
PHYSICAL REVIEW A 109, 033707 (2024)
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Disorder in one-dimensional (1D) many-body systems facilitates abundant phases such as many-body localiza-
tion (MBL) and thermalization. However, it remains unclear regarding their existence and behavior within hybrid
quantum systems. Here, based on a simple bosonic-spin hybrid model, known as the Jaynes-Cummings-Hubbard
(JCH) array, we investigate the effect of disorder compared to the phenomena in the clean system with the varia-
tion of atom-photon coupling strength. By using the level-spacing ratio, entanglement entropy, and the properties
of observable diagonal and off-diagonal matrix elements, we find that strong disorder results in the appearance
of a MBL phase in the JCH model that strongly violates the eigenstate thermalization hypothesis (ETH), while
a conditional prethermal behavior can exist in the weak disorder regime. The conditional prethermal dynamics
is based on the choice of initial product states. This work systematically reveals abundant many-body phases in
the 1D JCH model and clarifies the discrepancies in the thermalization properties of systems with and without
disorder.
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I. INTRODUCTION

Many strongly correlated particles in a closed quantum
system enable abundant interesting phases. In the past two
decades, a large number of works have concluded that exis-
tence of strong disorder can strongly violate the eigenstate
thermalization hypothesis (ETH) in one-dimensional (1D)
nonintegrable many-body systems and a phase transition from
thermalization to many-body localization (MBL) in various
systems [1–3], which is an extension of Anderson localization
in many-body systems [4,5]. The local integrals of motion
lead to the system retaining information about its initial state
for a long time in this dynamic phase [5–13]. The significance
of studying such systems lies in the order of excited states
in its entire energy spectrum [14–19], which were argued
is potentially applied to the storage of quantum information
[1,20].

The localization phase of many-body systems caused by
disorder in a chain configuration for spins, fermions, or bosons
has received extensive attention [21–36]. It can be asked
whether such a MBL phase and its transition to thermalization
can exist in a hybrid quantum many-body system, in which the
Jaynes-Cummings-Hubbard (JCH) model is a typical example
that has the advantages of precise manipulation, individual
addressing, and the construction of any geometric structure
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[37]. The JCH model is a hybrid system of photons and spins,
in which there are novel matter states and phenomena [37].

In this paper, we focus on the JCH model formed by a set
of coupled cavities. Each cavity traps photons interacting with
a two-level quantum system (it can be atom, qubit, or others)
and this atom-photon interaction induces intrinsic nonlinear
effect [38]. Such a model is a nonintegrable system [39,40],
reminiscent of anyonic tight-binding quadratic models [41],
which is different from the cross-stitch disordered lattice
with a flat band [42]. For experimental platforms, disorder
is inevitable. It is not yet clear how disorder affects the ther-
malization properties of the JCH model. Here, we choose the
atom-photon interaction as the disordered quantity, induced
by the random locations of the atom in cavities, as illustrated
in Fig. 1. Thus, the disorder does not change the sign of
the atom-cavity coupling strength, being in a range of [0, D],
where D is the maximum coupling strength. In this paper, we
will unravel the veil of the influence of this kind of disorder
on the thermal properties of the JCH chain and discuss its
difference from a clean system. The lattice structure of the
JCH model and the disorder introduced over the atom-photon
interaction set it apart from conventional spin chain models.
Intuitively, both weak and strong disorders in the JCH model
could lead to distinct many-body dynamics. Note that our
work is performed without losses, while losses are inevitable
for any quantum optical system [43]. Thus, properly dealing
with dissipation has to be considered in future study.

Here, through numerical simulation, we find that under the
weak disorder strength related to atom-photon interactions,
the system behaves in the quasi-integrable phase as if there
was no disorder [44]. However, disorder actually leads to the
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FIG. 1. Schematic diagram of the JCH array with coupling disor-
der. The 1D JCH model comprises interconnected Jaynes-Cummings
models via photon tunneling (represented by yellow wavy curves),
wherein each cavity accommodates a two-level atom (depicted by
blue balls), which is randomly fixed at a position δi deviating from
the central position of the cavity.

emergence of a prethermal time that depends on the initial
state [45]. The quasi-integrable phase is a region close to the
integrable point, which exhibits behavior similar to that of
MBL under the finite size [44]. At the regime of medium
disorder (coupling) strength, the ergodic phase appears in
the disordered (clean) system. In this scenario, the system
exhibits thermalized behavior, implying that over an extended
period of evolution, the excitation population becomes ho-
mogeneously distributed throughout the system, regardless of
its initial state. At strong coupling strength, accompanied by
strong disorder, the system enters into a typical MBL phase,
which has been validated by a large number of nonintegrable
models, while in the clean system, there is an emergence of
quasi-integrable phase. The paper is organized as follows.
Section II presents the theoretical model and introduces level-
spacing ratio and entanglement entropy to study the various
phases of the disordered JCH system. We investigate the ef-
fect of disorder on phase transition in Sec. III. Section IV is
devoted to discussion of the eigenstate thermalization of the
disordered and the clean JCH systems.

