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Microwave-optical interactions and hybrid entangled states are crucial for building hybrid quantum networks.
In this work, we propose an approach for realizing a cross-Kerr nonlinear interaction between microwave and
optical cavities using an ensemble of nitrogen-vacancy centers (NV ensemble). This cross-Kerr interaction is
achieved by an NV ensemble dispersively coupled to a microwave cavity and an optical cavity. As an application,
we show that the cross-Kerr interaction can be used to create a hybrid entangled state of a discrete-variable (DV)
optical qubit and a continuous-variable (CV) optical qubit. The DV optical qubit here refers to a qubit, with
two logic states encoded via the vacuum and single-photon states of the optical cavity. The CV optical qubit
means a qubit, whose two logic states are encoded through two quasi-orthogonal coherent states or cat states of
the microwave cavity. Our method is quite simple because it only requires a single-step operation. Numerical
simulations demonstrate that high-fidelity generation of the proposed hybrid state is feasible within current
experimental technology. This proposal is universal and the NV ensemble can be replaced by other quantum
transducers, such as magnons, rare-earth-doped crystals, and silicon-vacancy centers.
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I. INTRODUCTION

Hybrid quantum systems composed of two or more differ-
ent physical systems (e.g., superconducting devices, atoms,
optical cavities, ensembles of solid-state spins, etc.) have
emerged as a promising platform for realizing quantum in-
formation processing (QIP) and quantum computing [1–3].
A hybrid system encompassing a superconducting microwave
cavity, an optical cavity, and an NV ensemble is a type of
hybrid quantum system. It combines the advantages of each
physical subsystem. For example, microwave photons can be
easily manipulated, while optical photons can be transferred
by optical fibers, allowing long-distance QIP and quantum
communication. The NV ensemble can be regarded as a good
quantum memory since it has a long coherence time. Due to
NV ensemble coupling to both microwave and optical cavi-
ties, it can act as a quantum transducer or quantum data bus
between the microwave and optical photon domains [4–6]. To
date, it has been experimentally demonstrated that there is a
strong coupling between an NV ensemble and a superconduct-
ing cavity [7–10] or between an NV ensemble and an optical
cavity [11–14]. It has also been demonstrated that there is a
strong coupling of an NV ensemble with a superconducting
qubit [15]. During the past decade, a great deal of theoretical
proposals have been presented to implement various QIP tasks
with NV ensembles [16–29].

Cross-Kerr nonlinearity plays a central role in quantum
information science and technology. It has a wide range of
applications in quantum information processing and quantum
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computation, such as quantum teleportation [30], quantum-
nondemolition measurements [31], purification of entangled
states [32], construction of the two-cavity qubits controlled-
phase gate [33], preparation of the two-cavity macroscopic
entangled coherent state [34], generation of the Gottesman-
Kitaev-Preskill qubit [35]. Theoretically, many proposals have
been presented for achieving the cross-Kerr nonlinearity in
a variety of systems, including atoms [36,37], ions [38],
optomechanical systems [39,40], cavity QED [41,42], su-
perconducting circuits [34,43,44], etc. Experimentally, the
cross-Kerr nonlinearity has been observed in Rydberg
atoms [45,46], superconducting circuits [47–49], ions [50],
and cavity magnonics [51]. However, a detailed proposal for
realizing a cross-Kerr nonlinearity between microwave and
optical cavities has not been put forward.

On the other hand, hybrid entangled states of discrete-
variable (DV) qubits and continuous-variable (CV) qubits
have drawn much attention recently. They are key resources
in the hybrid quantum computation, the building up of hybrid
quantum networks, and the linking of quantum processors
with different encoding qubits [52,53]. During the past years,
theoretical proposals have been made for preparing hybrid
entangled states of DV optical qubits and CV optical qubits
in linear optical systems [54,55] and superconducting cir-
cuits [56,57]. Moreover, hybrid entangled states of a DV
optical qubit and a CV optical qubit have been experimentally
prepared in linear optical systems [58–60]. The hybrid DV-CV
entangled states have many applications in quantum repeaters
and quantum computing [53,58,59].

