (topological phase), and
the other parameters are p = 5, N = 8, g = 0.01J , and J = 1.

behavior. When the detuning is far away from the resonance
the energy levels are separated from each other. In Figs. 3(f)
and 3(g), we plot the probability distribution of band-gap
states corresponding to the blue dotted line in Fig. 3(e) for
	 = 0.04J and 0, respectively. It can be seen that the proba-
bility distribution of the band-gap state distributes only on the
chain when 	 = 0.04J . However, when 	 = 0, the probabil-
ity distribution of the band-gap states is distributed over both
atom and SSH chain as shown in Fig. 3(g), which implies that
the band-gap state is hybridized. For the detuning far away
from the resonance, the main components of these band-gap
states are labeled in Fig. 3(e), where |ψN (N+1), g〉 (|vac, e〉)
denotes that the SSH chain is in the state |ψN (N+1)〉 (in the
vacuum state) and the atom is in the ground state |g〉 (in the
excited state |e〉). The dynamics evolution of the system with
time for the atom initially in the excited state was plotted in
Fig. 3(d) for 	 = 0.04J and 0. We can find that the effective
transitions between the atomic excited state and band-gap
states are prohibited when 	 = 0.04J as seen in the inset of
Fig. 3(d). When 	 = 0, we can see the exchanges between
the atomic excited state and two edge states, which means the
effective coupling between the band-gap states and the atomic
excited state. In addition, as displayed in Fig. 3(e), in the

topological phase, if we adiabatically tune 	 to resonate with
the edge mode |
N 〉 or |
N+1〉, then the atomic excitations
are converted to |L〉 + |R〉 or |L〉 − |R〉, thus generating long-
distance quantum entanglement at both ends. In conclusion,
in the topological phase, when the atomic frequency is reso-
nant with the center frequency of the SSH chain, i.e., 	 = 0,
an effective transition between the excited state of the atom
|vac, e〉 and the band-gap state |ψN (N+1), g〉 occurs, while in
any other cases the atom cannot exchange the excitation with
the SSH chain.

Next, we consider the atom resonantly interacting with the
SSH chain with 	 = 0. Under the condition g/J � 1, due
to the energy of band-gap states with EN (N+1) ≈ 0, which is
near resonant with the atomic frequency, the coupling between
other eigenstates and the atom can be ignored due to |Ej |Mix =
|EN−1(N+2) 	 gζ ∗

2p, j . In a word, the atom only couples with
the two energy levels |�N 〉 and |�N+1〉. Thus when the atom
couples to sublattice Bp, the effective Hamiltonian can be
written as

H = EN�
†
N�N + EN+1�

†
N+1�N+1

+ NLgcb
p/

√
2(�†

N − �
†
N+1)σ + H.c. (5)

Therefore, in single-excitation space, when we consider the
frequency of the atom as resonant with the SSH chain,
the above Hamiltonian only causes the subspace transitions
|ψN , g〉 ↔ |vac, e〉 ↔ |ψN+1, g〉. The case of the atom cou-
pling to sublattice Ap can also be analyzed similarly, but we
will not go into details. During the review process of this
paper, we read the recent work [57], which also investigated
atom coupling with a finite SSH chain leading to a coupling-
dependent hybridization of the atomic and edge states, which
in turn establishes a highly accurate three-state model equiva-
lently describing the whole system. Different from [57], here
we focus on how adiabatic processes can be used to realize the
transfer of atomic excitations to the end of the chain, and the
effect of the coupling position of the atoms on the excitation
transfer.

III. CONTROLLABLE EXCITATION TRANSFER
THROUGH THE ADIABATIC PROCESS

Because the band-gap states of the SSH chain can be writ-
ten as the superposition of edge states as Eq. (3), when the
atom couples with the SSH chain at sublattice Bp, the effective
transition between the band-gap states and the atomic excited
state Eq. (5) can be rewritten in the subspace {|vac, e〉, |ψL, g〉,
|ψR, g〉}:

Hsub = G|ψL, g〉〈ψR, g| + GR,b|ψR, g〉〈vac, e| + H.c., (6)

where we set G = EN = (−1)N+1N2
L J1(J1/J2)N−1, and GR,b =

gNL(− J1
J2

)N−p. We can find that when the atom is coupled to
sublattice Bp the atom is equivalently coupled to the right edge
state. Due to finite-size effects, the right edge state is coupled
to the left edge state. In this case, the three-state model can
be viewed as a “�” configuration |vac, e〉 ←→ |ψR, g〉 ←→
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FIG. 4. (a) The parameters |G| and |GR,b| as a function of θ for
different p. (b) The eigenenergies vary with θ for p = 6. [(c), (d)]
Distribution of the probability of eigenstates in excited-state atoms
and left and right edge states of (c) |φ0〉 and (d) |φ+〉 for p = 6. The
parameters are N = 8, g = 0.01J , 	 = 0, and J = 1.

|ψL, g〉. Rewriting Eq. (6) in the matrix form, we can obtain

Hsub =
⎡
⎣ 0 0 GR,b

0 0 G
GR,b G 0

⎤
⎦. (7)

The eigenvalues of Hsub can be obtained by solving the cubic
equation

λ3 − (
G2 + G2

R,b

)
λ = 0. (8)

The eigenenergies of Eq. (8) can be solved as
λ0(±) = 0,±

√
G2 + G2

R,b . The corresponding eigen-
states can be obtained as |φ0〉 = {cos ν; sin ν; 0},
|φ±〉 = N±{± GR,b√

G2+G2
R,b

,± G√
G2+G2

R,b

, 1}, where N± is the

normalization coefficient and ν = arctan(GR,b/G). It can be
seen that for the zero-energy eigenstate |φ0〉 is a superposition
of the atom excited state with probability cos2 ν and the left
edge state with probability sin2 ν. If we slowly adiabatically
tune θ from 0.5π to π , the parameter ν changes from 0
to π/2 corresponding to the parameter changing from
GR,b/G � 1 to GR,b/G 	 1, and then the zero-energy
eigenstate adiabatically evolves from |φ0〉 = {1; 0; 0} to
{0; 1; 0}. During slow change of θ from π/2 to π , the
probability of the left edge state |ψL〉 is mainly distributed on
the left sublattice Ai, and will eventually be fully distributed
on the leftmost sublattice A1 (for details see the Appendix),
under a certain group of parameters. Actually, the zero-energy
eigenstate |φ0〉 is the so-called dark state or coherent
population trapping state and the adiabatic evolution of
the zero-energy state analogous to the stimulated Raman
adiabatic passage process [58].

In Fig. 4(a), we plot the parameters G and GR,b varying θ

for different coupling positions p for N = 8. We can observe
that, for p < 5, G is always greater than GR,b and, for p � 5,
G changes from greater than GR,b to less than GR,b. When
θ > 0.7π , G < 10−6 is converging to zero and GR,b > G for
only p � 5 [see inset in Fig. 4(a)]. In Fig. 4(b), we plot the

eigenenergies λ± and λ0 varying with θ for p = 6. We can
see that the eigenenergies λ± will tend to zero (|λ±| < 10−6)
when θ > 0.95π , leading to the near degeneracy of the three
energy levels and the invalidity of the adiabatic passage. We
can understand the requirement for p � 5 and the range of θ

from the condition of the adiabatic process, which demands
that the time rate of the equivalent interaction ν̇ is less than
the difference between the instantaneous eigenenergies 	λ =√

G2 + G2
R,b [59]; thus the energy-level difference should be

nonzero, i.e., 	λ > 0, until the excitation is transferred. This
condition results in the requirement p � 5 and the range
of θ . In addition, we can use global adiabatic conditions to
discuss the requirement for the parameters (the details are
given in the Appendix). The global adiabatic condition yields
the same result as the nonzero band-gap condition, both of
which require p � 5. We must point out that p � 5 and the
range of θ in Fig. 4(b) is only valid for N = 8. If N is different,
the requirement for the value of p and θ under the adiabatic
condition is different because 	λ > 0 relates with N and g
[see Eq. (A2)], which means that one can use the adiabatic
condition to find a reasonable value p and θ for certain N .