II. DISORDERED AND CLEAN
JAYNES-CUMMINGS-HUBBARD ARRAYS

We consider a disordered one-dimensional (1D) JCH
model, and the schematic diagram of it is shown in Fig. 1
[46], whose Hamiltonian at the rotating wave approximation
is given by (h̄ = 1)

H ′ =
L∑

i

[ωca†
i ai + ωaσ

+
i σ−

i + gi(aiσ
+
i + a†

i σ
−
i )]

− J
L−1∑

i

(a†
i ai+1 + aia

†
i+1), (1)

where the first two terms of the Hamiltonian describe free
Hamiltonians of photons and the two-level system on each
site, and ωa (ωc) is the frequency of the two-level system
(photons) in single cavities. We only consider the resonance
frequency case (ωa = ωc). σ+

i and σ−
i are the atomic rais-

ing and lowering operators, respectively. Their corresponding
commutation relations are [σ+

i , σ−
j ] = δi jσ

z
i . a†

i (ai) is the
photon creation (annihilation) operator for the ith site. They
satisfy commutative relationship [ai, a†

j ] = δi j . L is the num-
ber of lattice sites. The atom-photon coupling strength is gi ∈
[0, D] for the ith cavity and D denotes the disorder strength
[47]. The term in the second line is the sum of a hopping

term of photons, and we assume that all the hopping strength
of photons between the nearest neighboring cavities is iden-
tical and equal to J . This kind of nonintegrable Hamiltonian
can exhibit thermalized and quantum chaotic behavior, distin-
guishing from integrable quadratic models [48]. By using the
rotating transformation operator U = exp[i

∑L
j=1 ωc(a†

j a j +
σ+

j σ−
j )t], the Hamiltonian in Eq. (1) can be rewritten as

H =
L∑

i

gi(aiσ
+
i + a†

i σ
−
i ) − J

L−1∑

i

(a†
i ai+1 + aia

†
i+1). (2)

Numerical simulation in the rest of the content is based
on Hamiltonian Eq. (2). In addition, the total number of
atomic and photonic excitations is fixed as N = ∑

i(a
†
i ai +

σ+
i σ−

i ) = ∑
i(n

c
i + na

i ), and we consider the open bound-
ary condition (OBC) where the filling factor is ν ≡ N/L =
1/2. The disordered JCH model only has a chiral sym-
metry, and its corresponding chiral operator is [40] � =
� j∈eveneiπa†

j a j � j∈oddσ
z
j . Then, the dimension of Hilbert

space of H is given by [40,49]

D =
N∑

s=1

L(N + L − s − 1)!

(N − s)!(L − s)!s!
. (3)

The basis vectors are written as |n〉 ≡ ∏
i |nc

i , na
i 〉i. By utiliz-

ing the exact diagonalization, the maximum size of the system
is L = 10.

In order to clarify the special behaviors of disorder, the
results of the disordered JCH model are compared to those
of the clean JCH model. The Hamiltonian of the clean JCH
model is given by

Hcl = gcl

L∑

i

(aiσ
+
i + a†

i σ
−
i ) − J

L−1∑

i

(a†
i ai+1 + aia

†
i+1). (4)

The Hamiltonian Hcl owns the extra reflective symmetry. Un-
der the reflection (parity) operator P, we study the clean JCH
model in antisymmetric subspaces.

For the characterization of the MBL phase and ergodic
phase, we need to introduce two physical quantities. The
first one is the statistical features of spectrum by the level-
spacing ratio 〈r〉 [50,51], which is a statistical quantity and
is the average over rn = min{	En+1/	En,	En/	En+1} with
	En = En+1 − En and En is the nth eigenenergy. For the MBL
phase, the level-spacing ratio exhibits a Poisson distribution
with 〈r〉 ≈ 0.386, while it shows the Wigner-Dyson distri-
bution with 〈r〉 ≈ 0.536 in the ergodic phase [50,52,53]. In
this paper, “〈·〉” indicates the average of physical quantities
including eigenstates and disordered realizations. The other
quantity is the half-chain entanglement entropy (EE) SL/2 =
−Tr[ρs ln(ρs)] with ρs = Tri�L/2[|n〉〈n|]. The EE describes
how information spreads from one part of the system [1].
In the MBL phase, the average EE, 〈SL/2〉, slowly grows as
the time evolution and follows an area-law scaling [14,18,54].
Differently, 〈SL/2〉 yields a volume-law scaling in the ergodic
phase, which approaches to the Page value SP for a random
pure state [55]. To clearly describe the occurrence of MBL
to ergodic phase transition, it is also necessary to show the
sample-to-sample deviation of the half-chain EE 	S, and its
peak value represents the phase transition point [18,56,57].
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FIG. 2. (a) The EE 〈SL/2〉 and (b) the sample-to-sample deviation
of the EE 	S as a function of gcl/J and Ds/J ∈ [D/2J, D/2J],
respectively. Regions i and iii represent the quasi-integrable phase,
region iv represents the MBL phase, and region ii represents the er-
godic phase.. (c) The level-spacing ratio 〈r〉 and (e) the EE 〈SL/2〉/SP

as functions of the scaled disorder strength D/J in the disordered
JCH model. The inset of (e) is the deviation of the EE 	S/SP. The
average half-chain EE is rescaled by the Page value SP. (d) The
level-spacing ratio 〈r〉 as a function of the scaled coupling strength
gcl/J in the clean JCH model. The EE 〈SL/2〉/SP as a function of the
scaled coupling strength gcl/J in (f). Gray dashed lines mark 〈r〉 =
0.386 (Poisson distribution) and 0.536 (Wigner-Dyson distribution)
in (c) and (d). In the clean JCH model, the photon-atom coupling
strength gcl of each on site is assumed to be the same. The averaged
physical quantities of the disordered JCH model are taken by 1000,
400, and 50 disordered samples for L = 6, 8, and 10.