In this work, we propose an approach to realize a cross-
Kerr interaction between microwave and optical cavities by
coupling an ensemble of NV centers. We find that this
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cross-Kerr interaction can allow the preparation of a hybrid
entangled state of a DV optical qubit and a CV optical qubit.
The DV optical qubit here refers to a qubit with two logic
states encoded through the vacuum and single-photon states of
the optical cavity, while the CV optical qubit refers to a qubit
with two logic states encoded via two quasi-orthogonal coher-
ent states or cat states of the microwave cavity. We also show
that the cross-Kerr interaction can be utilized to construct a
hybrid two photonic qubits controlled phase gate, enabling
the transfer of quantum states between the microwave and
optical cavities. This proposal has the following advantages.
(i) Due to the fact that the NV ensemble is not populated
during the operation, the decoherence from the NV ensemble
is greatly minimized. (ii) Our proposal is implemented using
only a single-step operation. (iii) Because only a coupler NV
ensemble is required, the architecture of the system is com-
pact and simple. (iv) The generated hybrid entangled state is
especially useful for long-distance quantum communication
and QIP. (v) This proposal is general and can be applied to
other quantum transducers such as magnons in a ferromag-
netic material [51,61], rare-earth-doped crystals [62,63], and
silicon-vacancy (SiV) centers in diamond [64], etc. To the
best of our knowledge, a cross-Kerr nonlinear interaction has
not been implemented before between microwave and opti-
cal cavities. The paper is organized as follows. In Sec. II,
we introduce the hybrid system and give a derivation of the
cross-Kerr interaction Hamiltonian between microwave and
optical cavities. In Sec. III, as an application, we show that
this cross-Kerr interaction Hamiltonian can be employed to
prepare a hybrid entangled state of a DV optical qubit and a
CV optical qubit. In Sec. IV, we further show that the cross-
Kerr interaction Hamiltonian can be used to realize a hybrid
two photonic qubits controlled phase gate. In Sec. V, we show
how to transfer an arbitrary quantum state between microwave
and optical cavities by utilizing the cross-Kerr interaction.
In Sec. VI, we investigate the experimental feasibility of our
proposal. A brief concluding summary is given in Sec. VII.

II. REALIZATION OF CROSS-KERR INTERACTION
BETWEEN MICROWAVE AND OPTICAL CAVITIES

We consider a hybrid system schematically shown in
Fig. 1(a), where an ensemble of NV centers is dispersively
coupled to both an optical cavity and a planar superconducting
microwave cavity.

An NV center in the diamond consists of a substitutional
nitrogen atom and an adjacent vacancy. The ground state
of the NV center is an electronic spin triplet state |3A2〉 =
|E0〉|ms = 0,±1〉, where |E0〉 is the orbital state with zero
angular-momentum projection along the NV axis. There ex-
ists a 2.88-GHz zero-field splitting between the |ms = 0〉 and
|ms = ±1〉 levels. By applying an extra magnetic field, the
degeneracy of the levels |ms = +1〉 and |ms = −1〉 can be
further split [Fig. 1(b)] [1]. We choose the coupling of the
microwave cavity with the |E0〉|ms = 0〉 ↔ |E0〉|ms = +1〉
transition of each NV center, while decoupling the microwave
cavity from the |E0〉|ms = 0〉 ↔ |E0〉|ms = −1〉 transition.
The optical excited state is defined as |A2〉 = 1√

2
(|E−〉|ms =

+1〉 + |E+〉|ms = −1〉) [4,5,65], where |E+〉 (|E−〉) is the
orbital state with angular-momentum projection +1 (−1)

FIG. 1. (a) Diagram of a hybrid system consisting of an NV
ensemble, an optical cavity and a planar superconducting microwave
cavity. (b) Schematic diagram of the energy levels of NV center j.
Microwave cavity is dispersively coupled to the |0〉 j ↔ |1〉 j transi-
tion of NV center j with the coupling strength gj

m and detuning δ j
m <

0, while the optical cavity is dispersively coupled to the |1〉 j ↔ |2〉 j

transition of NV center j with the coupling strength gj
o and detuning

δ j
o > 0.

along the NV axis. Typically, an NV center can be regarded
as a spin while an ensemble of NV centers can be treated
as a spin ensemble. The ground and the excited states of
spin j ( j = 1, 2, 3, . . . , N) in the ensemble are labeled
by |0〉 j = |E0〉|ms = 0〉 j , |1〉 j = |E0〉|ms = +1〉 j , and |2〉 j =
|A2〉 j , where N is the total number of the spins in the NV
ensemble.

As illustrated in Fig. 1(b), microwave cavity is disper-
sively coupled to the |0〉 j ↔ |1〉 j transition of spin j in the
ensemble, while optical cavity is dispersively coupled to the
|1〉 j ↔ |2〉2 transition of spin j ( j = 1, 2, 3, . . . , N). We
introduce a coupling strength gm = (

∑N
j=1 |gj

m|2/N )1/2 [go =
(
∑N

j=1 |gj
o|2/N )1/2] to denote the average coupling strength

for each spin of the ensemble, where gj
m (gj

o) is the coupling
strength between the microwave cavity (optical cavity) and the
|0〉 j ↔ |1〉 j (|1〉 j ↔ |2〉 j ) transition of the jth spin.