In Fig. 4(c), we plot the probability of the atom |ψe|2,
|ψL|2, and |ψR|2 as a function of θ for |φ0〉. We find that, when
θ = 0.5π and G/GR,b 	 1, |φ0〉 is mainly concentrated on
the atomic excited state; with increasing θ , G/GR,b → 0 and
|φ0〉 is most concentrated on the left edge state as presented
in Fig. 4(c). Thus, by adiabatically tuning θ , we can realize
the transfer of atomic excitation to the left edge state. For
|φ+〉, it is transferred to the excited state of the atom and
right edge states with the same probability when θ → π as
shown in Fig. 4(d). Similarly, when the atom is coupled to the
sublattice Ap, there is still an eigenstate with zero eigenvalue,
|φ0〉 = {−G/GL,a, 0, 1}, where GL,a is the transition between
the atomic excited state and the left edge state. It can be found
that |φ0〉 is a superposition of the atomic excited state and
the right edge state. By adjusting θ , we can find that, as θ

increases, the excitation is distributed mainly in the atomic
excited state initially and the excitation is transferred to the
right edge state finally. In addition, it is worth noting that,
when θ = π , the left (right) edge states are mainly distributed
on the leftmost (rightmost) sublattice A1 (B2N ), which implies
that the atom in the excited state can be transferred to the end
of the chain through SSH mode channels, and the direction
is completely controllable by setting the atom coupling to
sublattice Ap or Bp. In a word, when the atom couples to Bp,
the excitation of the atom is transferred to A1; if the atom
couples to Ap, the excitation of the atom is transferred to BN .
This unidirectional transition is resulted from hybridization
of the edge states for the finite-size chain and related to the
topology property of the chain.

In order to prove the correctness of the three-state model,
in Fig. 5(a), we plot the energy spectrum varying θ under
the case where the atom couples to sublattice Bp for the total
Hamiltonian (1). It can be seen that there are three band-gap
states, where a zero-energy state |EN+1〉 is in all ranges and
|EN 〉 and |EN+2〉 are in θ ∈ [0.5π, π ]. In order to investigate
the zero-energy state |EN+1〉, we plot the probability distribu-
tion of |EN+1〉 on the sites varying θ as shown in Fig. 5(c).
We find that in the range θ ∈ [0, 0.5π ] the probability distri-
bution of |EN+1〉 is concentrated on the atom, and it gradually
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FIG. 5. (a) The energy spectrum with the variation of θ when the
small atom couples with sublattice B. [(b), (c), (d)] The probability
distribution of the three band-gap states |EN 〉, |EN+1〉, and |EN+2〉,
respectively, on the sites varies with θ . The parameters are N = 8,
g = 0.01J , p = 6, and J = 1.

transfers to the rightmost sublattice A1 as θ increases. We have
also investigated the distribution of the probability of the other
band-gap states as shown in Figs. 5(b) and 5(d). It can be
found that the distribution of the band-gap states is mainly
concentrated on the excited state of the atom and right edge
states with the SSH chain in the topological phase, which is
consistent with |φ±〉. That indicates that our previous discus-
sion in the subspace is reasonable. The above results mean
that we can realize controlled quantum information transfer.
The atom acts as the transmitter of the signal and the ends
of the chain (A1, B2N ) act as the receiver of the information.
The transfer of information to the leftmost or rightmost ends
of the chain is achieved by controlling the atom coupling to
sublattice Ap or Bp, respectively.

Now, under a slowly time varying rate, we directly employ
time-dependent Hamiltonian (1) to prove the correction of the
above discussion. We set θ = �t , � is the slowly time varying
rate, the atom is initially in the excited state, and the topo-
logical chain is in the vacuum state so |ψi〉 = |0, 0, . . . , 0, 1〉.
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With Schrödinger equation i d|�〉
dt = H |�〉, we can derive the

final state |ψ f 〉. The results of the numerical simulations are
displayed in Fig. 6(a), where |ψ1,a|2 and |ψ2N,b|2 are the
probability of the leftmost and rightmost sublattices, respec-
tively. It can be seen that when the atom couples to sublattice
Bp the excitation is transferred to the leftmost sublattice A1,
which is consistent with Fig. 5(c). Meanwhile, when the atom
couples to sublattice Ap, the excitation is transferred to the
rightmost sublattice B2N ; the latter case is not shown here.
However, during the evolution, the parameter θ needs to be
adiabatically varied to ensure a sufficiently high probability of
success [20,25]. In Fig. 6(b), we plot the fidelity F = 〈ψt |ψ f 〉
at time t f = π/� varying � for different coupling positions p,
where |ψt 〉 = |1, 0, . . . , 0, 0〉 is the target state. The numerical
results show that for a fixed �, e.g., � = 10−5J , the fidelity
is very low for p < 5 and the fidelity can reach 1 for p � 5.
This arises from the fact that the band gap 	λ =

√
G2 + G2

R,b
increases with p, which is more favorable for the adiabatic
condition. With � increasing to � = 10−4J , even if p = 6,
the fidelity still does not reach 1. For p = 7, 8, the fidelity can
reach 1 for � ∈ [10−6J, 10−4J]. The above results are con-
sistent with the adiabatic condition parameter requirements
in Fig. 10. In a word, as the atom approaches closer to the
leftmost sublattice B2N with a larger value of p, the time
varying rate � can be relaxed to some degree.