III. MANY-BODY PHASES AND TRANSITIONS

We set out to the responses of the level-spacing ratio
〈r〉 and the average half-chain EE of the disordered (clean)
model with increasing the disorder strength D/J (the pristine
photon-atom coupling strength gcl/J). In order to improve the
efficiency of numerical calculations, the middle third of the
energy spectrum was selected. Figures 2(a) and 2(b) depict
the average half-chain EE, 〈SL/2〉, and its deviation, denoted
as 	S, respectively, as a function of the coupling strength gcl/J

and disorder strength Ds/J . Here, we consider a generalized
model with random atom-photon coupling gcl/J − Ds/J �
gi/J � gcl/J + Ds/J in a general point (Ds/J, gcl/J) of the
diagram. Then, (Ds/J = 0, gcl/J) corresponds to the clean
case [absent in Figs. 2(a) and 2(b) as Ds/J is in the logarithmic
scale], while (Ds/J = D/2J, gcl = D/2J) corresponds to the
disordered case. There are three many-body phases in the
disordered JCH model, i.e., quasi-integrable (i and iii), MBL
(iv), and ergodic phases (ii). In Figs. 2(c)–2(f), as the disorder

strength increases, the level-spacing ratio exhibits a range of
distributions, transitioning from the quasi-degenerate distribu-
tion to the Wigner-Dyson distribution, and finally converging
to the Poisson distribution. Similarly, the EE undergoes a
transition from an area-law, then a volume-law behavior, to
an area-law behavior eventually. Here, we notice that the
quasi-degenerate distribution indicates that there is a signif-
icant amount of near degeneracy in the eigenenergy spectrum
of the Hamiltonian. As the system size increases, the quasi-
degenerate distribution of energy-level spacing approaches the
Poisson distribution, and the level-spacing ratio 〈r〉 trends to
be 0.386 as shown in Figs. 2(c) and 2(d). Upon the analysis
of entropy, as the system size increases, the half-chain EE
gradually approaches a small constant value (<1) with weak
disorder strength. This implies that the EE obeys the area law
at the thermodynamic limit and the variation of EE is a finite-
size effect in Figs. 2(d) and 2(e). However, for strong disorder
strengths, the finite-size effect is almost negligible. As for the
clean JCH model, these two quantities exhibit similarities to
those of the disordered JCH model in the regime of weak and
intermediate coupling strengths, whereas for strong coupling
interactions without disorder, the finite-size effect is relatively
pronounced.

We also show the sample-to-sample deviation of the EE
	S/SP for the disordered JCH model in the inset of Fig. 2(e).
The enhancement of the peak value of 	S/SP at D/J ∼ 6.3 is
at larger system size L = 10, implying that the system shows
an ergodic-MBL phase. Note that the other peak approaches to
the weak disorder strength (D/J ∼ 10−1) with the increase of
size L. Thus, we suppose that, under the weak disorder limit,
the disordered system presents the same integrable behaviors
as for the clean system [49]. Based on the above results, it
can be concluded that the intermediate disorder displays an
ergodic phase.

Next, we show the dynamics of the average half-chain EE
for different many-body phases in the disordered and the clean
JCH model. Previous works indicate that the EE dynamics
shows a scaling behavior of logt for the MBL phase [58,59],
while the EE rapidly tends to a saturation value in the ergodic
phase [60]. Here, Fig. 3 shows the time evolution of the EE
under different parameters, where the initial state is chosen
as |n〉in ≡ ∏

i∈odd |1, g〉i ⊗ ∏
j∈even |0, g〉 j . In Fig. 3(a), we can

find that at a disorder strength of D/J = 0.01, its EE ex-
hibits a rapid increase at early time, followed by oscillations,
a metastable period, and eventually approaches a saturation
value slowly. One can find that the time-average values of
〈SL/2(t )〉 for oscillating and metastable period regimes are
almost identical. It can be seen from Fig. 3(a) that the phenom-
ena of oscillation and metastable period remain stable across
different system sizes. As the number of disordered samples
increase, the oscillating period tends to become invariant and
the metastable period becomes a smooth function [see details
in Fig. 9(a) of Appendix A]. This observation suggests that
oscillation is an inherent characteristic of the weak disorder
system, while the average behavior of disordered realizations
gives rise to a metastable period in the finite-size system.
In addition, in the disorder-free case with a small coupling
gcl/J = 0.01, the EE dynamics show similar phenomena to
the weak disorder case, while the phenomenon of metastable
period disappears, as shown in Fig. 3(b). The observed
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FIG. 3. The average half-chain EE 〈SL/2(t )〉 vs time t for the
disordered (right) and the clean (left) JCH model. Three colors
represent three sizes L = 6 (black), 8 (red), and 10 (blue). The top,
middle, and bottom figures correspond to D/J, gcl/J = 0.01, 2, and
100, respectively. The averaged physical quantities of the disordered
JCH model are taken by 1000, 400, and 100 disordered samples for
L = 6, 8, and 10. Note that we plot the average time evolution of
3〈SL/2(t )〉 in (e).

difference can be interpreted as an indication that weak disor-
der strength induces prethermalization during the metastable
periods [60–62].