In the interaction picture and after making the rotating-
wave approximation, the Hamiltonian of the system is given
by (hereafter setting h̄ = 1)

HI =
N∑

j=1

gm
(
â†τ

j−
10 e−iδ j

mt + âτ
j+

10 eiδ j
mt

)

+
N∑

j=1

go
(
b̂†τ

j−
21 e−iδ j

ot + b̂τ j+
21 eiδ j

ot
)
, (1)

where â† and â (b̂† and b̂) are the creation and the annihila-
tion operators of the microwave (optical) cavity; τ

j−
10 = |0〉 j〈1|

(τ j+
10 = |1〉 j〈0|) and τ

j−
21 = |1〉 j〈2| (τ j+

21 = |2〉 j〈1|) are the low-
ering (raising) operators of the jth spin for the ensemble;
detunings δ

j
m = ω

j
10 − ωm < 0 and δ

j
o = ω

j
21 − ωo > 0. Here,

ωm (ωo) is the frequency of the microwave (optical) cavity,
while ω

j
10 (ω j

21) is the |0〉 j ↔ |1〉 j (|1〉 j ↔ |2〉 j) transition
frequency of the jth spin for the ensemble.

Since random distributions of spins may result in an in-
homogeneous broadening of spin transition for an ensemble,
we consider random shifts �

j
m = δ

j
m − δm and �

j
o = δ

j
o − δo

for the jth spin of the ensemble [5,21]. Here, δm (δm < 0)
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and δo (δo > 0) are the average detunings, respectively. Con-
sidering the large-detuning conditions |δm| � {gm, |� j

m|} and
δo � {go,�

j
o}, one can ignore the effect of inhomogeneous

broadening of the transition frequencies for the ensemble in
the following [5,21]. Then, one can obtain the effective Hamil-
tonian (see Appendix) [66–68]

He =
N∑

j=1

−g2
m

δm
(â†â|0〉 j〈0| − ââ†|1〉 j〈1|)

+
N∑

j=1

g2
o

δo
(b̂b̂†|2〉 j〈2| − b̂†b̂|1〉 j〈1|)

+
N∑

j=1

λ(â†b̂†|0〉 j〈2|e−iδomt + âb̂|2〉 j〈0|eiδomt ), (2)

where λ = (gogm/2)(1/|δm| + 1/δo) and δom = δo − |δm|. Un-
der the large-detuning conditions, the indirect interaction
between any two spins can be neglected. The first and second
lines of Eq. (2) represent Stark shifts, the last line of Eq. (2)
indicates the effective coupling among the microwave cavity,
the optical cavity, and the |0〉 j ↔ |2〉 j transition of the jth spin
in ensemble.

Applying the large-detuning condition |δom| �
{λ, g2

m/|δm|, g2
o/δo}, the effective Hamiltonian (2) turns

into (see Appendix) [66–68]

He =
N∑

j=1

−g2
m

δm
(â†â|0〉 j〈0| − ââ†|1〉 j〈1|)

+
N∑

j=1

g2
o

δo
(b̂b̂†|2〉 j〈2| − b̂†b̂|1〉 j〈1|)

+
N∑

j=1

λ2

δom
(ââ†b̂b̂†|2〉 j〈2| − â†âb̂†b̂|0〉 j〈0|). (3)

When the jth spin is in the ground state, the effective
Hamiltonian (3) reduces to

He = −
N∑

j=1

g2
m

δm
â†â|0〉 j〈0| −

N∑
j=1

λ2

δom
â†âb̂†b̂|0〉 j〈0|. (4)

Under the conditions of the weak excitations and the
large N , one can express the spin operators in terms of the
bosonic operators by utilizing the Holstein-Primakoff trans-
formation [69,70]:

N∑
j=1

τ
j−

10 = ĉ
√

N − ĉ†ĉ �
√

Nĉ,

N∑
j=1

τ
j+

10 = ĉ†
√

N − ĉ†ĉ �
√

Nĉ†, (5)

where ĉ† and ĉ are bosonic operators which approxi-
mately obey the boson commutation relation [ĉ, ĉ†] = 1 − 2

N
ĉ†ĉ ≈ 1 [71].

From Eqs. (5), one can obtain
∑N

j=1 |0〉 j〈0| =∑N
j=1 τ

j−
10 τ

j+
10 � Nĉĉ†. Thus, Eq. (4) can be further rewritten

as

He = −λmâ†â − χ â†âb̂†b̂, (6)

where λm = (
√

Ngm)2/δm and χ = (
√

Nλ)2/δom. Here the de-
gree of freedom of the ensemble has been eliminated because
we assume that the spin ensemble is in the ground state.

In a rotating frame under the Hamiltonian H0 = −λmâ†â,
we obtain

He = −χ â†âb̂†b̂. (7)

This effective Hamiltonian describes the cross-Kerr interac-
tion between the microwave cavity and the optical cavity with
coefficient χ . It is well known that the cross-Kerr nonlinearity
has many important applications in QIP, quantum computing,
and quantum communication [30–35]. In the next section, we
discuss how to use the Hamiltonian (7) to prepare a hybrid
entangled state of a DV optical qubit and a CV optical qubit.