IV. EXCITATION TRANSFER
WITH DYNAMIC EVOLUTION

In this section, we discuss the controllable excitation trans-
fer beyond the adiabatic process. In [57], it is mentioned that
controlled excitation transfer can also be realized by consid-
ering the different coupling strengths of the atoms to the SSH
chains; for weak coupling strength, the excitation of the atoms
can be transferred to both sides of the chain, and for strong
coupling strength it will result in the transfer of the atomic
excitation to one side of the chain. Here we focus on the
effect of the dimerization strength (θ ) of the SSH chain on
the excitation transfer, and the results show that we can set
different dimerization strengths to achieve atomic excitation
transfer to either side of the chain. We take the atom coupling
sublattice Bp as an example. In the topological phase, when
the atom is in the excited state initially, under the Hamiltonian
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(7), the state will evolve as

|ψ (t )〉 = αe(t )|vac, e〉 + αL(t )|ψL, g〉 + αR(t )|ψR, g〉, (9)

with

αe(t ) =
G2 + G2

R,b cos
[√

G2 + G2
R,bt

]
G2 + G2

R,b

,

αL(t ) =
−GGR,b + GGR,b cos

[√
G2 + G2

R,bt
]

G2 + G2
R,b

,

αR(t ) =
iGR,b sin

[√
G2 + G2

R,bt
]

√
G2 + G2

R,b

. (10)

Apparently, the above probability amplitudes depend on G
and GR,b. As shown in Fig. 4(a), when θ ≈ 0.73π and G ≈ 0,
thus the probability amplitude of left edge state αL(t ) = 0, the
atom and the right edge state exhibit Rabi oscillations with the
period depending on GR,b. The result is displayed in Fig. 7(a),
where the marker (circle, triangle and square) lines represent
the results from solving the full Hamiltonian Eq. (1) dynamics
evolution and the others are obtained by Eq. (10). For 0.5π <

θ < 0.7π and p = 7, we find when θ = 0.6057π and G =
GR,b that the amplitudes become αe(t ) = [1 + cos(

√
2Gt )]/2,

αL(t ) = [−1 + cos(
√

2Gt )]/2, and αR(t ) = i sin(
√

2Gt )/
√

2.
It is evident that as t varies from 0 to π/(

√
2G) the excitation

is distinctly transferred from the atom to the left edge state, as
illustrated in Fig. 7(b). In addition, when t f = π/

√
G2 + G2

R,b
and αR(t f ) = 0, in this time |ψ (t f )〉 is a superposition of
the excited atomic state and the left edge state as |ψ (t f )〉 =
(

G2−G2
R,b

G2+G2
R,b

|10〉 + −2GGR,b

G2+G2
R,b

|01〉)|0R〉. Thus, by setting the coupling

point and θ , we can achieve the excitation transferred from the
atom to the ends of the chain under the dynamic evolution.

V. SSH CHAIN-COUPLED DISORDER AND ATOMIC
MISMATCH FREQUENCY EFFECTS

ON EXCITATION TRANSFER

Next, we discuss the effects of disorder on the energy
spectrum and the probability of distribution of the band-gap
state, where we mainly consider the effect of diagonal and
off-diagonal disorder. Taking disorder perturbations into con-
sideration, the Hamiltonian (1) becomes

H = 	σ †σ +
N∑

i=1

εa†
i ai + εb†

i bi + (ga†
pσ + H.c.)