When D/J , gcl/J = 2, both disordered and clean cases are
in ergodic phases, and the EE tends to reach saturation rapidly.
In the disordered system at D/J = 100 [Fig. 3(e)], the EE
〈SL/2(t )〉 exhibits a log(t ) scaling behavior before reaching a
saturation value, while for the clean system at gcl/J = 100
[Fig. 3(f)], the results are similar to the case of gcl/J = 0.01.
The difference lies in the fact that the latter one has a pro-
longed oscillating period for the certain initial states and
ultimately reaches a saturation value rapidly within the finite-
size system. It is noteworthy that the dynamics of the EE differ
significantly between the disordered and clean coupling under
strong interactions. For the moment, we roughly consider that
the weak D/J , gcl/J and the strong gcl are quasi-integrable
phases, the intermediate regime of D/J and gcl/J are ergodic
phases, and the strong D/J is a MBL phase.

Furthermore, we find that the emergence of prethermal
dynamics strongly depends on initial states at the weak dis-
order regime, say, D/J = 0.01, as shown as the EE dynamics
in Figs. 4(a)–4(c). The prethermal dynamics occurs for the
initial states only with photonic excitations. On the contrary,
the EE would rapidly grow after a long threshold time for the
initial states only with atomic excitations. If the initial state
consists of both atomic and photonic excitations, the dynamics
of half-chain EE only show the oscillating period. Differently,
as for the clean case of the coupling strength gcl/J = 0.01
in Figs. 4(d)–4(f), there is no metastable prethermalization
process and the thermal plateau is higher than the case of
initial states with only atomic excitations.

To better exhibit the influence of initial states, we show the
dynamics of occupation numbers of all sites for three kinds

FIG. 4. The average half-chain EE 〈SL/2(t )〉 vs time t for the
disordered (first column) and the clean (second colum) JCH model
with different initial states. The disordered and clean cases corre-
spond to D/J and gcl/J = 0.01, respectively. (a) and (d) are shown
by the initial state (N c 
= 0, N a = 0). (b) and (e) are shown by the
initial state (Nc 
= 0, Na 
= 0). (c) and (f) are shown by the initial
state (N c = 0, N a 
= 0). N c (N a) is the number of photonic (atomic)
excitations. The black, red, and blue lines represent sizes L = 6, 8,
and 10, respectively. The 1000 (100) disordered samples correspond
to L = 6 (8) for the disordered case.

of initial states at weak atom-cavity coupling D/J = gcl/J =
0.01 in Fig. 5. The whole JCH system is consisting of atomic
and photonic parts. For the initial state only with photonic
excitations and before reaching the maximum half-chain EE,
the populations are constrained in the photonic part, exhibiting
a prethermal dynamics, distinguishing from the case of the
clean system (gcl/J = 0.01) with a nonthermal dynamics, as
shown in Figs. 5(a) and 5(d). This means that this weak cou-
pling prevents energy exchange between atoms and photons
within a considerable amount of time, while the weak disorder
causes a metastable prethermalization before the weak energy
exchange between atoms and photons. The atoms are nearly
decoupled from the photons. Thus, the atomic excitations that
are occupied are nearly stuck for a long time of the order
of 1/gcl (1/D). This provides the metastable atomic states
which are nearly degenerate as there is no hopping between
atoms. Therefore, the populations stay at the atomic part,
showing a metastable dynamics in both cases of disordered
and clean systems in Figs. 5(b) and 5(e). Also, the local nature
of these atomic modes restricts EE and shows the area law.
Thus, there is only weak indirect interatomic hopping and, as
a result, no remarkable oscillations appear in the dynamics, as
shown in Figs. 4(b) and 4(e). Unlike that, for the initial states
with both atomic and photonic excitations, both atomic and
photonic parts exhibit thermal-like dynamics, implying larger
entanglement entropy than the case of the initial states only
with photonic excitations.

IV. EIGENSTATE THERMALIZATION PROPERTIES

To further investigate the entire system properties, in this
section, we analyze the thermalization of the disordered and
clean JCH model to examine the validity of the ETH in
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FIG. 5. The averaged atomic (photonic) excitations occupation occupancy per site 〈na
i 〉 (〈na

i 〉) as a function of time t with different initial
states for the disordered and clean JCH models. The initial state of (a) and (d) is

∏
i∈odd |1, g〉i ⊗ ∏

j∈even |0, g〉 j , the initial state of (b) and (e)
is

∏
i∈odd |0, e〉i ⊗ ∏

j∈even |0, g〉 j , and the initial state of (c) and (f) is |1, e〉1 ⊗ |1, e〉5 ⊗ ∏
j∈others |0, g〉 j . The site index of photonic (atomic)

excitations is 1–8 (9–16). Each initial state exhibits three periods of time evolution, namely, 0 � t1 < 25, 1000 � t2 < 1025, and 106 � t3 <

1.000 025 × 106. The disordered and clean cases correspond to D/J and gcl/J = 0.01, respectively. The system size is chosen by L = 8. The
averaged physical quantities of the disordered JCH model are taken by 100 disordered samples.