III. CREATION OF ENTANGLEMENT BETWEEN
DISCRETE-VARIABLE AND CONTINUOUS-VARIABLE

OPTICAL QUBITS

In this section, we show that the cross-Kerr nonlinearity (7)
can be used to prepare a hybrid entangled state between
a DV optical qubit and a CV optical qubit. Assume that
the microwave cavity is initially in a coherent state |α〉a

while the optical cavity is initially in a superposition state
(1/

√
2)(|0〉b + |1〉b), where |0〉b and |1〉b are the vacuum state

and the single-photon state of the optical cavity. Then we
can obtain the following state evolution under the Hamilto-
nian (7):

1√
2

eiχ â†âb̂†b̂t |α〉a(|0〉b + |1〉b)

= 1√
2

eiχ â†âb̂†b̂t e− 1
2 |α|2

∞∑
na=0

αna

√
na!

|na〉a(|0〉b + |1〉b)

= 1√
2

⎛
⎝|α〉a|0〉b + e− 1

2 |α|2
∞∑

na=0

αna eiχ n̂an̂bt

√
na!

|na〉a|1〉b

⎞
⎠

= 1√
2

(|α〉a|0〉b + |αeiχt 〉a|1〉b), (8)

where n̂a = â†â and n̂b = b̂†b̂ are the photon number opera-
tors of the microwave and optical cavities, respectively.

At the evolution time t = π/|χ |, the state (8) turns into

1√
2

(|α〉a|0〉b + | − α〉a|1〉b), (9)

which shows that a hybrid entangled state between a CV opti-
cal qubit and a DV optical qubit is created. Here, the two logic
states of the CV qubit are encoded with the two coherent states
|α〉a and | − α〉a of the microwave cavity, while the two logic
states of the DV qubit are encoded with the vacuum state |0〉b

and the single-photon state |1〉b of the optical cavity. Note that
the hybrid entangled state (9) has already been experimentally
generated in linear optical systems [58–60]. While, we here
focus on its implementation in a microwave-optical hybrid
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system, i.e., a system completely different from the linear
optical system.

Under the condition |λm|t = 2kπ (k is a positive integer)
and after returning to the original interaction picture by ap-
plying a unitary transformation U = e−iH0t , one can find that
the hybrid entangled state (9) is unchanged. According to the
conditions t = π/|χ | and |λm|t = 2kπ , we have

√
Ngo = |δ0|

|δm| + |δo|

√
2|δomδm|

k
. (10)

We perform a |0〉b → |+〉b and |1〉b → |−〉b rotation on the
DV qubit, where |+〉 = (|0〉b + |1〉b)/

√
2 and |−〉 = (|1〉b −

|0〉b)/
√

2. Then, the state (9) becomes

1√
2

(|cat−〉a|0〉b + |cat+〉a|1〉b), (11)

where |cat±〉a = (|α〉a ± |α〉a )/
√

2 denotes an even or odd cat
state. Equation (11) shows that a hybrid entangled state of
the CV qubit (encoded in the cat states) and the DV qubit is
prepared.

This method can be extended to generate a hybrid high-
dimensional entangled state of a CV qudit and a DV qudit.
Suppose that the optical cavity is initially in a superposition
of Fock states 1√

d

∑d−1
n=0 |n〉b with n photons. If the microwave

cavity is initially in a coherent state |α〉a, under the Hamilto-
nian (7), one can obtain the state evolution

1√
d

(|α〉a|0〉b + |αeiϕ〉a|1〉b

+|αei2ϕ〉a|2〉b + · · · + |αeinϕ〉a|n〉b), (12)

where ϕ = χt .
If the microwave cavity is initially in a cat state |cat+〉a,

under the Hamiltonian (7), one has

1√
d

(|cat0
+〉a|0〉b + |cat1

+〉a|1〉b

+|cat2
+〉a|2〉b + · · · + |catn

+〉a|n〉b), (13)

where cat state |catn
+〉a = (|αeinϕ〉a + |αeinϕ〉a )/

√
2 (n =

0, 1, 2, . . . , d − 1). Equations (12) and (13) display that a
hybrid high-dimensional entangled state of a CV qudit and a
DV qudit is created.