+
N∑

i=1

[(J1 + η)a†
i bi + (J2 + η)a†

i+1bi + H.c.], (11)

where ε and η are the diagonal and off-diagonal disorder and
the atom couples to the sublattice Ap. We consider ε and η

to be random numbers in the range [−ξ, ξ ], where ξ is the
disorder strength. In Figs. 8(a) and 8(c), we plot the energy
spectrum varying θ under the off-diagonal disorder (ε = 0)
with strength ξ = 0.1J and 0.5J , respectively. It can be seen
that the presence of disorder affects the energy spectrum, but
the energy of the band-gap state marked by the orange dashed
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FIG. 8. [(a), (c), (e)] The energy spectrum varies with θ for
the disorder within the region (a) η ∈ [−0.1J, 0.1J], ε = 0; (c) η ∈
[−0.5J, 0.5J], ε = 0; and (e) η = 0, ε ∈ [−0.1J, 0.1J]. [(b), (d), (f)]
The probability of distribution of the band-gap state varies with θ

corresponding to the orange dashed line in panels (a), (c), and (e).
The parameters are g = 0.01J , N = 8, p = 6, 	 = 0, and J = 1.

line is not affected. For weak off-diagonal disorder, the proba-
bility distribution of the band-gap state marked by the orange
dashed line is not influenced, but it is obviously affected for
the larger disorder strength comparing Figs. 8(b) and 8(d).
For diagonal disorder (η = 0), we find that the energy of the
band-gap state is not sensitive but the probability distribution
of the band-gap state is very sensitive as shown in Figs. 8(e)
and 8(f).

In Sec. III, we investigate atom resonance coupling to the
SSH chain 	 = 0, and the case of frequency mismatch 	 
= 0
should be discussed. Considering this case is meaningful, e.g.,
in superconducting circuits experiments; in order to realize
	 = 0, a tunable quantum qubit is usually required; however,
the tunable quantum qubit is affected by decoherence noise,
which in turn produces a change in frequency [60]. In Fig. 9,
we plot the evolution of fidelity varying with 	. We can see
that for |	| < 0.05J the fidelity can be greater than 95% but
the fidelity decreases rapidly as 	 continues to increase. This
is due to the fact that when the detuning value is large the
atoms no longer resonate with the band-gap state of the SSH

-0.1 -0.05 0 0.05 0.1
/J

0.85

0.9

0.95

1

Fi
de
lit
y

FIG. 9. The fidelity at t = π/� as a function of 	 with N = 8,
� = 10−5J , and p = 6. The parameters are g = 0.01J and J = 1.
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chain, and therefore the fidelity decreases rapidly. Thus, for
the present model, it is immune to weak off-diagonal disorder
and slight mismatch frequency.

VI. DISCUSSION

For an odd number of sites in the SSH chain, there
will always be a zero-energy edge state |φ〉 in the energy
spectrum band gap. When atomic resonances are coupled
to the SSH chain, the system can be approximated to a
subspace {|φ, g〉, |vac, e〉} consisting of the zero-energy state
and atomic excited states. Under this case, the eigenener-
gies and corresponding eigenstates E± = ±G0 and φ± =
1/

√
2{1; ±1}, where G0 is the coupling between the zero-

energy state and atomic excited state. Obviously this is a
superposition of the zero-energy state and the excited state of
the atom and has the same probability. As a result, we could
not realize the transfer of atomic excitations to the end of the
chain through an adiabatic process.

Next, we discuss the experimental feasibility. In recent
years, based on the flexibility of the parameters and the design
capability of the system structure [61,62], superconduct-
ing circuits have attracted much attention and have evolved
into well-established platforms for the study of quantum
simulation [63–65], quantum computation [66], and quan-
tum information processing [67,68]. Recently, these works
[38,48,69] have pointed out theoretically and experimentally
that each cell of the SSH chain can be mapped to the two
LC resonators. The relative magnitude of intra- and intercell
coupling between neighboring resonators is determined by the
auxiliary capacitance and inductance [70,71]. By designing
the intra- and extra-cell capacitance and inductance, a periodic
modulation of the coupling can be achieved to obtain the SSH
chain. Because of the inevitable loss of atoms in real systems,
the time t f to complete the transfer of excitation from the
atom to the leftmost sublattice A1 needs to be much larger
than the decoherence time of the atom during the state transfer
process. Recently, coherence times of the order of millime-
ters (t ≈ 10−3 s) for superconducting bits have been realized
based on state-of-the-art experimental systems [72]. As men-
tioned in Fig. 6(b), when p = 5, we only need � = 10−5J to
achieve high-fidelity excitation transfer. The time to complete
the transfer of the adiabatic state t f = π/(�J ). In [38], the
unit coupling strength of the SSH chain J ≈ 108Hz, thus
the time t f = 10−3 s approximately equals to the state-of-the-
art atomic decoherence time. Since the adiabatic requirement
� becomes progressively larger as p increases [shown in
Fig. 10(c)], for example, if q = 7, we only need � = 10−4J ,
which corresponds to a time of excitation transfer t f =
10−4 s much smaller than the decoherence time of the atoms.
Therefore, our scheme may be realized in superconducting
circuits.