different many-body phases, which were studied by the EE
dynamics above. In order to determine whether the system
can be thermalized, it is necessary to pay attention to whether
the diagonal and nondiagonal elements of the local observable
operator O satisfy the ETH [63–66]. The definition of local
operator is written as

Onm = O(Ē )	Enm + e−S(Ē )/2 fO(Ē , ω′)Rnm, (5)

where Ē = (En + Em)/2 is the average energy of adjacent
eigenenergies, and ω′ = En − Em is its energy difference.
Here, n and m are the indices of eigenstates, S(Ē )th stands for
the thermodynamic entropy, and Rnm is the random variable
which obeys a normal distribution. In the thermodynamic
limit, O(Ē ) and f (ω′, Ē ) are smooth functions about ω′ and
Ē . The first term in Eq. (5) is the expected values of the ob-
servable and the second term describes the off-diagonal matrix
elements. The average eigenstate-to-eigenstate fluctuations of
diagonal expectation is given by [29]

|δOnn| = |On+1,n+1| − |On,n|. (6)

In general, the eigenstate-to-eigenstate fluctuations both for
diagonal and off-diagonal elements exponentially decay as
the system size increases if the system satisfies the ETH
[25–30,67]. Here, we select two specific local observables
to discuss whether their behaviors are consistent with the
predictions of the ETH. The first observable is the occupancy
operator NL/2 at the site L/2, while the second observable
is the kinetic operator per site Hkin = (1/L)

∑L−1
i (a†

i ai+1 +
aia

†
i+1), which represents the reduced photon hopping term.
Firstly, the diagonal elements of observable NL/2 and Hkin

as functions of the energy density are plotted in Fig. 6. The
energy density is defined by εn = (En − Emin)/(Emax − Emin),
where En is the n-th eigenenergy, and Emin(Emax) represents
the minimum (maximum) eigenenergies. Here, we focus on
the middle four-fifths of the energy spectrum. In Figs. 6(a),
6(b), 6(g), and 6(h), it can be seen that at disorder strength
D/J = 0.01 and coupling strength gcl/J = 0.01, the fluctua-
tions of the disordered and clean cases do not diminish with

increasing system size L for both the observables NL/2 and
Hkin. For the observable Hkin, whether it is the disordered or
clean case, we find that with the increase of energy density
εn, the expected value changes linearly with minor fluctuation.
The result indicates that the atom-photon coupling term acts as
a small perturbation, and the hopping term of the photon and
the Hamiltonian H of Eq. (2) can be regarded as commutative.
This implies that the observable Hkin and the Hamiltonian in
Eq. (2) share almost identical eigenvalues and eigenstates.
Therefore, Hkin is a linear function of the energy density εn.
Thus, Hkin cannot be simply considered as a local observable
to diagnose the thermalization. At a mediate disorder strength,
say, D/J = 2, the fluctuations of the observable NL/2 decrease
as the size L increases. But, the observable Hkin is almost a
smooth function of energy density εn, even in small system
sizes. The behavior of the clean system (gcl/J = 2) is con-
sistent with that of the disordered system. Also, we can see
this phenomenon from the average eigenstate-to-eigenstate
fluctuations |δOnn| of diagonal elements decreasing expo-
nentially fast with increasing L in Figs. 7(a) and 7(b) for
ergodic phases in the disordered and clean systems. Because
the Hilbert-Schmidt norm of operator Hkin scales as 1/

√
L

[36,67], the average eigenstate-to-eigenstate fluctuations of
Hkin are ∝ (LD)−1/2. In the case of D/J , gcl/J = 100, al-
though the fluctuations of the two observables increase with
the increase of system size for two kinds of systems, it is
remarkable that the diagonal elements of disordered and clean
systems change differently with energy densities. Specifically,
the expected values of the observables show a uniform dis-
tribution for disordered systems. while for the clean system,
there is a large amount of quasi-degeneracy in the energy
densities, resembling the separation of energy bands. In short,
by comparing the distributions of diagonal elements between
disordered and clean systems, we find that the fluctuations
in the disordered case are noticeably smaller, in particular, in
the ergodic phases (D/J, gcl/J = 2). This discrepancy can be
attributed to the averaging effect of the disordered samples.

Based on Figs. 6 and 7, we can conclude that D/J , gcl/J =
2 (ergodic phase) meets ETH, while D/J = 0.01, gcl/J =
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FIG. 6. The diagonal matrix elements of [(a)–(f)] NL/2 and [(g)–(l)] Hkin as a function of the energy density εn with different D/J and
gcl/J for the disordered and clean JCH models. The black star, red plus, and blue circle lines correspond to L = 6, 8, and 10, respectively.
The averaged physical quantities of the disordered JCH model are taken by 1000, 400, and 100 disordered samples for L = 6, 8, and 10,
respectively.