IV. IMPLEMENTATION OF A HYBRID CONTROLLED
PHASE GATE OF MICROWAVE AND OPTICAL CAVITIES

We assume that the microwave and optical cavities are ini-
tially prepared in superposition states |ψ〉a = 1√

2
(|0〉a + |1〉a)

and |ψ〉b = 1√
2
(|0〉b + |1〉b). Under the Hamiltonian (7), the

time evolution operator is given by U (t ) = e−iHet . In the com-
putational basis states {|0〉a|0〉b, |0〉a|1〉b, |1〉a|0〉b, |1〉a|1〉b},
one can obtain the following state transformation:

U (t )|0〉a|0〉b → |0〉a|0〉b,

U (t )|0〉a|1〉b → |0〉a|1〉b,

U (t )|1〉a|0〉b → |1〉a|0〉b,

U (t )|1〉a|1〉b → eiϕ|1〉a|1〉b, (14)

where ϕ = χt . After returning to the original interaction pic-
ture and satisfying the condition |λm|t = 2kπ (k is a positive
integer), one can easily find that the transformation (14) is
unchanged. Equations (14) shows that a hybrid two photonic
qubits controlled phase gate of the microwave and optical
cavities is realized. For ϕ = π , one can obtain |1〉a|1〉b →
−|1〉a|1〉b, which leads to a sign flip while other states remain
unchanged.

Our approach is not limited to implementing controlled
phase gates with discrete variable states, but it can also be
used to realize controlled phase gates for arbitrary quantum
state encodings. We use two arbitrary orthogonal states of a
cavity to encode the two logic states |0〉 and |1〉 of a photonic
qubit:

|0〉 =
∞∑

n=even

cn|n〉, |1〉 =
∞∑

m=odd

cm|m〉, (15)

where cn and cm are normalization coefficients.
Under Hamiltonian (7), one has

U (t )|0〉a|0〉b =
∑
n,n′

einn′χt cncn′ |n〉a|n′〉b,

U (t )|0〉a|1〉b =
∑
n,m′

einm′χt cncm′ |n〉a|m′〉b,

U (t )|1〉a|0〉b =
∑
m,n′

eimn′χt cmcn′ |m〉a|n′〉b,

U (t )|1〉a|1〉b =
∑
m,m′

eimm′χt cmcm′ |m〉a|m′〉b, (16)

where n and n′ are even numbers, while m and m′ are odd num-
bers. For χt = π , one can obtain einn′χt = einm′χt = eimn′χt =
1, and eimm′χt = −1. Thus, from Eqs. (16), one can obtain the
state transformation

U (t )|0〉a|0〉b → |0〉a|0〉b,

U (t )|0〉a|1〉b → |0〉a|1〉b,

U (t )|1〉a|0〉b → |1〉a|0〉b,

U (t )|1〉a|1〉b → −|1〉a|1〉b, (17)

which results in a sign flip if and only if the two cavities are in
the state |1〉a|1〉b. Thus, one can construct a hybrid controlled
phase gate using two photonic qubits encoded in optical and
microwave cavities with arbitrary states |0〉 and |1〉. Notice
that the states |0〉 and |1〉 can be discrete-variable states (e.g.,
Fock state) or continuous-variable states (e.g., cat state). For
example, if the microwave cavity is encoded by the cat states
|cat+〉a and |cat−〉a, and the optical cavity is encoded by the
vacuum state |0〉b and the single-photon state |1〉b, one can
implement a hybrid CV-DV controlled phase gate according
to Eqs. (17). The controlled phase gate is widely used in
various quantum applications, including quantum error cor-
rection, quantum algorithms, quantum cloning, and quantum
entanglement preparation, etc.
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V. TRANSFER OF QUANTUM STATES BETWEEN
THE MICROWAVE AND OPTICAL CAVITIES

Suppose that the initial states of the microwave and opti-
cal cavities are |ψ〉a = sin θ |0〉a + cos θ |1〉a and |ψ〉b = |0〉b,
respectively. Here, sin θ and cos θ are normalization coeffi-
cients. We apply a Hadamard gate operation to the optical
cavity such that |0〉b → |+〉b with |+〉 = (|0〉b + |1〉b)/

√
2.

Thus, the initial state of the microwave and optical cavities
becomes

1√
2

(sin θ |0〉a|0〉b + sin θ |0〉a|1〉b

+ cos θ |1〉a|0〉b + cos θ |1〉a|1〉b). (18)

Then we perform a hybrid controlled phase gate operation on
the microwave and optical cavities. From gate (14) with ϕ =
π , one can see that the state (18) changes as

1√
2

(sin θ |0〉a|0〉b + sin θ |0〉a|1〉b

+ cos θ |1〉a|0〉b − cos θ |1〉a|1〉b). (19)

By performing two Hadamard gate operations on the
microwave and optical cavities, one can realize |0〉a →
|+〉a, |1〉a → |−〉a, |+〉b → |0〉b, and |1〉b → |−〉b. Thus, the
state (19) turns into

1√
2

[|0〉a(sin θ |0〉b + cos θ |1〉b)

+|1〉a(sin θ |0〉b − cos θ |1〉b)]. (20)

Now we perform a measurement on the microwave cavity.
From Eq. (20), one can see that if the microwave cavity is
measured in the state |0〉a, an arbitrary state of the microwave
cavity is fully transferred to the optical cavity. If the mi-
crowave cavity is measured in the state |1〉a, after a σz gate
operation applied to the optical cavity, the microwave cavity’s
state can be transferred to the optical cavity.