VII. CONCLUSION

In this paper, we study the coupling of an atom with
a finite-size SSH chain and aim to realize the controllable
excitation transfer between the atom and the ends of the SSH
chain. In the topological phase, when the frequency of the
atom is resonant with the center frequency of the SSH chain,

FIG. 10. (a) F = 〈ψL|ψ1,a〉 varies with θ , where the fidelity
reaching 98% means that the left edge state is completely con-
centrated in |A1〉. (b) 	λ varies with � and p. The color region
corresponds to 	λ > 10−6. (c) The area � varies with � and p. The
color area denotes log(2�/π ) > 0. (d) The area � as a function of
p for � = 0.000 01J . The parameters are N = 8, g = 0.01J , 	 = 0,
and J = 1.

an effective transition between the atomic excited state and
the band-gap states can be observed. Under weak-coupling
conditions, the system can be equated to a three-state model,
consisting of an atomic excited state and two band-gap states.
By solving the eigenvalues of the three-state system, we find
that there exists a zero-energy state, and we can use adiabatic
processes to adjust the probability distribution of the zero-
energy state. In turn, we can transfer the excitation of the
atom to one of the ends of the SSH chain, and which end they
are transferred to depends on which sublattice of the cell the
atom is coupled to. Furthermore, the excitation can also be
transferred from the atom to the ends of the chain by fixing
the parameters under the dynamic evolution.
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APPENDIX: ADIABATIC CONDITIONS

The adiabatic process requires that the time change rate of
the equivalent interaction ν̇ is less than the difference between
the instantaneous eigenenergies [59]. Corresponding to the
current system, the adiabatic condition is

|ν̇| � 	λ. (A1)

Thus the energy-level difference should be nonzero un-
til the excitation is transferred, i.e., 	λ > 0, which can be
satisfied by assuming 	λ > 10−6. Next we discuss how the
distribution of the probability that the left edge state |ψL〉 is in
the leftmost sublattice A1 changes with θ as θ changes from
π/2 to π . We use the fidelity F = 〈ψL|ψ1,a〉 to indicate when
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the left edge states are distributed in |A1〉. The fidelity reaching
98% means that the left edge state is completely concentrated
in |A1〉. As shown in Fig. 10(a), when θ changes, F gradually
increases, and when θ � 0.775π (orange region) F > 98%
is always satisfied. Thus we just need to ensure that when
θ > 0.775π then 	λ > 10−6, namely,

√
N4

L J1

(
− J1

J2

)2N−2

+ g2N2
L

(
− J1

J2

)2N−2p

> 10−6. (A2)

In Fig. 10(b), we plot 	λ > 10−6 corresponding the param-
eters region. We can see that 	λ > 10−6 is satisfied only if
p � 5. By integrating Eq. (A1) over the interaction duration,
we can obtain the global adiabatic conditions. The global
adiabatic condition can be expressed as an area condition [58]:

� =
∫ t f

ti

dt
√

G2 + G2
R,b =

∫ t f

ti

dtλ+(t ) 	 π

2
, (A3)

where ti = π/(2�) and t f = π/�. Obviously � corresponds
to the area of the instantaneous eigenenergy λ+ in the adia-
batic evolution surrounded (below the purple dotted line) by
the x axis as shown in Fig. 4(b) with the shadow region. When
�t ∈ [0.5π, π ], due to J1/J2 < 1, G and GR,b decrease power
exponentially with increasing N for a fixed p, and then we
need enough time to satisfy the global adiabatic conditions,
namely, a sufficiently small �. When J1/J2 < 1, N and � are
fixed, and the global adiabatic condition will be more fulfilled
as the atomic positions approach closer to the end of the chain
(the larger p is) since GR,b grows power exponentially with p.
In Fig. 10(c), we plot the area conditions � varying with p and
� for N = 8, where the color region denotes log(2�/π ) > 1,
namely, the parameter zones where the adiabatic conditions
are satisfied [73]. For different p, the rate of change is differ-
ent to satisfy the adiabatic condition, but at least p � 5. For
example, for � = 0.00001J , the area increases gradually as
p and the adiabatic condition is satisfied only when p � 5 as
displayed in Fig. 10(d).
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