0.01, 100 (quasi-integrable phase) and D/J = 100 (MBL
phase) strongly violate ETH. We also find that the average
disordered diagonal elements of NL/2 and Hkin are symmet-
rical about the axis of εn = 0.5 and the point (εn, Hkin,nn) =
(0.5, 0), respectively. This symmetry arises due to the com-
mutation relation [�, NL/2] = 0, which leads to 〈n|NL/2|n〉 =
〈n|�†NL/2�|n〉. In addition, the anticommutation relation
{�, Hkin} = 0 results in 〈n|Hkin|n〉 = −〈n|�†Hkin�|n〉 [40].
Differently, the diagonal elements of the clean JCH model
are not symmetrical since the excitation number N is odd.
According to the symmetry analysis in Appendix B, when the
chiral operator � and the reflection operator P commute, the
system has chiral symmetry in the antisymmetric subspace
with reflective symmetry for the even excitation number N .
However, when the operators � and P do not commute, there
is no such chiral symmetry in the antisymmetric subspace for
the odd excitation number N . For the disordered system, the
reflection symmetry is lost, thus chiral symmetry emerges in
the systems both with odd and even excitations.

Here, we focus on the variance of the off-diagonal ele-
ments. In our model, the variance |Onm

2 − |Onm|2| ≈ |Onm|2
since observables Hkin,nm ≈ 0 and NL/2,nm ≈ 0, the same as in
spin systems [67–69]. Also, |Onm|2 is a quantity to study
fluctuation dissipation relation [31], transport proper-
ties [27,70], periodic driven heating rate [71], etc. In Fig. 8,

103 104 105 106

10-3

10-2

102 103 104 105

10-2

10-1

FIG. 7. Scaling of (a) |δNL/2,nn| and (b) |δHkin,nn| at the noninte-
grable point of the disordered (D/J = 2) and the clean (gcl/J = 2)
JCH model. The dashed lines denote a power law scaling of ∝ x−1/2

in Figs. 7(a) and 7(b). The average physical quantities of the dis-
ordered JCH model are taken by 1000, 400, and 100 disordered
samples for L = 6, 8, and 10, respectively.

we plot the coarse-grained average scaled variances |Hkin,nm|2
and |NL/2,nm|2 of the off-diagonal matrix elements with
ω = εn − εm. For D/J , gcl/J = 0.01, the properties of the two
systems are similar: both of them have a strong dispersion. At
disorder strength D/J = 2 and coupling strength gcl/J = 2,
the coarse-grained averages |Hkin,nm|2 and |NL/2,nm|2 of the
off-diagonal matrix elements show smoothing functions
of ω. The variance of off-diagonal matrix elements satisfies
|Onm|2 ∝ (LD)−1 [36,67]. The difference in scaling behaviors
of the two observables can be attributed to the Hilbert-Schmidt
norms of the observable Hkin, whose scaling behaviors are
given by ∼1/

√
L. On the other hand, the off-diagonal matrix

elements of the observables have similar behaviors in the
disordered and clean systems. At strong disorder and strength
coupling regimes, say, D/J , gcl/J = 100, the variances
of two observables are the smooth functions of ω for the
disordered systems, but not for clean systems. In the clean
system, the behavior is similar to the case at weak coupling
strength (gcl/J). In Fig. 8, we have that the variances of the
observables for L = 8 and L = 10 show minimal finite-size
effects in both the ergodic and MBL phases.

The scaled variances of the off-diagonal matrix elements in
the low-frequency ω part are briefly discussed below for the
ergodic and MBL phases. Observables NL/2 and Hkin exhibit
data collapse as Lω decrease for different system sizes (see
the insets of Fig. 8). For the ergodic phases (D/J , gcl/J =
2), the collapse degrades as Lω increases and two variances
of observables have a high value as Lω approaches to zero,
indicating the diffusive dynamics, the same as with quantum-
chaotic systems [63]. In addition, for the MBL phases (D/J =
100) with a large size, the variance of observable NL/2 does
not vanish as Lω approaches zero, while the observable Hkin

approaches zero. This phenomenon is similar to the integrable
XXZ chain [69]. By comparing Figs. 8(c), 8(d), and 8(e), we
find that the variance of observable NL/2 has the same behavior
in the low-frequency regime for both the ergodic and MBL
phases. This implies that the scaling behavior of observable
NL/2 is stable in ergodic and MBL phases. However, as the
relationship between the variances of the observables and the
frequency ω is not a smooth function in other cases, we will
not discuss it in depth.
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FIG. 8. [(a)–(f)] Coarse-grained averages of NL/2 as a function of Lω with different D/J and gcl/J for the disordered and clean JCH models.
[(g)–(l)] Coarse-grained averages of Hkin as a function of Lω with different D/J and gcl/J for the disordered and clean JCH models. The matrix
elements are computed within a small window of energy around the average spectrum ε̄ of width 0.01ω. The averages in ω are calculated in
windows with δω = 0.002. The black star, red plus, and blue circle lines correspond to L = 6, 8, and 10, respectively. The averaged physical
quantities of the disordered JCH model are taken by 1000, 400, and 100 disordered samples for L = 6, 8, and 10, respectively.