It is well known that microwave photons can be eas-
ily generated and manipulated, while optical photons can
be transmitted over long distances via optical fibers. Equa-
tion (20) shows that an arbitrary quantum state of the
microwave cavity has been transferred to the optical cavity,
which is useful for quantum communication and quantum
information processing in large-scale quantum networks.

VI. EXPERIMENTAL FEASIBILITY

After considering the dissipation of the NV ensemble, the
microwave and optical cavities, the dynamics of the lossy
system is described by using a Markovian master equation

dρ

dt
= −i[He, ρ] + κaD[â] + κbD

[
b̂
] + κcD[ĉ], (21)

where ρ is the density matrix of the system; He is given by
Eq. (4); D[Ô] = (2ÔρÔ† − Ô†Ôρ − ρÔ†Ô)/2 (with Ô =
â, b̂, ĉ); κa, κb, and κc are, respectively, the decay rates of the
microwave cavity, the optical cavity, and the NV ensemble.

By solving the Markovian master equation (21), we numer-
ically calculate the operation fidelity for the hybrid DV-CV

FIG. 2. Fidelity F versus κ−1
a and κ−1

b for the DV-CV entangled
state. The values of the parameters in the numerical simulations are
given in the main text.

entangled state preparation. Part of numerical calculations
are coded in Python by using the QuTiP library [72,73].
The fidelity of the operation can be calculated by F =√〈ψid|ρ|ψid〉, where |ψid〉 is the ideal target state given by
Eq. (9).

We take NV ensemble-microwave cavity coupling strength√
Ngm/2π = 15 MHz, where the total number of NV cen-

ters is N ≈ 1012 [7–10]. The detunings are chosen as
δm/2π = −150 MHz and δo/2π = 5.5 GHz. According to
Eq. (10), one has

√
Ngo/2π ≈ 551 MHz. The value of

√
Ngm

(
√

Ngo) here is available in experiments since the coupling
strength 3–17 MHz (0.3–1 GHz) between an NV ensem-
ble and a planar superconducting microwave cavity [7–10]
(an optical cavity [11–14]) has been experimentally demon-
strated. In addition, we set the inhomogeneous broadening
of the transition frequencies are �

j
m/2π = −10 MHz and

�
j
o/2π = 0.5 GHz, which can be achieved with experimen-

tally observed values of |� j
m|/2π = 6–12 MHz [10,74,75]

and �
j
o/2π = 0.45–20 GHz [76–78]. Thus, one can obtain

δ
j
m/2π = −160 MHz and δ

j
o/2π = 6.0 GHz. The cross-Kerr

coupling strength is χ/2π = 0.15 MHz. Other parameters
used in the numerical simulations are α = 0.5, k = 5, and
κc/2π = 100 kHz.

Figure 2 displays the fidelity F as a function of κ−1
a

and κ−1
b for the hybrid DV-CV entangled state generation.

From Fig. 2, one can see that for κ−1
a � 5 μs and κ−1

b �
5 µs, the fidelity can exceed 97.65%. When κ−1

a = 55 µs
and κ−1

b = 20 µs, the fidelity is greater than 99.50%. In ex-
periments, a planar superconducting microwave cavity with
photon lifetimes ≈0.05–0.5 ms [79], an optical cavity with
photon lifetimes ≈0.5–2.5 ms [80,81], and an NV ensemble
with coherence times ≈0.3 ms to 1 s [82,83] have been re-
ported. Moreover, the quality factors Qa ≈ 106–107 [79,84]
and Qb ≈ 1010–1012 [80,81,85,86] of the planar supercon-
ducting microwave and optical cavities have been respectively
demonstrated in experiments.

To investigate the effect of the operation time errors on
the fidelity, we set the actual operation time to be (ε + 1)t ,
where t is the optimal operation time. Figure 3 shows the
fidelity F versus ε, which is plotted by choosing κ−1

a = 55 µs
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FIG. 3. Fidelity F versus ε by considering the effect of small
operation time errors based on (a) the effective Hamiltonian and
(b) the full Hamiltonian.

and κ−1
b = 20 µs. In addition, other parameters used in the

numerical simulation are the same as those used in Fig. 2.
From Fig. 3(a), one can observe that when ε ∈ [−0.01, 0.01],
the fidelity exceeds 98.40%. To validate the effectiveness
of the made approximations, we numerically calculate the
fidelity based on the full Hamiltonian (1). Because it
is computationally expensive to simulate the full system
Hamiltonian, we simulate the full Hamiltonian with time de-
pendence on only a single term (i.e., N = 1) in Fig. 3(b).
Figure 3(b) shows the fidelity surpasses 94.13% for ε ∈
[−0.01, 0.01]. Thus, the hybrid DV-CV entangled state of the
microwave and optical cavities can be high fidelity prepared
for small operation time errors. From Figs. 3(a) and 3(b),
it can be observed that, through numerical simulations
comparing the effective Hamiltonian with the full Hamilto-
nian, the fidelity decreases by 4%–5%. This demonstrates
the approximations made for the effective Hamiltonian are
valid.

We then numerically calculate the fidelity of the hy-
brid controlled phase gate operation based on the effective
Hamiltonian (4) and the full Hamiltonian (1). The initial
state of cavity system is (1/2)(|0〉a + |1〉a)(|0〉b + |1〉b), and
the ideal target state is (1/2)(|0〉a|0〉b + |0〉a|1〉b + |1〉a|0〉b −
|1〉a|1〉b). We choose

√
Ngm/2π ≈ 12.7 MHz and k = 7.

Other parameters used in the numerical simulation are the
same as those used in Fig. 3. Based on the effective Hamil-
tonian (4) and the full Hamiltonian (1), we calculate the
fidelities are approximately 99.99% and 99.19% (98.70%
and 95.59%) with (without) considering the systematic dis-
sipation, respectively. Thus, the approximations made for the
effective Hamiltonian are reasonable.

FIG. 4. Fidelity F versus θ for the state transfer. The red dots are
based on the effective Hamiltonian while the blue dots are based on
the full Hamiltonian.

By using the same parameters, we numerically calculate
the fidelity of the state transfer operation based on the effec-
tive Hamiltonian (4) and the full Hamiltonian (1). The initial
state is (sin θ |0〉a + cos θ |1〉a)|0〉b, and the ideal target state
is given by Eq. (20). Figure 4 shows the fidelity F versus θ

(θ ∈ [0, 2π ]). The red and blue dots represent, respectively,
the results obtained using the effective Hamiltonian (4) and
the full Hamiltonian (1), taking into account the systematic
dissipation. Figure 4 indicates that the fidelity based on the
full Hamiltonian slightly decreased by 0.1%–1.5% compared
with using the effective Hamiltonian. Moreover, it can be
observed that an arbitrary state of the microwave cavity can
be high-fidelity transferred to the optical cavity.

VII. CONCLUSION

We have proposed a method for realizing a cross-Kerr
interaction between a microwave cavity and an optical cavity
by using an ensemble of NV centers. We have shown that such
a cross-Kerr interaction can be applied to create hybrid en-
tanglement between discrete-variable and continuous-variable
optical qubits, to construct a hybrid two photonic qubits con-
trolled phase gate, and to transfer an arbitrary quantum state
between the microwave and optical cavities. Since the NV
ensemble is not excited during the operation, the decoherence
from the NV ensemble is significantly suppressed. Due to the
simplicity of our proposal, which requires only a coupler and
a single-step operation, the experimental difficulty is reduced.
Numerical simulations have further demonstrated that a hy-
brid continuous-variable–discrete-variable entangled state can
be generated with high fidelity within the current experimental
technology. Finally, this proposal is quite general and can be
applied to a wide range of quantum transducers. Our finding
may have many potential applications in large-scale hybrid
QIP, hybrid quantum computation, and long-distance quantum
communication.
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APPENDIX: DERIVATION OF THE EFFECTIVE
HAMILTONIAN

In this Appendix, we derive the effective Hamiltonian (7)
in the main text by employing the method [68]. In the interac-
tion picture, the interaction Hamiltonian of the system has the
form

ĤI(t ) =
N∑

n=1

ĥn exp (−iωnt ) + ĥ+
n exp (iωnt ), (A1)

where N is the total number different harmonic terms making
up the interaction Hamiltonian, and the detuning ωn > 0.

Under the large-detuning conditions, one can obtain a time-
averaged effective Hamiltonian [68]

He =
N∑

m,n=1

1

ωmn
[ĥ+

m, ĥn] exp [i(ωm − ωn)t], (A2)

where 1/ωmn = 1
2 (1/ωm + 1/ωn).

In our main text, the interaction Hamiltonian of the system
is given by Eq. (1), i.e.,

HI =
N∑

j=1

gm
(
â†τ

j−
10 e−iδ j

mt + âτ
j+

10 eiδ j
mt

)

+
N∑

j=1

go
(
b̂†τ

j−
21 e−iδ j

ot + b̂τ j+
21 eiδ j

ot
)
, (A3)

where detunings δ
j
m < 0 and δ

j
o > 0.