To study the normality of distribution of the off-diagonal
matrix elements, we calculate the ratio [67]

�O(ω) = |On,m|2/|On,m|2. (7)

If the local observable operator On,m has a normal distribu-
tion with a zero mean value, we have �O(ω) = π/2. The
ratio �O(ω) can identify the occurrence of eigenstate ther-
malization [67–69,72,73]. In Fig. 9, we present the results
of �NL/2 (ω) and �Hkin (ω) vs Lω in the eigenstates for the
disordered and clean JCH models with different atom-photon
coupling strengths. For D/J = 0.01 and gcl/J = 0.01, one can
find that the �O(ω) of two observables fail to collapse, in
particular, in the case of large system sizes, meaning that the
off-diagonal matrix elements of NL/2 and Hkin do not obey the
normal distribution. From Figs. 9(c), 9(d), 9(i), and 9(j), we
find that �NL/2 (ω) and �Hkin (ω) converge to π/2 with increas-
ing system size for the ergodic regime of both the disordered
(D/J = 2) and clean (gcl/J = 2) systems. We consider that
the ratios at the small ω regime have a value close to π/2.
As for D/J = 100 in Figs. 9(e) and 9(k), we find that the

behaviors of both �NL/2 (ω) and �Hkin (ω) depend on the system
size and do not follow a normal distribution. In addition,
the clean system gcl/J = 100 [Figs. 9(f) and 9(l)] exhibits
a similar behavior with the case of gcl/J = 0.01. Neither of
these cases exhibits a normal distribution, and the functions
about Lω are not smooth.

Our analysis clearly demonstrates that the region exhibit-
ing quasi-integrable behavior deviates from the ETH, while
the ergodic region adheres to the ETH. However, the MBL
region remarkably violates ETH and its behavior is consistent
with that of integrable systems [67–69,73].

V. CONCLUSION

In this paper, the behaviors of 1D disordered and clean
JCH systems, focusing on their quasi-integrable, ergodic, and
MBL phases, are investigated. We explore the similarities
and differences between quasi-integrable and MBL phases.
Interestingly, we find that the prethermalization is remarkably
dependent on its initial state at the weak disorder regime.
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1.5
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FIG. 9. The ratio �O(ω) [(a)–(f)] for the occupancy operator NL/2 and [(g)–(l)] for the kinetic operator Hkin as a function of Lω in the
disordered and clean JCH models. The horizontal gray-dashed lines mark π/2 in all subgraphs. The matrix elements are computed within a
small window of energy around the average spectrum ε̄ of width 0.01ω. The averages in ω are calculated in windows with δω = 0.002. The
black star, red plus, and blue circle lines correspond to L = 6, 8, and 10, respectively. The averaged physical quantities of the disordered JCH
model are taken by 1000, 400, and 100 disordered samples for L = 6, 8, and 10, respectively.
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FIG. 10. The average half-chain EE 〈SL/2(t )〉 vs time t for the
disordered JCH model with different disorder strengths. Three colors
represent three disordered samples [400 (black), 1000 (red), and
2000 (blue)] for sizes L = 8.

Regarding the ergodic phases, we observe that disorder has
minimal impact on the system behavior at the regime where
disorder strength is not strong enough, which is the expected
result. However, for strong disorder strength, the system ex-
hibits a MBL phase, with the same phenomena shown in
other disordered systems. Furthermore, we also find that the
JCH model in the MBL phase displays nonthermalization
behaviors. The quasi-integrable phases also deviate the ETH.
However, due to the presence of numerous quasi-degenerate
energy levels, the matrix element behaviors of observables
exhibit distinct characteristics compared to the conventional
MBL phase, with a relatively discrete distribution. In sum-
mary, through a comprehensive analysis of 1D disordered
and clean JCH systems, we have provided insights into the
impact of disorder on MBL and prethermalization phenomena
in these systems.
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APPENDIX A: THE EFFECT OF DISORDER SAMPLES

Here, in order to explain that different disordered samples
make no difference on the system results, we compare the
differences between the physical quantities under multiple
disordered samples.

From Fig. 10, we can find that as the number of disorder
samples increases, the behavior of the average half-chain EE
〈SL/2(t )〉 becomes progressively smoother over time t . How-
ever, it is important to note that different disordered samples
do not impact the oscillation region when the disorder strength
is D/J = 0.01. In essence, the presence of additional disor-
dered samples does not affect the behavior of the half-chain
EE, except for its fluctuations.

It can be seen from Fig. 11 that when the disorder strength
D/J = 0.01, the disorder samples have minimal impact on
the diagonal elements of the observables. When the disorder
strength D/J = 2, with the increase of the number of disor-
der samples, the fluctuations of the observable NL/2 decrease
gradually. However, the observable Hkin remains unchanged
since there are negligible fluctuations in Hkin as a function of
the energy density εn. In addition, when the disorder strength
D/J = 100, the fluctuations of both observables decrease with
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FIG. 11. The diagonal matrix elements of [(a)–(c)] NL/2 and
[(d)–(f)] Hkin as a function of the energy density εn with different
D/J for the disordered JCH model. The black star, red plus, and blue
circle lines correspond to 400, 1000, and 2000 disordered samples,
respectively. The system size is chosen as L = 8.

the increase of the disordered samples. On the whole, the
fluctuations of the diagonal elements of the observable Hkin

are smaller than that of the observable NL/2.
By choosing the same disordered samples in Fig. 12, one

can easily find whether the changes of the diagonal element
with sizes satisfy ETH under different disorder strengths.

Regarding the off-diagonal elements of the observables,
the number of disordered samples also hardly affect the case
of D/J = 0.01. However, for the other two cases, increas-
ing the number of disordered samples leads to a reduction
in fluctuations, resulting in smoother functions, as shown in
Fig. 13. The influence of the disordered samples on the ob-
servable Hkin (not show here) has the same behaviors as that
of NL/2.

APPENDIX B: THE ANALYSIS OF CHIRAL SYMMETRY

In the clean case, chiral symmetry exists only in the case of
even excitations for the antisymmetric subspace. Let us prove
the reason for this phenomenon below. First, we consider the
case where the number of excitations is even (N ∈ even).
The number of photons (atoms) defining the sum of odd
lattice points and even lattice points is

∑L
i∈even(nc

i + nc
i+1) =

Nc
e + Nc

o = Nc (
∑L

i∈even(na
i + na

i+1) = Na
e + Na

o = Na), where
subscript “o” represents odd lattice points and subscript “e”
represents even lattice points. At the same time, we also define
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FIG. 12. The diagonal matrix elements of NL/2 as a function of
the energy density εn with different D/J for the disordered JCH
model. The black star and red plus lines correspond to the system
size L = 6 and 8, respectively. The disordered sample is chosen as
1000.
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FIG. 13. Coarse-grained averages of NL/2 as a function of ω with
different D/J for the disordered JCH model. The matrix elements
are computed within a small window of energies around the average
spectrum ε̄ of width 0.01ω. The averages in ω are calculated in win-
dows with δω = 0.002. The black star, red plus, and blue circle lines
correspond to 400, 1000, and 2000 disordered samples, respectively.
The system size is L = 8.

the following two quantities: Nc
e + Na

o = N1 and Nc
o + Na

e =
N2.

For N1 + N2 = N ∈ even, then

N1 ∈ even,

N2 ∈ even,
or

N1 ∈ odd,

N2 ∈ odd.

When N1 ∈ even, Nc
e ∈ odd, and Na

o ∈ odd, since the
relation L = 2N , the number of atomic ground states is
N − Na

o (odd) for the odd number of lattice sites. Thus,
�|n〉 = eiπNc

e (−1)N−Na
o
∏

i |nc
i , na

i 〉i = |n〉. When N1 ∈ even,
Nc

e ∈ even, and Na
o ∈ even, we can also get �|n〉 = |n〉.

For the reflective symmetric state P|n〉 = |n′〉 =
|nc

L, na
L〉1 ⊗ |nc

L−1, na
L−1〉2 ⊗ · · · ⊗ |nc

1, na
1〉L of state |n〉,

the corresponding quantity Nc′
e + Na′

o = N ′
1 = N2 ∈ even, the

same result can be obtained �|n′〉 = |n′〉
When N1 ∈ odd, Nc

e ∈ even, and Na
o ∈ odd, the number of

atomic ground states is N − Na
o (odd) for the odd number of

the lattice sites. Thus, �|n〉 = eiπNc
e (−1)N−Na

o
∏

i |ni, e(g)〉i =
−|n〉. When N1 ∈ odd, we can also get Nc

e ∈ odd and Na
o ∈

even, �|n〉 = −|n〉.

The quantity N ′
1 = N2 ∈ odd for the reflective symmetric

state P|n〉 = |n′〉 of state |n〉, and the same result can be
obtained for �|n′〉 = −|n′〉.

So, for an eigenstate |n〉 = �Di ψi|n〉i, there is

P�|n〉 = P�Di (±)ψi|n〉i = �Di (±)ψi|n′〉i,

�P|n〉 = ��Di ψi|n′〉i = �Di (±)ψi|n′〉i.

This means that the two operators are commutative
[P, �] = 0 and have common eigenstates and eigenvalues.

On the other hand, for N ∈ odd,

N1 ∈ even,

N2 ∈ odd,
or

N1 ∈ odd,

N2 ∈ even.

When N1 ∈ even, Nc
e ∈ odd, and Na

o ∈ odd, since the rela-
tion L = 2N , the number of atomic ground states is N − Na

o
(even) for the odd number of lattice sites. Thus, �|n〉 =
eiπNc

e (−1)N−Na
o
∏

i |nc
i , na

i 〉i = −|n〉. When N1 ∈ even, Nc
e ∈

even, and Na
o ∈ even, we can also get �|n〉 = −|n〉.

The quantity N ′
1 = N2 ∈ odd for the reflective symmet-

ric state |n′〉 of state |n〉; as for Nc
e ∈ even and Na

o ∈
odd, the number of atomic ground states is N − Na

o (even)
for the odd number of the lattice sites. Thus, �|n〉 =
eiπNc

e (−1)N−Na
o
∏

i |na
i , na

i 〉i = |n〉, while for Nc
e ∈ odd and

Na
o ∈ even, we also can obtain �|n′〉 = |n′〉.

When N1 ∈ odd, we can also get �|n〉 = |n〉. The quantity
N ′

1 = N2 ∈ odd for the reflective symmetric state P|n〉 = |n′〉
of state |n〉, and the same can be obtained for �|n′〉 = −|n′〉.

So, for a eigenstate |n〉 = �Di ψi|n〉i, there is

P�|n〉 = P�Di (±)ψi|n〉i = �Di (±)ψi|n′〉i,

�P|n〉 = ��Di ψi|n′〉i = �Di (∓)ψi|n′〉i.

This means that the two operators are commutative [P, �] 
= 0
without common eigenstates and eigenvalues.
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[7] M. Serbyn, Z. Papić, and D. A. Abanin, Phys. Rev. Lett. 110,

260601 (2013).
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