According to Eqs. (A1) and (A2), we choose ĥ+
1 =∑N

j=1 gmâ†τ
j−

10 , ω1 = −δ
j
m, ĥ+

2 = ∑N
j=1 gob̂τ j+

21 , and ω2 = δ
j
o .

Then we introduce average detunings δm and δo, random shifts
�

j
m = δ

j
m − δm and �

j
o = δ

j
o − δo for the jth spin of the en-

semble [5,21]. In the dispersive regime |δm| � {gm, |� j
m|} and

δo � {go,�
j
o}, one can ignore the effect of inhomogeneous

broadening of the transition frequencies for the ensemble in
the following [5,21]. Thus, we have

[ĥ+
1 , ĥ1] =

N∑
j=1

g2
m(â†â|0〉 j〈0| − ââ†|1〉 j〈1|),

[ĥ+
2 , ĥ2] =

N∑
j=1

g2
o(b̂b̂†|2〉 j〈2| − b̂†b̂|1〉 j〈1|),

[ĥ+
1 , ĥ2] =

N∑
j=1

gmgoâ†b̂†|0〉 j〈2|,

[ĥ+
2 , ĥ1] =

N∑
j=1

gmgoâb̂|2〉 j〈0|. (A4)

By inserting Eq. (A4) into Eq. (A2), one can obtain the
effective Hamiltonian

He =
N∑

j=1

−g2
m

δm
(â†â|0〉 j〈0| − ââ†|1〉 j〈1|)

+
N∑

j=1

g2
o

δo
(b̂b̂†|2〉 j〈2| − b̂†b̂|1〉 j〈1|)

+
N∑

j=1

λ(â†b̂†|0〉 j〈2|e−iδomt + âb̂|2〉 j〈0|eiδomt ), (A5)

where λ = (gogm/2)(1/|δm| + 1/δo) and δom = δo − |δm|.
Then we choose ĥ+

3 = ∑N
j=1 λâb̂|2〉 j〈0| and ω3 = δom > 0.

One can obtain

[ĥ+
3 , ĥ3] =

N∑
j=1

λ2(ââ†b̂b̂†|2〉 j〈2| − â†âb̂†b̂|0〉 j〈0|). (A6)

In the dispersive regime δom � {λ, g2
m/|δm|, g2

o/δo}, and
by inserting Eq. (A6) into the formula (A2), the Hamilto-
nian (A5) becomes

He =
N∑

j=1

−g2
m

δm
(â†â|0〉 j〈0| − ââ†|1〉 j〈1|)

+
N∑

j=1

g2
o

δo
(b̂b̂†|2〉 j〈2| − b̂†b̂|1〉 j〈1|)

+
N∑

j=1

λ2

δom
(ââ†b̂b̂†|2〉 j〈2| − â†âb̂†b̂|0〉 j〈0|). (A7)

If the jth spin is in the ground state, the Hamiltonian (A7)
reduces to

He = −
N∑

j=1

g2
m

δm
â†â|0〉 j〈0| −

N∑
j=1

λ2

δom
â†âb̂†b̂|0〉 j〈0|. (A8)

Under the conditions of the weak excitations and the large
N , one can map the spin operators to the bosonic operators by
using the Holstein-Primakoff transformation [69,70]:

N∑
j=1

τ
j−

10 = ĉ
√

N − ĉ†ĉ �
√

Nĉ,

N∑
j=1

τ
j+

10 = ĉ†
√

N − ĉ†ĉ �
√

Nĉ†, (A9)

where ĉ† and ĉ are bosonic operators which approximately
obey the boson commutation relation [ĉ, ĉ†] ≈ 1 [71].

According to Eqs. (A9), one has
∑N

j=1 |0〉 j〈0| =∑N
j=1 τ

j−
10 τ

j+
10 � Nĉĉ†. Therefore, the Hamiltonian (A8)
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can be further rewritten as

He = − (
√

Ngm)2

δm
â†âĉĉ† − (

√
Nλ)2

δom
â†âb̂†b̂ĉĉ†

= −λmâ†â − χ â†âb̂†b̂

−λmâ†âĉ†ĉ − χ â†âb̂†b̂ĉ†ĉ, (A10)

where λm = (
√

Ngm)2/δm and χ = (
√

Nλ)2/δom.
When the spin ensemble is in the ground state |0〉c, the

interactions described by last line of Eqs. (A10) can be

neglected. Thus, the Hamiltonian (A10) becomes

He = −λmâ†â − χ â†âb̂†b̂. (A11)

In a rotating frame under the Hamiltonian H0 = −λmâ†â,
one has

He = eiH0t (−χ â†âb̂†b̂)e−iH0t = −χ â†âb̂†b̂, (A12)

which is the Hamiltonian (7) in the main text.
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